Science.gov

Sample records for advanced acute myeloid

  1. Acute Myeloid Leukemia: Advancements in Diagnosis and Treatment

    PubMed Central

    Yu, Meng-Ge; Zheng, Hu-Yong

    2017-01-01

    Objective: Leukemia is the most common pediatric malignancy and a major cause of morbidity and mortality in children. Among all subtypes, a lack of consensus exists regarding the diagnosis and treatment of acute myeloid leukemia (AML). Patient survival rates have remained modest for the past three decades in AML. Recently, targeted therapy has emerged as a promising treatment. Data Sources: We searched the PubMed database for recently published research papers on diagnostic development, target therapy, and other novel therapies of AML. Clinical trial information was obtained from ClinicalTrials.gov. For the major purpose of this review that is to outline the latest therapeutic development of AML, we only listed the ongoing clinical trials for reference. However, the published results of complete clinical trials were also mentioned. Study Selection: This article reviewed the latest developments related to the diagnosis and treatment of AML. In the first portion, we provided some novel insights on the molecular basis of AML, as well as provided an update on the classification of AML. In the second portion, we summarized the results of research on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/Fms-like tyrosine kinase 3 (FLT3) inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. We will also highlight ongoing research and clinical trials in pediatric AML. Results: We described clonal evolution and how it changes our view on leukemogenesis, treatment responses, and disease relapse. Pediatric-specific genomic mapping was discussed with a novel diagnostic method highlighted. In the later portion of this review, we summarized the researches on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/FLT3 inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. Conclusion: Gene sequencing techniques should set the basis for next-generation diagnostic

  2. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-12

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Entinostat and Sorafenib Tosylate in Treating Patients With Advanced or Metastatic Solid Tumors or Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-18

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Myeloid Leukemia; Unspecified Adult Solid Tumor, Protocol Specific

  4. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... Acute Myeloid Leukemia (AML) What Is Acute Myeloid Leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  5. Can Acute Myeloid Leukemia Be Prevented?

    MedlinePlus

    ... Causes, Risk Factors, and Prevention Can Acute Myeloid Leukemia Be Prevented? It’s not clear what causes most ... Myeloid Leukemia Be Prevented? More In Acute Myeloid Leukemia About Acute Myeloid Leukemia Causes, Risk Factors, and ...

  6. Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm

    ClinicalTrials.gov

    2016-12-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia; Myeloproliferative Neoplasm With 10% Blasts or Higher

  7. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  8. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-02-27

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  9. Acute Myeloid Leukaemia

    PubMed Central

    Villela, Luis; Bolaños-Meade, Javier

    2013-01-01

    The current treatment of patients with acute myeloid leukaemia yields poor results, with expected cure rates in the order of 30–40% depending on the biological characteristics of the leukaemic clone. Therefore, new agents and schemas are intensively studied in order to improve patients’ outcomes. This review summarizes some of these new paradigms, including new questions such as which anthracycline is most effective and at what dose. High doses of daunorubicin have shown better responses in young patients and are well tolerated in elderly patients. Monoclonal antibodies are promising agents in good risk patients. Drugs blocking signalling pathways could be used in combination with chemotherapy or in maintenance with promising results. Epigenetic therapies, particularly after stem cell transplantation, are also discussed. New drugs such as clofarabine and flavopiridol are reviewed and the results of their use discussed. It is clear that many new approaches are under study and hopefully will be able to improve on the outcomes of the commonly used ‘7+3’ regimen of an anthracycline plus cytarabine with daunorubicin, which is clearly an ineffective therapy in the majority of patients. PMID:21861539

  10. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. How Is Acute Myeloid Leukemia Diagnosed?

    MedlinePlus

    ... Detection, Diagnosis, and Types How Is Acute Myeloid Leukemia Diagnosed? Certain signs and symptoms might suggest that ... of samples used to test for acute myeloid leukemia If signs and symptoms and/or the results ...

  12. Acute Myeloid Leukemia (AML) (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Acute Myeloid Leukemia (AML) KidsHealth > For Parents > Acute Myeloid Leukemia (AML) ... Treatment Coping en español Leucemia mieloide aguda About Leukemia Leukemia is a type of cancer that affects ...

  13. Acute Myeloid Leukemia: A Concise Review

    PubMed Central

    Saultz, Jennifer N.; Garzon, Ramiro

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies. PMID:26959069

  14. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-11-08

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  15. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  16. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  17. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  18. PROGRESS IN ACUTE MYELOID LEUKEMIA

    PubMed Central

    Kadia, Tapan M.; Ravandi, Farhad; O’Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M.

    2014-01-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  19. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... What Are the Key Statistics About Acute Myeloid Leukemia? The American Cancer Society’s estimates for leukemia in ... Leukemia Research and Treatment? More In Acute Myeloid Leukemia About Acute Myeloid Leukemia Causes, Risk Factors, and ...

  20. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. G-CSF priming, clofarabine, and high dose cytarabine (GCLAC) for upfront treatment of acute myeloid leukemia, advanced myelodysplastic syndrome or advanced myeloproliferative neoplasm.

    PubMed

    Becker, Pamela S; Medeiros, Bruno C; Stein, Anthony S; Othus, Megan; Appelbaum, Frederick R; Forman, Stephen J; Scott, Bart L; Hendrie, Paul C; Gardner, Kelda M; Pagel, John M; Walter, Roland B; Parks, Cynthia; Wood, Brent L; Abkowitz, Janis L; Estey, Elihu H

    2015-04-01

    Prior study of the combination of clofarabine and high dose cytarabine with granulocyte colony-stimulating factor (G-CSF) priming (GCLAC) in relapsed or refractory acute myeloid leukemia resulted in a 46% rate of complete remission despite unfavorable risk cytogenetics. A multivariate analysis demonstrated that the remission rate and survival with GCLAC were superior to FLAG (fludarabine, cytarabine, G-CSF) in the relapsed setting. We therefore initiated a study of the GCLAC regimen in the upfront setting in a multicenter trial. The objectives were to evaluate the rates of complete remission (CR), overall and relapse-free survival (OS and RFS), and toxicity of GCLAC. Clofarabine was administered at 30 mg m(-2) day(-1) × 5 and cytarabine at 2 g m(-2) day(-1) × 5 after G-CSF priming in 50 newly-diagnosed patients ages 18-64 with AML or advanced myelodysplastic syndrome (MDS) or advanced myeloproliferative neoplasm (MPN). Responses were assessed in the different cytogenetic risk groups and in patients with antecedent hematologic disorder. The overall CR rate was 76% (95% confidence interval [CI] 64-88%) and the CR + CRp (CR with incomplete platelet count recovery) was 82% (95% CI 71-93%). The CR rate was 100% for patients with favorable, 84% for those with intermediate, and 62% for those with unfavorable risk cytogenetics. For patients with an antecedent hematologic disorder (AHD), the CR rate was 65%, compared to 85% for those without an AHD. The 60 day mortality was 2%. Thus, front line GCLAC is a well-tolerated, effective induction regimen for AML and advanced myelodysplastic or myeloproliferative disorders.

  2. G-CSF Priming, Clofarabine, and High Dose Cytarabine (GCLAC) for Upfront Treatment of Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome or Advanced Myeloproliferative Neoplasm

    PubMed Central

    Becker, Pamela S.; Medeiros, Bruno C.; Stein, Anthony S.; Othus, Megan; Appelbaum, Frederick R.; Forman, Stephen J.; Scott, Bart L.; Hendrie, Paul C.; Gardner, Kelda M.; Pagel, John M.; Walter, Roland B.; Parks, Cynthia; Wood, Brent L.; Abkowitz, Janis L.; Estey, Elihu H.

    2016-01-01

    Prior study of the combination of clofarabine and high dose cytarabine with granulocyte colony-stimulating factor (G-CSF) priming (GCLAC) in relapsed or refractory acute myeloid leukemia resulted in a 46% rate of complete remission despite unfavorable risk cytogenetics. A multivariate analysis demonstrated that the remission rate and survival with GCLAC were superior to FLAG (fludarabine, cytarabine, G-CSF) in the relapsed setting. We therefore initiated a study of the GCLAC regimen in the upfront setting in a multicenter trial. The objectives were to evaluate the rates of complete remission (CR), overall and relapse-free survival (OS and RFS), and toxicity of GCLAC. Clofarabine was administered at 30 mg/m2/day × 5 and cytarabine at 2 gm/m2/day × 5 after G-CSF priming in 50 newly-diagnosed patients ages 18–64 with AML or advanced myelodysplastic syndrome (MDS) or advanced myeloproliferative neoplasm (MPN). Responses were assessed in the different cytogenetic risk groups and in patients with antecedent hematologic disorder. The overall CR rate was 76% (95% confidence interval [CI] 64–88%) and the CR + CRp (CR with incomplete platelet count recovery) was 82% (95% CI 71–93%). The CR rate was 100% for patients with favorable, 84% for those with intermediate, and 62% for those with unfavorable risk cytogenetics. For patients with an antecedent hematologic disorder (AHD), the CR rate was 65%, compared to 85% for those without an AHD. The 60 day mortality was 2%. Thus, front line GCLAC is a well-tolerated, effective induction regimen for AML and advanced myelodysplastic or myeloproliferative disorders. PMID:25545153

  3. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2017-02-20

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  4. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  5. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-11-14

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  7. Radiolabeled Monoclonal Antibody Therapy, Fludarabine Phosphate, and Low-Dose Total-Body Irradiation Followed by Donor Stem Cell Transplant and Immunosuppression Therapy in Treating Older Patients With Advanced Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-11-14

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  8. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-12-06

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  9. 5-Fluoro-2'-Deoxycytidine and Tetrahydrouridine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-06-03

    Adult Acute Myeloid Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  10. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-03-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  11. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  13. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Leukemia (AML) About Acute Myeloid Leukemia (AML) What’s New in Acute Myeloid Leukemia Research and Treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  14. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-19

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  17. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  18. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  19. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-03-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  20. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  1. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2017-01-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  2. Acute Myeloid Leukemia, Version 2.2013

    PubMed Central

    O'Donnell, Margaret R.; Tallman, Martin S.; Abboud, Camille N.; Altman, Jessica K.; Appelbaum, Frederick R.; Arber, Daniel A.; Attar, Eyal; Borate, Uma; Coutre, Steven E.; Damon, Lloyd E.; Lancet, Jeffrey; Maness, Lori J.; Marcucci, Guido; Martin, Michael G.; Millenson, Michael M.; Moore, Joseph O.; Ravandi, Farhad; Shami, Paul J.; Smith, B. Douglas; Stone, Richard M.; Strickland, Stephen A.; Wang, Eunice S.; Gregory, Kristina M.; Naganuma, Maoko

    2014-01-01

    These NCCN Guidelines Insights summarize several key updates to the NCCN Guidelines for Acute Myeloid Leukemia and discuss the clinical evidence that support the recommendations. The updates described in this article focus on the acute promyelocytic leukemia (APL) section, featuring recommendations for additional induction/consolidation regimens in patients with low- or intermediate-risk APL, and providing guidance on maintenance strategies for APL. PMID:24029121

  3. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  4. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  5. Prolonged remission maintenance in acute myeloid leukaemia.

    PubMed

    Spiers, A S; Goldman, J M; Catovsky, D; Costello, C; Galton, D A; Pitcher, C S

    1977-08-27

    Twenty-five patients with acute myeloid leukaemia were treated with three quadruple drug combinations in predetermined rotation: TRAP (thioguanine, daunorubicin, cytarabine, prednisolone); COAP (cyclophosphamide, vincristine, cytarabine, prednisolone); and POMP (prednisolone, vincristine, methotrexate, mercaptopurine). Fifteen patients (60%) achieved complete remission and five (20%) partial remission. For maintenance, five-day courses of drugs were administered every 14 to 21 days and doses were increased to tolerance. The median length of complete remission was 66 weeks. In eight patients remission maintenance treatment was discontinued and some remained in complete remission for over two years. In this series the remission induction rate was comparable with that reported for other regimens and complete remission lasted longer with this intensive maintenance regimen than with others. Nevertheless, the TRAP programme must still be regarded as only palliative treatment for acute myeloid leukaemia.

  6. Prolonged remission maintenance in acute myeloid leukaemia.

    PubMed Central

    Spiers, A S; Goldman, J M; Catovsky, D; Costello, C; Galton, D A; Pitcher, C S

    1977-01-01

    Twenty-five patients with acute myeloid leukaemia were treated with three quadruple drug combinations in predetermined rotation: TRAP (thioguanine, daunorubicin, cytarabine, prednisolone); COAP (cyclophosphamide, vincristine, cytarabine, prednisolone); and POMP (prednisolone, vincristine, methotrexate, mercaptopurine). Fifteen patients (60%) achieved complete remission and five (20%) partial remission. For maintenance, five-day courses of drugs were administered every 14 to 21 days and doses were increased to tolerance. The median length of complete remission was 66 weeks. In eight patients remission maintenance treatment was discontinued and some remained in complete remission for over two years. In this series the remission induction rate was comparable with that reported for other regimens and complete remission lasted longer with this intensive maintenance regimen than with others. Nevertheless, the TRAP programme must still be regarded as only palliative treatment for acute myeloid leukaemia. PMID:268229

  7. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  8. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-06

    Chimerism; Hematopoietic Cell Transplantation Recipient; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Tipifarnib in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-03-22

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Cellular Diagnosis, Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Immunological effects of nilotinib prophylaxis after allogeneic stem cell transplantation in patients with advanced chronic myeloid leukemia or philadelphia chromosome-positive acute lymphoblastic leukemia

    PubMed Central

    Shouval, Roni; Eldror, Shiran; Lev, Atar; Davidson, Jacqueline; Rosenthal, Esther; Volchek, Yulia; Shem-Tov, Noga; Yerushalmi, Ronit; Shimoni, Avichai; Somech, Raz; Nagler, Arnon

    2017-01-01

    Allogeneic stem cell transplantation remains the standard treatment for resistant advanced chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia. Relapse is the major cause of treatment failure in both diseases. Post-allo-SCT administration of TKIs could potentially reduce relapse rates, but concerns regarding their effect on immune reconstitution have been raised. We aimed to assess immune functions of 12 advanced CML and Ph+ ALL patients who received post-allo-SCT nilotinib. Lymphocyte subpopulations and their functional activities including T-cell response to mitogens, NK cytotoxic activity and thymic function, determined by quantification of the T cell receptor (TCR) excision circles (TREC) and TCR repertoire, were evaluated at several time points, including pre-nilotib-post-allo-SCT, and up to 365 days on nilotinib treatment. NK cells were the first to recover post allo-SCT. Concomitant to nilotinib administration, total lymphocyte counts and subpopulations gradually increased. CD8 T cells were rapidly reconstituted and continued to increase until day 180 post SCT, while CD4 T cells counts were low until 180−270 days post nilotinib treatment. T-cell response to mitogenic stimulation was not inhibited by nilotinib administration. Thymic activity, measured by TREC copies and surface membrane expression of 24 different TCR Vβ families, was evident in all patients at the end of follow-up after allo-SCT and nilotinib treatment. Finally, nilotinib did not inhibit NK cytotoxic activity. In conclusion, administration of nilotinib post allo-SCT, in attempt to reduce relapse rates or progression of Ph+ ALL and CML, did not jeopardize immune reconstitution or function following transplantation. PMID:27880933

  12. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  13. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-02

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  14. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-04

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    ClinicalTrials.gov

    2017-03-13

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm

  16. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. Precision medicine for acute myeloid leukemia.

    PubMed

    Lai, Catherine; Karp, Judith E; Hourigan, Christopher S

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints.

  18. Precision Medicine for Acute Myeloid Leukemia

    PubMed Central

    Lai, Catherine; Karp, Judith E.; Hourigan, Christopher S.

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints. PMID:26514194

  19. Radiolabeled Anti-CD45 Antibody with Reduced-Intensity Conditioning and Allogeneic Transplantation for Younger Patients with Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    PubMed Central

    Mawad, Raya; Gooley, Ted A.; Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, Ajay K.; Shields, Andrew T.; Sandmaier, Brenda M.; Sorror, Mohamed L.; Deeg, H. Joachim; Storb, Rainer; Green, Damian J.; Maloney, David G.; Appelbaum, Frederick R.; Press, Oliver W.; Pagel, John M.

    2014-01-01

    We treated patients under age 50 years with 131I-anti-CD45 antibody combined with fludarabine and 2 Gy total body irradiation to create an improved hematopoietic cell transplantation (HCT) strategy for advanced acute myeloid leukemia or high-risk myelodysplastic syndrome patients. Fifteen patients received 332–1,561 mCi of 131I, delivering an average of 27 Gy to bone marrow, 84 Gy to spleen, and 21 Gy to liver. Although a maximum dose of 28 Gy was delivered to the liver, no dose-limiting toxicity was observed. Marrow doses were arbitrarily capped at 43 Gy to avoid radiation-induced stromal damage; however no graft failure or evidence of stromal damage was observed. Twelve patients (80%) developed Grade II graft-versus-host disease (GVHD), one patient developed Grade III GVHD, and no patients developed Grade IV GVHD during the first 100 days after HCT. Of the 12 patients with chronic GVHD data, 10 developed chronic GVHD, generally involving the skin and mouth. Six patients (40%) are surviving after a median of 5.0 years (range, 4.2 to 8.3 years). The estimated survival at 1 year was 73% among the 15 treated patients. Eight patients relapsed, 7 of whom subsequently died. The median time to relapse among these 8 patients was 54 days (range, 26 to 1364 days). No cases of non-relapse mortality were observed in the first year after transplant. However, two patients died in remission from complications of chronic GVHD and cardiomyopathy, at 18 months and 14 months after transplant, respectively. This study suggests that patients may tolerate myeloablative doses >28 Gy delivered to the liver using 131I-anti-CD45 antibody in addition to standard reduced intensity conditioning. Moreover, the arbitrary limit of 43 Gy to the marrow may be unnecessarily conservative, and continued escalation of targeted radioimmunotherapy doses may be feasible to further reduce relapse. PMID:24858425

  20. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  1. Molecular diagnosis of acute myeloid leukemia.

    PubMed

    Watt, Christopher D; Bagg, Adam

    2010-11-01

    The diagnosis and classification of acute myeloid leukemia is multifaceted, requiring the integration of a variety of laboratory findings, with genetic approaches now firmly established as a central component. Molecular genetic technologies continue to evolve and provide additional tiers of both clarity and complexity. Many have rapidly moved into clinical laboratories; others remain as relevant discovery tools, while some are poised to take their place in diagnostic testing menus. Here, we attempt to synthesize the role of various testing modalities and exciting nascent fundamental discoveries, with a view as to how these might be integrated into the contemporary and future evaluation of this group of aggressive hematologic malignancies.

  2. Blood group change in acute myeloid leukemia

    PubMed Central

    Nambiar, Rakul K.; Prakash, N. P.; Vijayalakshmi, K.

    2017-01-01

    Blood group antigens are either sugars or proteins found attached to the red blood cell membrane. ABO blood group antigens are the most clinically important antigens because they are the most immunogenic. As red blood cell antigens are inherited traits, they are usually not altered throughout the life of an individual. There have been occasional case reports of ABO blood group antigen change in malignant conditions. We report two such cases of ABO antigen alteration associated with acute myeloid leukemia. These patients had suppression of their blood group antigens during their leukemic phase, and the antigens were reexpressed when the patients attained remission. PMID:28127141

  3. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-03-27

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  4. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-24

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-01

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. S0432 Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-14

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  11. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  12. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    PubMed

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  13. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  14. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-11-14

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  15. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  16. Radiolabeled anti-CD45 antibody with reduced-intensity conditioning and allogeneic transplantation for younger patients with advanced acute myeloid leukemia or myelodysplastic syndrome.

    PubMed

    Mawad, Raya; Gooley, Ted A; Rajendran, Joseph G; Fisher, Darrell R; Gopal, Ajay K; Shields, Andrew T; Sandmaier, Brenda M; Sorror, Mohamed L; Deeg, Hans Joachim; Storb, Rainer; Green, Damian J; Maloney, David G; Appelbaum, Frederick R; Press, Oliver W; Pagel, John M

    2014-09-01

    We treated patients under age 50 years with iodine-131 ((131)I)-anti-CD45 antibody combined with fludarabine and 2 Gy total body irradiation to create an improved hematopoietic cell transplantation (HCT) strategy for advanced acute myeloid leukemia or high-risk myelodysplastic syndrome patients. Fifteen patients received 332 to 1561 mCi of (131)I, delivering an average of 27 Gy to bone marrow, 84 Gy to spleen, and 21 Gy to liver. Although a maximum dose of 28 Gy was delivered to the liver, no dose-limiting toxicity was observed. Marrow doses were arbitrarily capped at 43 Gy to avoid radiation-induced stromal damage; however, no graft failure or evidence of stromal damage was observed. Twelve patients (80%) developed grade II graft-versus-host disease (GVHD), 1 patient developed grade III GVHD, and no patients developed grade IV GVHD during the first 100 days after HCT. Of the 12 patients with chronic GVHD data, 10 developed chronic GVHD, generally involving the skin and mouth. Six patients (40%) are surviving after a median of 5.0 years (range, 4.2 to 8.3 years). The estimated survival at 1 year was 73% among the 15 treated patients. Eight patients relapsed, 7 of whom subsequently died. The median time to relapse among these 8 patients was 54 days (range, 26 to 1364 days). No cases of nonrelapse mortality were observed in the first year after transplantation. However, 2 patients died in remission from complications of chronic GVHD and cardiomyopathy, at 18 months and 14 months after transplantation, respectively. This study suggests that patients may tolerate myeloablative doses >28 Gy delivered to the liver using (131)I-anti-CD45 antibody in addition to standard reduced-intensity conditioning. Moreover, the arbitrary limit of 43 Gy to the marrow may be unnecessarily conservative, and continued escalation of targeted radioimmunotherapy doses may be feasible to further reduce relapse.

  17. Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-14

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Targeting MTHFD2 in acute myeloid leukemia

    PubMed Central

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M.; Frumm, Stacey M.; Ross, Linda; Fenouille, Nina; Bassil, Christopher F.; Lewis, Caroline A.; Ramos, Azucena; Gould, Joshua; Stone, Richard M.; DeAngelo, Daniel J.; Galinsky, Ilene; Clish, Clary B.; Kung, Andrew L.; Hemann, Michael T.; Vander Heiden, Matthew G.; Banerji, Versha

    2016-01-01

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  20. Myeloid Sarcoma in an Eyelid That Developed during Chemotherapy for Acute Myeloid Leukemia

    PubMed Central

    Kang, Hyera; Takahashi, Yasuhiro; Takahashi, Emiko; Kakizaki, Hirohiko

    2016-01-01

    An 80-year-old female presented with a mass in the left upper eyelid margin that had developed during chemotherapy for acute myeloid leukemia. The mass was elastic, hard, and pinkish, with a relatively smooth surface but without madarosis. The histopathological findings corresponded to a myeloid sarcoma. No blast cells were shown in the peripheral blood at the time of biopsy, and she subsequently underwent an azacitidine injection regimen. The size of the eyelid tumor decreased 3 months after the biopsy, when the course of azacitidine injections was completed. However, acute myeloid leukemia recurred, and the patient died PMID:26889156

  1. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-03-13

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar;49(3):237-41. doi: 10.1002/gcc. ... EBPalpha), in acute myeloid leukemia. Nat Genet. 2001 Mar;27(3):263-70. Citation on PubMed Renneville ...

  3. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  4. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  5. Novel Prognostic and Therapeutic Mutations in Acute Myeloid Leukemia

    PubMed Central

    MEDINGER, MICHAEL; LENGERKE, CLAUDIA; PASSWEG, JAKOB

    2016-01-01

    Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence increases with age. Cytogenetics and mutation testing remain important prognostic tools for treatment after induction therapy. The post-induction treatment is dependent on risk stratification. Despite rapid advances in determination of gene mutations involved in the pathophysiology and biology of AML, and the rapid development of new drugs, treatment improvements changed slowly over the past 30 years, with the majority of patients eventually experiencing relapse and dying of their disease. Allogenic hematopoietic stem cell transplantation remains the best chance of cure for patients with intermediate- or high-risk disease. This review gives an overview about advances in prognostic markers and novel treatment options for AML, focusing on new prognostic and probably therapeutic mutations, and novel drug therapies such as tyrosine kinase inhibitors. PMID:27566651

  6. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  8. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-04-05

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-03

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  11. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-02-07

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  12. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Ixazomib (MLN9708) in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-20

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  14. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-04

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  15. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2011-11-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  16. Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-03-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia

  17. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-05

    Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Untreated Adult Acute Myeloid Leukemia

  18. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  19. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  20. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-01-31

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. GTI-2040 and High-Dose Cytarabine in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  2. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-01-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  3. Reprint of: Allogeneic hematopoietic cell transplantation for acute myeloid leukemia.

    PubMed

    Vyas, Paresh; Appelbaum, Frederick R; Craddock, Charles

    2015-02-01

    Allogeneic stem cell transplantation is an increasingly important treatment option in the management of adult acute myeloid leukemia (AML). The major causes of treatment failure remain disease relapse and treatment toxicity. In this review, Dr Vyas presents an overview of important recent data defining molecular factors associated with treatment failure in AML. He also identifies the emerging importance of leukemia stem cell biology in determining both response to therapy and relapse risk in AML. Dr Appelbaum discusses advances in the design and delivery of both myeloablative and reduced-intensity conditioning regimens, highlighting novel strategies with the potential to improve outcome. Dr Craddock discusses the development of both novel conditioning regimens and post-transplantation strategies aimed at reducing the risk of disease relapse.

  4. The increasing genomic complexity of acute myeloid leukemia.

    PubMed

    Rowe, Jacob M

    2014-01-01

    Therapy of acute myeloid leukemia (AML) is impacted by the increasing genomic complexity of the disease. Multiple targets as expressed by genetics and mutations and the relationships between them add another layer of intricacy to the prognosis and treatment of the disease. It is becoming increasingly apparent that the interactions between mutations are of utmost importance, particularly from a prognostic standpoint. For example, inv(16) or 6(16; 16) AML frequently involves a second genetic lesion that significantly impacts prognosis. In addition, epigenetic changes, including DNA methylation, are becoming increasingly integrated into the genetic landscape and may also have prognostic impact. Despite increased understanding of the genetic and epigenetic aspects of AML, the outcome for AML patients has not changed significantly. Until it does, further inquiry into the genomic complexity of the disease and advances in drug development are needed.

  5. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-02-09

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  6. Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia

    PubMed Central

    Muus, Petra; Ossenkoppele, Gert; Rousselot, Philippe; Cahn, Jean-Yves; Ifrah, Norbert; Martinelli, Giovanni; Amadori, Sergio; Berman, Ellin; Sonneveld, Pieter; Jongen-Lavrencic, Mojca; Rigaudeau, Sophie; Stockman, Paul; Goudie, Alison; Faderl, Stefan; Jabbour, Elias; Kantarjian, Hagop

    2011-01-01

    The primary objective of this 2-part phase 1/2 study was to determine the maximum-tolerated dose (MTD) of the potent and selective Aurora B kinase inhibitor barasertib (AZD1152) in patients with newly diagnosed or relapsed acute myeloid leukemia (AML). Part A determined the MTD of barasertib administered as a continuous 7-day infusion every 21 days. In part B, the efficacy of barasertib was evaluated at the MTD. In part A, 32 patients were treated with barasertib 50 mg (n = 3), 100 mg (n = 3), 200 mg (n = 3), 400 mg (n = 4), 800 mg (n = 7), 1200 mg (n = 6), and 1600 mg (n = 6). Dose-limiting toxicities (stomatitis/mucosal inflammation events) were reported in the 800 mg (n = 1), 1200 mg (n = 1), and 1600 mg (n = 2) groups. The MTD was defined as 1200 mg. In part B, 32 patients received barasertib 1200 mg. In each part of the study, 8 of 32 patients had a hematologic response according to Cheson AML criteria. The most commonly reported grade ≥ 3 events were febrile neutropenia (n = 24) and stomatitis/mucosal inflammation (n = 16). We concluded that the MTD of barasertib is 1200 mg in patients with relapsed or newly diagnosed AML. Toxicity was manageable and barasertib treatment resulted in an overall hematologic response rate of 25%. This study is registered at www.ClinicalTrials.gov as NCT00497991. PMID:21976672

  7. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-04-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  8. An update of current treatments for adult acute myeloid leukemia

    PubMed Central

    Gardin, Claude

    2016-01-01

    Recent advances in acute myeloid leukemia (AML) biology and its genetic landscape should ultimately lead to more subset-specific AML therapies, ideally tailored to each patient's disease. Although a growing number of distinct AML subsets have been increasingly characterized, patient management has remained disappointingly uniform. If one excludes acute promyelocytic leukemia, current AML management still relies largely on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT), at least in younger patients who can tolerate such intensive treatments. Nevertheless, progress has been made, notably in terms of standard drug dose intensification and safer allogeneic HSCT procedures, allowing a larger proportion of patients to achieve durable remission. In addition, improved identification of patients at relatively low risk of relapse should limit their undue exposure to the risks of HSCT in first remission. The role of new effective agents, such as purine analogs or gemtuzumab ozogamicin, is still under investigation, whereas promising new targeted agents are under clinical development. In contrast, minimal advances have been made for patients unable to tolerate intensive treatment, mostly representing older patients. The availability of hypomethylating agents likely represents an encouraging first step for this latter population, and it is hoped will allow for more efficient combinations with novel agents. PMID:26660429

  9. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  10. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  11. Comparing Three Different Combination Chemotherapy Regimens in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-02

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  12. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-09

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Acute Myeloid Leukemia: Focus on Novel Therapeutic Strategies

    PubMed Central

    Lin, Tara L.; Levy, M. Yair

    2012-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease with variable clinical outcomes. Cytogenetic analysis reveals which patients may have favorable risk disease, but 5-year survival in this category is only approximately 60%, with intermediate and poor risk groups faring far worse. Advances in our understanding of the biology of leukemia pathogenesis and prognosis have not been matched with clinical improvements. Unsatisfactory outcomes persist for the majority of patients with AML, particularly the elderly. Novel agents and treatment approaches are needed in the induction, post-remission and relapsed settings. The additions of clofarabine for relapsed or refractory disease and the hypomethylating agents represent recent advances. Clinical trials of FLT3 inhibitors have yielded disappointing results to date, with ongoing collaborations attempting to identify the optimal role for these agents. Potential leukemia stem cell targeted therapies and treatments in the setting of minimal residual disease are also under investigation. In this review, we will discuss recent advances in AML treatment and novel therapeutic strategies. PMID:22654526

  14. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  15. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-12-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  16. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  17. Busulfan, Etoposide, and Intensity-Modulated Radiation Therapy Followed By Donor Stem Cell Transplant in Treating Patients With Advanced Myeloid Cancer

    ClinicalTrials.gov

    2017-04-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  18. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  19. Acute myeloid leukemia therapeutics: CARs in the driver's seat.

    PubMed

    Mardiros, Armen; Brown, Christine E; Budde, L Elizabeth; Wang, Xiuli; Forman, Stephen J

    2013-12-01

    Acute myeloid leukemia remains a difficult disease to cure and novel therapeutic approaches are needed. To this end, we developed CD123 chimeric antigen receptor (CAR) redirected T cells which exhibited potent antileukemic activity. We discuss what we learned during the development of CD123 CARs and future directions for this immunotherapy.

  20. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  1. Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia.

    PubMed

    de la Puente, Pilar; Weisberg, Ellen; Muz, Barbara; Nonami, Atsushi; Luderer, Micah; Stone, Richard M; Melo, Junia V; Griffin, James D; Azab, Abdel Kareem

    2015-09-09

    Current treatment options as well as clinical efficacy are limited for chronic myelogenous leukemia (CML), Ph+ acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). In response to the pressing need for more efficacious treatment approaches and strategies to override drug resistance in advanced stage CML, Ph+ ALL, and AML, we investigated the effects of inhibition of ILK as a potentially novel and effective approach to treatment of these challenging malignancies. Using the small molecule ILK inhibitor, Cpd22, and ILK knockdown, we investigated the importance of ILK in the growth and viability of leukemia. Our results suggest that the ILK inhibition may be an effective treatment for CML, Ph+ ALL, and AML as a single therapy, with ILK expression levels positively correlating with the efficacy of ILK inhibition. The identification of ILK as a novel target for leukemia therapy warrants further investigation as a therapeutic approach that could be of potential clinical benefit in both acute and chronic myeloid leukemias.

  2. Acute myeloid leukemia: a comprehensive review and 2016 update'

    PubMed Central

    De Kouchkovsky, I; Abdul-Hay, M

    2016-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML. PMID:27367478

  3. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  4. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Myelodysplastic Syndrome With Ring Sideroblasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts in Transformation

  5. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Novel drugs for older patients with acute myeloid leukemia.

    PubMed

    Montalban-Bravo, G; Garcia-Manero, G

    2015-04-01

    Acute myeloid leukemia (AML) is the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the United States. The incidence of AML increases with advancing age and the prognosis for patients with AML worsens substantially with increasing age. Many older patients are ineligible for intensive treatment and require other therapeutic approaches to optimize clinical outcome. To address this treatment gap, novel agents with varying mechanisms of action targeting different cellular processes are currently in development. Hypomethylating agents (azacitidine, decitabine, SGI-110), histone deacetylase inhibitors (vorinostat, pracinostat, panobinostat), FMS-like tyrosine kinase receptor-3 inhibitors (quizartinib, sorafenib, midostaurin, crenolanib), cytotoxic agents (clofarabine, sapacitabine, vosaroxin), cell cycle inhibitors (barasertib, volasertib, rigosertib) and monoclonal antibodies (gentuzumab ozogamicin, lintuzumab-Ac225) represent some of these promising new treatments. This review provides an overview of novel agents that have either completed or are currently in ongoing phase III trials in patients with previously untreated AML for whom intensive treatment is not an option. Other potential drugs in earlier stages of development will also be addressed in this review.

  7. [Transformation of secondary myelodysplastic syndrome to atypical chronic myeloid leukemia in a female patient with acute myeloid leukemia].

    PubMed

    Gritsaev, S V; Kostroma, I I; Zapreeva, I M; Shmidt, A V; Tiranova, S A; Balashova, V A; Martynkevich, I S; Chubukina, Zh V; Semenova, N Yu; Chechetkin, A V

    Secondary myeloid neoplasia may be a complication of intensive cytostatic therapy. The most common types of secondary neoplasias are acute myeloid leukemia and myelodysplastic syndrome. The development of secondary atypical chronic myeloid leukemia (aCML) is an extremely rare phenomenon. The paper describes transformation of secondary myelodysplastic syndrome to aCML 6 months after its diagnosis. The development of aCML was accompanied by additional chromosomal aberration as monosomy of chromosome 17. No mutations in the JAK2, MPL, and CalR genes were detected. It is concluded that the clinical course of secondary myeloid neoplasias is variable.

  8. Allogeneic hematopoietic cell transplantation after conditioning with I-131-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    SciTech Connect

    Pagel, John M.; Gooley, T. A.; Rajendran, Joseph G.; Fisher, Darrell R.; Wilson, Wendy A.; Sandmaier, B. M.; Matthews, D. C.; Deeg, H. Joachim; Gopal, Ajay K.; Martin, P. J.; Storb, R.; Press, Oliver W.; Appelbaum, Frederick R.

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of I-131-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of I-131-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  9. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    PubMed

    Pagel, John M; Gooley, Theodore A; Rajendran, Joseph; Fisher, Darrell R; Wilson, Wendy A; Sandmaier, Brenda M; Matthews, Dana C; Deeg, H Joachim; Gopal, Ajay K; Martin, Paul J; Storb, Rainer F; Press, Oliver W; Appelbaum, Frederick R

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of (131)I-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of (131)I-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  10. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Promyelocytic Leukemia With PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  11. Infiltration of central nervous system in adult acute myeloid leukaemia.

    PubMed Central

    Pippard, M J; Callender, S T; Sheldon, P W

    1979-01-01

    Out of 64 consecutive unselected patients with acute myeloid leukaemia studied during 1973-6, five developed clinical evidence of spread to the central nervous system (CNS). Neuroradiological examination showed cerebral deposits in three, in whom rapid symptomatic relief was obtained with radiotherapy. In two of these patients who developed solid intracranial deposits haematological remission could be reinduced or maintained; they were still alive 86 and 134 weeks later. When patients presented with spread to the CNS complicating generalised uncontrolled leukaemia they had short survivals. CNS infiltration may respond dramatically to appropriate treatment provided that it is not associated with generalised uncontrolled leukaemia, which has a poor prognosis. In view of this, routine "prophylaxis" of the CNS in adult acute myeloid leukaemia does not seem justified at present. Images FIG 1 FIG 2 FIG 3 PMID:283873

  12. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  13. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-03-27

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  14. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2012-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  15. Molecular landscape in acute myeloid leukemia: where do we stand in 2016

    PubMed Central

    Al-Issa, Karam; Nazha, Aziz

    2016-01-01

    Acute myeloid leukemia (AML) is a clonal disorder characterized by the accumulation of complex genomic alterations that define the disease pathophysiology and overall outcome. Recent advances in sequencing technologies have described the molecular landscape of AML and identified several somatic alterations that impact overall survival. Despite all these advancement, several challenges remain in translating this information into effective therapy. Herein we will review the molecular landscape of AML and discuss the impact of the most common somatic mutations on disease biology and outcome. PMID:28154779

  16. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  17. 47,XYY karyotype in acute myeloid leukemia.

    PubMed

    Palanduz, S; Aktan, M; Ozturk, S; Tutkan, G; Cefle, K; Pekcelen, Y

    1998-10-01

    A case of acute myelomonocytic leukemia (AMMoL; M4) with a 47,XYY karyotype is reported. This chromosome aneuploidy was found in both bone marrow cells and mitogen-stimulated lymphocytes. The contribution of XYY chromosomal constitution in the pathogenesis of AMMoL is controversial.

  18. Midostaurin: an emerging treatment for acute myeloid leukemia patients

    PubMed Central

    Gallogly, Molly Megan; Lazarus, Hillard M

    2016-01-01

    Acute myeloid leukemia (AML) is a hematologic malignancy that carries a poor prognosis and has garnered few treatment advances in the last few decades. Mutation of the internal tandem duplication (ITD) region of fms-like tyrosine kinase (FLT3) is considered high risk for decreased response and overall survival. Midostaurin is a Type III receptor tyrosine kinase inhibitor found to inhibit FLT3 and other receptor tyrosine kinases, including platelet-derived growth factor receptors, cyclin-dependent kinase 1, src, c-kit, and vascular endothelial growth factor receptor. In preclinical studies, midostaurin exhibited broad-spectrum antitumor activity toward a wide range of tumor xenografts, as well as an FLT3-ITD-driven mouse model of myelodysplastic syndrome (MDS). Midostaurin is orally administered and generally well tolerated as a single agent; hematologic toxicity increases substantially when administered in combination with standard induction chemotherapy. Clinical trials primarily have focused on relapsed/refractory AML and MDS and included single- and combination-agent studies. Administration of midostaurin to relapsed/refractory MDS and AML patients confers a robust anti-blast response sufficient to bridge a minority of patients to transplant. In combination with histone deacetylase inhibitors, responses appear comparable to historic controls, while the addition of midostaurin to standard induction chemotherapy may prolong survival in FLT3-ITD mutant patients. The response of some wild-type (WT)-FLT3 patients to midostaurin therapy is consistent with midostaurin’s ability to inhibit WT-FLT3 in vitro, and also may reflect overexpression of WT-FLT3 in those patients and/or off-target effects such as inhibition of kinases other than FLT3. Midostaurin represents a well-tolerated, easily administered oral agent with the potential to bridge mutant and WT-FLT3 AML patients to transplant and possibly deepen response to induction chemotherapy. Ongoing studies are

  19. Measurable residual disease testing in acute myeloid leukaemia.

    PubMed

    Hourigan, C S; Gale, R P; Gormley, N J; Ossenkoppele, G J; Walter, R B

    2017-04-07

    There is considerable interest in developing techniques to detect and/or quantify remaining leukaemia cells termed measurable or, less precisely, minimal residual disease (MRD) in persons with acute myeloid leukaemia (AML) in complete remission defined by cytomorphological criteria. An important reason for AML MRD testing is the possibility of estimating the likelihood (and timing) of leukaemia relapse. A perfect MRD-test would precisely quantify leukaemia cells biologically able and likely to cause leukaemia relapse within a defined interval. AML is genetically diverse and there is currently no uniform approach to detecting such cells. Several technologies focused on immune phenotype or cytogenetic and/or molecular abnormalities have been developed, each with advantages and disadvantages. Many studies report a positive MRD-test at diverse time points during AML therapy identifies persons with a higher risk of leukaemia relapse compared with those with a negative MRD-test even after adjusting for other prognostic and predictive variables. No MRD-test in AML has perfect sensitivity and specificity for relapse prediction at the cohort- or subject-levels and there are substantial rates of false-positive and -negative tests. Despite these limitations, correlations between MRD-test results and relapse risk have generated interest in MRD-test result directed therapy interventions. However, convincing proof that a specific intervention will reduce relapse risk in persons with a positive MRD-test is lacking and needs testing in randomized trials. Routine clinical use of MRD-testing requires further refinements and standardization/harmonization of assay platforms and results reporting. Such data are needed to determine whether results of MRD-testing can be used as a surrogate endpoint in AML therapy trials. This could make drug-testing more efficient and accelerate regulatory approvals. Although MRD-testing in AML has advanced substantially, much remains to be done

  20. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. Effect of low-dose cytarabine, homoharringtonine and granulocyte colony-stimulating factor priming regimen on patients with advanced myelodysplastic syndrome or acute myeloid leukemia transformed from myelodysplastic syndrome.

    PubMed

    Wu, Lingyun; Li, Xiao; Su, Jiying; Chang, Chunkang; He, Qi; Zhang, Xi; Xu, Li; Song, Luxi; Pu, Quan

    2009-09-01

    A total of 32 patients (25 with advanced MDS and 7 with t-AML) were enrolled in this study to evaluate the efficacy and toxicity of the low-dose cytarabine and homoharringtonine in combination with granulocyte colony-stimulating factor (G-CSF) (CHG protocol) in patients with advanced myelodysplastic syndromes (MDS) or MDS-transformed acute myeloid leukemia (t-AML). All the patients were administered the CHG regimen comprising low-dose cytarabine (25 mg/day, intravenous continuous infusion, days 1-14), homoharringtonine (1 mg/day, intravenous continuous infusion, days 1-14), and G-CSF (300 microg/day, subcutaneous injection, days 0-14, interrupted when the peripheral white blood cell count reached >20 x 10(9)/L). The overall response rate was 71.9% after the administration of one course of the CHG regimen. Of the 32 patients, 15 (46.9%) achieved complete remission (CR) and 8 (25%) achieved partial remission (PR). This regimen was followed by a post-remission therapy that included conventional chemotherapy, when CR was achieved. Of the patients with CR who just received post-remission regimens as homoharringtonine and cytarabine (HA) and daunorubicin and cytarabine (DA) 6 relapsed rapidly and just had a mean 6.1 months of CR. Otherwise, the other 8 out of 14 patients with CR alternatively received subsequent chemotherapy, which combined mitoxantrone, idarubicin, pirarubicin, or aclarubicin with cytarabine. The mean CR duration of the 8 patients had reached 10.6 months, and 5 of the 8 still kept a continuous CR. The median overall survival (OS) was 18.2 months. There were no statistically significant differences for CR, PR, and OS when the patients were grouped by age, blasts in bone marrow, and karyotypes, respectively. No treatment-related deaths were observed. Myelosuppression was mild to moderate, and no severe non-hematological toxicity was observed. Thus, a CHG priming regimen as an induction therapy was well tolerated and effective in patients with advanced MDS

  2. Translocation (9;17) a novel translocation in acute myeloid leukaemia.

    PubMed

    Brown, S A; Czepulkowski, B; Ireland, R

    1996-01-01

    We report a case of AML, acute myeloid leukaemia, with a novel translocation involving the short arms of chromosomes 9 and 17. The acute myeloid leukaemia was morphologically classified as FAB subtype M2. A prolonged remission was induced with chemotherapy, followed by a relapse which was associated with the finding of the same translocation.

  3. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Myelodysplastic Syndromes and Acute Myeloid Leukemia in the Elderly.

    PubMed

    Klepin, Heidi D

    2016-02-01

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic diseases that frequently affect older adults. Treatment is challenging. Management of older adults with MDS and AML needs to be individualized, accounting for both the heterogeneity of disease biology and patient characteristics, which can influence life expectancy and treatment tolerance. Clinical trials accounting for the heterogeneity of tumor biology and physiologic changes of aging are needed to define optimal standards of care. This article highlights key evidence related to the management of older adults with MDS and AML and highlights future directions for research.

  5. Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.

    PubMed

    Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko

    2015-01-01

    A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.

  6. Familial Aggregation of Acute Myeloid Leukemia and Myelodysplastic Syndromes

    PubMed Central

    Goldin, Lynn R.; Kristinsson, Sigurdur Y.; Liang, Xueying Sharon; Derolf, Åsa R.; Landgren, Ola; Björkholm, Magnus

    2012-01-01

    Purpose Apart from rare pedigrees with multiple cases of acute myeloid leukemia (AML), there is limited data on familial aggregation of AML and myelodysplastic syndromes (MDSs) in the population. Patients and Methods Swedish population-based registry data were used to evaluate risk of AML, MDS, and other malignancies among 24,573 first-degree relatives of 6,962 patients with AML and 1,388 patients with MDS compared with 106,224 first-degree relatives of matched controls. We used a marginal survival model to calculate familial aggregation. Results AML and/or MDS did not aggregate significantly in relatives of patients with AML. There was a modest risk ratio (RR, 1.3; 95% CI, 0.9 to 1.8) in myeloproliferative/myeloid malignancies combined. The risks for any hematologic or any solid tumor were modestly but significantly increased. Relatives of patients with MDS did not show an increased risk for any hematologic tumors. In contrast, we found a significantly increased risk (RR, 6.5; 95% CI, 1.1 to 38.0) of AML/MDS and of all myeloid malignancies combined (RR, 3.1; 95% CI, 1.0 to 9.8) among relatives of patients diagnosed at younger than age 21 years. Conclusion We did not find evidence for familial aggregation of the severe end of the spectrum of myeloid malignancies (AML and MDS). The risks of myeloproliferative neoplasms were modestly increased with trends toward significance, suggesting a possible role of inheritance. In contrast, although limited in sample size, relatives of young patients with AML were at increased risk of AML/MDS, suggesting that germline genes may play a stronger role in these patients. The increased risk of all hematologic malignancies and of solid tumors among relatives of patients with AML suggests that genes for malignancy in general and/or other environmental factors may be shared. PMID:22162584

  7. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  8. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2017-01-25

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  10. Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia.

    PubMed

    Sykes, Stephen M; Kokkaliaris, Konstantinos D; Milsom, Michael D; Levine, Ross L; Majeti, Ravindra

    2015-12-01

    Acute myeloid leukemia (AML) is an aggressive blood cancer that results from an abnormal expansion of uncontrollably proliferating myeloid progenitors that have lost the capacity to differentiate. AML encompasses many genetically distinct subtypes that predominantly develop de novo. However, AML can also arise from premalignant myeloid conditions, such as myelodysplastic syndrome (MDS) and myeloproliferative neoplasms (MPNs), or develop as the result of exposure to genotoxic agents used to treat unrelated malignancies. Although numerous distinct cytogenetic and molecular abnormalities associated with AML were discovered prior to the turn of the millennium, recent advances in whole genome sequencing and global genomic approaches have resulted in an explosion of newly identified molecular abnormalities. However, even with these advances, our understanding of how these mutations contribute to the etiology, pathogenesis, and therapeutic responses of AML remains largely unknown. Recently the International Society for Experimental Hematology (ISEH) hosted a webinar entitled "Clonal Evolution of Pre-Leukemic Hematopoietic Stem Cells (HSCs) in AML" in which two AML mavens, Ross Levine, MD, and Ravindra Majeti, MD, PhD, discussed some of their recent, groundbreaking studies that have shed light on how many of these newly identified mutations contribute to leukemogenesis and therapy resistance in AML. Here, we provide a brief overview of this webinar and discuss the basic scientific and clinical implications of the data presented.

  11. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  12. GATA2 Inhibition Sensitizes Acute Myeloid Leukemia Cells to Chemotherapy

    PubMed Central

    Cao, Yanan; Xuan, Binbin; Fan, Yingchao; Sheng, Huiming; Zhuang, Wenfang

    2017-01-01

    Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients’ AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients. PMID:28114350

  13. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.

    PubMed

    Ley, Timothy J; Mardis, Elaine R; Ding, Li; Fulton, Bob; McLellan, Michael D; Chen, Ken; Dooling, David; Dunford-Shore, Brian H; McGrath, Sean; Hickenbotham, Matthew; Cook, Lisa; Abbott, Rachel; Larson, David E; Koboldt, Dan C; Pohl, Craig; Smith, Scott; Hawkins, Amy; Abbott, Scott; Locke, Devin; Hillier, Ladeana W; Miner, Tracie; Fulton, Lucinda; Magrini, Vincent; Wylie, Todd; Glasscock, Jarret; Conyers, Joshua; Sander, Nathan; Shi, Xiaoqi; Osborne, John R; Minx, Patrick; Gordon, David; Chinwalla, Asif; Zhao, Yu; Ries, Rhonda E; Payton, Jacqueline E; Westervelt, Peter; Tomasson, Michael H; Watson, Mark; Baty, Jack; Ivanovich, Jennifer; Heath, Sharon; Shannon, William D; Nagarajan, Rakesh; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; DiPersio, John F; Wilson, Richard K

    2008-11-06

    Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

  14. Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol

    PubMed Central

    Bolli, Niccolò; Manes, Nicla; McKerrell, Thomas; Chi, Jianxiang; Park, Naomi; Gundem, Gunes; Quail, Michael A.; Sathiaseelan, Vijitha; Herman, Bram; Crawley, Charles; Craig, Jenny I. O.; Conte, Natalie; Grove, Carolyn; Papaemmanuil, Elli; Campbell, Peter J.; Varela, Ignacio; Costeas, Paul; Vassiliou, George S.

    2015-01-01

    Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients. PMID:25381129

  15. Sirolimus and Azacitidine in Treating Patients With High Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia That is Recurrent or Not Eligible for Intensive Chemotherapy

    ClinicalTrials.gov

    2016-10-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  16. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2017-03-14

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia

  17. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations

    PubMed Central

    Lindsley, R. Coleman; Mar, Brenton G.; Mazzola, Emanuele; Grauman, Peter V.; Shareef, Sarah; Allen, Steven L.; Pigneux, Arnaud; Wetzler, Meir; Stuart, Robert K.; Erba, Harry P.; Damon, Lloyd E.; Powell, Bayard L.; Lindeman, Neal; Steensma, David P.; Wadleigh, Martha; DeAngelo, Daniel J.; Neuberg, Donna

    2015-01-01

    Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637. PMID:25550361

  18. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  19. Challenges in Treating Older Patients with Acute Myeloid Leukemia

    PubMed Central

    Eleni, Lagadinou D.; Nicholas, Zoumbos C.; Alexandros, Spyridonidis

    2010-01-01

    Whereas in younger patients diagnosed with acute myeloid leukemia (AML) treatment is straightforward and the goal is cure, the optimal treatment decision for older adults remains highly controversial. Physicians need to determine whether palliation, “something” beyond palliation, intensive therapy, or an investigational therapy is the most appropriate treatment option. This requires understanding of the biology and risk profile of the AML, clinical judgment in evaluating the functional status of the patient, communication skills in understanding the patient's wishes and social background, and medical expertise in available therapies. The physician has to accurately inform the patient about (a) the unique biological considerations of his leukemia and his prognosis; (b) the risks and benefits of all available treatment options; (c) novel therapeutic approaches and how the patient can get access to these treatments. Last but not least, he has to recommend a treatment. This paper tries to discuss each of these issues. PMID:20628485

  20. The origin and evolution of mutations in Acute Myeloid Leukemia

    PubMed Central

    Welch, John S.; Ley, Timothy J.; Link, Daniel C.; Miller, Christopher A.; Larson, David E.; Koboldt, Daniel C.; Wartman, Lukas D.; Lamprecht, Tamara L.; Liu, Fulu; Xia, Jun; Kandoth, Cyriac; Fulton, Robert S.; McLellan, Michael D.; Dooling, David J.; Wallis, John W.; Chen, Ken; Harris, Christopher C.; Schmidt, Heather K.; Kalicki-Veizer, Joelle M.; Lu, Charles; Zhang, Qunyuan; Lin, Ling; O’Laughlin, Michelle D.; McMichael, Joshua F.; Delehaunty, Kim D.; Fulton, Lucinda A.; Magrini, Vincent J.; McGrath, Sean D.; Demeter, Ryan T.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd N.; Walker, Jason R.; Watson, Mark A.; Heath, Sharon E.; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Payton, Jacqueline E.; Baty, Jack D.; Kulkarni, Shashikant; Klco, Jeffery M.; Tomasson, Michael H.; Westervelt, Peter; Walter, Matthew J.; Graubert, Timothy A.; DiPersio, John F.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2012-01-01

    Summary Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse. PMID:22817890

  1. Selecting initial treatment of acute myeloid leukaemia in older adults.

    PubMed

    Podoltsev, Nikolai A; Stahl, Maximilian; Zeidan, Amer M; Gore, Steven D

    2016-10-08

    More than half of the patients with acute myeloid leukaemia (AML) are older than 60years. The treatment outcomes in this group remain poor with a median overall survival of <1year. Selecting initial treatment for these patients involves an assessment of 'fitness' for induction chemotherapy. This is done based on patient and disease-related characteristics which help to estimate treatment-related mortality and chance of complete remission with induction chemotherapy. If the risk of treatment-related mortality is high and/or the likelihood of a patient achieving a complete remission is low, lower-intensity treatment (low-dose cytarabine, decitabine and azacitidine) should be discussed. As outcomes in both groups of patients remain poor, enrolment into clinical trials of novel agents with varying mechanisms of action should be considered for all older adults with AML. Novel agents in Phase III development include CPX-351, guadecitabine (SGI-110), quizartinib, crenolanib, sapacitabine, vosaroxin and volasertib.

  2. Reactive oxygen species in eradicating acute myeloid leukemic stem cells

    PubMed Central

    Zhang, Hui; Fang, Hai

    2014-01-01

    Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy. PMID:27358859

  3. Acquired pericentric inversion of chromosome 9 in acute myeloid leukemia.

    PubMed

    Udayakumar, A M; Pathare, A V; Dennison, D; Raeburn, J A

    2009-01-01

    Pericentric inversion of chromosome 9 involving the qh region is relatively common as a constitutional genetic aberration without any apparent phenotypic consequences. However, it has not been established as an acquired abnormality in cancer. Among the three patients reported so far in the literature with acquired inv(9), only one had acute myeloid leukemia (AML). Here we describe an unique case where both chromosomes 9 presented with an acquired pericentric inversion with breakpoints at 9p13 and 9q12 respectively, in a AML patient with aberrant CD7 and CD9 positivity. Additionally, one der(9) also showed short arm deletion at 9p21 to the centromeric region and including the p16 gene. The constitutional karyotype was normal. This is probably the first report describing an acquired inv(9) involving both chromosomes 9 in AML. The possible significance of this inversion is discussed.

  4. Analogue peptides for the immunotherapy of human acute myeloid leukemia.

    PubMed

    Hofmann, Susanne; Mead, Andrew; Malinovskis, Aleksandrs; Hardwick, Nicola R; Guinn, Barbara-Ann

    2015-11-01

    The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.

  5. Future prospects of therapeutic clinical trials in acute myeloid leukemia.

    PubMed

    Khan, Maliha; Mansoor, Armaghan-E-Rehman; Kadia, Tapan M

    2017-03-01

    Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future.

  6. Acute myeloid leukemia and diabetes insipidus with monosomy 7.

    PubMed

    Harb, Antoine; Tan, Wei; Wilding, Gregory E; Battiwalla, Minoo; Sait, Sheila N J; Wang, Eunice S; Wetzler, Meir

    2009-04-15

    The predisposition of monosomy 7 to diabetes insipidus (DI) in acute myeloid leukemia (AML) led us to ask whether AML associated with monosomy 7 and DI will differ from AML associated with other karyotype aberrations and DI and whether the outcome of patients with AML and DI will differ from those without DI. We describe 2 patients from Roswell Park Cancer Institute and discuss 29 additional cases from the literature. AML with monosomy 7 and DI (n = 25) had a trend towards a lower complete remission (p = 0.0936) and worse survival (p = 0.0480) than AML with other karyotype changes and DI (n = 6). Further, AML with monosomy 7 and DI had worse complete remission rate and overall survival than AML with monosomy 7 but without DI. In conclusion, it appears that AML with monosomy 7 and DI is a disease entity with specifically poor outcome.

  7. Sapacitabine in the treatment of acute myeloid leukemia.

    PubMed

    Norkin, Maxim; Richards, Ashley I

    2015-01-01

    Prognosis of elderly patients with acute myeloid leukemia (AML) remains poor and new treatment approaches are urgently needed. A novel nucleoside analog sapacitabine has recently emerged as a feasible agent because of its oral administration and acceptable toxicity profile. Clinical efficacy of sapacitabine, both as a single agent and in combination, has been evaluated in elderly AML patients or AML patients unfit for standard intensive chemotherapy. Response rates varied from 15 to 45% in phase II studies. Sapacitabine was overall well-tolerated with gastrointestinal and myelosuppression-related complications were the most common side effects. Unfortunately, in a phase III study sapacitabine showed no clinical superiority as compared to low-dose cytarabine (LDAC) in patients with AML. Another large phase III study comparing the combination of sapacitabine with decitabine to decitabine alone is currently ongoing and is expected to be completed by the end of 2015 or by the first half of 2016.

  8. Chemotherapy of acute myeloid leukaemia in adults: Medical Research Council.

    PubMed Central

    1979-01-01

    Two hundred and fifty patients with acute myeloid leukaemia (AML) were randomized between 2 regimens of chemotherapy: TRAP and BARTS III. Overall, patients randomized to TRAP, which was the more intensive of the 2 regimens, fared slightly better (P = 0.06) than those on BARTS III. However, the improvement in survival associated with more intensive chemotherapy was substantial only for patients who had favourable prognostic features at presentation, such as a normal total leucocyte count, or absence of palpable liver, or, especially, age under 40. Indeed, for patients under 40, those allocated to the more intensive regimen (TRAP) lived considerably longer than those allocated to BARTS III (P less than 0.002) while for patients over 40 there was no material difference in survival between patients on the 2 protocols. It thus appears that intensive chemotherapy is likely to be more effective when favourable prognostic features are recorded. PMID:365212

  9. Targeting acute myeloid leukemia with TP53-independent vosaroxin.

    PubMed

    Benton, Christopher B; Ravandi, Farhad

    2017-01-01

    Vosaroxin is a quinolone compound that intercalates DNA and induces TP53-independent apoptosis, demonstrating activity against acute myeloid leukemia (AML) in Phase I-III trials. Here, we examine vosaroxin's mechanism of action and pharmacology, and we review its use in AML to date, focusing on details of individual clinical trials. Most recently, when combined with cytarabine in a randomized Phase III trial (VALOR), vosaroxin improved outcomes versus cytarabine alone for relapsed/refractory AML in patients older than 60 years and for patients in early relapse. We consider its continued role in the context of a multifaceted strategy against AML, including its current use in clinical trials. Prospective use will define its role in the evolving landscape of AML therapy.

  10. Management of older or unfit patients with acute myeloid leukemia.

    PubMed

    Walter, R B; Estey, E H

    2015-04-01

    Acute myeloid leukemia (AML) is primarily a disease of older adults, for whom optimal treatment strategies remain controversial. Because of the concern for therapeutic resistance and, in particular, excessive toxicity or even treatment-related mortality, many older or medically unfit patients do not receive AML-directed therapy. Yet, evidence suggests that outcomes are improved if essentially all of these patients are offered AML therapy, ideally at a specialized cancer center. Medical fitness for tolerating intensive chemotherapy can be estimated relatively accurately with multiparameter assessment tools; this information should serve as basis for the assignment to intensive or non-intensive therapy. Until our accuracy in predicting the success of individual therapies improves, all patients should be considered for participation in a randomized controlled trial. Comparisons between individual trials will be facilitated once standardized, improved response criteria are developed, and standard treatment approaches have been defined against which novel therapies can be tested.

  11. Pharmacogenomics and the treatment of acute myeloid leukemia.

    PubMed

    Megías-Vericat, Juan Eduardo; Montesinos, Pau; Herrero, María José; Bosó, Virginia; Martínez-Cuadrón, David; Poveda, José Luis; Sanz, Miguel Ángel; Aliño, Salvador F

    2016-07-01

    Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous malignancy that is primarily treated with combinations of cytarabine and anthracyclines. Although this scheme remains effective in most of the patients, variability of outcomes in patients has been partly related with their genetic variability. Several pharmacogenetic studies have analyzed the impact of polymorphisms in genes encoding transporters, metabolizers or molecular targets of chemotherapy agents. A systematic review on all eligible studies was carried out in order to estimate the effect of polymorphisms of anthracyclines and cytarabine pathways on efficacy and toxicity of AML treatment. Other emerging genes recently studied in AML, such as DNA repair genes, genes potentially related to chemotherapy response or AML prognosis, have also been included.

  12. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  13. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  14. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL.

  15. ST-elevation myocardial infarction and myelodysplastic syndrome with acute myeloid leukemia transformation.

    PubMed

    Jao, Geoffrey T; Knovich, Mary Ann; Savage, Rodney W; Sane, David C

    2014-04-01

    Acute myocardial infarction and acute myeloid leukemia are rarely reported as concomitant conditions. The management of ST-elevation myocardial infarction (STEMI) in patients who have acute myeloid leukemia is challenging: the leukemia-related thrombocytopenia, platelet dysfunction, and systemic coagulopathy increase the risk of bleeding, and the administration of thrombolytic agents can be fatal. We report the case of a 76-year-old man who presented emergently with STEMI, myelodysplastic syndrome, and newly recognized acute myeloid leukemia transformation. Standard antiplatelet and anticoagulation therapy were contraindicated by the patient's thrombocytopenia and by his reported ecchymosis and gingival bleeding upon admission. He declined cardiac catheterization, was provided palliative care, and died 2 hours after hospital admission. We searched the English-language medical literature, found 8 relevant reports, and determined that the prognosis for patients with concomitant STEMI and acute myeloid leukemia is clearly worse than that for either individual condition. No guidelines exist to direct the management of STEMI and concomitant acute myeloid leukemia. In 2 reports, dual antiplatelet therapy, anticoagulation, and drug-eluting stent implantation were used without an increased risk of bleeding in the short term, even in the presence of thrombocytopenia. However, we think that a more conservative approach--balloon angioplasty with the provisional use of bare-metal stents--might be safer. Simultaneous chemotherapy for the acute myeloid leukemia is crucial. Older age seems to be a major risk factor: patients too frail for emergent treatment can die within hours or days.

  16. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-01-05

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  17. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-09-20

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia.

    PubMed

    Löwenberg, Bob

    2013-01-03

    High-dose cytarabine applied during remission induction or as consolidation after attainment of a complete remission has become an established element in the treatment of adults with acute myeloid leukemia. Recent evidence has challenged the need for these exceptionally high-dose levels of cytarabine. In this review, we present a reappraisal of the usefulness of high-dose cytarabine for acute myeloid leukemia treatment.

  19. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment

    PubMed Central

    Mussai, Francis; De Santo, Carmela; Abu-Dayyeh, Issa; Booth, Sarah; Quek, Lynn; McEwen-Smith, Rosanna M.; Qureshi, Amrana; Dazzi, Francesco; Vyas, Paresh

    2013-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients’ immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. PMID:23733335

  20. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  1. Targeted alpha-particle immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Rosenblat, Todd L

    2014-01-01

    Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.

  2. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    PubMed Central

    Karami, Hadi; Baradaran, Behzad; Esfahani, Ali; Sakhinia, Masoud; Sakhinia, Ebrahim

    2014-01-01

    Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA) on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML) cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy. PMID:24754007

  3. Three hematologic malignancies in the same patient: chronic lymphocytic leukemia, followed by chronic myeloid leukemia and acute myeloid leukemia.

    PubMed

    Fattizzo, Bruno; Radice, Tommaso; Cattaneo, Daniele; Pomati, Mauro; Barcellini, Wilma; Iurlo, Alessandra

    2014-01-01

    The co-existence of both chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL) have been described in a few cases, either simultaneously or subsequently presenting. We report an unusual case of three he-matological malignancies in the same patient: CLL, CML, and acute myeloid leukemia (AML). None of the three malignancies shared the same origin, since the marrow sample was negative for BCR-ABL1 transcript at the time of CLL diagnosis, CLL was in remission at CML diagnosis, and CML was in complete cytogenetic response at AML onset, indicating that this was not a blast crisis. Background: Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common proliferative disorders in Western countries, with an incidence of 4.2/100,000/year and 1-1.5/100,000/year, respectively. The co-existence of both CML and CLL is an extremely rare event, even if it has been described in a few cases, either simultaneously or subsequently presenting. Above all, the presence of more than two different hematologic neoplasms has not been described in literature so far. In the present study we report a particular case of a CLL patient, who first developed CML and then acute myeloid leukemia (AML).

  4. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2017-01-31

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  5. Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia

    PubMed Central

    ESPíRITO SANTO, ANA ESPÍRITO; CHACIM, SÉRGIO; FERREIRA, ISABEL; LEITE, LUÍS; MOREIRA, CLAUDIA; PEREIRA, DULCINEIA; DANTAS BRITO, MARGARIDA DANTAS; NUNES, MARTA; DOMINGUES, NELSON; OLIVEIRA, ISABEL; MOREIRA, ILÍDIA; MARTINS, ANGELO; VITERBO, LUÍSA; MARIZ, JOSÉ MÁRIO; MEDEIROS, RUI

    2016-01-01

    Therapy-related acute myeloid leukemia (t-AML) is a rare and almost always fatal late side effect of antineoplastic treatment involving chemotherapy, radiotherapy or the two combined. The present retrospective study intended to characterize t-AML patients that were diagnosed and treated in a single referral to an oncological institution in North Portugal. Over the past 10 years, 231 cases of AML were diagnosed and treated at the Portuguese Institute of Oncology of Porto, of which 38 t-AML cases were identified. Data regarding the patient demographics, primary diagnosis and treatment, age at onset of therapy-related myeloid neoplasm, latency time of the neoplasm, cytogenetic characteristics, AML therapy and outcome were collected from medical records. A previous diagnosis with solid tumors was present in 28 patients, and 10 patients possessed a history of hematological conditions, all a lymphoproliferative disorder. Breast cancer was the most frequent solid tumor identified (39.5% of all solid tumors diagnosed). The mean latency time was 3 years. In the present study, t-AML patients were older (P<0.001) and more frequently carried cytogenetic abnormalities (P=0.009) compared with de novo AML patients. The overall survival time was observed to be significantly poorer among individuals with t-AML (P<0.001). However, in younger patients (age, <50 years) there was no difference between the overall survival time of patients with t-AML and those with de novo AML (P=0.983). Additionally, patients with promyelocytic leukemia possess a good prognosis, even when AML occurs as a secondary event (P=0.98). To the best of our knowledge, the present study is the first to evaluate t-AML in Portugal and the results are consistent with the data published previously in other populations. The present study concludes that although t-AML demonstrates a poor prognosis, this is not observed among younger patients or promyelocytic leukemia patients. PMID:27347135

  6. Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia.

    PubMed

    ESPíRITO Santo, Ana Espírito; Chacim, Sérgio; Ferreira, Isabel; Leite, Luís; Moreira, Claudia; Pereira, Dulcineia; Dantas Brito, Margarida Dantas; Nunes, Marta; Domingues, Nelson; Oliveira, Isabel; Moreira, Ilídia; Martins, Angelo; Viterbo, Luísa; Mariz, José Mário; Medeiros, Rui

    2016-07-01

    Therapy-related acute myeloid leukemia (t-AML) is a rare and almost always fatal late side effect of antineoplastic treatment involving chemotherapy, radiotherapy or the two combined. The present retrospective study intended to characterize t-AML patients that were diagnosed and treated in a single referral to an oncological institution in North Portugal. Over the past 10 years, 231 cases of AML were diagnosed and treated at the Portuguese Institute of Oncology of Porto, of which 38 t-AML cases were identified. Data regarding the patient demographics, primary diagnosis and treatment, age at onset of therapy-related myeloid neoplasm, latency time of the neoplasm, cytogenetic characteristics, AML therapy and outcome were collected from medical records. A previous diagnosis with solid tumors was present in 28 patients, and 10 patients possessed a history of hematological conditions, all a lymphoproliferative disorder. Breast cancer was the most frequent solid tumor identified (39.5% of all solid tumors diagnosed). The mean latency time was 3 years. In the present study, t-AML patients were older (P<0.001) and more frequently carried cytogenetic abnormalities (P=0.009) compared with de novo AML patients. The overall survival time was observed to be significantly poorer among individuals with t-AML (P<0.001). However, in younger patients (age, <50 years) there was no difference between the overall survival time of patients with t-AML and those with de novo AML (P=0.983). Additionally, patients with promyelocytic leukemia possess a good prognosis, even when AML occurs as a secondary event (P=0.98). To the best of our knowledge, the present study is the first to evaluate t-AML in Portugal and the results are consistent with the data published previously in other populations. The present study concludes that although t-AML demonstrates a poor prognosis, this is not observed among younger patients or promyelocytic leukemia patients.

  7. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  8. Lipidomic approach for stratification of acute myeloid leukemia patients

    PubMed Central

    Stefanko, Adam; Thiede, Christian; Ehninger, Gerhard; Simons, Kai; Grzybek, Michal

    2017-01-01

    The pathogenesis and progression of many tumors, including hematologic malignancies is highly dependent on enhanced lipogenesis. De novo fatty-acid synthesis permits accelerated proliferation of tumor cells by providing membrane components but these may also alter physicochemical properties of lipid bilayers, which can impact signaling or even increase drug resistance in cancer cells. Cancer type-specific lipid profiles would permit us to monitor and interpret actual effects of lipid changes, potential fingerprints of individual tumors to be explored as diagnostic markers. We have used the shotgun MS approach to identify lipid patterns in different types of acute myeloid leukemia (AML) patients that either show no karyotype change or belong to t(8;21) or inv16 types. Differences in lipidomes of t(8;21) and inv(16) patients, as compared to AML patients without karyotype change, presented mostly as substantial modulation of ceramide/sphingolipid synthesis. Furthermore, between the t(8;21) and all other patients we observed significant changes in physicochemical membrane properties. These were related to a marked alteration in lipid saturation levels. The discovered differences in lipid profiles of various AML types improve our understanding of the pathobiochemical pathways involved and may serve in the development of diagnostic tools. PMID:28207743

  9. [Cytarabine and skin reactions in acute myeloid leukemia].

    PubMed

    Grille, Sofía; Guadagna, Regina; Boada, Matilde; Irigoin, Victoria; Stevenazzi, Mariana; Guillermo, Cecilia; Díaz, Lilián

    2013-01-01

    Cytarabine is an antimetabolite used in the treatment of acute myeloid leukemia (AML). It has many adverse effects as: myelosuppression, toxic reactions involving central nervous system, liver, gastrointestinal tract, eyes or skin. Dermatologic toxicity is often described as rare; nevertheless there are differences in the reported frequency. We performed a retrospective study including all AML treated with chemotherapy that involved cytarabine between 1st July of 2006 and 1st July of 2012; 46 patients were included with a median age of 55 years. The overall incidence of skin reactions was 39% (n = 18). Sex, age, history of atopy, history of drug reactions, or dose of cytarabine used, were not associated with them. Skin reactions were observed from 2 to 8 days after treatment started. Considering injury degree: 27.8% had grade 1, 38.9% grade 2 and 33.3% grade 3. We did not find any injury grade 4 or death associated with skin toxicity. As for the type of injury: 55.6% presented macules, 22.2% papules and 22.2% erythema. Lesions distribution was diffuse in 52% of patients, acral in 39.3%, and at flexural level in 8.7%. Adverse cutaneous reactions secondary to the administration of cytarabine are frequent in our service and include some cases with severe involvement. Although these reactions usually resolve spontaneously, they determine an increased risk of infection and a compromise of the patient quality of life.

  10. Pharmacokinetics of posaconazole prophylaxis of patients with acute myeloid leukemia.

    PubMed

    Mattiuzzi, Gloria; Yilmaz, Musa; Kantarjian, Hagop; Borthakur, Gautam; Konopleva, Marina; Jabbour, Elias; Brown, Yolanda; Pierce, Sherry; Cortes, Jorge

    2015-09-01

    Antifungal prophylaxis is routinely given to patients with hematologic malignancies at high risk for invasive fungal infections (IFI), yet breakthrough IFI may still occur. Posaconazole emerged as an excellent alternative for fungal prophylaxis in high-risk patients. There is limited data about pharmacokinetics and plasma concentrations of posaconazole when given as prophylaxis in patients with hematologic malignancies. We recruited 20 adult patients for prospective, open label trial of posaconazole given as a prophylaxis in patients with newly diagnosed acute myeloid leukemia (AML) undergoing induction chemotherapy or first salvage therapy. The median age of all patients was 65 years and received prophylaxis for a median of 38 days (range: 5-42 days).Ten patients (50%) completed 42 days on posaconazole prophylaxis. Median plasma posaconazole levels showed no statistical difference across gender, body surface area, patients developing IFI, and patients acquiring grade 3 or 4 elevation of liver enzymes. However, there was an overall trend for higher trough concentrations among patients with no IFI than those with IFI. Pharmacokinetics of posaconazole varies from patient to patient, and AML patients receiving induction chemotherapy who never develop IFI tend to have higher plasma concentrations after oral administration of posaconazole.

  11. Beginning treatment for pediatric acute myeloid leukemia: the family connection.

    PubMed

    McGrath, Pam; Paton, Mary Anne; Huff, Nicole

    2005-01-01

    There is a loud silence on psycho-oncology research in relation to pediatric Acute Myeloid Leukemia (AML). This article is part of a series that begins to address the psycho-social hiatus. The present article documents the less obvious, often hidden, aspect of beginning treatment for pediatric AML--the "behind the scenes" experience of the home and family connection. The findings are from the first stage of a five year longitudinal study that examines through qualitative research the experience of childhood leukemia from the perspective of the child, siblings and parents. Open-ended interviews, audio-recorded and transcribed verbatim, were thematically analyzed with the assistance of the Non-numerical Unstructured Data by processes of Indexing Searching and Theory-building (NUD*IST) computer program. The findings emphasize the disruption to normalcy in relation to home life, school, and work, which is exacerbated for families who relocate for specialist treatment. The findings emphasise the need for support for families coping with childhood AML.

  12. Update on antigen-specific immunotherapy of acute myeloid leukemia.

    PubMed

    Buckley, Sarah A; Walter, Roland B

    2015-06-01

    Among the few drugs that have shown a benefit for patients with acute myeloid leukemia (AML) in randomized clinical trials over the last several decades is the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Undoubtedly, this experience has highlighted the value of antigen-specific immunotherapy in AML. A wide variety of therapeutics directed against several different antigens on AML cells are currently explored in preclinical and early clinical studies. On the one hand, these include passive strategies such as unconjugated antibodies targeting one or more antigens, antibodies armed with drugs, toxic proteins, or radionuclides, or adoptive immunotherapies, in particular utilizing T cells engineered to express chimeric antigen receptors (CARs) or modified T cell receptor (TCR) genes; on the other hand, these include active strategies such as vaccinations. With the documented benefit for GO and the emerging data with several classes of therapeutics in other leukemias, in particular small bispecific antibodies and CAR T cells, the future is bright. Nevertheless, a number of important questions related to the choice of target antigen(s), patient population, exact treatment modality, and supportive care needs remain open. Addressing such questions in upcoming studies will ultimately be required to optimize the clinical use of antigen-specific immunotherapies in AML and ensure that such treatments become an effective, versatile tool for this disease for which the outcomes have remained unsatisfactory in many patients.

  13. Molecular cytogenetic analysis of dicentric chromosomes in acute myeloid leukemia.

    PubMed

    Sarova, Iveta; Brezinova, Jana; Zemanova, Zuzana; Ransdorfova, Sarka; Izakova, Silvia; Svobodova, Karla; Pavlistova, Lenka; Berkova, Adela; Cermak, Jaroslav; Jonasova, Anna; Siskova, Magda; Michalova, Kyra

    2016-04-01

    Dicentric chromosomes (DCs) have been described in many hematological diseases, including acute myeloid leukemia (AML). They are markers of cancer and induce chromosomal instability, leading to the formation of other chromosomal aberrations and the clonal evolution of pathological cells. Our knowledge of the roles and behavior of human DCs is often derived from studies of induced DCs and cell lines. It is difficult to identify all the DCs in the karyotypes of patients because of the limitations of metaphase cytogenetic methods. The aim of this study was to revise the karyotypes of 20 AML patients in whom DCs were found with conventional G-banding or multicolor fluorescence in situ hybridization (mFISH) with (multi)centromeric probes and to characterize the DCs at the molecular cytogenetic level. FISH analyses confirmed 23 of the 29 expected DCs in 18 of 20 patients and identified 13 others that had not been detected cytogenetically. Fourteen DCs were altered by other chromosomal changes. In conclusion, karyotypes with DCs are usually very complex, and we have shown that they often contain more than one DC, which can be missed with conventional or mFISH methods. Our study indicates an association between number of DCs in karyotype and very short survival of patients.

  14. Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens

    PubMed Central

    Pratz, Keith; Levis, Mark

    2011-01-01

    FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting of this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules in clinical development inhibit FLT3 with varying degrees of specificity. Preclinical models suggest that these compounds enhance the cytotoxicity of conventional chemotherapeutics against FLT3 mutant leukemia cells. The pharmacodynamic interactions between FLT3 inhibitors and chemotherapy appear to be sequence dependent. When the FLT3 inhibitor is used prior to chemotherapy, antagonism is displayed, while if FLT3 inhibition is instituted after to exposure to chemotherapy, synergistic cytotoxicity is seen. The combination of FLT3 inhibitors with chemotherapy is also complicated by potential pharmacokinetic obstacles, such as plasma protein binding and p-glycoprotein interactions. Ongoing and future studies are aimed at incorporating FLT3 inhibitors into conventional induction and consolidation therapy specifically for patients with FLT3 mutant AML. PMID:18452067

  15. Acute myeloid leukemia risk by industry and occupation.

    PubMed

    Tsai, Rebecca J; Luckhaupt, Sara E; Schumacher, Pam; Cress, Rosemary D; Deapen, Dennis M; Calvert, Geoffrey M

    2014-11-01

    Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case-control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks.

  16. Acute myeloid leukaemia: optimal management and recent developments.

    PubMed

    Villela, Luis; Bolaños-Meade, Javier

    2011-08-20

    The current treatment of patients with acute myeloid leukaemia yields poor results, with expected cure rates in the order of 30-40% depending on the biological characteristics of the leukaemic clone. Therefore, new agents and schemas are intensively studied in order to improve patients' outcomes. This review summarizes some of these new paradigms, including new questions such as which anthracycline is most effective and at what dose. High doses of daunorubicin have shown better responses in young patients and are well tolerated in elderly patients. Monoclonal antibodies are promising agents in good risk patients. Drugs blocking signalling pathways could be used in combination with chemotherapy or in maintenance with promising results. Epigenetic therapies, particularly after stem cell transplantation, are also discussed. New drugs such as clofarabine and flavopiridol are reviewed and the results of their use discussed. It is clear that many new approaches are under study and hopefully will be able to improve on the outcomes of the commonly used '7+3' regimen of an anthracycline plus cytarabine with daunorubicin, which is clearly an ineffective therapy in the majority of patients.

  17. Recent discoveries in molecular characterization of acute myeloid leukemia.

    PubMed

    Khasawneh, Mohamad K; Abdel-Wahab, Omar

    2014-06-01

    Acute myeloid leukemia (AML) is a clinically heterogeneous disease, yet it is one of the most molecularly well-characterized cancers. Risk stratification of patients currently involves determination of the presence of cytogenetic abnormalities in combination with molecular genetic testing in a few genes. Several new recurrent genetic molecular abnormalities have recently been identified, including TET2, ASXL1, IDH1, IDH2, DNMT3A, and PHF6. Mutational analyses have identified that patients with DNMT3A or NPM1 mutations or MLL translocation have improved overall survival with high-dose chemotherapy. Mutational profiling can refine prognostication, particularly for patients in the intermediate-risk group or with a normal karyotype. CD25 expression status improves prognostic risk classification in AML independent of established biomarkers. Biomarkers such as 2- hydroxyglutarate in IDH1/2-mutant AML patients predict patient responses and minimal residual disease. These recent discoveries are being incorporated into our existing molecular risk stratification as well as the exploration of new therapeutics directed to these molecular targets.

  18. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  19. Acute myeloid leukemia and myelodysplastic syndromes in older adults.

    PubMed

    Klepin, Heidi D; Rao, Arati V; Pardee, Timothy S

    2014-08-20

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases.

  20. Acute Myeloid Leukemia and Myelodysplastic Syndromes in Older Adults

    PubMed Central

    Klepin, Heidi D.; Rao, Arati V.; Pardee, Timothy S.

    2014-01-01

    Treatment of older adults with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) is challenging because of disease morbidity and associated treatments. Both diseases represent a genetically heterogeneous group of disorders primarily affecting older adults, with treatment strategies ranging from supportive care to hematopoietic stem-cell transplantation. Although selected older adults can benefit from intensive therapies, as a group they experience increased treatment-related morbidity, are more likely to relapse, and have decreased survival. Age-related outcome disparities are attributed to both tumor and patient characteristics, requiring an individualized approach to treatment decision making beyond consideration of chronologic age alone. Selection of therapy for any individual requires consideration of both disease-specific risk factors and estimates of treatment tolerance and life expectancy derived from evaluation of functional status and comorbidity. Although treatment options for older adults are expanding, clinical trials accounting for the heterogeneity of tumor biology and aging are needed to define standard-of-care treatments for both disease groups. In addition, trials should include outcomes addressing quality of life, maintenance of independence, and use of health care services to assist in patient-centered decision making. This review will highlight available evidence in treatment of older adults with AML or MDS and unanswered clinical questions for older adults with these diseases. PMID:25071138

  1. TP53 mutations in older adults with acute myeloid leukemia.

    PubMed

    Yanada, Masamitsu; Yamamoto, Yukiya; Iba, Sachiko; Okamoto, Akinao; Inaguma, Yoko; Tokuda, Masutaka; Morishima, Satoko; Kanie, Tadaharu; Mizuta, Shuichi; Akatsuka, Yoshiki; Okamoto, Masataka; Emi, Nobuhiko

    2016-04-01

    The net benefits of induction therapy for older adults with acute myeloid leukemia (AML) remain controversial. Because AML in older adults is a heterogeneous disease, it is important to identify those who are unlikely to benefit from induction therapy based on information available at the initial assessment. We used next-generation sequencing to analyze TP53 mutation status in AML patients aged 60 years or older, and evaluated its effects on outcomes. TP53 mutations were detected in 12 of 77 patients (16 %), and there was a significant association between TP53 mutations and monosomal karyotype. Patients with TP53 mutations had significantly worse survival than those without (P = 0.009), and multivariate analysis identified TP53 mutation status as the most significant prognostic factor for survival. Neverthelsess, TP53-mutated patients had a 42 % chance of complete remission and a median survival of 8.0 months, which compares favorably with those who did not undergo induction therapy, even in the short term. These results suggest that screening for TP53 mutations at diagnosis is useful for identifying older adults with AML who are least likely to respond to chemotherapy, although the presence of this mutation alone does not seem to justify rejecting induction therapy.

  2. FLT3 inhibitors: clinical potential in acute myeloid leukemia

    PubMed Central

    Hospital, Marie-Anne; Green, Alexa S; Maciel, Thiago T; Moura, Ivan C; Leung, Anskar Y; Bouscary, Didier; Tamburini, Jerome

    2017-01-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future. PMID:28223820

  3. Evaluation of artemisinins for the treatment of acute myeloid leukemia

    PubMed Central

    Drenberg, Christina D.; Buaboonnam, Jassada; Orwick, Shelley J.; Hu, Shuiying; Li, Lie; Fan, Yiping; Shelat, Anang A.; Guy, R. Kiplin; Rubnitz, Jeffrey

    2016-01-01

    Purpose Investigate antileukemic activity of artemisinins, artesunate (ART), and dihydroartemisinin (DHA), in combination with cytarabine, a key component of acute myeloid leukemia (AML) chemotherapy using in vitro and in vivo models. Methods Using ten human AML cell lines, we conducted a high-throughput screen to identify antimalarial agents with antileukemic activity. We evaluated effects of ART and DHA on cell viability, cytotoxicity, apoptosis, lysosomal integrity, and combination effects with cytarabine in cell lines and primary patient blasts. In vivo pharmacokinetic studies and efficacy of single-agent ART or combination with cytarabine were evaluated in three xenograft models. Results ART and DHA had the most potent activity in a panel of AML cell lines, with selectivity toward samples harboring MLL rearrangements and FLT3-ITD mutations. Combination of ART or DHA was synergistic with cytarabine. Single-dose ART (120 mg/kg) produced human equivalent exposures, but multiple dose daily administration required for in vivo efficacy was not tolerated. Combination treatment produced initial regression, but did not prolong survival in vivo. Conclusions The pharmacology of artemisinins is problematic and should be considered in designing AML treatment strategies with currently available agents. Artemisinins with improved pharmacokinetic properties may offer therapeutic benefit in combination with conventional therapeutic strategies in AML. PMID:27125973

  4. Interferon-α in acute myeloid leukemia: an old drug revisited.

    PubMed

    Anguille, S; Lion, E; Willemen, Y; Van Tendeloo, V F I; Berneman, Z N; Smits, E L J M

    2011-05-01

    Interferon-α (IFN-α), a type I IFN, is a well-known antitumoral agent. The investigation of its clinical properties in acute myeloid leukemia (AML) has been prompted by its pleiotropic antiproliferative and immune effects. So far, integration of IFN-α in the therapeutic arsenal against AML has been modest in view of the divergent results of clinical trials. Recent insights into the key pharmacokinetic determinants of the clinical efficacy of IFN along with advances in its pharmaceutical formulation, have sparked renewed interest in its use. This paper reviews the possible applicability of IFN-α in the treatment of AML and provides a rational basis to re-explore its efficacy in clinical trials.

  5. Immunotherapy of elderly acute myeloid leukemia: light at the end of a long tunnel?

    PubMed

    Rafelson, William M; Reagan, John L; Fast, Loren D; Lim, Seah H

    2017-03-28

    Although it is possible to induce remission in the majority of the patients with acute myeloid leukemia (AML), many patients still die due to disease relapse. Immunotherapy is an attractive option. It is more specific. The memory T cells induced by immunotherapy may also provide the long-term tumor immunosurveillance to prevent disease relapse. Although immunotherapy of AML started in the early 1970s, its clinical impact has been disappointing. Recent advances in tumor immunology and immunotherapeutic agents have rekindled interest. Here, we provide a review of the history of AML immunotherapy, discuss why AML is well suited for immunotherapeutic approaches and present the biological obstacles that affect the success of immunotherapy. Finally, we put forward a new paradigm of AML immunotherapy that utilizes a combination of immunotherapeutic agents sequentially to enhance the in vivo tumor immunogenicity and effective priming and propagation of tumor-specific cytotoxic T cells.

  6. Cytoreductive treatment with clofarabine/ara-C combined with reduced-intensity conditioning and allogeneic stem cell transplantation in patients with high-risk, relapsed, or refractory acute myeloid leukemia and advanced myelodysplastic syndrome.

    PubMed

    Buchholz, Stefanie; Dammann, Elke; Stadler, Michael; Krauter, Juergen; Beutel, Gernot; Trummer, Arne; Eder, Matthias; Ganser, Arnold

    2012-01-01

    The combination of cytoreductive chemotherapy with reduced-intensity conditioning (RIC) is a highly effective antileukemic therapy. Purpose of this retrospective analysis was to evaluate the antileukemic efficacy and toxicity of clofarabine-based chemotherapy followed by RIC and allogeneic stem cell transplantation (SCT) for high-risk, relapsed, or refractory acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). From May 2007 until October 2009, a total of 27 patients underwent allogeneic SCT after treatment with clofarabine and ara-C for 5d and RIC (4Gy TBI/cyclophosphamide/ATG). Prophylaxis of graft-versus-host disease (GvHD) consisted of cyclosporine and mycophenolate mofetil. Unmanipulated G-CSF mobilized PBSC (n=26) or bone marrow cells (n=1) were transplanted from unrelated (n=21) or matched related (n=6) donors. Non-hematological toxicities of this regimen mainly affected liver and skin and were all reversible. Seven patients relapsed within a median time of 5.7 months. The overall survival (OS) and relapse-free survival rates were 56% and 52% at 2 yr, respectively. In this cohort of patients, cytoreduction with clofarabine/ara-C (ClAraC) followed by RIC allogeneic SCT was well tolerated and showed good antileukemic efficacy even in patients with high-risk AML or MDS, with engraftment and GvHD-incidence comparable to other RIC regimens.

  7. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  8. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  9. DNMT3A Mutations in Acute Myeloid Leukemia

    PubMed Central

    Ley, Timothy J.; Ding, Li; Walter, Matthew J.; McLellan, Michael D.; Lamprecht, Tamara; Larson, David E.; Kandoth, Cyriac; Payton, Jacqueline E.; Baty, Jack; Welch, John; Harris, Christopher C.; Lichti, Cheryl F.; Townsend, R. Reid; Fulton, Robert S.; Dooling, David J.; Koboldt, Daniel C.; Schmidt, Heather; Zhang, Qunyuan; Osborne, John R.; Lin, Ling; O’Laughlin, Michelle; McMichael, Joshua F.; Delehaunty, Kim D.; McGrath, Sean D.; Fulton, Lucinda A.; Magrini, Vincent J.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Conyers, Joshua J.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd; Walker, Jason; Kalicki, Joelle; Watson, Mark A.; Heath, Sharon; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Westervelt, Peter; Tomasson, Michael H.; Link, Daniel C.; Graubert, Timothy A.; DiPersio, John F.; Mardis, Elaine R.; Wilson, Richard K.

    2011-01-01

    BACKGROUND The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.) PMID:21067377

  10. Interleukin-3 priming in acute myeloid leukaemia patients.

    PubMed

    Tafuri, A; de Felice, L; Goodacre, A; Fenu, S; Petrucci, M T; Valentini, T; Alimena, G; Petti, M C; Meloni, G; Mandelli, F

    1995-09-01

    Several studies have demonstrated that G-CSF, GM-CSF and, in particular, IL-3 can effectively recruit acute myeloid leukaemia (AML) blasts into the cell cycle, resulting in a significant increase in cytosine-arabinoside (Ara-C) mediated cytotoxicity in vitro. Since IL-3 has shown biological and clinical activity, we investigated the cell kinetic effects of rIL-3 and high-dose Ara-C/idarubicin in three patients with refractory AML selected for the presence of chromosome 7 monosomy; this enabled differentiation between the effects of IL-3 on leukaemic and on normal cells. The in vivo administration of rhIL-3 (250 micrograms/m2d s.c. for 6-10d) recruited AML blasts into the cell cycle in two of the three patients, and this effect resulted in an increase in in vitro growth of clonogenic cells (CFU-L) and of their S-phase fraction. The percentage of leukaemic cells with monosomy 7 increased only in the two cases who showed a proliferative response. Normal cells were not recruited, even when rhIL-3 was administered for up to 10 d. In vitro studies showed an increased Ara-C cytotoxicity on clonogenic AML cells, in particular with IL-3 plus GM-CSF, thus confirming the priming effects of IL-3 in the two responding cases. The results of this study suggest that rhIL-3 can selectively recruit leukaemic cells into the cell cycle. Although leukaemic blasts can be sensitized to Ara-C, other mechanisms of primary blast resistance may limit the clinical benefit of kinetic-based approaches.

  11. Improved outcome of acute myeloid leukaemia in Down's syndrome

    PubMed Central

    Craze, J; Harrison, G; Wheatley, K; Hann, I; Chessells, J

    1999-01-01

    OBJECTIVE—To review the clinical features, treatment, and outcome of children in the UK with Down's syndrome and acute myeloid leukaemia (AML).
DESIGN—A retrospective study of 59 children with Down's syndrome and AML presenting between 1987 and 1995. Data were obtained from hospital case notes, trial records, and by questionnaire.
RESULTS—The patients were unusually young (median age, 23 months) with a predominance of megakaryoblastic AML. Two of the seven infants who presented with abnormal myelopoesis aged 2 months or younger achieved complete spontaneous remission. Most of the older children with AML (32 of 52) were treated on recognised intensive protocols but 13 received individualised treatment and seven symptomatic treatment alone. Only four received a bone marrow transplant (BMT) in first remission. For the 45 older children who received chemotherapy the overall survival was 55% (median follow up 4.5 years). Patients on individualised protocols had a similar overall survival and toxic death rate but marginally higher relapse rate than those on standard (intensive) protocols. Children with Down's syndrome treated on the national AML 10 trial had a similar overall survival (70% v 59%) at five years to children of comparable age without Down's syndrome: their improved relapse risk (12% v 38%) offset the slight increase in deaths as a result of treatment toxicity (19% v 11%).
CONCLUSION—Neonates with Down's syndrome and abnormal myelopoesis may achieve spontaneous remission, and older children with Down's syndrome and AML can be treated successfully with intensive chemotherapy, without BMT.

 PMID:10373130

  12. Clinicopathological analysis of near-tetraploidy/tetraploidy acute myeloid leukaemia

    PubMed Central

    Pang, Changlee S; Pettenati, Mark J; Pardee, Timothy S

    2016-01-01

    Aims Near-tetraploidy/tetraploidy (NT/T) is a rare cytogenetic alteration in acute myeloid leukaemia (AML). NT/T-AML is categorised as complex cytogenetics and therefore, presumed to have an unfavourable prognosis. Our aim is to further characterise the clinical, morphological, cytogenetic and prognostic features of NT/T-AML. Methods We searched our cytogenetic laboratory database from 1991 to 2012 to reveal 13 cases of NT/T-AML. Each case was evaluated with regard to its demographics, morphology, immunophenotype and prognosis. Specific morphological features included blast size, irregularity of nuclear contours, cytoplasmic vacuoles, and presence and lineage of dysplasia. Results Eleven men and two women had a median age of 68 years. Blasts were predominately large (11/13). Eight of 13 patients had AML with myelodysplasia-related changes. Sixty-nine per cent of patients achieved complete remission (CR). Median overall survival (OS) was 8.6 months. CR rate and median OS in cases with ≥5 cytogenetic abnormalities were 71% and 6 months, compared with 67% and 18.1 months in cases with <5 abnormalities. Conclusions NT/T-AML occurs in older males, exhibits large blast size and is associated with myelodysplasia. Unlike previously reported data, our study reveals an overall better prognosis in this older population with NT/T-AML than was expected for a complex karyotype AML. Cytogenetic complexity independent of ploidy status did not greatly affect the high CR rates, but did appear to be a better estimation of prognostic risk in terms of median OS. PMID:25563333

  13. Targeting mitochondrial RNA polymerase in acute myeloid leukemia

    PubMed Central

    Bralha, Fernando N.; Liyanage, Sanduni U.; Hurren, Rose; Wang, Xiaoming; Son, Meong Hi; Fung, Thomas A.; Chingcuanco, Francine B.; Tung, Aveline Y. W.; Andreazza, Ana C.; Psarianos, Pamela; Schimmer, Aaron D.; Salmena, Leonardo; Laposa, Rebecca R.

    2015-01-01

    Acute myeloid leukemia (AML) cells have high oxidative phosphorylation and mitochondrial mass and low respiratory chain spare reserve capacity. We reasoned that targeting the mitochondrial RNA polymerase (POLRMT), which indirectly controls oxidative phosphorylation, represents a therapeutic strategy for AML. POLRMT-knockdown OCI-AML2 cells exhibited decreased mitochondrial gene expression, decreased levels of assembled complex I, decreased levels of mitochondrially-encoded Cox-II and decreased oxidative phosphorylation. POLRMT-knockdown cells exhibited an increase in complex II of the electron transport chain, a complex comprised entirely of subunits encoded by nuclear genes, and POLRMT-knockdown cells were resistant to a complex II inhibitor theonyltrifluoroacetone. POLRMT-knockdown cells showed a prominent increase in cell death. Treatment of OCI-AML2 cells with 10-50 μM 2-C-methyladenosine (2-CM), a chain terminator of mitochondrial transcription, reduced mitochondrial gene expression and oxidative phosphorylation, and increased cell death in a concentration-dependent manner. Treatment of normal human hematopoietic cells with 2-CM at concentrations of up to 100 μMdid not alter clonogenic growth, suggesting a therapeutic window. In an OCI-AML2 xenograft model, treatment with 2-CM (70 mg/kg, i.p., daily) decreased the volume and mass of tumours to half that of vehicle controls. 2-CM did not cause toxicity to major organs. Overall, our results in a preclinical model contribute to the functional validation of the utility of targeting the mitochondrial RNA polymerase as a therapeutic strategy for AML. PMID:26484416

  14. Molecular Changes During Acute Myeloid Leukemia (AML) Evolution and Identification of Novel Treatment Strategies Through Molecular Stratification.

    PubMed

    Karjalainen, E; Repasky, G A

    2016-01-01

    Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by impaired differentiation and uncontrollable proliferation of myeloid progenitor cells. Due to high relapse rates, overall survival for this rapidly progressing disease is poor. The significant challenge in AML treatment is disease heterogeneity stemming from variability in maturation state of leukemic cells of origin, genetic aberrations among patients, and existence of multiple disease clones within a single patient. Disease heterogeneity and the lack of biomarkers for drug sensitivity lie at the root of treatment failure as well as selective efficacy of AML chemotherapies and the emergence of drug resistance. Furthermore, standard-of-care treatment is aggressive, presenting significant tolerability concerns to the commonly advanced-age AML patient. In this review, we examine the concept and potential of molecular stratification, particularly with biologically relevant drug responses, in identifying low-toxicity precision therapeutic combinations and clinically relevant biomarkers for AML patient care as a way to overcome these challenges in AML treatment.

  15. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  16. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  17. Fatal cardiac tamponade as the first manifestation of acute myeloid leukemia.

    PubMed

    Leptidis, John; Aloizos, Stavros; Chlorokostas, Panagiotis; Gourgiotis, Stavros

    2014-10-01

    Acute myeloid leukemia is a hemopoietic myeloid stem cell neoplasm. It is the most common acute leukemia affecting adults,and its incidence increases with age. Acute myeloid leukemia is characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. As the leukemic cells keep filling the bone marrow, symptoms of the disease started to appear: fatigue, bleeding, increased frequency of infections, and shortness of breath. Cardiac tamponade or pericardial tamponade is an acute medical condition in which the accumulation of pericardial fluid prevents the function of the heart. Signs and symptoms include Beck triad (hypotension, distended neck veins, and muffled heart sounds), paradoxus pulses, tachycardia, tachypnea, and breathlessness. Pericardial effusion and cardiac tamponade are rare and severe complications of leukemia; they often develop during the radiation therapy, chemotherapy, or infections in the course of leukemia. This study sought to assess the fatal cardiac tamponade as the first manifestation of acute myeloid leukemia (AML). We found no reports in the literature linking these 2 clinical entities. Although the patient had no signs or diagnosis of AML previously, this case was remarkable for the rapidly progressive symptoms and the fatal outcome. The pericardial effusion reaccumulated rapidly after its initial drainage; it is a possible explanation that the leukemic cells interfered with cardiac activity or that they decreased their contractility myocytes secreting a toxic essence.

  18. Dasatinib in high-risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial

    PubMed Central

    Boissel, Nicolas; Renneville, Aline; Leguay, Thibaut; Lefebvre, Pascale Cornillet; Recher, Christian; Lecerf, Thibaud; Delabesse, Eric; Berthon, Céline; Blanchet, Odile; Prebet, Thomas; Pautas, Cécile; Chevallier, Patrice; Leprêtre, Stéphane; Girault, Stéphane; Bonmati, Caroline; Guièze, Romain; Himberlin, Chantal; Randriamalala, Edouard; Preudhomme, Claude; Jourdan, Eric; Dombret, Hervé; Ifrah, Norbert

    2015-01-01

    Core-binding factor acute myeloid leukemia is a favorable acute myeloid leukemia subset cytogenetically defined by t(8;21) or inv(16)/t(16;16) rearrangements, disrupting RUNX1 (previously CBFA/AML1) or CBFB transcription factor functions. The receptor tyrosine kinase KIT is expressed in the vast majority of these acute myeloid leukemias and frequent activating KIT gene mutations have been associated with a higher risk of relapse. This phase II study aimed to evaluate dasatinib as maintenance therapy in patients with core-binding factor acute myeloid leukemia in first hematologic complete remission, but at higher risk of relapse due to molecular disease persistence or recurrence. A total of 26 patients aged 18–60 years old previously included in the CBF-2006 trial were eligible to receive dasatinib 140 mg daily if they had a poor initial molecular response (n=18) or a molecular recurrence (n=8). The tolerance of dasatinib as maintenance therapy was satisfactory. The 2-year disease-free survival in this high-risk population of patients was 25.7%. All but one patient with molecular recurrence presented subsequent hematologic relapse. Patients with slow initial molecular response had a similar disease-free survival when treated with dasatinib (40.2% at 2 years) or without any maintenance (50.0% at 2 years). The disappearance of KIT gene mutations at relapse suggests that clonal devolution may in part explain the absence of efficacy observed with single-agent dasatinib in these patients (n. EudraCT: 2006-006555-12). PMID:25715404

  19. Dasatinib in high-risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial.

    PubMed

    Boissel, Nicolas; Renneville, Aline; Leguay, Thibaut; Lefebvre, Pascale Cornillet; Recher, Christian; Lecerf, Thibaud; Delabesse, Eric; Berthon, Céline; Blanchet, Odile; Prebet, Thomas; Pautas, Cécile; Chevallier, Patrice; Leprêtre, Stéphane; Girault, Stéphane; Bonmati, Caroline; Guièze, Romain; Himberlin, Chantal; Randriamalala, Edouard; Preudhomme, Claude; Jourdan, Eric; Dombret, Hervé; Ifrah, Norbert

    2015-06-01

    Core-binding factor acute myeloid leukemia is a favorable acute myeloid leukemia subset cytogenetically defined by t(8;21) or inv(16)/t(16;16) rearrangements, disrupting RUNX1 (previously CBFA/AML1) or CBFB transcription factor functions. The receptor tyrosine kinase KIT is expressed in the vast majority of these acute myeloid leukemias and frequent activating KIT gene mutations have been associated with a higher risk of relapse. This phase II study aimed to evaluate dasatinib as maintenance therapy in patients with core-binding factor acute myeloid leukemia in first hematologic complete remission, but at higher risk of relapse due to molecular disease persistence or recurrence. A total of 26 patients aged 18-60 years old previously included in the CBF-2006 trial were eligible to receive dasatinib 140 mg daily if they had a poor initial molecular response (n=18) or a molecular recurrence (n=8). The tolerance of dasatinib as maintenance therapy was satisfactory. The 2-year disease-free survival in this high-risk population of patients was 25.7%. All but one patient with molecular recurrence presented subsequent hematologic relapse. Patients with slow initial molecular response had a similar disease-free survival when treated with dasatinib (40.2% at 2 years) or without any maintenance (50.0% at 2 years). The disappearance of KIT gene mutations at relapse suggests that clonal devolution may in part explain the absence of efficacy observed with single-agent dasatinib in these patients (n. EudraCT: 2006-006555-12).

  20. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance.

    PubMed

    Grimwade, David; Ivey, Adam; Huntly, Brian J P

    2016-01-07

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient's AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response.

  1. Emerging strategies for the treatment of older patients with acute myeloid leukemia.

    PubMed

    Sanz, Miguel A; Iacoboni, Gloria; Montesinos, Pau; Venditti, Adriano

    2016-10-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, and its incidence increases with age. Clinical outcomes in younger patients have improved over the years but, unfortunately, there is little evidence for an equivalent improvement in outcome for older patients. Approximately 50 % of older patients who are able to receive intensive chemotherapy will achieve a complete remission; however, they face a much higher relapse rate than younger patients, and survival rates for this group are low. Therefore, there is an urgent need to improve outcomes in older patients with AML. In this article, we discuss current treatment paradigms for older patients with AML including the challenges faced when determining which patients are eligible for intensive chemotherapy. We then highlight new treatments in development that may benefit this patient group. Cytotoxic agents, hypomethylating agents, molecularly targeted agents, and cell cycle kinase inhibitors are discussed, with a focus on novel agents that have achieved an advanced stage of development. Overall, the treatment of AML in older patients remains a challenge and, whenever possible, treatment should be offered in the context of clinical trials and should be planned with curative intent.

  2. Decitabine and Midostaurin in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-25

    Acute Myeloid Leukemia (AML) With Multilineage Dysplasia Following Myelodysplastic Syndrome, in Adults; AML (Adult) With 11q23 (MLL) Abnormalities; AML (Adult) With Del(5q); AML (Adult) With Inv(16)(p13;q22); AML (Adult) With t(16;16)(p13;q22); AML (Adult) With t(8;21)(q22;q22); Secondary AML (Adult); Untreated AML (Adult)

  3. The interplay of autophagy and β-Catenin signaling regulates differentiation in acute myeloid leukemia

    PubMed Central

    Kühn, K; Cott, C; Bohler, S; Aigal, S; Zheng, S; Villringer, S; Imberty, A; Claudinon, J; Römer, W

    2015-01-01

    The major feature of leukemic cells is an arrest of differentiation accompanied by highly active proliferation. In many subtypes of acute myeloid leukemia, these features are mediated by the aberrant Wnt/β-Catenin pathway. In our study, we established the lectin LecB as inducer of the differentiation of the acute myeloid leukemia cell line THP-1 and used it for the investigation of the involved processes. During differentiation, functional autophagy and low β-Catenin levels were essential. Corresponding to this, a high β-Catenin level stabilized proliferation and inhibited autophagy, resulting in low differentiation ability. Initiated by LecB, β-Catenin was degraded, autophagy became active and differentiation took place within hours. Remarkably, the reduction of β-Catenin sensitized THP-1 cells to the autophagy-stimulating mTOR inhibitors. As downmodulation of E-Cadherin was sufficient to significantly reduce LecB-mediated differentiation, we propose E-Cadherin as a crucial interaction partner in this signaling pathway. Upon LecB treatment, E-Cadherin colocalized with β-Catenin and thereby prevented the induction of β-Catenin target protein expression and proliferation. That way, our study provides for the first time a link between E-Cadherin, the aberrant Wnt/β-Catenin signaling, autophagy and differentiation in acute myeloid leukemia. Importantly, LecB was a valuable tool to elucidate the underlying molecular mechanisms of acute myeloid leukemia pathogenesis and may help to identify novel therapy approaches. PMID:27551462

  4. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia: A Case Report.

    PubMed

    Mody, Mayur D; Ravindranathan, Deepak; Gill, Harpaul S; Kota, Vamsi K

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia.

  5. Rhabdomyolysis Following Initiation of Posaconazole Use for Antifungal Prophylaxis in a Patient With Relapsed Acute Myeloid Leukemia

    PubMed Central

    Mody, Mayur D.; Ravindranathan, Deepak; Gill, Harpaul S.; Kota, Vamsi K.

    2017-01-01

    Posaconazole is a commonly used medication for antifungal prophylaxis in patients with high-risk acute leukemia, such as acute myeloid leukemia. Despite clinical data that show that posaconazole is superior to other antifungal prophylaxis medications, posaconazole is known to have many side effects and drug-drug interactions. We present a patient who developed rhabdomyolysis after being started on posaconazole for prophylaxis in the setting of relapsed acute myeloid leukemia. PMID:28203579

  6. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia.

    PubMed

    Sutherland, May Kung; Yu, Changpu; Lewis, Timothy S; Miyamoto, Jamie B; Morris-Tilden, Carol A; Jonas, Mechthild; Sutherland, Jennifer; Nesterova, Albina; Gerber, Hans-Peter; Sievers, Eric L; Grewal, Iqbal S; Law, Che-Leung

    2009-01-01

    Despite therapeutic advances, the long-term survival rates for acute myeloid leukemia (AML) are estimated to be 10% or less, pointing to the need for better treatment options. AML cells express the myeloid marker CD33, making it amenable to CD33-targeted therapy. Thus, the in vitro and in vivo anti-tumor activities of lintuzumab (SGN-33), a humanized monoclonal anti-CD33 antibody undergoing clinical evaluation, were investigated. In vitro assays were used to assess the ability of lintuzumab to mediate effector functions and to decrease the production of growth factors from AML cells. SCID mice models of disseminated AML with the multi-drug resistance (MDR)-negative HL60 and the MDR(+), HEL9217 and TF1-alpha, cell lines were developed and applied to examine the in vivo antitumor activity. In vitro, lintuzumab significantly reduced the production of TNFalpha-induced pro-inflammatory cytokines and chemokines by AML cells. Lintuzumab promoted tumor cell killing through antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities against MDR(-) and MDR(+) AML cell lines and primary AML patient samples. At doses from 3 to 30 mg/kg, lintuzumab significantly enhanced survival and reduced tumor burden in vivo, regardless of MDR status. Survival of the mice was dependent upon the activity of resident macrophages and neutrophils. The results suggest that lintuzumab may exert its therapeutic effects by modulating the cytokine milieu in the tumor microenvironment and through effector mediated cell killing. Given that lintuzumab induced meaningful responses in a phase 1 clinical trial, the preclinical antitumor activities defined in this study may underlie its observed therapeutic efficacy in AML patients.

  7. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations

    PubMed Central

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-01-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations – mutations of the genes that regulate gene expression through DNA methylation – is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia. PMID:27247325

  8. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells.

    PubMed

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Kovalchuk, Olga; Prassolov, Vladimir; Zhavoronkov, Alex; Roumiantsev, Alexander; Buzdin, Anton

    2016-11-19

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.

  9. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells

    PubMed Central

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Zhavoronkov, Alex; Kovalchuk, Olga; Prassolov, Vladimir; Roumiantsev, Alexander; Buzdin, Anton

    2016-01-01

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies. PMID:27870639

  10. Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia.

    PubMed

    Sun, Hui; Li, Yi; Zhang, Zhi-fen; Ju, Ying; Li, Li; Zhang, Bing-chang; Liu, Bin

    2015-11-01

    Myeloid-derived suppressor cells (MDSCs) are thought to help provide a cellular microenvironments in many solid tumors, in which transformed cells proliferate, acquire new mutations, and evade host immunosurveillance. In the present study, we found that MDSCs (CD33 + CD11b + HLA-DR(low/neg)) in bone marrow were significantly increased in adult acute myeloid leukemia (AML) patients. MDSCs levels in newly diagnosed AML patients correlated well with extramedullary infiltration and plasma D-dimer levels. Remission rates in the MDSCs > 1500 group and MDSCs < 1500 group were 72.73 and 81.25 %, respectively. No significant differences were found between the two groups. MDSC levels in the complete remission group were significantly decreased after chemotherapy, while in the partial remission and non-remission groups, there were no significant differences. The level of MDSCs in the high minimal residual disease (MRD) group was significantly higher than that in the middle and low MRD groups. High levels of Wilms' Tumor-1 (WT-1) protein were strongly correlated with higher bone marrow MDSC levels. In conclusion, we report here a population of immunosuppressive monocytes in the bone marrow of patients with AML characterized by the CD33(high)CD11b + HLA-DR(low/neg) phenotype. These cells appear to impact the clinical course and prognosis of AML. This data may provide potentially important targets for novel therapies.

  11. Extracorporeal membrane oxygenation as a rescue therapy for acute respiratory failure during chemotherapy in a patient with acute myeloid leukemia

    PubMed Central

    Lee, Sang Won; Kim, Youn Seup

    2017-01-01

    Acute respiratory distress syndrome (ARDS) caused by pneumonia in patients with hematologic malignancies can be life-threatening. Extracorporeal membrane oxygenation (ECMO) is the only temporary treatment for patients with ARDS who are refractory to conventional treatment. However, the immunosuppression and coagulopathies in hematological malignancies such as lymphoma and acute leukemia are relative contraindications for ECMO, due to high risks of infection and bleeding. Here, we report a 22-year-old man with acute myeloid leukemia (AML) who developed pneumonia and ARDS during induction chemotherapy; he was treated with ECMO. PMID:28275497

  12. Extracorporeal membrane oxygenation as a rescue therapy for acute respiratory failure during chemotherapy in a patient with acute myeloid leukemia.

    PubMed

    Lee, Sang Won; Kim, Youn Seup; Hong, Goohyeon

    2017-02-01

    Acute respiratory distress syndrome (ARDS) caused by pneumonia in patients with hematologic malignancies can be life-threatening. Extracorporeal membrane oxygenation (ECMO) is the only temporary treatment for patients with ARDS who are refractory to conventional treatment. However, the immunosuppression and coagulopathies in hematological malignancies such as lymphoma and acute leukemia are relative contraindications for ECMO, due to high risks of infection and bleeding. Here, we report a 22-year-old man with acute myeloid leukemia (AML) who developed pneumonia and ARDS during induction chemotherapy; he was treated with ECMO.

  13. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia

    PubMed Central

    Wang, Mengning; Yang, Chuanwei

    2017-01-01

    Adult acute myeloid leukemia (AML) clinically is a disparate disease that requires intensive treatments ranging from chemotherapy alone to allogeneic hematopoietic cell transplantation (allo-HCT). Historically, cytogenetic analysis has been a useful prognostic tool to classify patients into favorable, intermediate, and unfavorable prognostic risk groups. However, the intermediate-risk group, consisting predominantly of cytogenetically normal AML (CN-AML), itself exhibits diverse clinical outcomes and requires further characterization to allow for more optimal treatment decision-making. The recent advances in clinical genomics have led to the recategorization of CN-AML into favorable or unfavorable subgroups. The relapsing nature of AML is thought to be due to clonal heterogeneity that includes founder or driver mutations present in the leukemic stem cell population. In this article, we summarize the clinical outcomes of relevant molecular mutations and their cooccurrences in CN-AML, including NPM1, FLT3ITD, DNMT3A, NRAS, TET2, RUNX1, MLLPTD, ASXL1, BCOR, PHF6, CEBPAbiallelic, IDH1, IDH2R140, and IDH2R170, with an emphasis on their relevance to the leukemic stem cell compartment. We have reviewed the available literature and TCGA AML databases (2013) to highlight the potential role of stem cell regulating factor mutations on outcome within newly defined AML molecular subgroups. PMID:28197208

  14. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    PubMed

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  15. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities

    PubMed Central

    Stahl, Maximilian; Kim, Tae Kon; Zeidan, Amer M

    2016-01-01

    The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well. PMID:27822339

  16. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities.

    PubMed

    Stahl, Maximilian; Kim, Tae Kon; Zeidan, Amer M

    2016-10-26

    The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.

  17. An integrated genomic approach to the assessment and treatment of acute myeloid leukemia.

    PubMed

    Godley, Lucy A; Cunningham, John; Dolan, M Eileen; Huang, R Stephanie; Gurbuxani, Sandeep; McNerney, Megan E; Larson, Richard A; Leong, Hoyee; Lussier, Yves; Onel, Kenan; Odenike, Olatoyosi; Stock, Wendy; White, Kevin P; Le Beau, Michelle M

    2011-04-01

    Traditionally, new scientific advances have been applied quickly to the leukemias based on the ease with which relatively pure samples of malignant cells can be obtained. Currently, our arsenal of approaches used to characterize an individual's acute myeloid leukemia (AML) combines hematopathologic evaluation, flow cytometry, cytogenetic analysis, and molecular studies focused on a few key genes. The advent of high-throughput methods capable of full-genome evaluation presents new options for a revolutionary change in the way we diagnose, characterize, and treat AML. Next-generation DNA sequencing techniques allow full sequencing of a cancer genome or transcriptome, with the hope that this will be affordable for routine clinical care within the decade. Microarray-based testing will define gene and miRNA expression, DNA methylation patterns, chromosomal imbalances, and predisposition to disease and chemosensitivity. The vision for the future entails an integrated and automated approach to these analyses, bringing the possibility of formulating an individualized treatment plan within days of a patient's initial presentation. With these expectations comes the hope that such an approach will lead to decreased toxicities and prolonged survival for patients.

  18. Targeting binding partners of the CBFβ-SMMHC fusion protein for the treatment of inversion 16 acute myeloid leukemia

    PubMed Central

    Hyde, R. Katherine

    2016-01-01

    Inversion of chromosome 16 (inv(16)) generates the CBFβ-SMMHC fusion protein and is found in nearly all patients with acute myeloid leukemia subtype M4 with Eosinophilia (M4Eo). Expression of CBFβ-SMMHC is causative for leukemia development, but the molecular mechanisms underlying its activity are unclear. Recently, there have been important advances in defining the role of CBFβ-SMMHC and its binding partners, the transcription factor RUNX1 and the histone deacetylase HDAC8. Importantly, initial trials demonstrate that small molecules targeting these binding partners are effective against CBFβ-SMMHC induced leukemia. This review will discuss recent advances in defining the mechanism of CBFβ-SMMHC activity, as well as efforts to develop new therapies for inv(16) AML. PMID:27542261

  19. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance

    PubMed Central

    Ivey, Adam; Huntly, Brian J. P.

    2016-01-01

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response. PMID:26660431

  20. Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia

    PubMed Central

    Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.

    2015-01-01

    Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919

  1. Congenital Acute Myeloid Leukaemia with Pseudo-Chediak-Higashi Like Granules: A Case Report

    PubMed Central

    Barman, Sandip; Sharma, Pooja; Sikka, Meera

    2016-01-01

    Congenital leukaemia is a very rare entity comprising 0.8% of all childhood leukaemias. Pseudo-Chediak-Higashi Anomaly (PCHA) in acute leukaemia is a rarely described entity. However, co-existence of congenital myeloid leukaemia with PCHA is a very rare entity and to the best of our knowledge has not been described in literature till date. A full term new-born presented on the 27th day of life with severe gastroenteritis. Complete blood counts and peripheral smear examination revealed leucocytosis with presence of 76% blast cells. Approximately 15% of these blast cells showed presence of pseudo-Chediak-Higashi like granules. The diagnosis of acute myeloid leukaemia was confirmed by flow cytometry. The case report is presented due to its rarity and to highlight the differential diagnosis and clinical implications of this entity. PMID:28050385

  2. Vancomycin-resistant Enterococcus bacteremia in a child with acute myeloid leukemia: successful treatment with daptomycin.

    PubMed

    Büyükcam, Ayşe; Karadağ Öncel, Eda; Özsürekçi, Yasemin; Cengiz, Ali B; Kuşkonmaz, Barış; Sancak, Banu

    2016-12-01

    Multiple-drug-resistant enterococcal infections canbe a serious problem in pediatric patients particularly concomitance with severe underlying diseases and lead to significant morbidity and mortality. The treatment options in children are limited compared with adults. We report a 3-year old-boy with acute myeloid leukemia (AML)-M7 and vancomycin-resistant enterococcus bacteremia successfully treated with daptomycin. Daptomycin may be an alternative therapy for VRE infections in children; more studies are needed for extended usage.

  3. Successful Hematopoietic Cell Transplantation in a Patient With X-linked Agammaglobulinemia and Acute Myeloid Leukemia

    PubMed Central

    Abu-Arja, Rolla F.; Chernin, Leah R.; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D.; Torgerson, Troy R.; Lopez-Guisa, Jesus; Hostoffer, Robert W.; Tcheurekdjian, Haig; Cooke, Kenneth R.

    2016-01-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19+ B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient’s leukemia. PMID:25900577

  4. Acute myeloid leukemia with basophilic differentiation in a 3-year-old Standardbred gelding

    PubMed Central

    Furness, Mary Catherine; Setlakwe, Emile; Sallaway, John; Wood, Darren; Fromstein, Jordan; Arroyo, Luis G.

    2016-01-01

    A 3-year-old Standardbred gelding with a history of pyrexia, persistent hemorrhage from the oral cavity, and a large, soft swelling at the junction of the caudal aspect of the mandibular rami and proximal neck was evaluated. The horse had neutropenia and anemia, with atypical granulated cells in a blood smear. Additional tests confirmed acute myeloid leukemia with basophilic differentiation, which has been reported in humans, cats, dogs, and cattle but not horses. PMID:27708445

  5. Identification of Merkel Cell Polyomavirus from a Patient with Acute Myeloid Leukemia

    PubMed Central

    Song, Y.

    2017-01-01

    ABSTRACT Merkel cell polyomavirus (MCPyV) is an oncogenic virus associated with Merkel cell carcinoma, an aggressive form of skin cancer with a high (>30%) mortality rate. The virus has a high incidence in patients with immunosuppressed conditions, such as AIDS or leukemia, or following organ transplantation. Here, we report the complete genomic sequence of MCPyV identified from a blood sample from a patient with acute myeloid leukemia. PMID:28104648

  6. Acute myeloid leukemia in adults: a case-control study in Yorkshire.

    PubMed

    Cartwright, R A; Darwin, C; McKinney, P A; Roberts, B; Richards, I D; Bird, C C

    1988-10-01

    This paper reports the results of a case-control analysis of 161 cases of acute myeloid leukemia and 310 matched hospital controls. The patients were interviewed between 1982 and 1986. The study shows a weak association for cases with previous malignant disease. Furnace workers show excess risks. Urticaria and vertigo are in excess, as well as some aspects of family medical histories, including multiple sclerosis and cases of leukemia/lymphoma in blood relations.

  7. Acute myeloid leukemia with basophilic differentiation in a 3-year-old Standardbred gelding.

    PubMed

    Furness, Mary Catherine; Setlakwe, Emile; Sallaway, John; Wood, Darren; Fromstein, Jordan; Arroyo, Luis G

    2016-10-01

    A 3-year-old Standardbred gelding with a history of pyrexia, persistent hemorrhage from the oral cavity, and a large, soft swelling at the junction of the caudal aspect of the mandibular rami and proximal neck was evaluated. The horse had neutropenia and anemia, with atypical granulated cells in a blood smear. Additional tests confirmed acute myeloid leukemia with basophilic differentiation, which has been reported in humans, cats, dogs, and cattle but not horses.

  8. Incidence of Acute Myeloid Leukemia after Breast Cancer

    PubMed Central

    Valentini, Caterina Giovanna; Fianchi, Luana; Voso, Maria Teresa; Caira, Morena; Leone, Giuseppe; Pagano, Livio

    2011-01-01

    Breast cancer is the most frequent cancer among women and the leading cause of death among middle-aged women. Early detection by mammography screening and improvement of therapeutic options have increased breast cancer survival rates, with the consequence that late side effects of cancer treatment become increasingly important. In particular, patients treated with adjuvant chemotherapy regimens, commonly including alkylating agents and anthracyclines, are at increased risk of developing leukemia, further enhanced by the use of radiotherapy. In the last few years also the use of growth factors seems to increase the risk of secondary leukemia. The purpose of this review is to update epidemiology of therapy-related myeloid neoplasms occurring in breast cancer patients. PMID:22220266

  9. [Molecular biology in myelodysplastic syndromes and acute myeloid leukemias "smoldering"].

    PubMed

    Martinelli, Giovanni; Sartor, Chiara; Papayannidis, Cristina; Iacobucci, Ilaria; Paolini, Stefania; Clissa, Cristina; Ottaviani, Emanuela; Finelli, Carlo

    2014-03-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders of the myeloid lineage characterized by peripheral cytopenias and frequent leukemic evolution. MDS differ for clinical presentation, disease behavior and progression and this is the reflection of remarkable variability at molecular level. To this moment disease diagnosis is still dependent on bone marrow morphology that, although high concordance rates among experts are reported, remains subjective. Karyotype analysis is mandatory but diagnosis may be difficult in presence of normal karyotype or non-informative cytogenetics. Standardized molecular markers are needed to better define diagnosis, prediction of disease progression and prognosis. Furthermore, a molecular biology analysis could provide an important therapeutic tool towards tailored therapy and new insights in the disease's biology.

  10. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation

    PubMed Central

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R.; Greipp, Patricia T.

    2015-01-01

    The acquisition of Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia after HCT that developed a BCR/ABL-1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to acute myeloid leukemia and relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: a deletion 20q abnormality subsequently acquired deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias. PMID:25074248

  11. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia.

    PubMed

    Hirsch, Pierre; Tang, Ruoping; Abermil, Nassera; Flandrin, Pascale; Moatti, Hannah; Favale, Fabrizia; Suner, Ludovic; Lorre, Florence; Marzac, Christophe; Fava, Fanny; Mamez, Anne-Claire; Lapusan, Simona; Isnard, Françoise; Mohty, Mohamad; Legrand, Ollivier; Douay, Luc; Bilhou-Nabera, Chrystele; Delhommeau, François

    2017-03-16

    The genetic landscape of adult acute myeloid leukemias has been recently unraveled. However, due to their genetic heterogeneity, only a handful of markers are currently used for the evaluation of minimal residual disease. Recent studies using multi-target strategies indicate that detection of residual mutations in less than 5% of cells in complete remission is associated with a better survival. Here, in a series of 69 acute myeloid leukemias with known clonal architecture, we design a clone-specific strategy based on fluorescent in situ hybridization and high-sensitivity next generation sequencing to detect chromosomal aberrations and mutations, respectively, in follow-up samples. The combination of these techniques allows tracking chromosomal and genomic lesions down to 0.5-0.4% of the cell population in remission samples. By testing all lesions in follow-up samples from 65/69 evaluable patients, we find that initiating events often persist, and appear to be, alone, inappropriate markers to predict short term relapse. In contrast, the persistence of two or more lesions in more than 0.4% of the cells from remission samples is strongly associated with lower leukemia-free and overall survivals in univariate and multivariate analyses. Although larger prospective studies are needed to extend these results, our data show that a personalized, clone-specific, minimal residual disease follow-up strategy is feasible in the vast majority of acute myeloid leukemia cases.

  12. Improving the outcomes of elderly patients with acute myeloid leukemia in a Brazilian University Hospital

    PubMed Central

    Sandes, Alex Freire; da Costa Ribeiro, Juliana Correa; Barroso, Rodrigo S.; Silva, Maria R.R.; Chauffaille, Maria L.L.F.

    2011-01-01

    OBJECTIVE: To evaluate the outcomes of acute myeloid leukemia patients who were older than 60 years of age at the time of diagnosis following the implementation of a treatment algorithm based on age, performance status, and cytogenetic results. METHODS: We retrospectively compared the results of 31 elderly acute myeloid leukemia patients (median age of 74 years) who were treated according to the new algorithm. RESULTS: Fifteen patients with a good performance status and no unfavorable karyotypes were treated with either intensive cytotoxic chemotherapy (<70 years, nine cases) or adapted etoposide, 6-thioguanine and idarubicine (>70 years, six cases); 16 cases with a poor performance status or unfavorable cytogenetics received supportive care only. Six patients achieved a complete remission and two achieved a partial remission after chemotherapy. There were three toxic deaths during induction, two in the adapted etoposide, 6-thioguanine and idarubicine group and one in the intensive cytotoxic chemotherapy group. The overall median survival time was 2.96 months, 1.3 months in the supportive care group, and 4.6 months in the treatment group. CONCLUSIONS: Our results illustrate the importance of treatment guidelines adapted to local resources in an attempt to improve the survival of elderly acute myeloid leukemia patients in developing countries. PMID:21915480

  13. [Problems in maintenance therapy in acute myeloid leukemias in adults].

    PubMed

    Gürtler, R; Raderecht, C

    1975-01-01

    Problems of maintaining therapy for acute myelocytic leukemias in adults are discussed. The analysis of the maintaining therapy in 22 patients affected with an acute myelocytic leukemia and living for more than 6 months revealed that the interval therapy with a high dosage of cytostatic combinations in the sense of the COAP scheme is preferable compared with the daily administration of 6-mercaptopurin, in addition methotrexate twice a week. Reasons for this are discussed.

  14. Treosulfan, Fludarabine Phosphate, and Total Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Minimal Residual Disease; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable

  15. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  16. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression.

    PubMed

    Ding, Xiaofeng; Yang, Zijian; Zhou, Fangliang; Wang, Fangmei; Li, Xinxin; Chen, Cheng; Li, Xiaofeng; Hu, Xiang; Xiang, Shuanglin; Zhang, Jian

    2013-08-01

    Transcription factor AP-2α mediates transcription of a number of genes implicated in mammalian development, cell proliferation and carcinogenesis. In the current study, we identified Hoxa7, Hoxa9 and Hox cofactor Meis1 as AP-2α target genes, which are involved in myeloid leukemogenesis. Luciferase reporter assays revealed that overexpression of AP-2α activated transcription activities of Hoxa7, Hoxa9 and Meis1, whereas siRNA of AP-2α inhibited their transcription activities. We found that AP-2 binding sites in regulatory regions of three genes activated their transcription by mutant analysis and AP-2α could interact with AP-2 binding sites in vivo by chromatin immunoprecipitation (ChIP). Further results showed that the AP-2α shRNA efficiently inhibited mRNA and protein levels of Hoxa7, Hoxa9 and Meis1 in AML cell lines U937 and HL60. Moreover, decreased expression of AP-2α resulted in a significant reduction in the growth and proliferation of AML cells in vitro. Remarkably, AP-2α knockdown leukemia cells exhibit decreased tumorigenicity in vivo compared with controls. Finally, AP-2α and target genes in clinical acute myeloid leukemia samples of M5b subtype revealed variable expression levels and broadly paralleled expression. These data support a role of AP-2α in mediating the expression of Hoxa genes in acute myeloid leukemia to influence the proliferation and cell survival.

  17. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma.

    PubMed

    Yamasaki, S; Suzuki, R; Hatano, K; Fukushima, K; Iida, H; Morishima, S; Suehiro, Y; Fukuda, T; Uchida, N; Uchiyama, H; Ikeda, H; Yokota, A; Tsukasaki, K; Yamaguchi, H; Kuroda, J; Nakamae, H; Adachi, Y; Matsuoka, K-I; Nakamura, Y; Atsuta, Y; Suzumiya, J

    2017-04-03

    Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) represent severe late effects in patients receiving hematopoietic cell transplantation (HCT) for lymphoma. The choice between high-dose therapy with autologous HCT and allogeneic HCT with reduced-intensity conditioning remains controversial in patients with relapsed lymphoma. We retrospectively analyzed incidence and risk factors for the development of t-AML/MDS in lymphoma patients treated with autologous or allogeneic HCT. A total of 13 810 lymphoma patients who received autologous (n=9963) or allogeneic (n=3847) HCT between 1985 and 2012 were considered. At a median overall survival (OS) of 52 and 46 months in autologous and allogeneic HCT groups, respectively, lymphoma patients receiving autologous HCT (1.38% at 3 years after autologous HCT) had a significant risk for developing t-AML/MDS compared to allogeneic HCT (0.37% at 3 years after allogeneic HCT, P<0.001). Significant risk factors for the development of t-AML/MDS after autologous and allogeneic HCT were high-stage risk at HCT (P=0.04) or secondary malignancies (P<0.001) and receiving cord blood stem cell (P=0.03) or involved field radiotherapy (P=0.002), respectively. Strategies that carefully select lymphoma patients for autologous HCT, by excluding lymphoma patients with high-stage risk at HCT, may allow the identification of individual lymphoma patients at particular high risk for t-AML/MDS.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.52.

  18. Genetics of CD33 in Alzheimer's disease and acute myeloid leukemia

    PubMed Central

    Malik, Manasi; Chiles, Joe; Xi, Hualin S.; Medway, Christopher; Simpson, James; Potluri, Shobha; Howard, Dianna; Liang, Ying; Paumi, Christian M.; Mukherjee, Shubhabrata; Crane, Paul; Younkin, Steven; Fardo, David W.; Estus, Steven

    2015-01-01

    The CD33 single-nucleotide polymorphism (SNP) rs3865444 has been associated with the risk of Alzheimer's disease (AD). Rs3865444 is in linkage disequilibrium with rs12459419 which has been associated with efficacy of an acute myeloid leukemia (AML) chemotherapeutic agent based on a CD33 antibody. We seek to evaluate the extent to which CD33 genetics in AD and AML can inform one another and advance human disease therapy. We have previously shown that these SNPs are associated with skipping of CD33 exon 2 in brain mRNA. Here, we report that these CD33 SNPs are associated with exon 2 skipping in leukocytes from AML patients and with a novel CD33 splice variant that retains CD33 intron 1. Each copy of the minor rs12459419T allele decreases prototypic full-length CD33 expression by ∼25% and decreases the AD odds ratio by ∼0.10. These results suggest that CD33 antagonists may be useful in reducing AD risk. CD33 inhibitors may include humanized CD33 antibodies such as lintuzumab which was safe but ineffective in AML clinical trials. Here, we report that lintuzumab downregulates cell-surface CD33 by 80% in phorbol-ester differentiated U937 cells, at concentrations as low as 10 ng/ml. Overall, we propose a model wherein a modest effect on RNA splicing is sufficient to mediate the CD33 association with AD risk and suggest the potential for an anti-CD33 antibody as an AD-relevant pharmacologic agent. PMID:25762156

  19. Molecular involvement and prognostic importance of fms-like tyrosine kinase 3 in acute myeloid leukemia.

    PubMed

    Shahab, Sadaf; Shamsi, Tahirs; Ahmed, Nuzhat

    2012-01-01

    AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.

  20. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation

    PubMed Central

    Elagib, Kamaleldin E.; Goldfarb, Adam N.

    2007-01-01

    The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability. PMID:17125917

  1. Association of acute myeloid leukemia’s most immature phenotype with risk groups and outcomes

    PubMed Central

    Gerber, Jonathan M.; Zeidner, Joshua F.; Morse, Sarah; Blackford, Amanda L.; Perkins, Brandy; Yanagisawa, Breann; Zhang, Hao; Morsberger, Laura; Karp, Judith; Ning, Yi; Gocke, Christopher D.; Rosner, Gary L.; Smith, B. Douglas; Jones, Richard J.

    2016-01-01

    The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the “gold standard” immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone’s most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34+CD38− leukemia cells. The CD34+CD38− leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34+CD38− hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34+CD38− leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34+ leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34+CD38− leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone’s most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for “clinically-relevant” leukemia stem cells. ClinicalTrials.gov: NCT01349972. PMID:26819054

  2. Differentiation syndrome in acute myeloid leukemia after treatment with azacitidine.

    PubMed

    Laufer, Christin B; Roberts, Owen

    2015-11-01

    We report a case report of hyperleukocytosis, fever, hypotension, pulmonary and pericardial effusions, and acute kidney injury during initial treatment with azacitidine in a patient with AML-MRC. Collectively, the symptomatology resembled differentiation syndrome. Azacitidine has been previously associated with fever, peripheral edema, and hyperleukocytosis, but its side effect profile has never been described as similar to differentiation syndrome. The patient's deteriorating course quickly turned around after treatment with dexamethasone. This potential reaction, and potential treatment, is important for clinicians to be aware of.

  3. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia.

    PubMed

    Green, Margaret L; Leisenring, Wendy M; Xie, Hu; Walter, Roland B; Mielcarek, Marco; Sandmaier, Brenda M; Riddell, Stanley R; Boeckh, Michael

    2013-08-15

    The association between cytomegalovirus (CMV) reactivation and relapse was evaluated in a large cohort of patients with acute myeloid leukemia (AML) (n = 761), acute lymphoblastic leukemia (ALL) (n = 322), chronic myeloid leukemia (CML) (n = 646), lymphoma (n = 254), and myelodysplastic syndrome (MDS) (n = 371) who underwent allogeneic hematopoietic cell transplantation (HCT) between 1995 and 2005. In multivariable models, CMV pp65 antigenemia was associated with a decreased risk of relapse by day 100 among patients with AML (hazard ratio [HR] = 0.56; 95% confidence interval [CI], 0.3-0.9) but not in patients with ALL, lymphoma, CML, or MDS. The effect appeared to be independent of CMV viral load, acute graft-versus-host disease, or ganciclovir-associated neutropenia. At 1 year after HCT, early CMV reactivation was associated with reduced risk of relapse in all patients, but this did not reach significance for any disease subgroup. Furthermore, CMV reactivation was associated with increased nonrelapse mortality (HR = 1.31; 95% CI, 1.1-1.6) and no difference in overall mortality (HR = 1.05; 95% CI, 0.9-1.3). This report demonstrates a modest reduction in early relapse risk after HCT associated with CMV reactivation in a large cohort of patients without a benefit in overall survival.

  5. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

    PubMed Central

    Zhao, Zhen; Zuber, Johannes; Diaz-Flores, Ernesto; Lintault, Laura; Kogan, Scott C.; Shannon, Kevin; Lowe, Scott W.

    2010-01-01

    The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous KrasG12D—a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic KrasG12D to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity. PMID:20595231

  6. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells

    PubMed Central

    Moreno-Martínez, Daniel; Nomdedeu, Meritxell; Lara-Castillo, María Carmen; Etxabe, Amaia; Pratcorona, Marta; Tesi, Niccolò; Díaz-Beyá, Marina; Rozman, María; Montserrat, Emili; Urbano-Ispizua, Álvaro; Esteve, Jordi; Risueño, Ruth M.

    2014-01-01

    Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials. PMID:24952669

  7. Chronic meningitis by histoplasmosis: report of a child with acute myeloid leukemia.

    PubMed

    Pereira, G H; Pádua, S S; Park, M V F; Muller, R P; Passos, R M A; Menezes, Y

    2008-12-01

    Meningitis is a common evolution in progressive disseminated histoplasmosis in children, and is asymptomatic in many cases. In leukemia, the impaired of the T cells function can predispose to the disseminated form. The attributed mortality rate in this case is 20%-40% and the relapse rate is as high as 50%; therefore, prolonged treatment may be emphasized. We have described a child with acute myeloid leukemia (AML), that developed skin lesions and asymptomatic chronic meningitis, with a good evolution after prolonged treatment with amphotericin B deoxycholate followed by fluconazole.

  8. Burkholderia cepacia septicemia in a patient with acute myeloid leukemia in postchemotherapy bone marrow aplasia

    PubMed Central

    Mihaila, Romeo-Gabriel; Blaga, Lucian

    2013-01-01

    The patients with hematologic malignancies are predisposed to develop infections with unusual bacteria, like Burkholderia cepacia, which is frequently resistant to many antibiotics and antiseptics. We present the case of a female patient with acute myeloid leukemia type 2 on the background of myelodysplastic syndrome, from whom Burkholderia cepacia was isolated in blood culture, after the 2nd cycle of induction. She was sensitive to ceftazidime, but its eradication was not easy. Five other patients were contaminated with this bacteria, but all of them had favourable evolution. The case is discussed in the context of those similar in literature. PMID:24353735

  9. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  10. [Dipodascus capitatus (Geotrichum capitatum): fatal systemic infection on patient with acute myeloid leukemia].

    PubMed

    Lafayette, Thereza Christina Sampaio; Oliveira, Loiva Therezinha Otonelli; Landell, Melissa; Valente, Patrícia; Alves, Sydney Hartz; Pereira, Waldir Veiga

    2011-10-01

    The infections caused by Dipodascus capitatus are rare, and the treatment is difficult. We reported a case of a patient with acute myeloid leukemia. The fungus was first isolated from hemocultures, and the phenotypic identification was based on mycological methods. The genotyping was carried out by sequencing the region D1/D2 from 26 rDNA. The susceptibility tests were assayed by Etest® and by the microdilution technique. None of the antifungal treatments employed were effective. The patient died on day 17 after the mycological diagnosis. The authors discussed the emergence of such infections as well as the difficulty regarding the diagnosis and treatment.

  11. BCL2 Inhibition by Venetoclax: Targeting the Achilles' Heel of the Acute Myeloid Leukemia Stem Cell?

    PubMed

    Pullarkat, Vinod A; Newman, Edward M

    2016-10-01

    Venetoclax is an oral drug with an excellent side-effect profile that has the potential to revolutionize acute myeloid leukemia (AML) therapy in two areas. Venetoclax-based combination therapies could be a bridge to hematopoietic cell transplant with curative intent for patients with refractory/relapsed AML, and venetoclax-based therapy could provide meaningful survival prolongation for older patients with AML who are not candidates for more aggressive therapies. Cancer Discov; 6(10); 1082-3. ©2016 AACR.See related article by Konopleva and colleagues, p. 1106.

  12. RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia

    PubMed Central

    Snauwaert, Sylvia; Vanhee, Stijn; Goetgeluk, Glenn; Verstichel, Greet; Van Caeneghem, Yasmine; Velghe, Imke; Philippé, Jan; Berneman, Zwi N.; Plum, Jean; Taghon, Tom; Leclercq, Georges; Thielemans, Kris; Kerre, Tessa; Vandekerckhove, Bart

    2012-01-01

    Background Criteria for good candidate antigens for immunotherapy of acute myeloid leukemia are high expression on leukemic stem cells in the majority of patients with acute myeloid leukemia and low or no expression in vital tissues. It was shown in vaccination trials that Receptor for Hyaluronic Acid Mediated Motility (RHAMM/HMMR) generates cellular immune responses in patients with acute myeloid leukemia and that these responses correlate with clinical benefit. It is not clear however whether this response actually targets the leukemic stem cell, especially since it was reported that RHAMM is expressed maximally during the G2/M phase of the cell cycle. In addition, tumor specificity of RHAMM expression remains relatively unexplored. Design and Methods Blood, leukapheresis and bone marrow samples were collected from both acute myeloid leukemia patients and healthy controls. RHAMM expression was assessed at protein and mRNA levels on various sorted populations, either fresh or after manipulation. Results High levels of RHAMM were expressed by CD34+CD38+ and CD34- acute myeloid leukemia blasts. However, only baseline expression of RHAMM was measured in CD34+CD38- leukemic stem cells, and was not different from that in CD34+CD38- hematopoietic stem cells from healthy controls. RHAMM was significantly up-regulated in CD34+ cells from healthy donors during in vitro expansion and during in vivo engraftment. Finally, we demonstrated an explicit increase in the expression level of RHAMM after in vitro activation of T cells. Conclusions RHAMM does not fulfill the criteria of an ideal target antigen for immunotherapy of acute myeloid leukemia. RHAMM expression in leukemic stem cells does not differ significantly from the expression in hematopoietic stem cells from healthy controls. RHAMM expression in proliferating CD34+ cells of healthy donors and activated T cells further compromises RHAMM-specific T-cell-mediated immunotherapy. PMID:22532518

  13. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.

  14. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  15. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts

    PubMed Central

    Peterson, Luke F.; Boyapati, Anita; Ahn, Eun-Young; Biggs, Joseph R.; Okumura, Akiko Joo; Lo, Miao-Chia; Yan, Ming

    2007-01-01

    Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In this review, we survey recent advances made involving secondary mutational events and alternative t(8;21) transcripts in relation to understanding AML1-ETO leukemogenesis. PMID:17412887

  16. A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse.

    PubMed

    Schwieger, Maike; Löhler, Jürgen; Fischer, Meike; Herwig, Uwe; Tenen, Daniel G; Stocking, Carol

    2004-04-01

    The CCAAT/enhancer binding protein alpha (C/EBPalpha) is an essential transcription factor for granulocytic differentiation. C/EBPalpha mutations are found in approximately 8% of acute myeloid leukemia (AML) patients. Most of these mutations occur in the N-terminal coding region, resulting in a frame shift and the enhanced translation of a dominant-negative 30-kDa protein, which may be responsible for the differentiation block observed in AML. To test this hypothesis, we introduced a cDNA encoding an N-terminal mutated C/EBPalpha (mut10) into primary hematopoietic progenitors using a retroviral vector. Expression of mut10 in human CD34+ cord blood cells dramatically inhibited differentiation of both myeloid and erythroid lineages. Immunohistochemical analysis demonstrated coexpression of both myeloid and erythroid markers in the immature transformed cells. Surprisingly, mut10 did not block myelocytic differentiation in murine progenitors but did alter their differentiation kinetics and clonogenicity. Experiments were performed to confirm that the differential effect of mut10 on murine and human progenitors was not due to species-specific differences in C/EBPalpha protein sequences, expression levels, or inefficient targeting of relevant cells. Taken together, our results underline the intrinsic differences between hematopoietic controls in mouse and human and support the hypothesis that mutations in CEBPA are critical events in the disruption of myeloid differentiation in AMLs.

  17. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia.

    PubMed

    Wan, Liling; Wen, Hong; Li, Yuanyuan; Lyu, Jie; Xi, Yuanxin; Hoshii, Takayuki; Joseph, Julia K; Wang, Xiaolu; Loh, Yong-Hwee E; Erb, Michael A; Souza, Amanda L; Bradner, James E; Shen, Li; Li, Wei; Li, Haitao; Allis, C David; Armstrong, Scott A; Shi, Xiaobing

    2017-03-09

    Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.

  18. Results of a phase II study of thalidomide and azacitidine in patients with clinically advanced myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML) and low blast count acute myeloid leukemia (AML).

    PubMed

    Kenealy, Melita; Patton, Nigel; Filshie, Robin; Nicol, Andrew; Ho, Shir-Jing; Hertzberg, Mark; Mills, Tony; Prosser, Ian; Link, Emma; Cowan, Linda; Zannino, Diana; Seymour, John F

    2017-02-01

    Single agent azacitidine or immunomodulatory drugs are effective in myelodysplastic syndrome (MDS), with differing target mechanisms and toxicities. Objectives of this ALLG MDS3 study in clinically advanced MDS, AMML and low blast AML were to establish safety, response and quality of life of azacitidine and thalidomide. Patients received azacitidine (75mg/m(2)/d sc 7days every 28 days), and oral thalidomide up to 100mg/d for maximum 12months. Eighty patients registered; median age 68 years (range 42-82), 49% IPSS int2-high. With 36.5 months follow up, patients received median 9 cycles azacitidine, 6.1mths thalidomide. Nonhematologic toxicity grade 3+ in 85%, commonly infections. Overall response rate was 63%; 26% CR were unaffected by IPSS. Median response duration 26.3months; overall survival was 28.1months. This combination azacitidine and thalidomide in clinically advanced MDS, CMML and low-blast AML was tolerable without unexpected toxicity and encouraging responses support further investigation of combination approaches with hypomethylating agent and immunomodulatory drug.

  19. Acute Myeloid Leukaemia of Donor Cell Origin Developing 17 Years after Allogenic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukaemia

    PubMed Central

    Jiménez, Pilar; Alvarez, J. Carlos; Garrido, Pilar; Lorente, J. Antonio; Palacios, Jorge; Ruiz-Cabello, Francisco

    2012-01-01

    Donor cell leukaemia (DCL) is a rare complication of allogenic hematopoietic cell transplantation (HCT). We report the case of a female patient with acute promyelocytic leukaemia (APL), FAB type M3, who developed acute myeloid leukaemia (AML) type M5 of donor origin 17 years after allogenic bone marrow transplantation (BMT) from her HLA-matched sister. Morphology and immunophenotyping showed differences with the initial leukaemia, and short tandem repeat (STR) analysis confirmed donor-type haematopoiesis. Interphase fluorescence in situ hybridisation (FISH) showed an 11q23 deletion. Given that the latency period between transplant and development of leukaemia was the longest reported to date, we discuss the mechanisms underlying delayed leukaemia onset. PMID:23675279

  20. Prognostic nomogram for previously untreated adult patients with acute myeloid leukemia

    PubMed Central

    Zheng, Zhuojun; Li, Xiaodong; Zhu, Yuandong; Gu, Weiying; Xie, Xiaobao; Jiang, Jingting

    2016-01-01

    This study was designed to perform an acceptable prognostic nomogram for acute myeloid leukemia. The clinical data from 311 patients from our institution and 165 patients generated with Cancer Genome Atlas Research Network were reviewed. A prognostic nomogram was designed according to the Cox's proportional hazard model to predict overall survival (OS). To compare the capacity of the nomogram with that of the current prognostic system, the concordance index (C-index) was used to validate the accuracy as well as the calibration curve. The nomogram included 6 valuable variables: age, risk stratifications based on cytogenetic abnormalities, status of FLT3-ITD mutation, status of NPM1 mutation, expression of CD34, and expression of HLA-DR. The C-indexes were 0.71 and 0.68 in the primary and validation cohort respectively, which were superior to the predictive capacity of the current prognostic systems in both cohorts. The nomogram allowed both patients with acute myeloid leukemia and physicians to make prediction of OS individually prior to treatment. PMID:27689396

  1. miR-137 downregulates c-kit expression in acute myeloid leukemia.

    PubMed

    Hu, Yanping; Dong, Xiaolong; Chu, Guoming; Lai, Guangrui; Zhang, Bijun; Wang, Leitong; Zhao, Yanyan

    2017-02-16

    The oncogene c-kit plays a vital role in the pathogenesis of acute myeloid leukemia (AML). However, the mechanism of microRNAs targeting c-kit in AML has not been determined in detail. Moreover, the role miR-137 in tumor cell proliferation remains controversial. The aim of this work was to verify whether miR-137 targets c-kit and to research the biological effects of restoring miR-137 expression in leukemia cells. We found that miR-137 binds specifically to the 3'-UTR of c-kit and suppresses the expression and activities of c-kit. There is a negative correlation between miR-137 and c-kit expression in both patients and cell lines determined by screening large clinical samples. We found that miR-137 can inhibit proliferation, promote apoptosis, and induce differentiation of c-kit+ AML cells. We determined that miR-137 can participate in the leukemogenesis by regulating c-kit, which could be used as a therapeutic target for acute myeloid leukemia.

  2. Over-expression of catalase in myeloid cells confers acute protection following myocardial infarction.

    PubMed

    Cabigas, E Bernadette; Somasuntharam, Inthirai; Brown, Milton E; Che, Pao Lin; Pendergrass, Karl D; Chiang, Bryce; Taylor, W Robert; Davis, Michael E

    2014-05-21

    Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2), has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  3. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation.

    PubMed

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R; Greipp, Patricia T

    2014-06-01

    The acquisition of the Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia (AML) after HCT that developed a BCR-ABL1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to AML to relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: A deletion 20q abnormality subsequently acquired a deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias.

  4. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs

    PubMed Central

    Zebisch, Armin; Hatzl, Stefan; Pichler, Martin; Wölfler, Albert; Sill, Heinz

    2016-01-01

    Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof. PMID:27973410

  5. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations.

    PubMed

    Abbas, Saman; Sanders, Mathijs A; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M C; Koenders, Jasper E; Kavelaars, Francois G; Abbas, Zabiollah G; Mahamoud, Souad; Chu, Isabel W T; Hoogenboezem, Remco; Peeters, Justine K; van Drunen, Ellen; van Galen, Janneke; Beverloo, H Berna; Löwenberg, Bob; Valk, Peter J M

    2014-05-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia.

  6. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations

    PubMed Central

    Abbas, Saman; Sanders, Mathijs A.; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M.C.; Koenders, Jasper E.; Kavelaars, Francois G.; Abbas, Zabiollah G.; Mahamoud, Souad; Chu, Isabel W.T.; Hoogenboezem, Remco; Peeters, Justine K.; van Drunen, Ellen; van Galen, Janneke; Beverloo, H. Berna; Löwenberg, Bob; Valk, Peter J.M.

    2014-01-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia. PMID:24441149

  7. Myeloid Sarcoma of the Uterine Cervix as Presentation of Acute Myeloid Leukaemia after Treatment with Low-Dose Radioiodine for Thyroid Cancer: A Case Report and Review of the Literature

    PubMed Central

    Weingertner, Anne Sophie; Wilt, Marc; Atallah, Ihab; Fohrer, Cécile; Mauvieux, Laurent; Rodier, Jean-François

    2009-01-01

    The development of acute myeloid leukaemia after low-dose radioiodine therapy and its presentation as a myeloid sarcoma of the uterine cervix are both rare events. We report a case of acute myeloid leukaemia revealed by a myeloid sarcoma of the uterine cervix in a 48-year-old woman, 17 months after receiving a total dose of 100 mCi 131I for papillary thyroid cancer. A strict hematological follow-up of patients treated with any dose of 131I is recommended to accurately detect any hematological complications which might have been underestimated. Unusual presentations, such as chloroma of the uterine cervix, may reveal myeloid malignancy and should be kept in mind. PMID:20844570

  8. The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia

    PubMed Central

    Nahajevszky, Sarolta; Andrikovics, Hajnalka; Batai, Arpad; Adam, Emma; Bors, Andras; Csomor, Judit; Gopcsa, Laszlo; Koszarska, Magdalena; Kozma, Andras; Lovas, Nora; Lueff, Sandor; Matrai, Zoltan; Meggyesi, Nora; Sinko, Janos; Sipos, Andrea; Varkonyi, Andrea; Fekete, Sandor; Tordai, Attila; Masszi, Tamas

    2011-01-01

    Background Prognostic risk stratification according to acquired or inherited genetic alterations has received increasing attention in acute myeloid leukemia in recent years. A germline Janus kinase 2 haplotype designated as the 46/1 haplotype has been reported to be associated with an inherited predisposition to myeloproliferative neoplasms, and also to acute myeloid leukemia with normal karyotype. The aim of this study was to assess the prognostic impact of the 46/1 haplotype on disease characteristics and treatment outcome in acute myeloid leukemia. Design and Methods Janus kinase 2 rs12343867 single nucleotide polymorphism tagging the 46/1 haplotype was genotyped by LightCycler technology applying melting curve analysis with the hybridization probe detection format in 176 patients with acute myeloid leukemia under 60 years diagnosed consecutively and treated with curative intent. Results The morphological subtype of acute myeloid leukemia with maturation was less frequent among 46/1 carriers than among non-carriers (5.6% versus 17.2%, P=0.018, cytogenetically normal subgroup: 4.3% versus 20.6%, P=0.031), while the morphological distribution shifted towards the myelomonocytoid form in 46/1 haplotype carriers (28.1% versus 14.9%, P=0.044, cytogenetically normal subgroup: 34.0% versus 11.8%, P=0.035). In cytogenetically normal cases of acute myeloid leukemia, the 46/1 carriers had a considerably lower remission rate (78.7% versus 94.1%, P=0.064) and more deaths in remission or in aplasia caused by infections (46.8% versus 23.5%, P=0.038), resulting in the 46/1 carriers having shorter disease-free survival and overall survival compared to the 46/1 non-carriers. In multivariate analysis, the 46/1 haplotype was an independent adverse prognostic factor for disease-free survival (P=0.024) and overall survival (P=0.024) in patients with a normal karyotype. Janus kinase 2 46/1 haplotype had no impact on prognosis in the subgroup with abnormal karyotype. Conclusions Janus

  9. Pulmonary mucormycosis with cervical lymph node involvement in a patient with acute myeloid leukaemia: a case report.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Di Lollo, Simonetta; Dini, Catia; Bosi, Alberto

    2008-07-01

    Here we describe a rare case of pulmonary mucormycosis and simultaneous cervical lymphadenitis in a patient with acute myeloid leukaemia. The patient was successfully treated with liposomal amphotericin B. The diagnosis of Mucor is very difficult, especially in severely immunocompromised patients. This report seems to be the first case about documented lymph node involvement by mucormycosis in humans.

  10. [Latest advances in acute pancreatitis].

    PubMed

    de-Madaria, Enrique

    2015-09-01

    The present article analyses the main presentations on acute pancreatitis at Digestive Disease Week 2015. Arterial pseudoaneurysm is an uncommon complication of acute pancreatitis (incidence 0.7%) and mortality from this cause is currently anecdotal. Diabetes mellitus has little impact on the clinical course of acute pancreatitis, unlike cirrhosis, which doubles the risk of mortality. Intake of unsaturated fat could be associated with an increased severity of acute pancreatitis and is a confounding factor in studies evaluating the relationship between obesity and morbidity and mortality. PET-CT (positron emission tomography-computed tomography) could be a non-invasive tool to detect infection of collections in acute pancreatitis. Peripancreatic fat necrosis is less frequent than pancreatic fat necrosis and is associated with a better clinical course. If the clinical course is poor, increasing the calibre of the percutaneous drains used in the treatment of infected necrosis can avoid surgery in 20% of patients. The use of low molecular-weight heparin in moderate or severe pancreatitis could be associated with a better clinical course, specifically with a lower incidence of necrosis. In acute recurrent pancreatitis, simvastatin is a promising drug for prophylaxis of new episodes of acute pancreatitis. Nutritional support through a nasogastric tube does not improve clinical course compared with oral nutrition.

  11. 5-azacytidine enhances the anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia.

    PubMed

    Sutherland, May Kung; Yu, Changpu; Anderson, Martha; Zeng, Weiping; van Rooijen, Nico; Sievers, Eric L; Grewal, Iqbal S; Law, Che-Leung

    2010-01-01

    Despite therapeutic advances, the poor prognoses for acute myeloid leukemia (AML) and intermediate and high-risk myelodysplastic syndromes (MDS) point to the need for better treatment options. AML and MDS cells express the myeloid marker CD33, making it amenable to CD33-targeted therapy. Lintuzumab (SGN-33), a humanized monoclonal anti-CD33 antibody undergoing clinical evaluation, induced meaningful responses in a Phase 1 clinical trial and demonstrated anti-leukemic activity in preclinical models. Recently, it was reported that 5-azacytidine (Vidaza™) prolonged the overall survival of a group of high risk MDS and AML patients. To determine whether the combination of lintuzumab and 5-azacytidine would be beneficial, a mouse xenograft model of disseminated AML was used to evaluate the combination.  There was a significant reduction in tumor burden and an increase in overall survival in mice treated with lintuzumab and 5-azacytidine. The effects were greater than that obtained with either agent alone. As the in vivo anti-leukemic activity of lintuzumab was dependent upon the presence of mouse effector cells including macrophages and neutrophils, in vitro effector function assays were used to assess the impact of 5-azacytidine on lintuzumab activity. The results show that 5-azacytidine significantly enhanced the ability of lintuzumab to promote tumor cell killing through antibody-dependent cellular cytotoxicity (ADCC) and phagocytic (ADCP) activities. These results suggest that lintuzumab and 5-azacytidine act in concert to promote tumor cell killing. Additionally, these findings provide the rationale to evaluate this combination in the clinic.

  12. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing.

    PubMed

    Malmberg, Erik B R; Ståhlman, Sara; Rehammar, Anna; Samuelsson, Tore; Alm, Sofie J; Kristiansson, Erik; Abrahamsson, Jonas; Garelius, Hege; Pettersson, Louise; Ehinger, Mats; Palmqvist, Lars; Fogelstrand, Linda

    2017-01-01

    Next-generation sequencing techniques have revealed that leukemic cells in acute myeloid leukemia often are characterized by a limited number of somatic mutations. These mutations can be the basis for the detection of leukemic cells in follow-up samples. The aim of this study was to identify leukemia-specific mutations in cells from patients with acute myeloid leukemia and to use these mutations as markers for minimal residual disease. Leukemic cells and normal lymphocytes were simultaneously isolated at diagnosis from 17 patients with acute myeloid leukemia using fluorescence-activated cell sorting. Exome sequencing of these cells identified 240 leukemia-specific single nucleotide variations and 22 small insertions and deletions. Based on estimated allele frequencies and their accuracies, 191 of these mutations qualified as candidates for minimal residual disease analysis. Targeted deep sequencing with a significance threshold of 0.027% for single nucleotide variations and 0.006% for NPM1 type A mutation was developed for quantification of minimal residual disease. When tested on follow-up samples from a patient with acute myeloid leukemia, targeted deep sequencing of single nucleotide variations as well as NPM1 was more sensitive than minimal residual disease quantification with multiparameter flow cytometry. In conclusion, we here describe how exome sequencing can be used for identification of leukemia-specific mutations in samples already at diagnosis of acute myeloid leukemia. We also show that targeted deep sequencing of such mutations, including single nucleotide variations, can be used for high-sensitivity quantification of minimal residual disease in a patient-tailored manner.

  13. Ciprofloxacin versus colistin prophylaxis during neutropenia in acute myeloid leukemia: two parallel patient cohorts treated in a single center

    PubMed Central

    Pohlen, Michele; Marx, Julia; Mellmann, Alexander; Becker, Karsten; Mesters, Rolf M.; Mikesch, Jan-Henrik; Schliemann, Christoph; Lenz, Georg; Müller-Tidow, Carsten; Büchner, Thomas; Krug, Utz; Stelljes, Matthias; Karch, Helge; Peters, Georg; Gerth, Hans U.; Görlich, Dennis; Berdel, Wolfgang E.

    2016-01-01

    Patients undergoing intensive chemotherapy for acute myeloid leukemia are at high risk for bacterial infections during therapy-related neutropenia. However, the use of specific antibiotic regimens for prophylaxis in afebrile neutropenic acute myeloid leukemia patients is controversial. We report a retrospective evaluation of 172 acute myeloid leukemia patients who received 322 courses of myelosuppressive chemotherapy and had an expected duration of neutropenia of more than seven days. The patients were allocated to antibiotic prophylaxis groups and treated with colistin or ciprofloxacin through 2 different hematologic services at our hospital, as available. The infection rate was reduced from 88.6% to 74.2% through antibiotic prophylaxis (vs. without prophylaxis; P=0.04). A comparison of both antibiotic drugs revealed a trend towards fewer infections associated with ciprofloxacin prophylaxis (69.2% vs. 79.5% in the colistin group; P=0.07), as determined by univariate analysis. This result was confirmed through multivariate analysis (OR: 0.475, 95%CI: 0.236–0.958; P=0.041). The prophylactic agents did not differ with regard to the microbiological findings (P=0.6, not significant). Of note, the use of ciprofloxacin was significantly associated with an increased rate of infections with pathogens that are resistant to the antibiotic used for prophylaxis (79.5% vs. 9.5% in the colistin group; P<0.0001). The risk factors for higher infection rates were the presence of a central venous catheter (P<0.0001), mucositis grade III/IV (P=0.0039), and induction/relapse courses (vs. consolidation; P<0.0001). In conclusion, ciprofloxacin prophylaxis appears to be of particular benefit during induction and relapse chemotherapy for acute myeloid leukemia. To prevent and control drug resistance, it may be safely replaced by colistin during consolidation cycles of acute myeloid leukemia therapy. PMID:27470601

  14. CD 33 as a target of therapy in acute myeloid leukemia: current status and future perspectives.

    PubMed

    Sperr, Wolfgang R; Florian, Stefan; Hauswirth, Alexander W; Valent, Peter

    2005-08-01

    CD 33 is a myeloid cell surface antigen that is expressed on blast cells in acute myeloid leukemia (AML) in a majority of all patients regardless of age or subtype of disease. The antigen is also expressed on leukemic stem cells in many cases, but is not expressed on normal hematopoietic stem cells. In an attempt to improve therapy in AML, a CD 33-targeted drug has been developed. The drug, gemtucumab ozogamicin (GO; Mylotarg), consists of a humanized CD 33 antibody (hP 67.6), a pH-dependent linker, and a highly potent chemotherapy agent, calicheamicin 1,2,-dimethyl hydrazine dichloride. Based on its clinical activity, GO has been approved for application in chemotherapy-refractory AML in various countries and is effective as a mono-substance as well as in combination with conventional chemotherapy. However, despite high efficacy and a certain specificity for leukemic (as opposed to normal) stem cells, the drug does not work in all patients, and can produce significant side-effects, including veno-occlusive disease (VOD), especially in patients who undergo stem cell transplantation. These side-effects have to be balanced against the benefit of GO therapy in patients with relapsed or refractory AML.

  15. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice.

    PubMed

    Kode, A; Mosialou, I; Manavalan, S J; Rathinam, C V; Friedman, R A; Teruya-Feldstein, J; Bhagat, G; Berman, E; Kousteni, S

    2016-01-01

    Osteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs. Moreover, using cell-specific gene inactivation mouse models, we show that FoxO1 expression in osteoblasts is required for and mediates the leukemogenic properties of β-catenin. At the molecular level, FoxO1 interacts with β-catenin in osteoblasts to induce expression of the Notch ligand, Jagged-1. Subsequent activation of Notch signaling in long-term repopulating HSC progenitors induces the leukemogenic transformation of HSCs and ultimately leads to the development of AML. These findings identify FoxO1 expressed in osteoblasts as a factor affecting hematopoiesis and provide a molecular mechanism whereby the FoxO1/activated β-catenin interaction results in AML. These observations support the notion that the bone marrow niche is an instigator of leukemia and raise the prospect that FoxO1 oncogenic properties may occur in other tissues.

  16. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a

    PubMed Central

    Shields, Benjamin J.; Jackson, Jacob T.; Metcalf, Donald; Shi, Wei; Huang, Qiutong; Garnham, Alexandra L.; Glaser, Stefan P.; Beck, Dominik; Pimanda, John E.; Bogue, Clifford W.; Smyth, Gordon K.; Alexander, Warren S.; McCormack, Matthew P.

    2016-01-01

    Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal. PMID:26728554

  17. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia

    PubMed Central

    Riedel, Simone S.; Haladyna, Jessica N.; Bezzant, Matthew; Stevens, Brett; Pollyea, Daniel A.; Sinha, Amit U.; Armstrong, Scott A.; Wei, Qi; Pollock, Roy M.; Daigle, Scott R.; Jordan, Craig T.; Ernst, Patricia; Bernt, Kathrin M.

    2016-01-01

    Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin–derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML. PMID:26927674

  18. Chromosomal abnormalities in neutron-induced acute myeloid leukemias in CBA/H mice

    SciTech Connect

    Bouffler, S.D.; Meijne, E.I.M.; Huiskamp, R.

    1996-09-01

    Acute myeloid leukemias (AMLs) induced in CBA/H mice by 1 MeV fission neutrons have been examined for chromosomal abnormalities by G-band analysis. In common with X-ray- and {alpha}-particle-induced AMLs in CBA/H mice, more than 90% (16/17) of the myeloid leukemias had chromosome 2 abnormalities, in this case, all interstitial deletions. Chromosome 2 breakpoints were not wholly consistent, but clustering in three specific G-band regions was observed. Very distal (H-region) breakpoints were more common in the neutron AMLs than in X-ray- or {alpha}-particle-induced leukemias. These data indicate that neutron-induced AMLs in CBA/H mice are not characterized by a specific chromosome deletion but that a variety of chromosome 2 deletion types are associated with the disease. Trisomy of chromosome 1 (12.5% AMLs) and aneusomy of chromosomes 6 (31% AMLs) and Y (37.5% AMLs) were noted. While chromatid breakage was observed occasionally in neutron-induced AML, no clear indications of persistent chromosomal instability or high levels of stable chromosomal change were apparent. 19 refs., 1 fig., 1 tab.

  19. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Cheng, Chao

    2015-01-01

    Acute myeloid leukemia (AML) is a hematopoietic disorder initiated by the leukemogenic transformation of myeloid cells into leukemia stem cells (LSCs). Preexisting gene expression programs in LSCs can be used to assess their transcriptional similarity to hematopoietic cell types. While this relationship has previously been examined on a small scale, an analysis that systematically investigates this relationship throughout the hematopoietic hierarchy has yet to be implemented. We developed an integrative approach to assess the similarity between AML patient tumor profiles and a collection of 232 murine hematopoietic gene expression profiles compiled by the Immunological Genome Project. The resulting lineage similarity scores (LSS) were correlated with patient survival to assess the relationship between hematopoietic similarity and patient prognosis. This analysis demonstrated that patient tumor similarity to immature hematopoietic cell types correlated with poor survival. As a proof of concept, we highlighted one cell type identified by our analysis, the short-term reconstituting stem cell, whose LSSs were significantly correlated with patient prognosis across multiple datasets, and showed distinct patterns in patients stratified by traditional clinical variables. Finally, we validated our use of murine profiles by demonstrating similar results when applying our method to human profiles. PMID:26598031

  20. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia.

    PubMed

    Varn, Frederick S; Andrews, Erik H; Cheng, Chao

    2015-11-24

    Acute myeloid leukemia (AML) is a hematopoietic disorder initiated by the leukemogenic transformation of myeloid cells into leukemia stem cells (LSCs). Preexisting gene expression programs in LSCs can be used to assess their transcriptional similarity to hematopoietic cell types. While this relationship has previously been examined on a small scale, an analysis that systematically investigates this relationship throughout the hematopoietic hierarchy has yet to be implemented. We developed an integrative approach to assess the similarity between AML patient tumor profiles and a collection of 232 murine hematopoietic gene expression profiles compiled by the Immunological Genome Project. The resulting lineage similarity scores (LSS) were correlated with patient survival to assess the relationship between hematopoietic similarity and patient prognosis. This analysis demonstrated that patient tumor similarity to immature hematopoietic cell types correlated with poor survival. As a proof of concept, we highlighted one cell type identified by our analysis, the short-term reconstituting stem cell, whose LSSs were significantly correlated with patient prognosis across multiple datasets, and showed distinct patterns in patients stratified by traditional clinical variables. Finally, we validated our use of murine profiles by demonstrating similar results when applying our method to human profiles.

  1. Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia

    PubMed Central

    Termini, Christina M.; Lidke, Keith A.; Gillette, Jennifer M.

    2016-01-01

    Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML. PMID:27417454

  2. Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia

    PubMed Central

    Santhanam, Ramasamy; Eisfeld, Ann-Kathrin; Chiang, Chi-ling; Lankenau, Malori; Yu, Bo; Hoellerbauer, Pia; Jin, Yan; Tarighat, Somayeh S.; Khalife, Jihane; Walker, Alison; Perrotti, Danilo; Bloomfield, Clara D.; Wang, Hongyan; Lee, Robert J.; Lee, Ly James; Marcucci, Guido

    2016-01-01

    Deregulation of microRNAs' expression frequently occurs in acute myeloid leukemia (AML). Lower miR-181a expression is associated with worse outcomes, but the exact mechanisms by which miR-181a mediates this effect remain elusive. Aberrant activation of the RAS pathway contributes to myeloid leukemogenesis. Here, we report that miR-181a directly binds to 3′-untranslated regions (UTRs); downregulates KRAS, NRAS and MAPK1; and decreases AML growth. The delivery of miR-181a mimics to target AML cells using transferrin-targeting lipopolyplex nanoparticles (NP) increased mature miR-181a; downregulated KRAS, NRAS and MAPK1; and resulted in decreased phosphorylation of the downstream RAS effectors. NP-mediated upregulation of miR-181a led to reduced proliferation, impaired colony formation and increased sensitivity to chemotherapy. Ectopic expression of KRAS, NRAS and MAPK1 attenuated the anti-leukemic activity of miR-181a mimics, thereby validating the relevance of the deregulated miR-181a-RAS network in AML. Finally, treatment with miR-181a-NP in a murine AML model resulted in longer survival compared to mice treated with scramble-NP control. These data support that targeting the RAS-MAPK-pathway by miR-181a mimics represents a novel promising therapeutic approach for AML and possibly for other RAS-driven cancers. PMID:27517749

  3. Emetine induces chemosensitivity and reduces clonogenicity of acute myeloid leukemia cells

    PubMed Central

    Cornet-Masana, Josep Maria; Moreno-Martínez, Daniel; Lara-Castillo, María Carmen; Nomdedeu, Meritxell; Etxabe, Amaia; Tesi, Niccolò; Pratcorona, Marta; Esteve, Jordi; Risueño, Ruth M.

    2016-01-01

    Acute myeloid leukemia (AML) is an hematologic neoplasia characterized by the accumulation of transformed immature myeloid cells in bone marrow. Although the response rate to induction therapy is high, survival rate 5-year after diagnosis is still low, highlighting the necessity of new novel agents. To identify agents with the capability to abolish the self-renewal capacity of AML blasts, an in silico screening was performed to search for small molecules that induce terminal differentiation. Emetine, a hit compound, was validated for its anti-leukemic effect in vitro, ex vivo and in vivo. Emetine, a second-line anti-protozoa drug, differentially reduced cell viability and clonogenic capacity of AML primary patient samples, sparing healthy blood cells. Emetine treatment markedly reduced AML burden in bone marrow of xenotransplanted mice and decreased self-renewal capacity of the remaining engrafted AML cells. Emetine also synergized with commonly used chemotherapeutic agents such as ara-C. At a molecular level, emetine treatment was followed by a reduction in HIF-1α protein levels. This study validated the anti-leukemiceffect of emetine in AML cell lines, a group of diverse AML primary samples, and in a human AML-transplanted murine model, sparing healthy blood cells. The selective anti-leukemic effect of emetine together with the safety of the dose range required to exert this effect support the development of this agent in clinical practice. PMID:26992240

  4. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia

    PubMed Central

    Will, Britta; Vogler, Thomas O.; Narayanagari, Swathi; Bartholdy, Boris; Todorova, Tihomira I.; da Silva Ferreira, Mariana; Chen, Jiahao; Yu, Yiting; Mayer, Jillian; Barreyro, Laura; Carvajal, Luis; Ben Neriah, Daniela; Roth, Michael; van Oers, Johanna; Schaetzlein, Sonja; McMahon, Christine; Edelmann, Winfried; Verma, Amit; Steidl, Ulrich

    2016-01-01

    Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reduction of PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in 35% reduction of PU.1 expression, was sufficient to induce myeloid biased preleukemic stem cells and subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1 cooperating transcription factor, Irf8. Strikingly, we found significant molecular similarities with human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in AML. PMID:26343801

  5. VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice

    PubMed Central

    Gentner, Eva; Vegi, Naidu M.; Mulaw, Medhanie A.; Mandal, Tamoghna; Bamezai, Shiva; Claus, Rainer; Tasdogan, Alpaslan; Quintanilla-Martinez, Leticia; Grunenberg, Alexander; Döhner, Konstanze; Döhner, Hartmut; Bullinger, Lars; Haferlach, Torsten; Buske, Christian

    2016-01-01

    Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML. PMID:27888632

  6. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion

    PubMed Central

    Si, Xiaohui; Zhang, Xiaoyun; Hao, Xing; Li, Yunan; Chen, Zizhen; Ding, Yahui; Shi, Hui; Bai, Jie; Gao, Yingdai; Cheng, Tao; Yang, Feng-Chun; Zhou, Yuan

    2016-01-01

    Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression. PMID:27801668

  7. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  8. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia?

    PubMed Central

    Chigaev, Alexandre

    2015-01-01

    Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the “Warburg effect,” the specific role of chloride ion transport, direct “import” of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed. PMID:26191006

  9. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  10. Institutional experience with clofarabine and cytarabine in relapsed pediatric acute myeloid leukemia.

    PubMed

    Moreno, Lucas; Fernandez-Navarro, Jose Maria; Del Mar Andres, Maria; Bautista, Francisco; Tasso, Maria; Verdeguer, Amparo

    2012-01-01

    Cytarabine (1000 mg/m/d intravenous for 5 d) and clofarabine (40 mg/m/d intravenous for 5 d) were given every 28 days to 9 children with relapsed acute myeloid leukemia at our institution. Among 19 courses, there were 18 infectious episodes. Median hospitalization time was 13 days (7.7 to 30.5 d) per cycle. Hepatobiliary abnormalities included alanine aminotransferase/aspartate aminotransferase elevation and hyperbilirubinemia. Four patients achieved complete remission (one after an earlier allogeneic Haematopoietic Progenitor Cell Transplant). Four patients are alive disease free. In summary, a proportion of children responded and was able to receive allogeneic Haematopoietic Progenitor Cell Transplant. Side effects were tolerable, although hospitalization time was prolonged.

  11. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.

    PubMed

    Chen, Chong; Liu, Yu; Rappaport, Amy R; Kitzing, Thomas; Schultz, Nikolaus; Zhao, Zhen; Shroff, Aditya S; Dickins, Ross A; Vakoc, Christopher R; Bradner, James E; Stock, Wendy; LeBeau, Michelle M; Shannon, Kevin M; Kogan, Scott; Zuber, Johannes; Lowe, Scott W

    2014-05-12

    Recurring deletions of chromosome 7 and 7q [-7/del(7q)] occur in myelodysplastic syndromes and acute myeloid leukemia (AML) and are associated with poor prognosis. However, the identity of functionally relevant tumor suppressors on 7q remains unclear. Using RNAi and CRISPR/Cas9 approaches, we show that an ∼50% reduction in gene dosage of the mixed lineage leukemia 3 (MLL3) gene, located on 7q36.1, cooperates with other events occurring in -7/del(7q) AMLs to promote leukemogenesis. Mll3 suppression impairs the differentiation of HSPC. Interestingly, Mll3-suppressed leukemias, like human -7/del(7q) AMLs, are refractory to conventional chemotherapy but sensitive to the BET inhibitor JQ1. Thus, our mouse model functionally validates MLL3 as a haploinsufficient 7q tumor suppressor and suggests a therapeutic option for this aggressive disease.

  12. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies

    PubMed Central

    Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang

    2016-01-01

    Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. PMID:27474172

  13. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?

    PubMed

    Sanchez-Correa, Beatriz; Campos, Carmen; Pera, Alejandra; Bergua, Juan M; Arcos, Maria Jose; Bañas, Helena; Casado, Javier G; Morgado, Sara; Duran, Esther; Solana, Rafael; Tarazona, Raquel

    2016-04-01

    Several age-associated changes in natural killer (NK) cell phenotype have been reported that contribute to the defective NK cell response observed in elderly patients. A remodelling of the NK cell compartment occurs in the elderly with a reduction in the output of immature CD56(bright) cells and an accumulation of highly differentiated CD56(dim) NK cells. Acute myeloid leukaemia (AML) is generally a disease of older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML patients, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. The understanding of age-associated alterations in NK cells is therefore necessary to define adequate therapeutic strategies in older AML patients.

  14. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    SciTech Connect

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi; Asano, Shigetaka

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  15. Acute myeloid leukemia, the 3q21q26 syndrome and diabetes insipidus: a case presentation.

    PubMed

    Curley, Cameron; Kennedy, Glen; Haughton, Anne; Love, Amanda; McCarthy, Catherine; Boyd, Andrew

    2010-06-01

    Diabetes insipidus (DI) is a rare presenting complication of acute myeloid leukaemia (AML). Typically, the combination of DI and AML is associated with structural abnormalities of the neurohypophysis. We present a case of AML and DI presenting without any abnormalities of the neurohypophysis on radiological scanning and with normal cerebrospinal fluid examination. The AML karyotype at presentation was characterized by the presence of a t(3; 3)(q21; q26) translocation and monosomy 7. After treatment with induction chemotherapy, the patient achieved a complete remission and his DI resolved. At subsequent AML relapse, characterized by a complex karyotype without the t(3; 3)(q21; q26) translocation or monosomy 7, DI did not recur. Our case provides clinical support to the hypothesis that the t(3; 3)(q21; q26) translocation and/or monosomy 7 in AML may directly result in dysregulation of transcription factors resulting in development of DI in AML patients.

  16. Pulmonary mucormycosis with embolism: two autopsied cases of acute myeloid leukemia.

    PubMed

    Kogure, Yasunori; Nakamura, Fumihiko; Shinozaki-Ushiku, Aya; Watanabe, Akira; Kamei, Katsuhiko; Yoshizato, Tetsuichi; Nannya, Yasuhito; Fukayama, Masashi; Kurokawa, Mineo

    2014-01-01

    Mucormycosis is an increasingly important cause of morbidity and mortality for patients with hematological malignancies. The diagnosis of mucormycosis usually requires mycological evidence through tissue biopsy or autopsy because the signs and symptoms are nonspecific and there are currently no biomarkers to identify the disease. We herein present two autopsied cases of acute myeloid leukemia with prolonged neutropenia who developed invasive mucormycosis accompanied by pulmonary artery embolism. Our cases were featured by unexplained fever and rapidly progressive dyspnea. Computed tomography scan detected nodular lesions or nonspecific consolidations in the lungs. Cultures, cytological study, and serum fungal markers consistently gave negative results. Autopsy revealed embolism of the pulmonary artery which consisted of fibrin clots by filamentous fungi. Genomic DNA was extracted from the paraffin-embedded clots and was applied to polymerase chain reaction amplification, leading to the diagnosis of infection by Rhizopus microsporus. We should carefully search for life-threatening pulmonary embolism when patients with hematological malignancies develop pulmonary mucormycosis.

  17. Defining and Treating Older Adults with Acute Myeloid Leukemia Who Are Ineligible for Intensive Therapies

    PubMed Central

    Pettit, Kristen; Odenike, Olatoyosi

    2015-01-01

    Although acute myeloid leukemia (AML) is primarily a disease of older adults (age ≥60 years), the optimal treatment for older adults remains largely undefined. Intensive chemotherapy is rarely beneficial for frail older adults or those with poor-risk disease, but criteria that define fitness and/or appropriateness for intensive chemotherapy remain to be standardized. Evaluation of disease-related and patient-specific factors in the context of clinical decision making has therefore been largely subjective. A uniform approach to identify those patients most likely to benefit from intensive therapies is needed. Here, we review currently available objective measures to define older adults with AML who are ineligible for intensive chemotherapy, and discuss promising investigational approaches. PMID:26697412

  18. Hypoplastic myelodysplastic syndrome transformed in acute myeloid leukemia after androgens and cyclosporin. A treatment.

    PubMed

    Gologan, R; Ostroveanu, Daniela; Dobrea, Camelia; Gioadă, Liliana

    2003-01-01

    The apparent contradiction between clonal expansion and marrow failure encountered in myelodysplastic syndromes (MDS) is more evident in hypocellular forms at presentation. Hypoplastic MDS (hMDS) appears to be a distinct clinicopathologic entity, accounting for about 15% from all MDS. The pathogeny is supposed to result from immunosupressive mechanisms and some observations on successful treatment with Cyclosporine A (CsA) are reported. The case of a young female patient diagnosed by bone marrow core biopsy with hMDS - refractory anemia (FAB and WHO classification) with normal karyotype and scarce CD34(+) cells by immunohistophenotyping is presented. She was treated with androgens followed by CsA for a few months and shortly after she developed an acute myeloid leukemia (M4) which responded to low-doses of daily oral melphalan. This is one of the first few reports on such an event during the immunosuppressive therapy in MDS and the possible explanations for this unusual evolution are discussed.

  19. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations.

    PubMed

    Emadi, Ashkan; Jun, Sung Ah; Tsukamoto, Takashi; Fathi, Amir T; Minden, Mark D; Dang, Chi V

    2014-04-01

    The incidence of mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) in de novo acute myeloid leukemia (AML) is approximately 20%. These mutations result in distinct metabolic characteristics including dependency of cancer cells on glutamine as the main source for α-ketoglutarate, which is consumed by leukemia cells to produce a cancer-derived metabolite, 2-hydroxyglutarate. We sought to exploit this glutamine addiction therapeutically in mutant IDH primary AML cells from patients by measuring cell growth after exposure to a small molecule glutaminase inhibitor, BPTES. We found that BPTES only suppressed the growth of AML cells expressing mutant IDH compared with those expressing wild type IDH. This study lays the groundwork for strategies to target a specific subtype of AML metabolically with IDH mutations with a unique reprogramming of intermediary metabolism that culminates in glutamine dependency of cancer cells for survival.

  20. Partial remission of acute myeloid leukemia complicating multiple myeloma following COAP chemotherapy: A case report.

    PubMed

    Shen, Man; Sun, Wan-Jun; Huang, Zhong-Xia; Zhang, Jia-Jia; An, Na; Li, Xin

    2015-03-01

    A 77-year-old male was admitted to hospital after complaining of fever and a cough for three days. A diagnosis of multiple myeloma was confirmed following M protein identification and a bone marrow biopsy. The patient received chemotherapy regimens of bortezomib plus dexamethasone, cyclophosphamide, thalidomide and dexamethasone, and thalidomide and dexamethasone, and was prescribed thalidomide (100 mg/d) to be taken orally for maintenance therapy. After a further two years the patient was subsequently diagnosed with acute myeloid leukemia. Chemotherapy regimens of cytarabine, aclacinomycin and daunorubicin, homoharringtonine and etoposide, and mitoxantrone and cytarabine resulted in no remission. Partial remission was obtained with a course of ifosfamide, vindesine, cytarabine and prednisone chemotherapy. This therapy may be an alternative treatment for secondary leukemia, particularly in elderly patients.

  1. Partial remission of acute myeloid leukemia complicating multiple myeloma following COAP chemotherapy: A case report

    PubMed Central

    SHEN, MAN; SUN, WAN-JUN; HUANG, ZHONG-XIA; ZHANG, JIA-JIA; AN, NA; LI, XIN

    2015-01-01

    A 77-year-old male was admitted to hospital after complaining of fever and a cough for three days. A diagnosis of multiple myeloma was confirmed following M protein identification and a bone marrow biopsy. The patient received chemotherapy regimens of bortezomib plus dexamethasone, cyclophosphamide, thalidomide and dexamethasone, and thalidomide and dexamethasone, and was prescribed thalidomide (100 mg/d) to be taken orally for maintenance therapy. After a further two years the patient was subsequently diagnosed with acute myeloid leukemia. Chemotherapy regimens of cytarabine, aclacinomycin and daunorubicin, homoharringtonine and etoposide, and mitoxantrone and cytarabine resulted in no remission. Partial remission was obtained with a course of ifosfamide, vindesine, cytarabine and prednisone chemotherapy. This therapy may be an alternative treatment for secondary leukemia, particularly in elderly patients. PMID:25663902

  2. Efficacy and Toxicity of Induction Therapy with Cladribine, Idarubicin, and Cytarabine (IAC) for Acute Myeloid Leukemia.

    PubMed

    Woelich, Susan K; Braun, James T; Schoen, Martin W; Ramlal, Reshma; Freter, Carl E; Petruska, Paul J; Lionberger, Jack M

    2017-02-01

    We report our single-center experience with cytarabine and idarubicin for induction therapy for acute myeloid leukemia (AML) with an additional 5 days of cladribine (IAC therapy). From July 2012 to September 2014, 38 patients completed a full course of IAC induction. Median patient age was 61 years, 61% of patients were ≥60 years old, and 71% were male. The complete remission (CR) rate was 63% following a single induction course, three patients (8%) required a second induction course to achieve CR, for an overall response rate of 71%. The median duration of severe neutropenia was 30.5 days. Thirty-two percent of patients developed mucositis, 76% experienced diarrhea, and 61% developed a rash. Incidence of CR following IAC induction therapy for AML was comparable to historical data, but with frequent diarrhea, rash, and fungal infections. This study found IAC efficacy and toxicity was similar irrespective of age.

  3. Use of gemtuzumab ozogamicin in the treatment of pediatric relapsed/ refractory Acute Myeloid Leukemia.

    PubMed

    Ünal, Elif; Sahdev, Indira

    2008-03-05

    Gemtuzumab ozogamicin (GO, MylotargTM) is an antibody-targeted chemotherapy agent that has been studied in acute myeloid leukemia (AML) at first relapse in adults. There is limited experience in pediatric patients. We report six patients with refractory/relapsed CD33+AML who were treated with GO on compassionate-use basis. One patient attained remission. One patient is still alive following hematopoietic stem cell transplantation (HSCT), and one patient died in remission. Two patients were refractory and three patients had a response with <5% blasts in the bone marrow. Fever and chills, hypotension and hypoxia were observed as side effects. Three patients developed veno-occlusive disease (VOD) of the liver. Two of these three patients had persistence of VOD at the time of their deaths. One patient treated postSCT had bone marrow response without VOD. GO should be used cautiously in chemotherapy-refractory AML pediatric patients due to the high incidence of VOD.

  4. Minimal Residual Disease in Acute Myeloid Leukemia of Adults: Determination, Prognostic Impact and Clinical Applications.

    PubMed

    Del Principe, Maria Ilaria; Buccisano, Francesco; Maurillo, Luca; Sconocchia, Giuseppe; Cefalo, Mariagiovanna; Consalvo, Maria Irno; Sarlo, Chiara; Conti, Consuelo; De Santis, Giovanna; De Bellis, Eleonora; Di Veroli, Ambra; Palomba, Patrizia; Attrotto, Cristina; Zizzari, Annagiulia; Paterno, Giovangiacinto; Voso, Maria Teresa; Del Poeta, Giovanni; Lo-Coco, Francesco; Arcese, William; Amadori, Sergio; Venditti, Adriano

    2016-01-01

    Pretreatment assessment of cytogenetic/genetic signature of acute myeloid leukemia (AML) has been consistently shown to play a major prognostic role but also to fail at predicting outcome on individual basis, even in low-risk AML. Therefore, we are in need of further accurate methods to refine the patients' risk allocation process, distinguishing more adequately those who are likely to recur from those who are not. In this view, there is now evidence that the submicroscopic amounts of leukemic cells (called minimal residual disease, MRD), measured during the course of treatment, indicate the quality of response to therapy. Therefore, MRD might serve as an independent, additional biomarker to help to identify patients at higher risk of relapse. Detection of MRD requires the use of highly sensitive ancillary techniques, such as polymerase chain reaction (PCR) and multiparametric flow cytometry(MPFC). In the present manuscript, we will review the current approaches to investigate MRD and its clinical applications in AML management.

  5. Screening features to improve the class prediction of acute myeloid leukemia and myelodysplastic syndrome.

    PubMed

    Li, Kaishi; Yang, Meixue; Sablok, Gaurav; Fan, Jianping; Zhou, Fengfeng

    2013-01-10

    After more than three decades of intensive investigations, the underpinning mechanism of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) pathogenesis still remains largely uncharacterized, and their diagnosis relies heavily on the subjective factors. Recently gene expression profiling technique showed significant improvement in classifying some subtypes of AML, but the model's discriminating power of MDS from AML is still in its infancy. Feature selection plays an important role in the classification of the samples on the basis of the gene expression profiles. Our hypothesis explains that a better choice of features could improve the classification of the diseased and normal stage samples, and the potential application of feature screening to produce feature sets, with better accuracies and lowest number of embedded features. The observed results suggest that feature selection proves to be an essential and affirmative step in the biomedical data mining models based on gene expression profiles.

  6. Correlations between nuclear morphology and bundles of cytoplasmic fibrils in 50 cases of acute myeloid leukaemia.

    PubMed Central

    Pearson, E C

    1986-01-01

    An electron microscopic examination was carried out of peripheral blood or bone marrow samples, or both, from 50 patients entered into the Medical Research Council 9th Acute Myeloid Leukaemia Trial. The results showed a striking correlation between the presence of conspicuous bundles of fibrils within the cytoplasm of the leukaemic cells and the degree of convolution or lobulation of the nuclei. In none of the samples were predominantly convoluted or lobed nuclei observed in the absence of prominent fibrillar bundles and in only two cases were nuclei of a more regular outline seen in association with many conspicuous bundles of cytoplasmic fibrils. No correlation was found between the apparent degree of maturity of the nuclei, as assessed by the degree of chromatin condensation, and the absence or abundance of fibrillar bundles. Images PMID:3456357

  7. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia

    PubMed Central

    Ramos, Nestor R.; Mo, Clifton C.; Karp, Judith E.; Hourigan, Christopher S.

    2015-01-01

    The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for “complete” remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial. PMID:25932335

  8. Mcl-1 Dependence Predicts Response to Vorinostat and Gemtuzumab Ozogamicin in Acute Myeloid Leukemia

    PubMed Central

    Pierceall, William E.; Lena, Ryan J.; Medeiros, Bruno C.; Blake, Noel; Doykan, Camille; Elaschoff, Michael; Cardone, Michael H.; Walter, Roland B.

    2014-01-01

    Older adults with acute myeloid leukemia (AML) are commonly considered for investigational therapies, which often only benefit subsets of patients. In this exploratory, we assessed whether BH3 profiling of apoptotic functionality could predict outcomes following treatment with vorinostat (histone deacetylase inhibitor) and gemtuzumab ozogamicin (GO; CD33-targeted immunoconjugate.) Flow cytometry of BH3 peptide priming with Noxa (anti-apoptotic protein Mcl-1 modulator) correlated with remission induction (p=.026; AUC=0.83 [CI: 0.65–1.00; p=.00042]: AUC=0.88 [CI:0.75–1.00] with age adjustment) and overall survival (p=.027 logistic regression; AUC = 0.87 [0.64–1.00; p=.0017]). This Mcl-1-dependence suggests a pivotal role of Bcl-2 family protein-mediated apoptosis to vorinostat/GO in AML patients. PMID:24636337

  9. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia

    PubMed Central

    Qin, Lei; Dominguez, Donye; Chen, Siqi; Fan, Jie; Long, Alan; Zhang, Minghui; Fang, Deyu; Zhang, Yi; Kuzel, Timothy M.; Zhang, Bin

    2016-01-01

    Emerging studies suggest that dominant peripheral tolerance is a major mechanism of immune escape in disseminated leukemia. Using an established murine acute myeloid leukemia (AML) model, we here show that systemic administration of recombinant IL-33 dramatically inhibits the leukemia growth and prolongs the survival of leukemia-bearing mice in a CD8+ T cell dependent manner. Exogenous IL-33 treatment enhanced anti-leukemia activity by increasing the expansion and IFN-γ production of leukemia-reactive CD8+ T cells. Moreover, IL-33 promoted dendritic cell (DC) maturation and activation in favor of its cross presentation ability to evoke a vigorous anti-leukemia immune response. Finally, we found that the combination of PD-1 blockade with IL-33 further prolonged the survival, with half of the mice achieving complete regression. Our data establish a role of exogenous IL-33 in reversing T cell tolerance, and suggest its potential clinical implication into leukemia immunotherapy. PMID:27517629

  10. [Catheter associated Staphylococcus sciuri sepsis in a patient with acute myeloid leukemia].

    PubMed

    Koçoğlu, Esra; Karabay, Oğuz

    2006-10-01

    The coagulase-negative bacterial species Staphylococcus sciuri is widely distributed in the natural environment. Although principally found in animals, S. sciuri is occasionally isolated from human samples. In this paper, S. sciuri bacteremia which was associated with an indwelling catheter of a patient with acute myeloid leukemia (AML) and neutropenia was presented. An empirical intravenous antibiotic therapy (meropenem, vancomycin) was initiated with the preliminary diagnosis of febrile neutropenia and catheter infection. The catalase and oxidase positive, tube coagulase negative strain isolated from three of the concurrent blood cultures and intravenous catheter culture has been identified as S. sciuri. The isolate was found resistant to penicilin and oxacilline. This case has emphasized the importance of identification of coagulase-negative staphylococci isolated from the cultures of patients with haematological malignancy.

  11. Prognostic impact of MYH9 expression on patients with acute myeloid leukemia

    PubMed Central

    Hu, Chao; Ma, Qiuling; Li, Xia; Yin, Xiufeng; Huang, Jiansong; Zhang, Ting; Ma, Zhixin; Zhou, Yile; Li, Chenying; Chen, Feifei; Chen, Jian; Wang, Yungui; Pan, Hanzhang; Wang, Dongmei; Jin, Jie

    2017-01-01

    MYH9 expression has previously been demonstrated as an independent predictor of clinical outcome in solid tumors. However, the prognostic relevance of MYH9 expression in acute myeloid leukemia is still unclear. Here, we found high MYH9 expressers were seen more frequently in females and more frequently in M4 morphology. We also found high MYH9 expressers had lower percentage of bone marrow blasts. In addition, overexpression of MYH9 was associated with an inferior overall survival. Notably, distinct microRNA signatures were seen in high MYH9 expressers. These results were also validated in an independent cohort of AML patients using the published data. In conclusion, gene of MYH9 expression might serve as a reliable predictor for overall survival in AML patients. PMID:27437869

  12. IL-32θ gene expression in acute myeloid leukemia suppresses TNF-α production

    PubMed Central

    Kim, Man Sub; Kang, Jeong-Woo; Jeon, Jae-Sik; Kim, Jae Kyung; Kim, Jong Wan; Hong, Jintae; Yoon, Do-Young

    2015-01-01

    The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNF-α production in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNF-α production was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNF-α production. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNF-α production has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML. PMID:26516703

  13. IL-32θ gene expression in acute myeloid leukemia suppresses TNF-α production.

    PubMed

    Kim, Man Sub; Kang, Jeong-Woo; Jeon, Jae-Sik; Kim, Jae Kyung; Kim, Jong Wan; Hong, Jintae; Yoon, Do-Young

    2015-12-01

    The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNF-α production in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNF-α production was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNF-α production. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNF-α production has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML.

  14. Therapy-related myelodysplastic syndrome/acute myeloid leukemia after treatment with temozolomide in a patient with glioblastoma multiforme.

    PubMed

    Kim, Sue Jung; Park, Tae Sung; Lee, Seung Tae; Song, Jaewoo; Suh, Borum; Kim, Se Hoon; Jang, Seon Jung; Lee, Chang Hoon; Choi, Jong Rak

    2009-01-01

    Therapy-related myelodysplastic syndrome and acute leukemia after treatment with temozolomide have rarely been described in the literature. Only 10 cases in association with temozolomide have been documented. The cases included anaplastic astrocytoma (4 cases), anaplastic oligodendroglioma (2 cases), low grade astrocytoma (2 cases), low grade oligodendroglioma (1 case), and one case of secondary Philadelphia-positive acute lymphoblastic leukemia in a patient with glioblastoma multiforme. Here we report a novel case of therapy-related myelodysplastic syndrome/acute myeloid leukemia associated with der(1;7)(q10;p10) in a glioblastoma multiforme patient treated with temozolomide. Results of bone marrow morphology, chromosome, and fluorescent in situ hybridization (FISH) analyses, as well as the clinical history, strongly suggest a treatment-related etiology in our case. In past reports, karyotypes in cases of therapy-related myelodysplastic syndrome/acute myeloid leukemia mostly demonstrated abnormalities in chromosomes 5 and 7. However, we report a case of temozolomide-related myelodysplastic syndrome/acute myeloid leukemia with der(1;7)(q10;p10), possibly the first reported case, to the authors' knowledge.

  15. Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies.

    PubMed

    Rotiroti, Maria Caterina; Arcangeli, Silvia; Casucci, Monica; Perriello, Vincenzo; Bondanza, Attilio; Biondi, Andrea; Tettamanti, Sarah; Biagi, Ettore

    2017-03-01

    Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric high-risk patients, thus demanding advanced and personalized therapies. In this regard, different targeted immunotherapeutic approaches are available, ranging from naked monoclonal antibodies (mAb) to conjugated and multifunctional mAbs (i.e., BiTEs and DARTs). Recently, researchers have focused their attention on novel techniques of genetic manipulation specifically to redirect cytotoxic T cells endowed with chimeric antigen receptors (CARs) toward selected tumor associated antigens. So far, CAR T cells targeting the CD19 antigen expressed by B-cell origin hematological cancers have gained impressive clinical results, leading to the possibility of translating the CAR platform to treat other hematological malignancies such as AML. However, one of the main concerns in the field of AML CAR immunotherapy is the identification of an ideal target cell surface antigen, being highly expressed on tumor cells but minimally present on healthy tissues, together with the design of an anti-AML CAR appropriately balancing efficacy and safety profiles. The current review focuses mainly on AML target antigens and the related immunotherapeutic approaches developed so far, deeply dissecting methods of CAR T cell safety improvements, when designing novel CARs approaching human studies.

  16. Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis

    PubMed Central

    Chaudry, Sabah F.

    2017-01-01

    Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific “founder” mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP. PMID:28286768

  17. Alloreactive Natural Killer Cells for the Treatment of Acute Myeloid Leukemia: From Stem Cell Transplantation to Adoptive Immunotherapy

    PubMed Central

    Ruggeri, Loredana; Parisi, Sarah; Urbani, Elena; Curti, Antonio

    2015-01-01

    Natural killer (NK) cells express activating and inhibitory receptors, which recognize MHC class-I alleles, termed “Killer cell Immunoglobulin-like Receptors” (KIRs). Preclinical and clinical data from haploidentical T-cell-depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched NK cells play a major role as effectors against acute myeloid leukemia (AML). Outside the transplantation setting, several reports have proven the safety and feasibility of NK cell infusion in AML patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. The aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts at exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against AML. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of AML. PMID:26528283

  18. [Acute myeloid leukemia originating from the same leukemia clone after the complete remission of acute lymphoid leukemia].

    PubMed

    Matsuda, Isao; Nakamaki, Tsuyoshi; Amaya, Hiroshi; Kiyosaki, Masanobu; Kawakami, Keiichiro; Yamada, Kazunari; Yokoyama, Akihiro; Hino, Ken-ichiro; Tomoyasu, Shigeru

    2003-09-01

    A 22-year-old female was diagnosed as having acute lymphoid leukemia (ALL) in February 1995, from the findings of peroxidase negative, CD10+, CD19+, TdT+ and rearrangement of IgH and TCR beta. AdVP (doxorubicin, vincristine and prednisolone) therapy achieved a complete remission (CR). Bone marrow transplantation had to be abandoned because of the lack of an HLA-identical donor. Intensification therapy was thus carried out repeatedly. In June 1998, myeloblast with Auer rods, peroxidase positive, CD13+, CD33+ and HLA-DR+, appeared. The patient was diagnosed as having lineage switch acute myeloid leukemia (AML) from ALL. Though A-DMP (cytosine arabinoside, daunorubicin, 6-mercaptopurine) therapy was resistant, AdVP therapy led to a CR. The patient died of cardiotoxicity from anthracyclines in February 1999. From the results of the Ramasamy method using the clonal rearrangements of the Ig heavy chain gene locus, the origin of the pathological cells of ALL and AML was indicated to be the same leukemia clone.

  19. [Latest advances in acute pancreatitis].

    PubMed

    de-Madaria, Enrique

    2013-10-01

    The present article analyzes the main presentations on acute pancreatitis (AP) in Digestive Disease Week 2013. Perfusion computed tomography allows early diagnosis of pancreatic necrosis. Neutrophil gelatinase-associated lipocalin predicts the development of acute renal failure, severe AP and death. Factors associated with greater fluid sequestration in AP are alcoholic etiology, an elevated hematocrit, and the presence of criteria of systemic inflammatory response syndrome; fluid sequestration is associated with a worse outcome. True pseudocysts (fluid collections without necrosis for more than 4 weeks) are a highly infrequent complication in AP. Patients with necrotic collections have a poor prognosis, especially if associated with infection. A meta-analysis on fluid therapy suggests that early aggressive fluid administration is associated with higher mortality and more frequent respiratory complications. According to a meta-analysis, enteral nutrition initiated within 24 hours of admission improves the outcome of AP compared with later initiation of enteral nutrition. Pentoxifylline could be a promising alternative in AP; a double-blind randomized study showed that this drug reduced the length of hospital and intensive care unit stay, as well as the need for intensive care unit admission. The association of octreotide and celecoxib seems to reduce the frequency of organ damage compared with octreotide alone. Mild AP can be managed in the ambulatory setting through hospital-at-home units after a short, 24-hour admission.

  20. Specific immune responses against epitopes derived from Aurora kinase A and B in acute myeloid leukemia.

    PubMed

    Schneider, Vanessa; Egenrieder, Stephanie; Götz, Marlies; Herbst, Cornelia; Greiner, Jochen; Hofmann, Susanne

    2013-07-01

    Aurora kinases are serine/threonine kinases which play an important role in the process of mitosis and cell cycle regulation. Aurora kinase inhibitors are described to sensitize malignant cells to cytosine arabinoside and specific antibodies by mediating apoptosis. Aurora kinases are overexpressed in most acute leukemias but also in solid tumors. In this study we investigated whether epitopes derived from Aurora kinase A and B are able to elicit cellular immune responses in patients with acute myeloid leukemia (AML) to investigate their role as potential targets for specific immunotherapy. Samples of eight patients with AML were analyzed in enzyme-linked immunosorbent spot (ELISpot) assays and compared with immune responses of nine healthy volunteers (HVs). Specific CD8 + T cell responses were detected against the epitopes Aura A1, A2, B1, B2, B3, B4 and B5. Immune responses for epitopes derived from Aura B were induced more frequently compared to Aura A. The antigens with the most frequent cytotoxic T-lymphocyte (CTL) responses were Aura B3, B4 and B5, although the number of patients tested for these antigens was low. Aura B5 did not elicit specific CTL responses in HVs. For epitope Aura B6 no immune response was detected in HVs or patients. Taken together, with the combination of Aurora kinase inhibitors and an immunotherapeutic approach, an effective blast and minimal residual disease elimination might be achieved.

  1. Clostridium difficile-associated diarrhoea, a frequent complication in patients with acute myeloid leukaemia.

    PubMed

    Schalk, Enrico; Bohr, Ulrich R M; König, Brigitte; Scheinpflug, Katrin; Mohren, Martin

    2010-01-01

    Diarrhoea occurs frequently in neutropenic patients with acute leukaemia receiving chemotherapy and may be caused by either infection- or drug-induced cytotoxicity. Since Clostridium difficile is the most common cause of nosocomial infectious diarrhoea in non-haematologic patients, we were interested in its incidence in patients with acute myeloid leukaemia (AML). In this retrospective study, we analysed 134 patients with AML receiving a total of 301 chemotherapy courses. Diarrhoea occurred during 33% of all courses in 58 patients. C. difficile-associated diarrhoea (CDAD) occurred in 18% of all patients and 9% of all treatment courses. Almost one third of diarrhoea episodes were caused by C. difficile. CDAD was associated with older age (58 vs. 50 years), number of antibiotics administered (2 vs. 1), duration of antibiotic therapy (7 vs. 4 days), ceftazidime as the antibiotic of choice (75% vs. 54%) and duration of neutropenia (12 vs. 7 days) prior to onset of diarrhoea. An increased risk for CDAD was seen for prolonged neutropenia. CDAD responded well to oral metronidazole and/or vancomycin and no patient died of this complication. In conclusion, CDAD is common in patients with AML receiving chemotherapy. C. difficile enterotoxin testing of stool specimens should be included in all symptomatic patients.

  2. NDRG1/2 expression is inhibited in primary acute myeloid leukemia.

    PubMed

    Tschan, Mario P; Shan, Deborah; Laedrach, Judith; Eyholzer, Marianne; Leibundgut, Elisabeth Oppliger; Baerlocher, Gabriela M; Tobler, Andreas; Stroka, Deborah; Fey, Martin F

    2010-03-01

    Expression of N-myc downregulated gene 1 (NDRG1) is associated with growth arrest and differentiation of tumor cells. In hematopoietic cells, NDRG1 was identified in a screen for differentiation-related genes in human myelomonocytic leukemic U937 cells. In the present study, we found significantly higher NDRG1 mRNA levels in granulocytes of healthy donors than in primary acute myeloid leukemia (AML) cells. Another NDRG family member, NDRG2, was significantly higher expressed in normal macrophages compared to primary AML cells. Moreover, NDRG1 mRNA levels increased in two acute promyelocytic leukemia (APL) patients as well as in NB4 and HT93 APL cells upon all-trans retinoic acid (ATRA) therapy. In line with these observations, silencing of NDRG1 diminished neutrophil differentiation of leukemic cell lines. In conclusion, we found an association of low NDRG1 levels with an immature cell phenotype and provide evidence that NDRG1 is functionally involved in neutrophil maturation.

  3. Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target.

    PubMed

    Mussai, Francis; Egan, Sharon; Higginbotham-Jones, Joseph; Perry, Tracey; Beggs, Andrew; Odintsova, Elena; Loke, Justin; Pratt, Guy; U, Kin Pong; Lo, Anthony; Ng, Margaret; Kearns, Pamela; Cheng, Paul; De Santo, Carmela

    2015-04-09

    Acute myeloid leukemia (AML) is one of the most common acute leukemias in adults and children, yet significant numbers of patients relapse and die of disease. In this study, we identify the dependence of AML blasts on arginine for proliferation. We show that AML blasts constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of newly diagnosed patients' blasts have deficiencies in the arginine-recycling pathway enzymes argininosuccinate synthase and ornithine transcarbamylase, making them arginine auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in extracellular and intracellular arginine concentrations, resulting in arrest of AML blast proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes significant death of AML blasts from adults and children, and acts synergistically in combination with cytarabine. Using RNA sequencing, 20 further candidate genes which correlated with resistance have been identified. Thus, AML blasts are dependent on arginine for survival and proliferation, as well as depletion of arginine with BCT-100 of clinical value in the treatment of AML.

  4. FLT3-ITD Mutations in Acute Myeloid Leukemia Patients in Northeast Thailand.

    PubMed

    Kumsaen, Piyawan; Fucharoen, Goonnapa; Sirijerachai, Chittima; Chainansamit, Su-On; Wisanuyothin, Nittaya; Kuwatjanakul, Pichayanan; Wiangnon, Surapon

    2016-01-01

    The FLT3-ITD mutation is one of the most frequent genetic abnormalities in acute myeloid leukemia (AML) where it is associated with a poor prognosis. The FLT3-ITD mutation could, therefore, be a potential molecular prognostic marker important for risk-stratified treatment options. We amplified the FLT3 gene at exon 14 and 15 in 52 AML patients (aged between 2 months and 74 years) from 4 referral centers (a university hospital and 3 regional hospitals in Northeast Thailand), using a simple PCR method. FLT3-ITD mutations were found in 10 patients (19.2%), being more common in adults than in children (21.1% vs. 14.3%) and more prevalent in patients with acute promyelocytic leukemia (AML-M3) than AML-non M3 (4 of 10 AML-M3 vs. 6 of 42 AML- non M3 patients). Duplication sequences varied in size-between 27 and 171 nucleotides (median=63.5) and in their location. FLT3-ITD mutations with common duplication sequences accounted for a significant percentage in AML patients in northeastern Thailand. This simple PCR method is feasible for routine laboratory practice and these data could help tailor use of the national protocol for AML.

  5. Characterization of a newly identified ETV6-NTRK3 fusion transcript in acute myeloid leukemia

    PubMed Central

    2011-01-01

    Background Characterization of novel fusion genes in acute leukemia is important for gaining information about leukemia genesis. We describe the characterization of a new ETV6 fusion gene in acute myeloid leukemia (AML) FAB M0 as a result of an uncommon translocation involving chromosomes 12 and 15. Methods The ETV6 locus at 12p13 was shown to be translocated and to constitute the 5' end of the fusion product by ETV6 break apart fluorescence in situ hybridisation (FISH). To identify a fusion partner 3' rapid amplification of cDNA-ends with polymerase chain reaction (RACE PCR) was performed followed by cloning and sequencing. Results The NTRK3 gene on chromosome 15 was found to constitute the 3' end of the fusion gene and the underlying ETV6-NTRK3 rearrangement was verified by reverse transcriptase PCR. No RNA of the reciprocal NTRK3-ETV6 fusion gene could be detected. Conclusion We have characterized a novel ETV6-NTRK3 fusion transcript which has not been previously described in AML FAB M0 by FISH and RACE PCR. ETV6-NTRK3 rearrangements have been described in secretory breast carcinoma and congenital fibrosarcoma. PMID:21401966

  6. Translocation 2;19 in a patient with probable relapsed acute myeloid leukemia.

    PubMed

    Mark, H F; Gray, Y; Rintels, P

    1997-01-01

    We report the cytogenetic and hematopathologic results from a patient diagnosed with acute myeloid leukemia. Although the initial specimen revealed an apparently normal male karyotype, a translocation, t(2;19)(q21;p13), was detected in the second specimen. It is not clear whether this was a primary or secondary and possibly chemotherapy-induced abnormality. In an extensive search of the recent medical literature database (Medline, 1966 to the present; CancerLit, 1983 to the present, MDX Health Digest, 1988 to the present; HealthSTAR, 1975 to the present, and CINAHL, 1982 to the present), we found no previous report of this specific translocation. This case is of interest not only because of its cytogenetic rarity and its unique clinical features, but also because of the fact that this patient worked in construction management, performing offshore drilling in oil fields for several years, and also worked with plastics and polymer film for about 4 years, although this past history of possible genotoxic exposure may or may not be of relevance. In addition, it is also of interest that one of the translocation breakpoints, 19p13, is apparently identical to that found in the 1;19 translocation associated with pre-B cell acute lymphocytic leukemia.

  7. Pleural effusion as the initial extramedullary manifestation of Acute Myeloid Leukemia

    PubMed Central

    Nieves-Nieves, José

    2012-01-01

    Leukemias rarely debut by pleural involvement as the first manifestation of the hematologic malignancy. This complication is most commonly seen in solid tumors such as carcinomas of the breast, lung, gastrointestinal tract and lymphomas. We present a case of a 66 year old male who presented with a pleural leukemic infiltration of his undiagnosed Acute Myeloid Leukemia that was not a complication of the disease extension, but the acute presentation of the illness. Progressive shortness of breath for two weeks, cough, clear sputum and weight loss were the initial complaints. Serum dyscrasia suggested a hematologic abnormality. A chest x-ray performed demonstrated a buildup of fluid with layering in the left pleural cavity. Diagnostic thoracentesis suggested an exudative etiology with cytology remarkable for 62% leukemic myeloblast. The diagnosis was confirmed by bone marrow biopsy with expression of the antigens CD 34+ and CD13+, with unfavorable cytogenetic prognosis and a trisomy 21 chromosomal defect. Chemotherapy was initiated, though no remission achieved with induction chemotherapy. Complications and disease progression precludes in the patient’s death. Although rare, due to the unusual presentation of the disease, this case clearly demonstrates the importance of biochemical analysis and cytopathology specimens obtained in pleural fluid. PMID:24358836

  8. Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target

    PubMed Central

    Egan, Sharon; Higginbotham-Jones, Joseph; Perry, Tracey; Beggs, Andrew; Odintsova, Elena; Loke, Justin; Pratt, Guy; U, Kin Pong; Lo, Anthony; Ng, Margaret; Kearns, Pamela; Cheng, Paul; De Santo, Carmela

    2015-01-01

    Acute myeloid leukemia (AML) is one of the most common acute leukemias in adults and children, yet significant numbers of patients relapse and die of disease. In this study, we identify the dependence of AML blasts on arginine for proliferation. We show that AML blasts constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of newly diagnosed patients’ blasts have deficiencies in the arginine-recycling pathway enzymes argininosuccinate synthase and ornithine transcarbamylase, making them arginine auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in extracellular and intracellular arginine concentrations, resulting in arrest of AML blast proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes significant death of AML blasts from adults and children, and acts synergistically in combination with cytarabine. Using RNA sequencing, 20 further candidate genes which correlated with resistance have been identified. Thus, AML blasts are dependent on arginine for survival and proliferation, as well as depletion of arginine with BCT-100 of clinical value in the treatment of AML. PMID:25710880

  9. YKL-40 in allogeneic hematopoietic cell transplantation after acute myeloid leukemia and myelodysplastic syndrome

    PubMed Central

    Kornblit, Brian; Wang, Tao; Lee, Stephanie J.; Spellman, Stephen R.; Zhu, Xiaochun; Fleischhauer, Katharina; Müller, Carlheinz; Verneris, Michael R.; Müller, Klaus; Johansen, Julia S.; Vindelov, Lars; Garred, Peter

    2016-01-01

    YKL-40, also called chitinase3-like-1 protein, is an inflammatory biomarker which has been associated with disease severity in inflammatory and malignant diseases, including acute myeloid leukemia (AML), multiple myeloma and lymphomas. The objective of the current study was to assess the prognostic value of pre-transplant recipient and donor plasma YKL-40 concentrations in patients with AML (n=624) or myelodysplastic syndrome (MDS) (n=157) treated with allogeneic hematopoietic cell transplantation (HCT). In recipients, the plasma YKL-40 concentrations were increased when the HCT-comorbidity index was ≥5 (p=0.028). There were no significant associations between plasma YKL-40 concentrations in recipients and any outcome measures. In donors with YKL-40 plasma concentrations above the age adjusted 95th percentile a trend towards increased grade II-IV acute graft versus host disease in recipients was observed (adjusted hazard ratio 1.39 (95% confidence interval 1.00–1.94), P=0.050), with no significant associations with overall survival, treatment-related mortality or relapse. In conclusion, our study shows that YKL-40 does not aid risk stratification of patients undergoing allogeneic HCT, but suggests that YKL-40 may aid donor selection when multiple, otherwise equal, donors are available. PMID:27427920

  10. Allo-SCT conditioning for myelodysplastic syndrome and acute myeloid leukemia with clofarabine, cytarabine and ATG.

    PubMed

    Martin, M G; Uy, G L; Procknow, E; Stockerl-Goldstein, K; Cashen, A; Westervelt, P; Abboud, C N; Augustin, K; Luo, J; DiPersio, J F; Vij, R

    2009-07-01

    The application of myeloablative Allo-SCT is limited by its associated morbidity and mortality. Reduced-intensity conditioning regimens attempt to diminish these, but are associated with a higher risk of disease relapse. Given the evidence of activity of clofarabine and cytarabine in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML), we explored a novel reduced-intensity conditioning regimen based on this backbone. Patients received clofarabine 40 mg/m(2) i.v. on days -6 to -2, cytarabine 1 g/m(2) i.v. on days -6 to -2 and anti-thymocyte globulin (ATG) 1 mg/kg on day -4 and 2.5 mg/kg x 2 days on days -3 and -2. Seven patients were enrolled. Their median age was 54 years; three were with MDS and four with AML. The median duration of neutropenia was 14 days and that of thrombocytopenia was 22 days. Toxicities included hand-foot syndrome (57% grade 2), elevated alanine aminotransferase (ALT) (57% grade 3), elevated aspartate aminotransferase (AST) (86% grade 3) and hyperbilirubinemia (29% grade 3-5). No acute GVHD was observed. Enrollment to the trial was halted after three of the first seven patients expired on days +15, +26 and +32. Three of the four surviving patients have relapsed with a median TTP of 152 days. This regimen was not sufficiently immunosuppressive to ensure engraftment, and was associated with substantial morbidity and mortality.

  11. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.

    PubMed

    Miraki-Moud, Farideh; Ghazaly, Essam; Ariza-McNaughton, Linda; Hodby, Katharine A; Clear, Andrew; Anjos-Afonso, Fernando; Liapis, Konstantinos; Grantham, Marianne; Sohrabi, Fareeda; Cavenagh, Jamie; Bomalaski, John S; Gribben, John G; Szlosarek, Peter W; Bonnet, Dominique; Taussig, David C

    2015-06-25

    The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.

  12. Soluble mediators released by acute myeloid leukemia cells increase capillary-like networks.

    PubMed

    Hatfield, Kimberley J; Evensen, Lasse; Reikvam, Håkon; Lorens, James B; Bruserud, Øystein

    2012-12-01

    Increased bone marrow angiogenesis is seen in several hematological malignancies, including acute myeloid leukemia (AML). We used a co-culture assay of endothelial and vascular smooth muscle cells (vSMC) to investigate the effects of AML-conditioned medium on capillary networks. We investigated primary AML cells derived from 44 unselected patients and observed that for a large subset of patients, the constitutive cytokine release by the leukemic cells stimulated endothelial cell organization into capillary-like networks, while there were only minor or no effects for other patients. We analyzed the constitutive AML cell release of 31 cytokines for all the patients and performed a hierarchical cluster analysis of the cytokine profile which identified two major patient subsets that differed in their ability to enhance capillary-like networks; increased capillary-like networks was then associated with high constitutive release of several cytokines and especially high levels of several pro-angiogenic chemokines. Significantly increased network formation was not seen for any of the 11 acute lymphoblastic leukemia patients investigated. The cytokine response by activated normal T cells inhibited endothelial network formation in our in vitro model of angiogenesis and activated normal monocytes had only a minor influence on tube formation. Our study shows that AML-derived cytokines can induce the organization of endothelial cells into vessel-like structures.

  13. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse

    PubMed Central

    Nagata, Yasunobu; Kanojia, Deepika; Mayakonda, Anand; Yoshida, Kenichi; Haridas Keloth, Sreya; Zang, Zhi Jiang; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Ding, Ling-Wen; Alpermann, Tamara; Sun, Qiao-Yang; Lin, De-Chen; Chien, Wenwen; Madan, Vikas; Liu, Li-Zhen; Tan, Kar-Tong; Sampath, Abhishek; Venkatesan, Subhashree; Inokuchi, Koiti; Wakita, Satoshi; Yamaguchi, Hiroki; Chng, Wee Joo; Kham, Shirley-Kow Yin; Yeoh, Allen Eng-Juh; Sanada, Masashi; Schiller, Joanna; Kreuzer, Karl-Anton; Kornblau, Steven M.; Kantarjian, Hagop M.; Haferlach, Torsten; Lill, Michael; Kuo, Ming-Chung; Shih, Lee-Yung; Blau, Igor-Wolfgang; Blau, Olga; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone. PMID:26438511

  14. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia.

    PubMed

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R; Herrmann, Harald; Sison, Edward A; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J; Johns, Christopher; Chicas, Agustin; Mulloy, James C; Kogan, Scott C; Brown, Patrick; Valent, Peter; Bradner, James E; Lowe, Scott W; Vakoc, Christopher R

    2011-08-03

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.

  15. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

    PubMed Central

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R.; Herrmann, Harald; Sison, Edward A.; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J.; Johns, Christopher; Chicas, Agustin; Mulloy, James C.; Kogan, Scott C.; Brown, Patrick; Valent, Peter; Bradner, James E.; Lowe, Scott W.; Vakoc, Christopher R.

    2012-01-01

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs1. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states2. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention. PMID:21814200

  16. Similarities and Differences Between Therapy-Related and Elderly Acute Myeloid Leukemia

    PubMed Central

    D’Alò, Francesco; Fianchi, Luana; Fabiani, Emiliano; Criscuolo, Marianna; Greco, Mariangela; Guidi, Francesco; Pagano, Livio; Leone, Giuseppe; Voso, Maria Teresa

    2011-01-01

    Acute myeloid leukemia (AML) is a clonal disorder of the hematopoietic stem cell, typical of the elderly, with a median age of over 60 years at diagnosis. In AML, older age is one of the strongest independent adverse prognostic factor, associated with decreased complete response rate, worse disease-free and overall survival, with highest rates of treatment related mortality, resistant disease and relapse, compared to younger patients. Outcomes are compromised in older patients not only by increased comorbidities and susceptibility to toxicity from therapy, but it is now recognized that elderly AML has peculiar biologic characteristics with a negative impact on treatment response. In older individuals prolonged exposure to environmental carcinogens may be the basis for similarities to therapy-related myeloid malignancies (t-MN), which result from toxic effects of previous cytotoxic treatments on hematopoietic stem cells. Age is itself a risk factor for t-MN, which are more frequent in elderly patients, where also a shorter latency between treatment of primary tumor and t-MN has been reported. t-MN following chemotherapy with alkylating agents and elderly AML frequently present MDS-related cytogenetic abnormalities, including complex or monosomal karyotype, and a myelodysplastic phase preceding the diagnosis of overt leukemia. Similarly, t-MN and elderly-AML share common molecular abnormalities, such as reduced frequency of NPM1, FLT3 and CEBPA mutations and increased MDR1 expression. Given the unfavorable prognosis of elderly and t-MN and the similar clinical and molecular aspects, this is a promising field for implementation of new treatment protocols including alternative biological drugs. PMID:22220249

  17. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia

    PubMed Central

    Shearstone, Jeffrey R.; Quayle, Steven N.; Huang, Pengyu; van Duzer, John H.; Jarpe, Matthew B.; Jones, Simon S.; Yang, Min

    2017-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC) enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients. PMID:28060870

  18. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  19. Massive Thrombosis of the Right Atrium Extended to the Superior Vena Cava at the Diagnosis of Acute Myeloid Leukemia.

    PubMed

    Houssou, Bienvenu; Orou-Guiwa, Gnon Gourou; Habbal, Rachida; Qachouh, Meryem; Quessar, Asmaa

    2016-01-01

    Introduction. Venous thromboembolic disease is a common complication found in 8% of patients with acute myeloid leukemia. The location at the right atrium is exceptional. These last fifty years, only 6 cases of thrombosis of the atrium in the diagnosis of acute myeloid leukemia were published on PubMed search engine. Case Presentation. 35-year-old farmer, who had been admitted by emergency department for superior vena cava syndrome and had a hyperleukocytic AML with complex karyotype associated with a significant thrombosis of the right atrium, extended all along the superior vena cava. He has been treated by the 2011 AML protocol using low molecular weight heparin and died from respiratory distress. Conclusions. If thrombosis is common in AML, the location in right atrium is rare. Its management requires surgery that is sometimes difficult to achieve.

  20. Massive Thrombosis of the Right Atrium Extended to the Superior Vena Cava at the Diagnosis of Acute Myeloid Leukemia

    PubMed Central

    Orou-Guiwa, Gnon Gourou; Habbal, Rachida; Qachouh, Meryem; Quessar, Asmaa

    2016-01-01

    Introduction. Venous thromboembolic disease is a common complication found in 8% of patients with acute myeloid leukemia. The location at the right atrium is exceptional. These last fifty years, only 6 cases of thrombosis of the atrium in the diagnosis of acute myeloid leukemia were published on PubMed search engine. Case Presentation. 35-year-old farmer, who had been admitted by emergency department for superior vena cava syndrome and had a hyperleukocytic AML with complex karyotype associated with a significant thrombosis of the right atrium, extended all along the superior vena cava. He has been treated by the 2011 AML protocol using low molecular weight heparin and died from respiratory distress. Conclusions. If thrombosis is common in AML, the location in right atrium is rare. Its management requires surgery that is sometimes difficult to achieve. PMID:27847650

  1. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia

    PubMed Central

    Cnops, Jennifer; De Trez, Carl; Stijlemans, Benoit; Keirsse, Jiri; Kauffmann, Florence; Barkhuizen, Mark; Keeton, Roanne; Boon, Louis; Brombacher, Frank; Magez, Stefan

    2015-01-01

    African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia. PMID:26070118

  2. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia.

    PubMed

    Cnops, Jennifer; De Trez, Carl; Stijlemans, Benoit; Keirsse, Jiri; Kauffmann, Florence; Barkhuizen, Mark; Keeton, Roanne; Boon, Louis; Brombacher, Frank; Magez, Stefan

    2015-06-01

    African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.

  3. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells.

  4. A comparison of toxicities in acute myeloid leukemia patients with and without renal impairment treated with decitabine.

    PubMed

    Levine, Lauren B; Roddy, Julianna Vf; Kim, Miryoung; Li, Junan; Phillips, Gary; Walker, Alison R

    2017-01-01

    Purpose There are limited data regarding the clinical use of decitabine for the treatment of acute myeloid leukemia in patients with a serum creatinine of 2 mg/dL or greater. Methods We retrospectively evaluated 111 patients with acute myeloid leukemia who had been treated with decitabine and compared the development of toxicities during cycle 1 in those with normal renal function (creatinine clearance greater than or equal to 60 mL/min) to those with renal dysfunction (creatinine clearance less than 60 mL/min). Results Notable differences in the incidence of grade ≥3 cardiotoxicity (33% of renal dysfunction patients vs. 16% of normal renal function patients, p = 0.042) and respiratory toxicity (40% of renal dysfunction patients vs. 14% of normal renal function patients, p = 0.0037) were observed. The majority of heart failure, myocardial infarction, and atrial fibrillation cases occurred in the renal dysfunction group. The odds of developing grade ≥3 cardiotoxicity did not differ significantly between patients with and without baseline cardiac comorbidities (OR 1.43, p = 0.43). Conclusions This study noted a higher incidence of grade ≥3 cardiac and respiratory toxicities in decitabine-treated acute myeloid leukemia patients with renal dysfunction compared to normal renal function. This may prompt closer monitoring, regardless of baseline cardiac comorbidities. Further evaluation of decitabine in patients with renal dysfunction is needed.

  5. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA

    PubMed Central

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C.

    2016-01-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo. Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. PMID:27390356

  6. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    PubMed

    Scott, Bart L; Pasquini, Marcelo C; Logan, Brent R; Wu, Juan; Devine, Steven M; Porter, David L; Maziarz, Richard T; Warlick, Erica D; Fernandez, Hugo F; Alyea, Edwin P; Hamadani, Mehdi; Bashey, Asad; Giralt, Sergio; Geller, Nancy L; Leifer, Eric; Le-Rademacher, Jennifer; Mendizabal, Adam M; Horowitz, Mary M; Deeg, H Joachim; Horwitz, Mitchell E

    2017-04-10

    Purpose The optimal regimen intensity before allogeneic hematopoietic cell transplantation (HCT) is unknown. We hypothesized that lower treatment-related mortality (TRM) with reduced-intensity conditioning (RIC) would result in improved overall survival (OS) compared with myeloablative conditioning (MAC). To test this hypothesis, we performed a phase III randomized trial comparing MAC with RIC in patients with acute myeloid leukemia or myelodysplastic syndromes. Patients and Methods Patients age 18 to 65 years with HCT comorbidity index ≤ 4 and < 5% marrow myeloblasts pre-HCT were randomly assigned to receive MAC (n = 135) or RIC (n = 137) followed by HCT from HLA-matched related or unrelated donors. The primary end point was OS 18 months post-random assignment based on an intent-to-treat analysis. Secondary end points included relapse-free survival (RFS) and TRM. Results Planned enrollment was 356 patients; accrual ceased at 272 because of high relapse incidence with RIC versus MAC (48.3%; 95% CI, 39.6% to 56.4% and 13.5%; 95% CI, 8.3% to 19.8%, respectively; P < .001). At 18 months, OS for patients in the RIC arm was 67.7% (95% CI, 59.1% to 74.9%) versus 77.5% (95% CI, 69.4% to 83.7%) for those in the MAC arm (difference, 9.8%; 95% CI, -0.8% to 20.3%; P = .07). TRM with RIC was 4.4% (95% CI, 1.8% to 8.9%) versus 15.8% (95% CI, 10.2% to 22.5%) with MAC ( P = .002). RFS with RIC was 47.3% (95% CI, 38.7% to 55.4%) versus 67.8% (95% CI, 59.1% to 75%) with MAC ( P < .01). Conclusion OS was higher with MAC, but this was not statistically significant. RIC resulted in lower TRM but higher relapse rates compared with MAC, with a statistically significant advantage in RFS with MAC. These data support the use of MAC as the standard of care for fit patients with acute myeloid leukemia or myelodysplastic syndromes.

  7. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  8. Acute myeloid leukemia of a primary hepatic carcinoma patient after liver transplantation: a case report and literature review

    PubMed Central

    Wu, Wen-Jun; Dong, Meng-Meng; Chen, Yun; He, Jing-Song; Huang, He; Cai, Zhen

    2015-01-01

    Living donor liver transplantation (LDLT) is an important means to treat end-stage liver disease. Although effective immunosuppressant medication greatly assists the survival of patients, it is likely to promote infections and cancer. Acute leukemia (AL) is a rare complication after LDLT and up to now only 1 case of post-transplantation AL has occurred in our liver transplantation center after more than 1,600 LDLT interventions since 1993. In the present report, we describe a rare case of subsequent acute myeloid leukemia (AML), 27 months after LDLT and review the literature of this infrequent complication. PMID:26722593

  9. Differentiation syndrome in non-M3 acute myeloid leukemia treated with the retinoid X receptor agonist bexarotene.

    PubMed

    DiNardo, Courtney D; Ky, Bonnie; Vogl, Dan T; Forfia, Paul; Loren, Alison; Luger, Selina; Mato, Anthony; Tsai, Donald E

    2008-01-01

    Differentiation Syndrome, also known as all-trans retinoic acid (ATRA) syndrome, is a well-described clinical phenomenon occurring in patients with the M3 subtype of acute myeloid leukemia receiving ATRA chemotherapy. Bexarotene is a novel synthetic compound that selectively binds and activates retinoic X receptors, a subclass of retinoid receptors not targeted by ATRA. We report a patient with refractory non-M3 acute promyelocytic leukemia (AML) who developed differentiation syndrome during bexarotene monotherapy. This case emphasizes the importance of monitoring for differentiation syndrome among patients receiving retinoid therapies and demonstrates the ability of bexarotene to stimulate differentiation of leukemic blasts.

  10. Roles of p15Ink4b and p16Ink4a in myeloid differentiation and RUNX1-ETO-associated acute myeloid leukemia

    PubMed Central

    Ko, Rose M.; Kim, Hyung-Gyoon; Wolff, Linda; Klug, Christopher A.

    2008-01-01

    Inactivation of p15Ink4b expression by promoter hypermethylation occurs in up to 80% of acute myeloid leukemia (AML) cases and is particularly common in the FAB-M2 subtype of AML, which is characterized by the presence of the RUNX1-ETO translocation in 40% of cases. To establish whether the loss of p15Ink4b contributes to AML progression in association with RUNX1-ETO, we have expressed the RUNX1-ETO fusion protein from a retroviral vector in hematopoietic progenitor cells isolated from wild-type, p15Ink4b or p16Ink4a knockout bone marrow. Analysis of lethally irradiated recipient mice reconstituted with RUNX1-ETO-expressing cells showed that neither p15Ink4b or p16Ink4a loss significantly accelerated disease progression over the time period of one year post-transplantation. Loss of p15Ink4b alone resulted in increased myeloid progenitor cell frequencies in bone marrow by 10 months post-transplant and a 19-fold increase in the frequency of Lin-c-Kit+Sca-1+ (LKS) cells that was not associated with expansion of long-term reconstituting HSC. These results strongly suggest that p15Ink4b loss must be accompanied by additional oncogenic changes for RUNX1-ETO-associated AML to develop. PMID:18037485

  11. Safety Study of AG-120 or AG-221 in Combination With Induction and Consolidation Therapy in Patients With Newly Diagnosed Acute Myeloid Leukemia With an IDH1 and/or IDH2 Mutation

    ClinicalTrials.gov

    2017-01-27

    Newly Diagnosed Acute Myeloid Leukemia (AML); Untreated AML; AML Arising From Myelodysplastic Syndrome (MDS); AML Arising From Antecedent Hematologic Disorder (AHD); AML Arising After Exposure to Genotoxic Injury

  12. Advances in the biology and therapy of chronic myeloid leukemia: proceedings from the 6th Post-ASH International Chronic Myeloid Leukemia and Myeloproliferative Neoplasms Workshop.

    PubMed

    Van Etten, Richard A; Mauro, Michael; Radich, Jerald P; Goldman, John M; Saglio, Giuseppe; Jamieson, Catriona; Soverini, Simona; Gambacorti-Passerini, Carlo; Hehlmann, Rüdiger; Martinelli, Giovanni; Perrotti, Danilo; Scadden, David T; Skorski, Tomasz; Tefferi, Ayalew; Mughal, Tariq I

    2013-06-01

    Following the 53rd annual meeting of the American Society of Hematology (ASH) in San Diego in December 2011, a group of clinical and laboratory investigators convened for the 6th Post-ASH International Workshop on Chronic Myeloid Leukemia (CML) and Myeloproliferative Neoplasms (MPN). The Workshop took place on 13-14 December at the Estancia, La Jolla, California, USA. This report summarizes the most recent advances in the biology and therapy of CML that were presented at the ASH meeting and discussed at the Workshop. Preclinical studies focused on the CML stem cell and its niche, and on early results of deep sequencing of CML genomes. Clinical advances include updates on second- and third-generation tyrosine kinase inhibitors (TKIs), molecular monitoring, TKI discontinuation studies and new therapeutic agents. A report summarizing the pertinent advances in MPN has been published separately.

  13. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    PubMed

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.

  14. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells.

    PubMed

    Zhang, JinFeng; Su, Le; Ye, Qing; Zhang, ShangLi; Kung, HsiangFu; Jiang, Fan; Jiang, GuoSheng; Miao, JunYing; Zhao, BaoXiang

    2017-01-31

    Nuclear factor-erythroid 2-related factor 2 (Nrf2) is persistently activated in many human tumors including acute myeloid leukemia (AML). Therefore, inhibition of Nrf2 activity may be a promising target in leukemia therapy. Here, we used an antioxidant response element-luciferase reporter system to identify a novel pyrazolyl hydroxamic acid derivative, 1-(4-(tert-Butyl)benzyl)-3-(4-chlorophenyl)-N-hydroxy-1H pyrazole-5-carboxamide (4f), that inhibited Nrf2 activity. 4f had a profound growth-inhibitory effect on three AML cell lines, THP-1, HL-60 and U937, and a similar anti-growth effect in a chick embryo model. Moreover, flow cytometry of AML cells revealed increased apoptosis with 4f (10 μM) treatment for 48 h. The protein levels of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase were enhanced in all three AML cell types. Furthermore, Nrf2 protein level was downregulated by 4f. Upregulation of Nrf2 by tert-butylhydroquinone (tBHQ) or Nrf2 overexpression could ameliorate 4f-induced growth inhibition and apoptosis. Treatment with 4f reduced both B-cell lymphoma-2 (Bcl-2) expression and Bcl-2/Bcl-2-associated X protein (Bax) ratio, which indicated that 4f induced apoptosis, at least in part, via mitochondrial-dependent signaling. Therefore, as an Nrf2 inhibitor, the pyrazolyl hydroxamic acid derivative 4f may be a promising agent in AML therapy.

  15. Impact of NOD2 polymorphisms on infectious complications following chemotherapy in patients with acute myeloid leukaemia.

    PubMed

    Yomade, Olaposi; Spies-Weisshart, Bärbel; Glaser, Anita; Schnetzke, Ulf; Hochhaus, Andreas; Scholl, Sebastian

    2013-08-01

    We sought to investigate the relationship between polymorphisms of the NOD2 gene and infectious complications following intensive induction chemotherapy in patients with acute myeloid leukaemia (AML). We hypothesised that single nucleotide polymorphisms (SNPs) of the NOD2 gene are associated with a higher rate of infections during the phase of severe neutropenia. In 131 AML patients receiving induction therapy, the presence of the three most frequent polymorphisms of NOD2 (Arg702Trp, Gly908Arg, Leu1007fsinsC) was analysed. SNP analyses by means of genomic PCR incorporating fluorescence-labelled probes with characteristic melting curves were performed using the LightCycler platform. Our data suggest a significantly lower probability of mucositis or enteritis in AML patients lacking any of the three evaluated NOD2 polymorphisms. Furthermore, bloodstream cultures of AML patients carrying either a missense or a frameshift mutation of NOD2 were significantly more frequently tested positive concerning Streptococcus spp. In contrast, the presence of NOD2 polymorphisms had no impact on such important infectious complications as systemic inflammatory response syndrome or sepsis, the rate of central venous catheter infections or the incidence of pneumonia including fungal infections. Our data represent one of the first reports investigating the impact of polymorphisms of the innate immune system on infectious complications in patients with neutropenia following chemotherapy. A correlation between NOD2 polymorphisms and infectious events in AML patients is demonstrated.

  16. Precision oncology for acute myeloid leukemia using a knowledge bank approach.

    PubMed

    Gerstung, Moritz; Papaemmanuil, Elli; Martincorena, Inigo; Bullinger, Lars; Gaidzik, Verena I; Paschka, Peter; Heuser, Michael; Thol, Felicitas; Bolli, Niccolo; Ganly, Peter; Ganser, Arnold; McDermott, Ultan; Döhner, Konstanze; Schlenk, Richard F; Döhner, Hartmut; Campbell, Peter J

    2017-03-01

    Underpinning the vision of precision medicine is the concept that causative mutations in a patient's cancer drive its biology and, by extension, its clinical features and treatment response. However, considerable between-patient heterogeneity in driver mutations complicates evidence-based personalization of cancer care. Here, by reanalyzing data from 1,540 patients with acute myeloid leukemia (AML), we explore how large knowledge banks of matched genomic-clinical data can support clinical decision-making. Inclusive, multistage statistical models accurately predicted likelihoods of remission, relapse and mortality, which were validated using data from independent patients in The Cancer Genome Atlas. Comparison of long-term survival probabilities under different treatments enables therapeutic decision support, which is available in exploratory form online. Personally tailored management decisions could reduce the number of hematopoietic cell transplants in patients with AML by 20-25% while maintaining overall survival rates. Power calculations show that databases require information from thousands of patients for accurate decision support. Knowledge banks facilitate personally tailored therapeutic decisions but require sustainable updating, inclusive cohorts and large sample sizes.

  17. PI-103 sensitizes acute myeloid leukemia stem cells to daunorubicin-induced cytotoxicity.

    PubMed

    Ding, Qian; Gu, Ran; Liang, Jiayi; Zhang, Xiangzhong; Chen, Yunxian

    2013-03-01

    To date, acute myeloid leukemia (AML) shows very poor outcome for conventional chemotherapy. Leukemia stem cells (LSCs) are insensitive to conventional chemotherapeutic drugs and play a central role in the pathogenesis of AML. Failure to effectively ablate these cells may lead to AML relapse following chemotherapy. Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is constructively activated in LSCs. This pathway can be inhibited by PI-103, a novel synthesized molecule of the pyridofuropyrimidine class, resulting in the apoptosis of LSCs. Therefore, we investigate the influences of PI-103 in combination with daunorubicin (DNR) on the LSCs. Our data indicate that PI-103 synergistically sensitizes LSCs to DNR-induced cytotoxicity. In addition, the PI-103/DNR co-treatment can induce significant apoptosis in LSCs, but sparing hematopoietic stem cells. The synergistic effect and the LSCs-specific apoptosis mechanism may be associated with the inhibition of PI3K/Akt/mTOR signaling pathway. Our results suggest that PI-103 in combination with DNR may be a potent and less toxic therapy for targeting LSCs and deserve further preclinical and clinical studies in the treatment of AML.

  18. Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy

    PubMed Central

    Petrushev, Bobe; Boca, Sanda; Simon, Timea; Berce, Cristian; Frinc, Ioana; Dima, Delia; Selicean, Sonia; Gafencu, Grigore-Aristide; Tanase, Alina; Zdrenghea, Mihnea; Florea, Adrian; Suarasan, Sorina; Dima, Liana; Stanciu, Raluca; Jurj, Ancuta; Buzoianu, Anca; Cucuianu, Andrei; Astilean, Simion; Irimie, Alexandru; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana

    2016-01-01

    Background and aims Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles. Materials and methods The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay. Results We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein. Conclusion The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic. PMID:26929621

  19. HLA-G Expression on Blasts and Tolerogenic Cells in Patients Affected by Acute Myeloid Leukemia

    PubMed Central

    Tomasoni, Daniela; Ciceri, Fabio

    2014-01-01

    Human Leukocyte Antigen-G (HLA-G) contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML) is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg) cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4+ T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3′ untranslated region (3′UTR) of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4+ T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4+ T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host's immune system. Further studies on larger populations are required to verify our findings. PMID:24741612

  20. DNMT3A Mutations in Patients with Acute Myeloid Leukemia in South Brazil

    PubMed Central

    Pezzi, Annelise; Moraes, Lauro; Valim, Vanessa; Amorin, Bruna; Melchiades, Gabriela; Oliveira, Fernanda; da Silva, Maria Aparecida; Matte, Ursula; Pombo-de-Oliveira, Maria S.; Bittencourt, Rosane; Daudt, Liane; Silla, Lúcia

    2012-01-01

    Acute myeloid leukemia (AML) is a complex and heterogeneous hematopoietic tissue neoplasm. Several molecular markers have been described that help to classify AML patients into risk groups. DNA methyltransferase 3A (DNMT3A) gene mutations have been recently identified in about 22% of AML patients and associated with poor prognosis as an independent risk factor. Our aims were to determine the frequency of somatic mutations in the gene DNMT3A and major chromosomal translocations in a sample of patients with AML. We investigated in 82 samples of bone marrow from patients with AML for somatic mutations in DNMT3A gene by sequencing and sought major fusion transcripts by RT-PCR. We found mutations in the DNMT3A gene in 6 patients (8%); 3 were type R882H. We found fusion transcripts in 19 patients, namely, AML1/ETO (n = 5; 6.1%), PML/RARα (n = 12; 14.6%), MLL/AF9 (0; 0%), and CBFβ/MYH11 (n = 2; 2.4%). The identification of recurrent mutations in the DNMT3A gene and their possible prognostic implications can be a valuable tool for making treatment decisions. This is the first study on the presence of somatic mutations of the DNMT3A gene in patients with AML in Brazil. The frequency of these mutations suggests a possible ethnogeographic variation. PMID:23193409

  1. ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation

    PubMed Central

    Hartmann, Luise; Dutta, Sayantanee; Opatz, Sabrina; Vosberg, Sebastian; Reiter, Katrin; Leubolt, Georg; Metzeler, Klaus H.; Herold, Tobias; Bamopoulos, Stefanos A.; Bräundl, Kathrin; Zellmeier, Evelyn; Ksienzyk, Bianka; Konstandin, Nikola P.; Schneider, Stephanie; Hopfner, Karl-Peter; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Middeke, Jan Moritz; Stölzel, Friedrich; Thiede, Christian; Wolf, Stephan; Bohlander, Stefan K.; Preiss, Caroline; Chen-Wichmann, Linping; Wichmann, Christian; Sauerland, Maria Cristina; Büchner, Thomas; Berdel, Wolfgang E.; Wörmann, Bernhard J.; Braess, Jan; Hiddemann, Wolfgang; Spiekermann, Karsten; Greif, Philipp A.

    2016-01-01

    The t(8;21) translocation is one of the most frequent cytogenetic abnormalities in acute myeloid leukaemia (AML) and results in the RUNX1/RUNX1T1 rearrangement. Despite the causative role of the RUNX1/RUNX1T1 fusion gene in leukaemia initiation, additional genetic lesions are required for disease development. Here we identify recurring ZBTB7A mutations in 23% (13/56) of AML t(8;21) patients, including missense and truncating mutations resulting in alteration or loss of the C-terminal zinc-finger domain of ZBTB7A. The transcription factor ZBTB7A is important for haematopoietic lineage fate decisions and for regulation of glycolysis. On a functional level, we show that ZBTB7A mutations disrupt the transcriptional repressor potential and the anti-proliferative effect of ZBTB7A. The specific association of ZBTB7A mutations with t(8;21) rearranged AML points towards leukaemogenic cooperativity between mutant ZBTB7A and the RUNX1/RUNX1T1 fusion. PMID:27252013

  2. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    PubMed Central

    Kakiuchi, Seiji; Minami, Yosuke; Miyata, Yoshiharu; Mizutani, Yu; Goto, Hideaki; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Kurata, Keiji; Matsuoka, Hiroshi; Minami, Hironobu

    2017-01-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is involved in the maintenance of leukemic stem cell (LSCs) populations. PF-0444913 (PF-913) is a novel inhibitor that selectively targets Smoothened (SMO), which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML). However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA) revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling. PMID:28245563

  3. Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth.

    PubMed

    Qin, Lijun; Tian, Yun; Yu, Zhenlong; Shi, Dingbo; Wang, Jingshu; Zhang, Changlin; Peng, Ruoyu; Chen, Xuezhen; Liu, Congcong; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2016-01-12

    Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs.

  4. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes.

    PubMed

    Matre, Polina; Velez, Juliana; Jacamo, Rodrigo; Qi, Yuan; Su, Xiaoping; Cai, Tianyu; Chan, Steven M; Lodi, Alessia; Sweeney, Shannon R; Ma, Helen; Davis, Richard Eric; Baran, Natalia; Haferlach, Torsten; Su, Xiaohua; Flores, Elsa Renee; Gonzalez, Doriann; Konoplev, Sergej; Samudio, Ismael; DiNardo, Courtney; Majeti, Ravi; Schimmer, Aaron D; Li, Weiqun; Wang, Taotao; Tiziani, Stefano; Konopleva, Marina

    2016-11-29

    Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes.

  5. Increased SYK activity is associated with unfavorable outcome among patients with acute myeloid leukemia

    PubMed Central

    Back, Morgan; Alexe, Gabriela; Bassil, Christopher F.; Sinha, Papiya; Tholouli, Eleni; Stegmaier, Kimberly; Byers, Richard J.; Rodig, Scott J.

    2015-01-01

    Recent discoveries have led to the testing of novel targeted therapies for the treatment of acute myeloid leukemia (AML). To better inform the results of clinical trials, there is a need to identify and systematically assess biomarkers of response and pharmacodynamic markers of successful target engagement. Spleen tyrosine kinase (SYK) is a candidate therapeutic target in AML. Small-molecule inhibitors of SYK induce AML differentiation and impair leukemia progression in preclinical studies. However, tools to predict response to SYK inhibition and to routinely evaluate SYK activation in primary patient samples have been lacking. In this study we quantified phosphorylated SYK (P-SYK) in AML cell lines and establish that increasing levels of baseline P-SYK are correlated with an increasing sensitivity to small-molecule inhibitors targeting SYK. In addition, we found that pharmacological inhibition of SYK activity extinguishes P-SYK expression as detected by an immunohistochemical (IHC) test. Quantitative analysis of P-SYK expression by the IHC test in a series of 70 primary bone marrow biopsy specimens revealed a spectrum of P-SYK expression across AML cases and that high P-SYK expression is associated with unfavourable outcome independent of age, cytogenetics, and white blood cell count. This study thus establishes P-SYK as a critical biomarker in AML that identifies tumors sensitive to SYK inhibition, identifies an at-risk patient population, and allows for the monitoring of target inhibition during treatment. PMID:26315286

  6. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia

    PubMed Central

    Li, Sheng; Garrett-Bakelman, Francine E.; Chung, Stephen S.; Sanders, Mathijs A.; Hricik, Todd; Rapaport, Franck; Patel, Jay; Dillon, Richard; Vijay, Priyanka; Brown, Anna L.; Perl, Alexander E.; Cannon, Joy; Bullinger, Lars; Luger, Selina; Becker, Michael; Lewis, Ian D.; To, Luen Bik; Delwel, Ruud; Löwenberg, Bob; Döhner, Hartmut; Döhner, Konstanze; Guzman, Monica L.; Hassane, Duane C.; Roboz, Gail J.; Grimwade, David; Valk, Peter J.M.; D’Andrea, Richard J.; Carroll, Martin; Park, Christopher Y.; Neuberg, Donna; Levine, Ross; Melnick, Ari M.; Mason, Christopher E.

    2016-01-01

    Genetic heterogeneity contributes to clinical outcome and progression of most tumors. Yet, little is known regarding allelic diversity for epigenetic compartments and almost no data exists for acute myeloid leukemia (AML). Here we examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epigenetic alleles), somatic mutations and transcriptomes of AML patient samples at serial time points. We observe that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning follow different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression display increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics, each likely able to impact biological and clinical features of tumors. PMID:27322744

  7. Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage.

    PubMed

    Xie, Chengzhi; Edwards, Holly; Caldwell, J Timothy; Wang, Guan; Taub, Jeffrey W; Ge, Yubin

    2015-02-01

    Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.

  8. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers

    PubMed Central

    Rushton, L; Schnatter, A R; Tang, G; Glass, D C

    2014-01-01

    Background: High benzene exposure causes acute myeloid leukaemia (AML). Three petroleum case–control studies identified 60 cases (241 matched controls) for AML and 80 cases (345 matched controls) for chronic lymphoid leukaemia (CLL). Methods: Cases were classified and scored regarding uncertainty by two haematologists using available diagnostic information. Blinded quantitative benzene exposure assessment used work histories and exposure measurements adjusted for era-specific circumstances. Statistical analyses included conditional logistic regression and penalised smoothing splines. Results: Benzene exposures were much lower than previous studies. Categorical analyses showed increased ORs for AML with several exposure metrics, although patterns were unclear; neither continuous exposure metrics nor spline analyses gave increased risks. ORs were highest in terminal workers, particularly for Tanker Drivers. No relationship was found between benzene exposure and risk of CLL, although the Australian study showed increased risks in refinery workers. Conclusion: Overall, this study does not persuasively demonstrate a risk between benzene and AML. A previously reported strong relationship between myelodysplastic syndrome (MDS) (potentially previously reported as AML) at our study's low benzene levels suggests that MDS may be the more relevant health risk for lower exposure. Higher CLL risks in refinery workers may be due to more diverse exposures than benzene alone. PMID:24357793

  9. Parental Tobacco Smoking and Acute Myeloid Leukemia: The Childhood Leukemia International Consortium.

    PubMed

    Metayer, Catherine; Petridou, Eleni; Aranguré, Juan Manuel Mejía; Roman, Eve; Schüz, Joachim; Magnani, Corrado; Mora, Ana Maria; Mueller, Beth A; de Oliveira, Maria S Pombo; Dockerty, John D; McCauley, Kathryn; Lightfoot, Tracy; Hatzipantelis, Emmanouel; Rudant, Jérémie; Flores-Lujano, Janet; Kaatsch, Peter; Miligi, Lucia; Wesseling, Catharina; Doody, David R; Moschovi, Maria; Orsi, Laurent; Mattioli, Stefano; Selvin, Steve; Kang, Alice Y; Clavel, Jacqueline

    2016-08-15

    The association between tobacco smoke and acute myeloid leukemia (AML) is well established in adults but not in children. Individual-level data on parental cigarette smoking were obtained from 12 case-control studies from the Childhood Leukemia International Consortium (CLIC, 1974-2012), including 1,330 AML cases diagnosed at age <15 years and 13,169 controls. We conducted pooled analyses of CLIC studies, as well as meta-analyses of CLIC and non-CLIC studies. Overall, maternal smoking before, during, or after pregnancy was not associated with childhood AML; there was a suggestion, however, that smoking during pregnancy was associated with an increased risk in Hispanics (odds ratio = 2.08, 95% confidence interval (CI): 1.20, 3.61) but not in other ethnic groups. By contrast, the odds ratios for paternal lifetime smoking were 1.34 (95% CI: 1.11, 1.62) and 1.18 (95% CI: 0.92, 1.51) in pooled and meta-analyses, respectively. Overall, increased risks from 1.2- to 1.3-fold were observed for pre- and postnatal smoking (P < 0.05), with higher risks reported for heavy smokers. Associations with paternal smoking varied by histological type. Our analyses suggest an association between paternal smoking and childhood AML. The association with maternal smoking appears limited to Hispanic children, raising questions about ethnic differences in tobacco-related exposures and biological mechanisms, as well as study-specific biases.

  10. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia

    PubMed Central

    Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi

    2013-01-01

    FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan–Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients. PMID:23929599

  11. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy

    PubMed Central

    Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.

    2016-01-01

    Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197

  12. The complexity of interpreting genomic data in patients with acute myeloid leukemia

    PubMed Central

    Nazha, A; Zarzour, A; Al-Issa, K; Radivoyevitch, T; Carraway, H E; Hirsch, C M; Przychodzen, B; Patel, B J; Clemente, M; Sanikommu, S R; Kalaycio, M; Maciejewski, J P; Sekeres, M A

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML. PMID:27983727

  13. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia

    PubMed Central

    2017-01-01

    The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too. PMID:28217708

  14. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations.

    PubMed

    Lavallée, Vincent-Philippe; Gendron, Patrick; Lemieux, Sébastien; D'Angelo, Giovanni; Hébert, Josée; Sauvageau, Guy

    2015-01-01

    The genetic and transcriptional signature of EVI1 (ecotropic viral integration site 1)-rearranged (EVI1-r) acute myeloid leukemias (AMLs) remains poorly defined. We performed RNA sequencing of 12 EVI1-r AMLs and compared the results with those of other AML subtypes (n = 139) and normal CD34(+) cells (n = 17). Results confirm high frequencies of RAS and other activated signaling mutations (10/12 AMLs) and identify new recurrent mutations in splicing factors (5/12 AMLs in SF3B1 and 2/12 AMLs in U2AF1), IKZF1 (3/12 AMLs), and TP53 (3/12 AMLs). Mutations in IKZF1, a gene located on chromosome 7, and monosomy 7 are mutually exclusive in this disease. Moreover IKZF1 expression is halved in monosomy 7 leukemias. EVI-r AMLs are also characterized by a unique transcriptional signature with high expression levels of MECOM, PREX2, VIP, MYCT1, and PAWR. Our results suggest that EVI1-r AMLs could be molecularly defined by specific transcriptomic anomalies and a hitherto unseen mutational pattern. Larger patient cohorts will better determine the frequency of these events.

  15. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations

    PubMed Central

    Lavallée, Vincent-Philippe; Gendron, Patrick; Lemieux, Sébastien; D’Angelo, Giovanni; Hébert, Josée

    2015-01-01

    The genetic and transcriptional signature of EVI1 (ecotropic viral integration site 1)-rearranged (EVI1-r) acute myeloid leukemias (AMLs) remains poorly defined. We performed RNA sequencing of 12 EVI1-r AMLs and compared the results with those of other AML subtypes (n = 139) and normal CD34+ cells (n = 17). Results confirm high frequencies of RAS and other activated signaling mutations (10/12 AMLs) and identify new recurrent mutations in splicing factors (5/12 AMLs in SF3B1 and 2/12 AMLs in U2AF1), IKZF1 (3/12 AMLs), and TP53 (3/12 AMLs). Mutations in IKZF1, a gene located on chromosome 7, and monosomy 7 are mutually exclusive in this disease. Moreover IKZF1 expression is halved in monosomy 7 leukemias. EVI-r AMLs are also characterized by a unique transcriptional signature with high expression levels of MECOM, PREX2, VIP, MYCT1, and PAWR. Our results suggest that EVI1-r AMLs could be molecularly defined by specific transcriptomic anomalies and a hitherto unseen mutational pattern. Larger patient cohorts will better determine the frequency of these events. PMID:25331116

  16. Voltage-Gated Potassium Channel Antibody Paraneoplastic Limbic Encephalitis Associated with Acute Myeloid Leukemia

    PubMed Central

    Alcantara, Marion; Bennani, Omar; Verdure, Pierre; Leprêtre, Stéphane; Tilly, Hervé; Jardin, Fabrice

    2013-01-01

    Among paraneoplastic syndromes (PNS) associated with malignant hemopathies, there are few reports of PNS of the central nervous system and most of them are associated with lymphomas. Limbic encephalitis is a rare neurological syndrome classically diagnosed in the context of PNS. We report the case of a 81-year-old man who presented with a relapsed acute myeloid leukemia (AML) with minimal maturation. He was admitted for confusion with unfavorable evolution as he presented a rapidly progressive dementia resulting in death. A brain magnetic resonance imaging, performed 2 months after the onset, was considered normal. An electroencephalogram showed non-specific bilateral slow waves. We received the results of the blood screening of neuronal autoanti-bodies after the patient's death and detected the presence of anti-voltage-gated potassium channel (VGKC) antibodies at 102 pmol/l (normal at <30 pmol/l). Other etiologic studies, including the screening for another cause of rapidly progressive dementia, were negative. To our knowledge, this is the first case of anti-VGKC paraneoplastic limbic encephalitis related to AML. PMID:23898271

  17. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  18. Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia.

    PubMed

    Sung, Lillian; Lange, Beverly J; Gerbing, Robert B; Alonzo, Todd A; Feusner, James

    2007-11-15

    The primary objective was to describe the prevalence and characteristics of microbiologically defined infections and infection-related mortality (IRM) in 492 children with acute myeloid leukemia enrolled on CCG 2961. Secondary objectives were to determine the relationship between demographic, disease-related, and therapeutic variables, and infections and IRM. Institutions documented infections prospectively. Age, ethnicity, body mass index, leukemia karyotype, treatment, and institutional size were examined for association with infection outcomes. More than 60% of children experienced such infections in each of 3 phases of chemotherapy. There were 58 infectious deaths; cumulative incidence of IRM was 11% plus or minus 2%. Thirty-one percent of infectious deaths were associated with Aspergillus, 25.9% with Candida, and 15.5% with alpha hemolytic streptococci. Age older than 16 years (hazard ratio [HR], 3.32; 95% confidence interval [CI], 1.87-5.89; P < .001), nonwhite ethnicity (HR, 1.85; 95% CI, 1.10-3.09; P = .02), and underweight status (HR, 3.06; 95% CI, 1.51-6.22; P = .002) were associated with IRM, while size of the treating institution was not. Thus, age, ethnicity, and BMI were important contributors to IRM. Fungi and Gram-positive cocci were the most common organisms associated with IRM and, in particular, Aspergillus species was the largest contributor to infectious deaths.

  19. Elevated lymphocyte count at time of acute myeloid leukemia diagnosis is associated with shorter remission.

    PubMed

    Bar, Merav; Othus, Megan; Park, Hanahlyn M; Sandhu, Vicky; Chen, Xueyan; Wood, Brent L; Estey, Elihu

    2015-01-01

    In solid tumors, decreased absolute lymphocyte count (ALC) at diagnosis was found to be associated with poorer outcome, but there is only limited data on the impact of ALC in acute myeloid leukemia (AML). In this study we evaluated the prognostic value of ALC on outcome in 259 adult patients with AML who responded to induction therapy. Higher than normal ALC at diagnosis was associated with shorter remission (HR 4.06; p < 0.001), and decreased relapse free and overall survival (HR 3.47; p < 0.001 and HR 3.85; p < 0.001 respectively). Flow cytometry showed low frequency of natural killer (NK) cells and high frequency of CD4+ T cells (which includes the subset of T regulatory cells) in the high ALC group. Low frequency of NK cells and potentially high frequency of inhibitory T regulatory cells may result in weaker immune responses against residual leukemia and may explain the poorer outcome of the high ALC group.

  20. Initial absolute lymphocyte count as a prognostic factor for outcome in acute myeloid leukemia.

    PubMed

    Le Jeune, Caroline; Bertoli, Sarah; Elhamri, Mohamed; Vergez, Francois; Borel, Cecile; Huguet, Françoise; Michallet, Mauricette; Dumontet, Charles; Recher, Christian; Thomas, Xavier

    2014-04-01

    The absolute lymphocyte count (ALC) at presentation has been associated with survival in various malignancies. However, its prognostic value in acute myeloid leukemia (AML) has not been established. In a series of 1702 newly diagnosed patients with AML, we evaluated the prognostic value of ALC at diagnosis with regard to induction chemotherapy response, disease-free survival (DFS) and overall survival (OS). Low initial ALC (< 1 × 10(9)/L) appeared as a poor prognostic factor for DFS (p = 0.01) and OS (p = 0.02), while higher ALC (> 4.5 × 10(9)/L) showed a lower response rate after one (p = 0.004) or two induction chemotherapy courses (p = 0.01). However, ALC did not appear as an independent predictor of outcome in a multivariate analysis model also including age, cytogenetics and white blood cell count. Examination of lymphocyte subsets is warranted to specify the relationship between ALC at diagnosis and clinical outcome in AML.

  1. Minimal Residual Disease in Acute Myeloid Leukemia of Adults: Determination, Prognostic Impact and Clinical Applications

    PubMed Central

    Del Principe, Maria Ilaria; Buccisano, Francesco; Maurillo, Luca; Sconocchia, Giuseppe; Cefalo, Mariagiovanna; Consalvo, Maria Irno; Sarlo, Chiara; Conti, Consuelo; De Santis, Giovanna; De Bellis, Eleonora; Di Veroli, Ambra; Palomba, Patrizia; Attrotto, Cristina; Zizzari, Annagiulia; Paterno, Giovangiacinto; Voso, Maria Teresa; Del Poeta, Giovanni; Lo-Coco, Francesco; Arcese, William; Amadori, Sergio; Venditti, Adriano

    2016-01-01

    Pretreatment assessment of cytogenetic/genetic signature of acute myeloid leukemia (AML) has been consistently shown to play a major prognostic role but also to fail at predicting outcome on individual basis, even in low-risk AML. Therefore, we are in need of further accurate methods to refine the patients’ risk allocation process, distinguishing more adequately those who are likely to recur from those who are not. In this view, there is now evidence that the submicroscopic amounts of leukemic cells (called minimal residual disease, MRD), measured during the course of treatment, indicate the quality of response to therapy. Therefore, MRD might serve as an independent, additional biomarker to help to identify patients at higher risk of relapse. Detection of MRD requires the use of highly sensitive ancillary techniques, such as polymerase chain reaction (PCR) and multiparametric flow cytometry(MPFC). In the present manuscript, we will review the current approaches to investigate MRD and its clinical applications in AML management. PMID:27872732

  2. Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia

    PubMed Central

    Bhola, Patrick D.; Mar, Brenton G.; Lindsley, R. Coleman; Ryan, Jeremy A.; Hogdal, Leah J.; Vo, Thanh Trang; DeAngelo, Daniel J.; Galinsky, Ilene; Ebert, Benjamin L.

    2016-01-01

    Upfront resistance to chemotherapy and relapse following remission are critical problems in leukemia that are generally attributed to subpopulations of chemoresistant tumor cells. There are, however, limited means for prospectively identifying these subpopulations, which hinders an understanding of therapeutic resistance. BH3 profiling is a functional single-cell analysis using synthetic BCL-2 BH3 domain–like peptides that measures mitochondrial apoptotic sensitivity or “priming.” Here, we observed that the extent of apoptotic priming is heterogeneous within multiple cancer cell lines and is not the result of experimental noise. Apoptotic priming was also heterogeneous in treatment-naive primary human acute myeloid leukemia (AML) myeloblasts, and this heterogeneity decreased in chemotherapy-treated AML patients. The priming of the most apoptosis-resistant tumor cells, rather than the median priming of the population, best predicted patient response to induction chemotherapy. For several patients, these poorly primed subpopulations of AML tumor cells were enriched for antiapoptotic proteins. Developing techniques to identify and understand these apoptosis-insensitive subpopulations of tumor cells may yield insights into clinical chemoresistance and potentially improve therapeutic outcomes in AML. PMID:27599292

  3. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia.

    PubMed

    Andresen, Vibeke; Erikstein, Bjarte S; Mukherjee, Herschel; Sulen, André; Popa, Mihaela; Sørnes, Steinar; Reikvam, Håkon; Chan, Kok-Ping; Hovland, Randi; McCormack, Emmet; Bruserud, Øystein; Myers, Andrew G; Gjertsen, Bjørn T

    2016-12-01

    Mutated nucleophosmin 1 (NPM1) acts as a proto-oncogene and is present in ~30% of patients with acute myeloid leukemia (AML). Here we examined the in vitro and in vivo anti-leukemic activity of the NPM1 and chromosome region maintenance 1 homolog (CRM1) interacting natural product avrainvillamide (AVA) and a fully syntetic AVA analog. The NPM1-mutated cell line OCI-AML3 and normal karyotype primary AML cells with NPM1 mutations were significantly more sensitive towards AVA than cells expressing wild-type (wt) NPM1. Furthermore, the presence of wt p53 sensitized cells toward AVA. Cells exhibiting fms-like tyrosine kinase 3 (FLT3) internal tandem duplication mutations also displayed a trend toward increased sensitivity to AVA. AVA treatment induced nuclear retention of the NPM1 mutant protein (NPMc+) in OCI-AML3 cells and primary AML cells, caused proteasomal degradation of NPMc+ and the nuclear export factor CRM1 and downregulated wt FLT3 protein. In addition, both AVA and its analog induced differentiation of OCI-AML3 cells together with an increased phagocytotic activity and oxidative burst potential. Finally, the AVA analog displayed anti-proliferative activity against subcutaneous xenografted HCT-116 and OCI-AML3 cells in mice. Our results demonstrate that AVA displays enhanced potency against defined subsets of AML cells, suggesting that therapeutic intervention employing AVA or related compounds may be feasible.

  4. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    PubMed

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  5. BAG1: The Guardian of Anti-Apoptotic Proteins in Acute Myeloid Leukemia

    PubMed Central

    Aveic, Sanja; Pigazzi, Martina; Basso, Giuseppe

    2011-01-01

    BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance. PMID:22016818

  6. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia.

    PubMed

    Feller, N; van der Pol, M A; van Stijn, A; Weijers, G W D; Westra, A H; Evertse, B W; Ossenkoppele, G J; Schuurhuis, G J

    2004-08-01

    Outgrowth of minimal residual disease (MRD) in acute myeloid leukaemia (AML) is responsible for the occurrence of relapses. MRD can be quantified by immunophenotyping on a flow cytometer using the expression of leukaemia-associated phenotypes. MRD was monitored in follow-up samples taken from bone marrow (BM) of 72 patients after three different cycles of chemotherapy and from autologous peripheral blood stem cell (PBSC) products. The MRD% in BM after the first cycle (n=51), second cycle (n=52) and third cycle (n=30), as well as in PBSC products (n=39) strongly correlated with relapse-free survival. At a cutoff level of 1% after the first cycle and median cutoff levels of 0.14% after the second, 0.11% after the third cycle and 0.13% for PBSC products, the relative risk of relapse was a factor 6.1, 3.4, 7.2 and 5.7, respectively, higher for patients in the high MRD group. Also, absolute MRD cell number/ml was highly predictive of the clinical outcome. After the treatment has ended, an increase of MRD% predicted forthcoming relapses, with MRD assessment intervals of < or =3 months. In conclusion, MRD parameter assessment at different stages of disease is highly reliable in predicting survival and forthcoming relapses in AML.

  7. Impact of registration on clinical trials on infection risk in pediatric acute myeloid leukemia.

    PubMed

    Dix, David; Aplenc, Richard; Bowes, Lynette; Cellot, Sonia; Ethier, Marie-Chantal; Feusner, Jim; Gillmeister, Biljana; Johnston, Donna L; Lewis, Victor; Michon, Bruno; Mitchell, David; Portwine, Carol; Price, Victoria; Silva, Mariana; Stobart, Kent; Yanofsky, Rochelle; Zelcer, Shayna; Beyene, Joseph; Sung, Lillian

    2016-04-01

    Little is known about the impact of enrollment on therapeutic clinical trials on adverse event rates. Primary objective was to describe the impact of clinical trial registration on sterile site microbiologically documented infection for children with newly diagnosed acute myeloid leukemia (AML). We conducted a multicenter cohort study that included children aged ≤18 years with de novo AML. Primary outcome was microbiologically documented sterile site infection. Infection rates were compared between those registered and not registered on clinical trials. Five hundred seventy-four children with AML were included of which 198 (34.5%) were registered on a therapeutic clinical trial. Overall, 400 (69.7%) had at least one sterile site microbiologically documented infection. In multiple regression, registration on clinical trials was independently associated with a higher risk of microbiologically documented sterile site infection [adjusted odds ratio (OR) 1.24, 95% confidence interval (CI) 1.01-1.53; p = 0.040] and viridans group streptococcal infection (OR 1.46, 95% CI 1.08-1.98; p = 0.015). Registration on trials was not associated with Gram-negative or invasive fungal infections. Children with newly diagnosed AML enrolled on clinical trials have a higher risk of microbiologically documented sterile site infection. This information may impact on supportive care practices in pediatric AML.

  8. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia

    PubMed Central

    Churpek, Jane E.; Pyrtel, Khateriaa; Kanchi, Krishna-Latha; Shao, Jin; Koboldt, Daniel; Miller, Christopher A.; Shen, Dong; Fulton, Robert; O’Laughlin, Michelle; Fronick, Catrina; Pusic, Iskra; Uy, Geoffrey L.; Braunstein, Evan M.; Levis, Mark; Ross, Julie; Elliott, Kevin; Heath, Sharon; Jiang, Allan; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Welch, John; Wilson, Richard; Ley, Timothy J.; Godley, Lucy A.

    2015-01-01

    Familial clustering of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) can be caused by inherited factors. We screened 59 individuals from 17 families with 2 or more biological relatives with MDS/AML for variants in 12 genes with established roles in predisposition to MDS/AML, and identified a pathogenic germ line variant in 5 families (29%). Extending the screen with a panel of 264 genes that are recurrently mutated in de novo AML, we identified rare, nonsynonymous germ line variants in 4 genes, each segregating with MDS/AML in 2 families. Somatic mutations are required for progression to MDS/AML in these familial cases. Using a combination of targeted and exome sequencing of tumor and matched normal samples from 26 familial MDS/AML cases and asymptomatic carriers, we identified recurrent frameshift mutations in the cohesin-associated factor PDS5B, co-occurrence of somatic ASXL1 mutations with germ line GATA2 mutations, and recurrent mutations in other known MDS/AML drivers. Mutations in genes that are recurrently mutated in de novo AML were underrepresented in the familial MDS/AML cases, although the total number of somatic mutations per exome was the same. Lastly, clonal skewing of hematopoiesis was detected in 67% of young, asymptomatic RUNX1 carriers, providing a potential biomarker that could be used for surveillance in these high-risk families. PMID:26492932

  9. The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia.

    PubMed

    Karlic, Heidrun; Herrmann, Harald; Varga, Franz; Thaler, Roman; Reitermaier, Rene; Spitzer, Silvia; Ghanim, Viviane; Blatt, Katharina; Sperr, Wolfgang R; Valent, Peter; Pfeilstöcker, Michael

    2014-04-01

    Disordered stem cell epigenetics and apoptosis-regulating mechanisms contribute essentially to the pathogenesis of myelodysplastic syndromes (MDS) and may trigger disease-progression to secondary acute myeloid leukemia (AML). Expression of apoptosis-mediators FAS (CD95) and DAPK1 the latter being also known for its association with autophagy are upregulated in neoplastic cells in patients with low-risk MDS and epigenetically silenced and downregulated in high-risk MDS and AML as confirmed by a study 50 MDS and 30 AMLs complementing this review. 5-Azacytidine (AZA) and 5-aza-2'deoxycytidine (DAC), promoted FAS and DAPK1 gene demethylation and their (re)expression as well as apoptosis in leukemic cell lines (HL-60, KG1) which can be reversed by siRNA against FAS. Thus, promoter-demethylation of FAS and DAPK1 represents a critical mechanism of drug-induced apoptosis in neoplastic cells in MDS and AML which underscores the clinical implication of epigenetically active therapies.

  10. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia

    PubMed Central

    Hirsch, Pierre; Zhang, Yanyan; Tang, Ruoping; Joulin, Virginie; Boutroux, Hélène; Pronier, Elodie; Moatti, Hannah; Flandrin, Pascale; Marzac, Christophe; Bories, Dominique; Fava, Fanny; Mokrani, Hayat; Betems, Aline; Lorre, Florence; Favier, Rémi; Féger, Frédéric; Mohty, Mohamad; Douay, Luc; Legrand, Ollivier; Bilhou-Nabera, Chrystèle; Louache, Fawzia; Delhommeau, François

    2016-01-01

    In acute myeloid leukaemia (AML) initiating pre-leukaemic lesions can be identified through three major hallmarks: their early occurrence in the clone, their persistence at relapse and their ability to initiate multilineage haematopoietic repopulation and leukaemia in vivo. Here we analyse the clonal composition of a series of AML through these characteristics. We find that not only DNMT3A mutations, but also TET2, ASXL1 mutations, core-binding factor and MLL translocations, as well as del(20q) mostly fulfil these criteria. When not eradicated by AML treatments, pre-leukaemic cells with these lesions can re-initiate the leukaemic process at various stages until relapse, with a time-dependent increase in clonal variegation. Based on the nature, order and association of lesions, we delineate recurrent genetic hierarchies of AML. Our data indicate that first lesions, variegation and treatment selection pressure govern the expansion and adaptive behaviour of the malignant clone, shaping AML in a time-dependent manner. PMID:27534895

  11. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia.

    PubMed

    Leung, A Y H; Man, C-H; Kwong, Y-L

    2013-02-01

    Internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 (FLT3) gene is a gain-of-function mutation common in acute myeloid leukaemia (AML). It is associated with inferior prognosis and response to chemotherapy. Single base mutations at the FLT3 tyrosine kinase domain (TKD) also leads to a gain of function, although its prognostic significance is less well defined because of its rarity. The clinical benefits of FLT3 inhibition are generally limited to AML with FLT3-ITD. However, responses are transient and leukaemia progression invariably occurs. There is compelling evidence that leukaemia clones carrying both ITD and TKD mutations appear when resistance to FLT3 inhibitors occurs. Interestingly, the emergence of double ITD and TKD mutants can be recapitulated in vitro when FLT3-ITD+ leukaemia cell lines are treated with mutagens and FLT3 inhibitors. Furthermore, murine xenotransplantation models also suggest that, in some cases, the FTL3-ITD and TKD double mutants actually exist in minute amounts before treatment with FLT3 inhibitors, expand under the selection pressure of FLT3 inhibition and become the predominant resistant clone(s) during the drug-refractory phase. On the basis of this model of clonal evolution, a multipronged strategy using more potent FLT3 inhibitors, and a combinatorial approach targeting both FLT3-dependent and FLT3-independent pathways, will be needed to improve outcome.

  12. The genomic landscape of core-binding factor acute myeloid leukemias.

    PubMed

    Faber, Zachary J; Chen, Xiang; Gedman, Amanda Larson; Boggs, Kristy; Cheng, Jinjun; Ma, Jing; Radtke, Ina; Chao, Jyh-Rong; Walsh, Michael P; Song, Guangchun; Andersson, Anna K; Dang, Jinjun; Dong, Li; Liu, Yu; Huether, Robert; Cai, Zhongling; Mulder, Heather; Wu, Gang; Edmonson, Michael; Rusch, Michael; Qu, Chunxu; Li, Yongjin; Vadodaria, Bhavin; Wang, Jianmin; Hedlund, Erin; Cao, Xueyuan; Yergeau, Donald; Nakitandwe, Joy; Pounds, Stanley B; Shurtleff, Sheila; Fulton, Robert S; Fulton, Lucinda L; Easton, John; Parganas, Evan; Pui, Ching-Hon; Rubnitz, Jeffrey E; Ding, Li; Mardis, Elaine R; Wilson, Richard K; Gruber, Tanja A; Mullighan, Charles G; Schlenk, Richard F; Paschka, Peter; Döhner, Konstanze; Döhner, Hartmut; Bullinger, Lars; Zhang, Jinghui; Klco, Jeffery M; Downing, James R

    2016-12-01

    Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.

  13. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia.

    PubMed

    Raponi, Mitch; Lancet, Jeffrey E; Fan, Hongtao; Dossey, Lesley; Lee, Grace; Gojo, Ivana; Feldman, Eric J; Gotlib, Jason; Morris, Lawrence E; Greenberg, Peter L; Wright, John J; Harousseau, Jean-Luc; Löwenberg, Bob; Stone, Richard M; De Porre, Peter; Wang, Yixin; Karp, Judith E

    2008-03-01

    At present, there is no method available to predict response to farnesyltransferase inhibitors (FTIs). We analyzed gene expression profiles from the bone marrow of patients from a phase 2 study of the FTI tipifarnib in older adults with previously untreated acute myeloid leukemia (AML). The RASGRP1/APTX gene expression ratio was found to predict response to tipifarnib with the greatest accuracy using a "leave one out" cross validation (LOOCV; 96%). RASGRP1 is a guanine nucleotide exchange factor that activates RAS, while APTX (aprataxin) is involved in DNA excision repair. The utility of this classifier for predicting response to tipifarnib was validated in an independent set of 58 samples from relapsed or refractory AML, with a negative predictive value (NPV) and positive predictive value (PPV) of 92% and 28%, respectively (odds ratio of 4.4). The classifier also predicted for improved overall survival (154 vs 56 days; P < .001), which was independent of other covariates, including a previously described prognostic gene expression classifier. Therefore, these data indicate that a 2-gene expression assay may have utility in categorizing a population of patients with AML who are more likely to respond to tipifarnib.

  14. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia

    PubMed Central

    Kühnl, Andrea; Valk, Peter J. M.; Sanders, Mathijs A.; Ivey, Adam; Hills, Robert K.; Mills, Ken I.; Gale, Rosemary E.; Kaiser, Martin F.; Dillon, Richard; Joannides, Melanie; Gilkes, Amanda; Haferlach, Torsten; Schnittger, Susanne; Duprez, Estelle; Linch, David C.; Delwel, Ruud; Löwenberg, Bob; Baldus, Claudia D.; Solomon, Ellen; Burnett, Alan K.

    2015-01-01

    The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and codownregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome. PMID:25805812

  15. Mitochondrial cytochrome c oxidase subunit II variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia.

    PubMed

    Silkjaer, Trine; Nyvold, Charlotte Guldborg; Juhl-Christensen, Caroline; Hokland, Peter; Nørgaard, Jan Maxwell

    2013-10-01

    Alterations in the two catalytic genes cytochrome c oxidase subunits I and II (COI and COII) have recently been suggested to have an adverse impact on prognosis in patients with acute myeloid leukaemia (AML). In order to explore this in further detail, we sequenced these two mitochondrial genes in diagnostic bone marrow or blood samples in 235 patients with AML. In 37 (16%) patients, a non-synonymous variation in either COI or COII could be demonstrated. No patients harboured both COI and COII non-synonymous variations. Twenty-four (10%) patients had non-synonymous variations in COI, whereas 13 (6%) patients had non-synonymous variations in COII. The COI and COII are essential subunits of cytochrome c oxidase that is the terminal enzyme in the oxidative phosphorylation complexes. In terms of disease course, we observed that in patients with a normal cytogenetic analysis at disease presentation (CN-AML) treated with curative intent, the presence of a non-synonymous variation in the COII was an adverse prognostic marker for both overall survival and disease-free survival (DFS) in both univariate (DFS; hazard ratio (HR) 4.4, P = 0.006) and multivariate analyses (DFS; HR 7.2, P = 0.001). This is the first demonstration of a mitochondrial aberration playing an adverse prognostic role in adult AML, and we argue that its role as a potentially novel adverse prognostic marker in the subset of CN-AML should be explored further.

  16. Outpatient care of patients with acute myeloid leukemia: Benefits, barriers, and future considerations

    PubMed Central

    Vaughn, Jennifer E.; Buckley, Sarah A.; Walter, Roland B.

    2017-01-01

    Patients with acute myeloid leukemia (AML) who receive intensive induction or re-induction chemotherapy with curative intent typically experience prolonged cytopenias upon completion of treatment. Due to concerns regarding infection and bleeding risk as well as significant transfusion and supportive care requirements, patients have historically remained in the hospital until blood count recovery—a period of approximately 30 days. The rising cost of AML care has prompted physicians to reconsider this practice, and a number of small studies have suggested the safety and feasibility of providing outpatient supportive care to patients following intensive AML (re-) induction therapy. Potential benefits include a significant reduction of healthcare costs, improvement in quality of life, and decreased risk of hospital-acquired infections. In this article, we will review the currently available literature regarding this practice and discuss questions to be addressed in future studies. In addition, we will consider some of the barriers that must be overcome by institutions interested in implementing an “early discharge” policy. While outpatient management of selected AML patients appears safe, careful planning is required in order to provide the necessary support, education and rapid management of serious complications that occur among this very vulnerable patient population. PMID:27101148

  17. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells.

    PubMed

    Majeti, R

    2011-03-03

    Accumulating evidence indicates that many human cancers are organized as a cellular hierarchy initiated and maintained by self-renewing cancer stem cells. This cancer stem cell model has been most conclusively established for human acute myeloid leukemia (AML), although controversies still exist regarding the identity of human AML stem cells (leukemia stem cell (LSC)). A major implication of this model is that, in order to eradicate the cancer and cure the patient, the cancer stem cells must be eliminated. Monoclonal antibodies have emerged as effective targeted therapies for the treatment of a number of human malignancies and, given their target antigen specificity and generally minimal toxicity, are well positioned as cancer stem cell-targeting therapies. One strategy for the development of monoclonal antibodies targeting human AML stem cells involves first identifying cell surface antigens preferentially expressed on AML LSC compared with normal hematopoietic stem cells. In recent years, a number of such antigens have been identified, including CD123, CD44, CLL-1, CD96, CD47, CD32, and CD25. Moreover, monoclonal antibodies targeting CD44, CD123, and CD47 have demonstrated efficacy against AML LSC in xenotransplantation models. Hopefully, these antibodies will ultimately prove to be effective in the treatment of human AML.

  18. The factors affecting early death after the initial therapy of acute myeloid leukemia

    PubMed Central

    Malkan, Umit Yavuz; Gunes, Gursel; Eliacik, Eylem; Haznedaroglu, Ibrahim Celalettin; Etgul, Sezgin; Aslan, Tuncay; Yayar, Okan; Aydin, Seda; Demiroglu, Haluk; Ozcebe, Osman Ilhami; Sayinalp, Nilgun; Goker, Hakan; Aksu, Salih; Buyukasik, Yahya

    2015-01-01

    There are some improvements in management of acute myeloid leukemia (AML). However, induction-induced deaths still remain as a major problem. The aim of this study is to assess clinical parameters affecting early death in patients with AML. 199 AML patients, who were treated with intensive, non-intensive or supportive treatment between 2002 and 2014 in Hacettepe Hematology Department, were analyzed retrospectively. In our study early death rate for elderly was found to be lower than previous reports whereas it was similar for those who were under age of 60. Better ECOG performance (ECOG performance score 0 and 1) and non-intensive treatment associated with lower early death rates, however APL-type disease associated with higher early death rates. ECOG performance score at diagnosis was found to be the most related independent factor with higher rate of early death in 15 days after treatment (P<0.001). Therefore we decided to understand the factors which were related with ECOG. WBC count at diagnosis was found to be the only related parameter with ECOG performance score. Leucocyte count at diagnosis appears like to have an indirect effect on early death in AML patients. It maybe suggested that in recent years there is an improvement in early death rates of elderly AML patients. The currently reported findings require prospective validation and would encourage the incorporation of other next generation genomics for the prediction of early death and overall risk status of AML. PMID:26885243

  19. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia

    PubMed Central

    Hou, Hsin-An; Liu, Chieh-Yu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Tsai, Cheng-Hong; Lin, Chien-Chin; Lin, Liang-In; Tseng, Mei-Hsuan; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Li, Chi-Cheng; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Chen, Chien-Yuan; Lin, Chien-Ting; Wu, Shang-Ju; Tsay, Woei; Tien, Hwei-Fang

    2016-01-01

    Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but the prognostic relevance of these genes mutations in acute myeloid leukemia (AML) remains unclear. In this study, we investigated mutations of three SF genes, SF3B1, U2AF1 and SRSF2, by Sanger sequencing in 500 patients with de novo AML and analysed their clinical relevance. SF mutations were identified in 10.8% of total cohort and 13.2% of those with intermediate-risk cytogenetics. SF mutations were closely associated with RUNX1, ASXL1, IDH2 and TET2 mutations. SF-mutated AML patients had a significantly lower complete remission rate and shorter disease-free survival (DFS) and overall survival (OS) than those without the mutation. Multivariate analysis demonstrated that SFmutation was an independent poor prognostic factor for DFS and OS. A scoring system incorporating SF mutation and ten other prognostic factors was proved very useful to risk-stratify AML patients. Sequential study of paired samples showed that SF mutations were stable during AML evolution. In conclusion, SF mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression. These mutations may be potential targets for novel treatment and biomarkers for disease monitoring in AML. PMID:26812887

  20. Targeting Leukemia Stem Cells in vivo with AntagomiR-126 Nanoparticles in Acute Myeloid Leukemia

    PubMed Central

    Dorrance, Adrienne M.; Neviani, Paolo; Ferenchak, Greg J.; Huang, Xiaomeng; Nicolet, Deedra; Maharry, Kati S.; Ozer, Hatice G; Hoellarbauer, Pia; Khalife, Jihane; Hill, Emily B.; Yadav, Marshleen; Bolon, Brad N.; Lee, Robert J.; Lee, L.James; Croce, Carlo M.; Garzon, Ramiro; Caligiuri, Michael A.; Bloomfield, Clara D.; Marcucci., Guido

    2015-01-01

    Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to “stemness” and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (≥60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles (NP) containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, i.e., miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients. PMID:26055302

  1. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations

    PubMed Central

    Kayser, Sabine; Levis, Mark J.

    2015-01-01

    Internal tandem duplications of the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent gene mutations in acute myeloid leukemia (AML) and are associated with poor clinical outcome. The remission rate is high with intensive chemotherapy, but most patients eventually relapse. During the last decade, FLT3 mutations have emerged as an attractive target for a molecularly specific treatment strategy. Targeting FLT3 receptor tyrosine kinases in AML has shown encouraging results in the treatment of FLT3 mutated AML, but in most patients responses are incomplete and not sustained. Newer, more specific compounds seem to have a higher potency and selectivity against FLT3. During therapy with FLT3 tyrosine kinase inhibitors (TKIs) the induction of acquired resistance has emerged as a clinical problem. Therefore, optimization of the targeted therapy and potential treatment options to overcome resistance is currently the focus of clinical research. In this review we discuss the use and limitations of TKIs as a therapeutic strategy for the treatment of FLT3 mutated AML, including mechanisms of resistance to TKIs as well as possible novel strategies to improve FLT3 inhibitor therapy. PMID:23631653

  2. Pretransplant HLA mistyping in diagnostic samples of acute myeloid leukemia patients due to acquired uniparental disomy.

    PubMed

    Dubois, V; Sloan-Béna, F; Cesbron, A; Hepkema, B G; Gagne, K; Gimelli, S; Heim, D; Tichelli, A; Delaunay, J; Drouet, M; Jendly, S; Villard, J; Tiercy, J-M

    2012-09-01

    Although acquired uniparental disomy (aUPD) has been reported in relapse acute myeloid leukemia (AML), pretransplant aUPD involving chromosome 6 is poorly documented. Such events could be of interest because loss of heterozygosity (LOH) resulting from aUPD in leukemic cells may lead to erroneous results if HLA typing for hematopoietic stem cell donor searches is performed on blood samples drawn during blastic crisis. We report here six AML patients whose HLA typing was performed on DNA extracted from peripheral blood obtained at diagnosis. We observed LOH involving the entire HLA region (three patients), HLA-A, B, C (two patients) and HLA-A only (one patient). An array-comparative genomic hybridization showed that copy number was neutral for all loci, thus revealing partial aUPD of chromosome 6p21. When HLA typing was performed on remission blood samples both haplotypes were detected. A 3-4% LOH incidence was estimated in AML patients with high blast counts. Based on DNA mixing experiments, we determined by PCR sequence-specific oligonucleotide hybridization on microbeads arrays a detection threshold for HLA-A, B, DRB1 heterozygosity in blood samples with <80% blasts. Because aUPD may be partial, any homozygous HLA result should be confirmed by a second typing performed on buccal swabs or on blood samples from the patient in remission.

  3. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia.

    PubMed

    Gupta, Manu; Raghavan, Manoj; Gale, Rosemary E; Chelala, Claude; Allen, Christopher; Molloy, Gael; Chaplin, Tracy; Linch, David C; Cazier, Jean-Baptiste; Young, Bryan D

    2008-09-01

    The acquisition of uniparental disomy (aUPD) in acute myeloid leukemia (AML) results in homozygosity for known gene mutations. Uncovering novel regions of aUPD has the potential to identify previously unknown mutational targets. We therefore aimed to develop a map of the regions of aUPD in AML. Here, we have analyzed a large set of diagnostic AML samples (n = 454) from young adults (age: 15-55 years) using genotype arrays. Acquired UPD was found in 17% of the samples with a nonrandom distribution particularly affecting chromosome arms 13q, 11p, and 11q. Novel recurrent regions of aUPD were uncovered at 2p, 17p, 2q, 17q, 1p, and Xq. Overall, aUPDs were observed across all cytogenetic risk groups, although samples with aUPD13q (5.4% of samples) belonged exclusively to the intermediate-risk group as defined by cytogenetics. All cases with a high FLT3-ITD level, measured previously, had aUPD13q covering the FLT3 gene. Significantly, none of the samples with FLT3-ITD(-)/FLT3-TKD(+) mutation exhibited aUPD13q. Of the 119 aUPDs observed, the majority (87%) were due to mitotic recombination while only 13% were due to nondisjunction. This study demonstrates aUPD is a frequent and significant finding in AML and pinpoints regions that may contain novel mutational targets.

  4. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia

    PubMed Central

    Lopez, Sophie; Voisset, Edwige; Tisserand, Julie C.; Mosca, Cyndie; Prebet, Thomas; Santamaria, David; Dubreuil, Patrice; Sepulveda, Paulo De

    2016-01-01

    CDK4/CDK6 and RB proteins drive the progression through the G1 phase of the cell cycle. In acute myeloid leukemia (AML), the activity of the CDK/Cyclin D complex is increased. The mechanism involved is unknown, as are the respective roles played by CDK4 or CDK6 in this process. Here, we report that AML cells carrying FLT3-ITD mutations are dependent on CDK6 for cell proliferation while CDK4 is not essential. We showed that FLT3-ITD signaling is responsible for CDK6 overexpression, through a pathway involving the SRC-family kinase HCK. Accordingly, FLT3-ITD failed to transform primary hematopoietic progenitor cells from Cdk6−/− mice. Our results demonstrate that CDK6 is the primary target of CDK4/CDK6 inhibitors in FLT3-ITD positive AML. Furthermore, we delineate an essential protein kinase pathway -FLT3/HCK/CDK6- in the context of AML with FLT3-ITD mutations. PMID:27323399

  5. [IDH mutations activate Hoxa9/Meis1 and hypoxia pathways in acute myeloid leukemia model mice].

    PubMed

    Ogawara, Yoko; Kitabayashi, Issay

    2015-08-01

    Mutations in isocitrate dehydrogenase (IDH) 1 and 2 are frequently observed in acute myeloid leukemia (AML), glioma, and many other cancers. While wild-type IDHs mediate exchanges between isocitrate and α-ketoglutarate (α-KG), mutant IDHs convert α-KG to oncometabolite 2-hydroxyglutarate (2-HG), which causes dysregulation of a set of α-KG-dependent dioxygenases such as TET, histone demethylase and others. Because mutant IDH has no necessary functions in normal cells, inhibitors directed against mutant IDH are not expected to have the side effects as anti-cancer agents. To determine whether mutant IDH enzymes are valid targets for cancer therapy, we created a mouse model of mutant IDH2-dependent AML. By using a combination of AML model mice with cre-loxp, we conditionally deleted mutant IDH2 from AML mice, which resulted in the loss of leukemia stem cells and significantly delayed the progression of AML. These results indicate that mutant IDHs are promising targets for anticancer therapy.

  6. Treatment of older patients with acute myeloid leukemia (AML): a Canadian consensus

    PubMed Central

    Brandwein, Joseph M; Geddes, Michelle; Kassis, Jeannine; Kew, Andrea K; Leber, Brian; Nevill, Thomas; Sabloff, Mitchell; Sandhu, Irwindeep; Schuh, Andre C; Storring, John M; Ashkenas, John

    2013-01-01

    Patients over age 60 comprise the majority of those diagnosed with acute myeloid leukemia (AML), but treatment approaches in this population are variable, with many uncertainties and controversies. Our group conducted a literature review to summarize the latest information and to develop a consensus document with practical treatment recommendations. We addressed five key questions: selection criteria for patients to receive intensive induction chemotherapy; optimal induction and post-remission regimens; allogeneic hematopoietic stem cell transplantation (HSCT); treatment of patients not suitable for induction chemotherapy; and treatment of patients with prior hematological disorders or therapy-related AML. Relevant literature was identified through a PubMed search of publications from 1991 to 2012. Key findings included the recognition that cytogenetics and molecular markers are major biologic determinants of treatment outcomes in the older population, both during induction therapy and following HSCT. Although disease-specific and patient-specific risk factors for poor outcomes are more common in the older population, age is not in itself sufficient grounds for withholding established treatments, including induction and consolidation chemotherapy. The role of HSCT and use of hypomethylating agents are discussed. Finally, suggested treatment algorithms are outlined, based on these recommendations. PMID:23675565

  7. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia.

    PubMed

    Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-Aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi

    2013-09-01

    FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan-Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.

  8. Acute Myeloid Leukemia Relapse Presenting as Complete Monocular Vision Loss due to Optic Nerve Involvement

    PubMed Central

    2016-01-01

    Acute myeloid leukemia (AML) involvement of the central nervous system is relatively rare, and detection of leptomeningeal disease typically occurs only after a patient presents with neurological symptoms. The case herein describes a 48-year-old man with relapsed/refractory AML of the mixed lineage leukemia rearrangement subtype, who presents with monocular vision loss due to leukemic eye infiltration. MRI revealed right optic nerve sheath enhancement and restricted diffusion concerning for nerve ischemia and infarct from hypercellularity. Cerebrospinal fluid (CSF) analysis showed a total WBC count of 81/mcl with 96% AML blasts. The onset and progression of visual loss were in concordance with rise in peripheral blood blast count. A low threshold for diagnosis of CSF involvement should be maintained in patients with hyperleukocytosis and high-risk cytogenetics so that prompt treatment with whole brain radiation and intrathecal chemotherapy can be delivered. This case suggests that the eye, as an immunoprivileged site, may serve as a sanctuary from which leukemic cells can resurge and contribute to relapsed disease in patients with high-risk cytogenetics. PMID:27668104

  9. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia

    PubMed Central

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-01-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case–control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7–1.8) for 37–100 Bq m–3 and 1.1 (95% CI 0.6–2.0) for > 100 Bq m–3 compared with < 37 Bq m–3. Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children ≥2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML. © 1999 Cancer Research Campaign PMID:10555766

  10. Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia.

    PubMed

    Tailler, M; Senovilla, L; Lainey, E; Thépot, S; Métivier, D; Sébert, M; Baud, V; Billot, K; Fenaux, P; Galluzzi, L; Boehrer, S; Kroemer, G; Kepp, O

    2012-07-26

    Despite recent progress in the treatment of acute myeloid leukemia (AML), the prognosis of this rather heterogeneous disease remains poor and novel chemotherapeutics that specifically target leukemic cells must be developed. To address this need at the preclinical level, we implemented a high content imaging-based screen for the identification of small agents that induce AML cell death in vitro. Among a panel of 1040 Food and Drug Administration-approved agents, we identified pyrithione zinc (PZ) and ouabain (OUA) as potential antileukemic compounds. Both PZ and OUA efficiently induced cell death associated with apoptotic chromatin condensation and inhibition of nuclear factor-κB survival signaling, leading to reduced expression of antiapoptotic proteins, in several AML cell lines. PZ- and OUA-induced cell death was associated with the permeabilization of the outer mitochondrial membrane and led to the release of cytochrome c followed by caspase activation. Both PZ and OUA exerted significant anticancer effects in vivo, on human AML cells xenografts as well as ex vivo, on CD34(+) (but not CD34(-)) malignant myeloblasts from AML patients. Altogether, our results suggest that PZ and OUA may exhibit antileukemic effects by inducing the apoptotic demise of AML cells.

  11. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease.

    PubMed Central

    Macedo, A; San Miguel, J F; Vidriales, M B; López-Berges, M C; García-Marcos, M A; Gonzalez, M; Landolfi, C; Orfão, A

    1996-01-01

    AIM: To explore the role of phenotypic changes as possible limiting factors in the immunological detection of minimal residual disease in patients with acute myeloid leukaemia (AML). METHODS: 20 relapses were evaluated, with special attention to changes in the criteria used for the definition of a phenotype as "aberrant". In all cases the same monoclonal antibody and fluorochrome were used at diagnosis and in relapse. RESULTS: Six out of the 16 patients showed aberrant phenotypes at diagnosis. At relapse, no changes in the aberrant phenotypes were detected in most of the patients; nevertheless, in two of the four patients with asynchronous antigen expression this aberration disappeared at relapse. At diagnosis in both cases there were already small blast cell subpopulations showing the phenotype of leukaemic cells at relapse. Ten out of the 16 cases analysed showed significant changes in the expression of at least one of the markers analysed. CONCLUSIONS: At relapse in AML the "leukaemic phenotypes" usually remained unaltered, while other phenotypic features--not relevant for distinguishing leukaemic blast cells among normal progenitors--changed frequently; however, they were not a major limitation in the immunological detection of minimal residual disease. PMID:8666678

  12. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia

    PubMed Central

    Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme

    2013-01-01

    Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241

  13. In Vitro Apoptotic Effects of Farnesyltransferase blockade in Acute Myeloid Leukemia Cells

    PubMed Central

    Giudice, V; Ricci, P; Marino, L; Rocco, M; Villani, G; Langella, M; Manente, L; Seneca, E; Ferrara, I; Pezzullo, L; Serio, B; Selleri, C

    2016-01-01

    Farnesyltransferase inhibitors (FTIs) are a class of oral anti-cancer drugs currently tested in phase I-II clinical trials for treatment of hematological malignancies. The in vitro effects of various FTIs (alpha-hydroxyfarnesylphosphonic acid, manumycin-A and SCH66336) were tested on CD34+ KG1a cell line and in primary acute myeloid leukemia (AML) cells from 64 patients. By cell viability and clonogeneic methylcellulose assays, FTIs showed a significant inhibitory activity in CD34+ KG1a and primary bone marrow (BM) leukemic cells from 56% of AML patients. FTIs also induced activation of caspase-3 and Fas-independent apoptosis, confirmed by the finding that inhibition of caspase-8 was not associated with the rescue of FTI-treated cells. We concluded that other cellular events induced by FTIs may trigger activation of caspase-3 and subsequent apoptosis, but the expression of proapoptotic molecules, as Bcl-2 and Bcl-XL, and antiapoptotic, as Bcl-X(s), were not modified by FTIs. By contrast, expression of inducible nitric oxide synthase (iNOS) was increased in FTI-treated AML cells. Our results suggest a very complex mechanism of action of FTIs that require more studies for a better clinical use of the drugs alone or in combination in the treatment of hematological malignancies. PMID:27896224

  14. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia.

    PubMed

    Sekeres, Mikkael A; Peterson, Bercedis; Dodge, Richard K; Mayer, Robert J; Moore, Joseph O; Lee, Edward J; Kolitz, Jonathan; Baer, Maria R; Schiffer, Charles A; Carroll, Andrew J; Vardiman, James W; Davey, Frederick R; Bloomfield, Clara D; Larson, Richard A; Stone, Richard M

    2004-06-01

    Whites have a more favorable prognosis than African Americans for a number of cancers. The relationship between race and outcome is less clear in acute myeloid leukemia (AML). Using data from 7 Cancer and Leukemia Group B studies initiated from 1985 to 1997, we conducted a retrospective cross-sectional analysis of 2570 patients (270 African American and 2300 white) with de novo AML who received induction chemotherapy. African Americans were younger than whites (48 versus 54 years, P <.001). African Americans also had different cytogenetic risk group distributions than whites (P <.001): they were more commonly classified in the favorable (23% versus 14%) and unfavorable (31% versus 23%) groups, and less commonly classified in the intermediate group (47% versus 63%). African American men had a lower complete remission (CR) rate (54%, compared with 64% for white men, 65% for white women, and 70% for African American women, P =.001) and a worse overall survival compared with all other patients (P =.004), when known risk factors are taken into account. African Americans and whites with AML differ with respect to important prognostic factors. African American men have worse CR rates and overall survival than whites and African American women, and should be considered a poor-risk group.

  15. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    PubMed

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML.

  16. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia

    PubMed Central

    Guinn, Barbara-ann; Mohamedali, Azim; Mills, Ken I.; Czepulkowski, Barbara; Schmitt, Michael; Greiner, Jochen

    2007-01-01

    Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease. PMID:19662193

  17. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia

    PubMed Central

    Ng, Kwok Peng; Ebrahem, Quteba; Negrotto, Soledad; Mahfouz, Reda Z.; Link, Kevin A.; Hu, Zhenbo; Gu, Xiaorong; Advani, Anjali; Kalaycio, Matt; Sobecks, Ronald; Sekeres, Mikkael; Copelan, Edward; Radivoyevitch, Tomas; Maciejewski, Jaroslaw; Mulloy, James C.; Saunthararajah, Yogen

    2013-01-01

    Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin modifying enzyme DNA methyl-transferase 1 (DNMT1) without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine up regulated the key late differentiation factors CEBPε and p27/CDKN1B, induced cellular differentiation, and terminated AML cell-cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xeno-transplanted AML cells was abrogated but normal hematopoietic stem cell (HSC) engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S-phase specific decitabine therapy. In xeno-transplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared to conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy. PMID:21701495

  18. Downregulated stromal antigen 2 expression in de novo acute myeloid leukemia patients

    PubMed Central

    Han, Qiaoyan; He, Xuefeng; Wu, Lili; Gao, Feng; Ye, Jinsong; Wu, Lingyu; Chen, Lu; Jiang, Xin; Sun, Miao; Chen, Suning

    2017-01-01

    The stromal antigen 2 (STAG2) gene encodes a component of the cohesin complex that participates in the regulation of sister chromatid separation during mitosis. When activated, STAG2 may act as a ‘caretaker’ tumor suppressor gene. As it is unknown whether STAG2 gene is responsible for the occurrence and associated with the prognosis of acute myeloid leukemia (AML), the present study analyzed the relative expression levels of STAG2 in 127 de novo AML patients and 17 healthy volunteers using reverse transcription-quantitative polymerase chain reaction. In addition, AML patients were divided into three risk groups using cytogenetic and molecular genetic abnormalities to define their risk status. STAG2 gene expression was found to be significantly downregulated in de novo AML patients, when compared with the healthy controls; however, the expression was not significantly different in the various gender and age subgroups. Furthermore, no significant difference between risk groups was detected in AML patients. Thus, the STAG2 gene may serve an important role in AML development, but is not associated with prognosis in AML.

  19. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction.

    PubMed

    Uttarkar, Sagar; Dassé, Emilie; Coulibaly, Anna; Steinmann, Simone; Jakobs, Anke; Schomburg, Caroline; Trentmann, Amke; Jose, Joachim; Schlenke, Peter; Berdel, Wolfgang E; Schmidt, Thomas J; Müller-Tidow, Carsten; Frampton, Jon; Klempnauer, Karl-Heinz

    2016-03-03

    The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.

  20. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia.

    PubMed

    Zhou, Jianbiao; Chng, Wee-Joo

    2017-01-01

    The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.

  1. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside

    PubMed Central

    Cho, Byung-Sik; Kim, Hee-Je; Konopleva, Marina

    2017-01-01

    The interactions between the cancerous cells of acute myeloid leukemia (AML) and the bone marrow (BM) microenvironment have been postulated to be important for resistance to chemotherapy and disease relapse in AML. The chemokine receptor CXC chemokine receptor 4 (CXCR4) and its ligand, CXC motif ligand 12 (CXCL12), also known as stromal cell-derived factor 1α, are key mediators of this interaction. CXCL12 is produced by the BM microenvironment, binds and activates its cognate receptor CXCR4 on leukemic cells, facilitates leukemia cell trafficking and homing in the BM microenvironment, and keeps leukemic cells in close contact with the stromal cells and extracellular matrix that constitutively generate growth-promoting and anti-apoptotic signals. Indeed, a high level of CXCR4 expression on AML blasts is known to be associated with poor prognosis. Recent preclinical and clinical studies have revealed the safety and potential clinical utility of targeting the CXCL12/CXCR4 axis in AML with different classes of drugs, including small molecules, peptides, and monoclonal antibodies. In this review, we describe recent evidence of targeting these leukemia-stroma interactions, focusing on the CXCL12/CXCR4 axis. Related early phase clinical studies will be also introduced. PMID:28219003

  2. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine

    PubMed Central

    Ni, Wanmao; Hu, Beili; Zheng, Cuiping; Tong, Yin; Wang, Lei; Li, Qing-qing; Tong, Xiangmin; Han, Yong

    2016-01-01

    We investigated the ability of support vector machines (SVM) to analyze minimal residual disease (MRD) in flow cytometry data from patients with acute myeloid leukemia (AML) automatically, objectively and standardly. The initial disease data and MRD review data in the form of 159 flow cytometry standard 3.0 files from 36 CD7-positive AML patients in whom MRD was detected more than once were exported. SVM was used for training with setting the initial disease data to 1 as the flag and setting 15 healthy persons to set 0 as the flag. Based on the two training groups, parameters were optimized, and a predictive model was built to analyze MRD data from each patient. The automated analysis results from the SVM model were compared to those obtained through conventional analysis to determine reliability. Automated analysis results based on the model did not differ from and were correlated with results obtained through conventional analysis (correlation coefficient c = 0.986, P > 0.05). Thus the SVM model could potentially be used to analyze flow cytometry-based AML MRD data automatically, objectively, and in a standardized manner. PMID:27713120

  3. Impairment in functional status and survival in patients with acute myeloid leukaemia.

    PubMed

    Wedding, Ulrich; Röhrig, Bernd; Klippstein, Almuth; Fricke, Hans-Joerg; Sayer, Herbert G; Höffken, Klaus

    2006-10-01

    Acute myeloid leukaemia (AML) is mainly affecting elderly patients. Elderly patients are increasingly affected by impairment of functional status (FS). FS is of prognostic relevance for survival in different tumours. Data for patients with AML are rare. Within a prospective trial we recruited patients with newly diagnosed AML and measured FS by two different methods: Karnofsky performance status (KPS) and instrumental activities of daily living (IADL). Sixty-three patients aged 19-85 years (median 61.1) were included. Twenty-three had prior myelodisplastic syndrome (MDS), 7 favourable, 17 unfavourable karyotype. Fifty received induction chemotherapy, 13 palliative chemotherapy. Median survival was 15.2 months (95% CI, 10.8-22.3) in all patients. Age, cytogenetic risk group, and impaired KPS and IADL significantly influenced median survival in univariate analysis. Impairment of IADL was the single most predictive variable. In multivariate analysis, impairment of IADL Score (HR:4.3, 95% CI 1.7-10.5, P = 0.001) and of KPS (HR:4.8, 95% CI 1.9-12.3, P = 0.001), and unfavourable cytogenetic risk group (HR:6.0, 95% CI 2.5-14.3, P < 0.001) significantly predicted median survival. In patients with AML, FS and not age is a major predictor of survival. The influence of FS is independent from cytogenetic risk group. IADL measurement adds information to KPS. The results have to be confirmed in a large sample of patients.

  4. Reduced-intensity conditioning allogeneic hematopoietic-cell transplantation for older patients with acute myeloid leukemia

    PubMed Central

    Goyal, Gaurav; Gundabolu, Krishna; Vallabhajosyula, Saraschandra; Silberstein, Peter T.; Bhatt, Vijaya Raj

    2016-01-01

    Elderly patients (>60 years) with acute myeloid leukemia have a poor prognosis with a chemotherapy-alone approach. Allogeneic hematopoietic-cell transplantation (HCT) can improve overall survival (OS). However, myeloablative regimens can have unacceptably high transplant-related mortality (TRM) in an unselected group of older patients. Reduced-intensity conditioning (RIC) or nonmyeloablative (NMA) conditioning regimens preserve the graft-versus-leukemia effects but reduce TRM. NMA regimens result in minimal cytopenia and may not require stem cell support for restoring hematopoiesis. RIC regimens, intermediate in intensity between NMA and myeloablative regimens, can cause prolonged myelosuppresion and usually require stem cell support. A few retrospective and prospective studies suggest a possibility of lower risk of relapse with myeloablative HCT in fit older patients with lower HCT comorbidity index; however, RIC and NMA HCTs have an important role in less-fit patients and those with significant comorbidities because of lower TRM. Whether early tapering of immunosuppression, monitoring of minimal residual disease, and post-transplant maintenance therapy can improve the outcomes of RIC and NMA HCT in elderly patients will require prospective trials. PMID:27247754

  5. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    PubMed Central

    Bontempo, Paola; Mita, Luigi; Doto, Antonella; Miceli, Marco; Nebbioso, Angela; Lepore, Ilaria; Franci, GianLuigi; Menafra, Roberta; Carafa, Vincenzo; Conte, Mariarosaria; De Bellis, Floriana; Manzo, Fabio; Di Cerbo, Vincenzo; Benedetti, Rosaria; D'Amato, Loredana; Marino, Maria; Bolli, Alessandro; Del Pozzo, Giovanna; Diano, Nadia; Portaccio, Marianna; Mita, Gustavo D; Vietri, Maria Teresa; Cioffi, Michele; Nola, Ernesto; Dell'Aversana, Carmela; Sica, Vincenzo; Molinari, Anna Maria; Altucci, Lucia

    2009-01-01

    Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis. PMID:19538739

  6. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition.

    PubMed

    Jacque, Nathalie; Ronchetti, Anne Marie; Larrue, Clément; Meunier, Godelieve; Birsen, Rudy; Willems, Lise; Saland, Estelle; Decroocq, Justine; Maciel, Thiago Trovati; Lambert, Mireille; Poulain, Laury; Hospital, Marie Anne; Sujobert, Pierre; Joseph, Laure; Chapuis, Nicolas; Lacombe, Catherine; Moura, Ivan Cruz; Demo, Susan; Sarry, Jean Emmanuel; Recher, Christian; Mayeux, Patrick; Tamburini, Jérôme; Bouscary, Didier

    2015-09-10

    Cancer cells require glutamine to adapt to increased biosynthetic activity. The limiting step in intracellular glutamine catabolism involves its conversion to glutamate by glutaminase (GA). Different GA isoforms are encoded by the genes GLS1 and GLS2 in humans. Herein, we show that glutamine levels control mitochondrial oxidative phosphorylation (OXPHOS) in acute myeloid leukemia (AML) cells. Glutaminase C (GAC) is the GA isoform that is most abundantly expressed in AML. Both knockdown of GLS1 expression and pharmacologic GLS1 inhibition by the drug CB-839 can reduce OXPHOS, leading to leukemic cell proliferation arrest and apoptosis without causing cytotoxic activity against normal human CD34(+) progenitors. Strikingly, GLS1 knockdown dramatically inhibited AML development in NSG mice. The antileukemic activity of CB-839 was abrogated by both the expression of a hyperactive GAC(K320A) allele and the addition of the tricarboxyclic acid cycle product α-ketoglutarate, indicating the critical function of GLS1 in AML cell survival. Finally, glutaminolysis inhibition activated mitochondrial apoptosis and synergistically sensitized leukemic cells to priming with the BCL-2 inhibitor ABT-199. These findings show that targeting glutamine addiction via GLS1 inhibition offers a potential novel therapeutic strategy for AML.

  7. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia.

    PubMed

    Kontro, M; Kumar, A; Majumder, M M; Eldfors, S; Parsons, A; Pemovska, T; Saarela, J; Yadav, B; Malani, D; Fløisand, Y; Höglund, M; Remes, K; Gjertsen, B T; Kallioniemi, O; Wennerberg, K; Heckman, C A; Porkka, K

    2017-02-01

    Inhibitors of B-cell lymphoma-2 (BCL-2) such as venetoclax (ABT-199) and navitoclax (ABT-263) are clinically explored in several cancer types, including acute myeloid leukemia (AML), to selectively induce apoptosis in cancer cells. To identify robust biomarkers for BCL-2 inhibitor sensitivity, we evaluated the ex vivo sensitivity of fresh leukemic cells from 73 diagnosed and relapsed/refractory AML patients, and then comprehensively assessed whether the responses correlated to specific mutations or gene expression signatures. Compared with samples from healthy donor controls (nonsensitive) and chronic lymphocytic leukemia (CLL) patients (highly sensitive), AML samples exhibited variable responses to BCL-2 inhibition. Strongest CLL-like responses were observed in 15% of the AML patient samples, whereas 32% were resistant, and the remaining exhibited intermediate responses to venetoclax. BCL-2 inhibitor sensitivity was associated with genetic aberrations in chromatin modifiers, WT1 and IDH1/IDH2. A striking selective overexpression of specific HOXA and HOXB gene transcripts were detected in highly BCL-2 inhibitor sensitive samples. Ex vivo responses to venetoclax showed significant inverse correlation to β2-microglobulin expression and to a lesser degree to BCL-XL and BAX expression. As new therapy options for AML are urgently needed, the specific HOX gene expression pattern can potentially be used as a biomarker to identify venetoclax-sensitive AML patients for clinical trials.

  8. A Comparison of Azacitidine and Decitabine Activities in Acute Myeloid Leukemia Cell Lines

    PubMed Central

    Hollenbach, Paul W.; Nguyen, Aaron N.; Brady, Helen; Williams, Michelle; Ning, Yuhong; Richard, Normand; Krushel, Leslie; Aukerman, Sharon L.; Heise, Carla; MacBeth, Kyle J.

    2010-01-01

    Background The cytidine nucleoside analogs azacitidine (AZA) and decitabine (DAC) are used for the treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML). Few non-clinical studies have directly compared the mechanisms of action of these agents in a head-to-head fashion, and the agents are often viewed as mechanistically similar DNA hypomethylating agents. To better understand the similarities and differences in mechanisms of these drugs, we compared their in vitro effects on several end points in human AML cell lines. Methodology/Principal Findings Both drugs effected DNA methyltransferase 1 depletion, DNA hypomethylation, and DNA damage induction, with DAC showing equivalent activity at concentrations 2- to 10-fold lower than AZA. At concentrations above 1 µM, AZA had a greater effect than DAC on reducing cell viability. Both drugs increased the sub-G1 fraction and apoptosis markers, with AZA decreasing all cell cycle phases and DAC causing an increase in G2-M. Total protein synthesis was reduced only by AZA, and drug-modulated gene expression profiles were largely non-overlapping. Conclusions/Significance These data demonstrate shared mechanisms of action of AZA and DAC on DNA-mediated markers of activity, but distinctly different effects in their actions on cell viability, protein synthesis, cell cycle, and gene expression. The differential effects of AZA may be mediated by RNA incorporation, as the distribution of AZA in nucleic acid of KG-1a cells was 65∶35, RNA∶DNA. PMID:20126405

  9. Analyzing transformation of myelodysplastic syndrome to secondary acute myeloid leukemia using a large patient database.

    PubMed

    Shukron, Ofir; Vainstein, Vladimir; Kündgen, Andrea; Germing, Ulrich; Agur, Zvia

    2012-09-01

    One-third of patients with myelodysplastic syndrome (MDS) progress to secondary acute myeloid leukemia (sAML), with its concomitant poor prognosis. Recently, multiple mutations have been identified in association with MDS-to-sAMLtransition, but it is still unclear whether all these mutations are necessary for transformation. If multiple independent mutations are required for the transformation, sAML risk should increase with time from MDS diagnosis. In contrast, if a single critical biological event determines sAML transformation; its risk should be constant in time elapsing from MDS diagnosis. To elucidate this question, we studied a database of 1079 patients with MDS. We classified patients according to the International Prognostic Scoring System (IPSS), using either the French-American-British (FAB) or the World Health Organization (WHO) criteria, and statistically analyzed the resulting transformation risk curves of each group. The risk of transformation after MDS diagnosis remained constant in time within three out of four risk groups, and in all four risk groups, when patients were classified according to FAB or to the WHO-determined criteria, respectively. Further subdivision by blast percentage or cytogenetics had no influence on this result. Our analysis suggests that a single random biological event leads to transformation to sAML, thus calling for the exclusion of time since MDS diagnosis from the clinical decision-making process.

  10. Abrupt evolution of Philadelphia chromosome-positive acute myeloid leukemia in myelodysplastic syndrome.

    PubMed

    Fukunaga, Akiko; Sakoda, Hiroto; Iwamoto, Yoshihiro; Inano, Shojiro; Sueki, Yuki; Yanagida, Soshi; Arima, Nobuyoshi

    2013-03-01

    Myelodysplastic syndrome (MDS) is a clonal disorder arising from an alteration in multipotent stem cells, which lose the ability of normal proliferation and differentiation. Disease progression occurs in approximately 30% MDS cases. Specific chromosomal alterations seem responsible for each step in the evolution of acute myeloid leukemia (AML). Multiple genetic aberrations occur during the clonal evolution of MDS; however, few studies report the presence of the Philadelphia (Ph) chromosome. We report a rare case of Ph-positive AML, which evolved during the course of low-risk MDS. The patient, a 76-year-old man with mild leukocytopenia, was diagnosed with MDS, refractory neutropenia (RN). After 1.5 yr, his peripheral blood and bone marrow were suddenly occupied by immature basophils and myeloblasts, indicating the onset of AML. A bone marrow smear showed multilineage dysplasia, consistent with MDS evolution. Chromosomal analysis showed an additional t(9;22)(q34;q11) translocation. Because progression occurred concurrently with emergence of the Ph chromosome, we diagnosed this case as Ph-positive AML with basophilia arising from the clonal evolution of MDS. The patient was initially treated with nilotinib. A hematological response was soon achieved with disappearance of the Ph chromosome in the bone marrow. Emergence of Ph-positive AML in the course of low-risk MDS has rarely been reported. We report this case as a rare clinical course of MDS.

  11. Hypocellular myelodysplastic syndrome with myelofibrosis in acute myeloid leukemia transformation: A case report.

    PubMed

    Song, Kui; Xu, Xiaojun; Li, Min

    2015-07-01

    Primary myelodysplastic syndrome (MDS) with myelofibrosis is a rare hematological disorder that should be classified as a distinct subgroup of MDS. Treatment of MDS with myelofibrosis remains problematic and the prognosis is poor in these patients, particularly following transformation into acute myeloid leukemia (AML). The current study presents the case of a 28-year-old male diagnosed with MDS associated with myelofibrosis, together with hypocellular bone marrow features. Following induction chemotherapy consisting of mitoxantrone and cytarabine, the patient achieved complete remission, but developed severe myelofibrosis. The patient relapsed and the disease transformed into AML 12 months later. However, the extent of the myelofibrosis was markedly alleviated upon administration of a FLAG regimen that consisted of fludarabine, cytarabine and granulocyte colony-stimulating factor during the AML transformation. After one course of the FLAG regimen, the patient achieved a second complete remission. As there was no suitable donor for hematopoietic stem cell transplantation (HSCT), the patient relapsed and succumbed shortly after. In conclusion, MDS with fibrosis is an aggressive disease, but the degree of myelofibrosis may not be associated with the progression of hypocellular MDS, and allogeneic HSCT remains a potentially curative option for affected patients.

  12. Up-front allogeneic hematopoietic cell transplantation in acute myeloid leukemia arising from the myelodysplastic syndrome.

    PubMed

    Choi, Yunsuk; Kim, Sung-Doo; Park, Young-Hoon; Lee, Jae Seok; Kim, Dae-Young; Lee, Jung-Hee; Lee, Kyoo-Hyung; Seol, Miee; Lee, Young-Shin; Kang, Young-Ah; Jeon, Mijin; Jung, Ah Rang; Lee, Je-Hwan

    2015-01-01

    In patients with secondary acute myeloid leukemia (s-AML) arising from the myelodysplastic syndrome (MDS), treatment outcome is unsatisfactory. We compared up-front allogeneic hematopoietic cell transplantation (HCT) to induction chemotherapy (IC) as an initial treatment in patients with s-AML arising from MDS. This retrospective study included 85 patients who were diagnosed with s-AML arising from MDS; 11 patients proceeded to up-front HCT without IC (HCT group) and 74 received IC (IC group) as an initial treatment for s-AML, 28 of whom subsequently underwent HCT. In the IC group, 41.9% achieved complete remission (CR) compared to 81.8% in the HCT group (p = 0.013). The HCT group showed a significantly longer event-free survival (EFS) than the IC group (median 29.2 vs. 5.2 months, p = 0.042). Overall survival of the HCT group was higher than that of the IC group, but the difference was not statistically significant (median 34.6 vs. 7.6 months, p = 0.149). After adjustment for other clinical factors, outcome in the HCT group was significantly better than in the IC group in terms of CR rate (hazard ratio, HR, 11.195; p = 0.007) and EFS (HR, 0.384; p = 0.029). Up-front HCT is a viable option in s-AML arising from MDS if an appropriate donor is available.

  13. Raman spectroscopy for the assessment of acute myeloid leukemia: a proof of concept study

    NASA Astrophysics Data System (ADS)

    Vanna, R.; Tresoldi, C.; Ronchi, P.; Lenferink, A. T. M.; Morasso, C.; Mehn, D.; Bedoni, M.; Terstappen, L. W. M. M.; Ciceri, F.; Otto, C.; Gramatica, F.

    2014-03-01

    Acute myeloid leukemia (AML) is a proliferative neoplasm, that if not properly treated can rapidly cause a fatal outcome. The diagnosis of AML is challenging and the first diagnostic step is the count of the percentage of blasts (immature cells) in bone marrow and blood sample, and their morphological characterization. This evaluation is still performed manually with a bright field light microscope. Here we report results of a study applying Raman spectroscopy for analysis of samples from two patients affected by two AML subtypes characterized by a different maturation stage in the neutrophilic lineage. Ten representative cells per sample were selected and analyzed with high-resolution confocal Raman microscopy by scanning 64x64 (4096) points in a confocal layer through the volume of the whole cell. The average spectrum of each cell was then used to obtain a highly reproducible mean fingerprint of the two different AML subtypes. We demonstrate that Raman spectroscopy efficiently distinguishes these different AML subtypes. The molecular interpretation of the substantial differences between the subtypes is related to granulocytic enzymes (e.g. myeloperoxidase and cytochrome b558), in agreement with different stages of maturation of the two considered AML subtypes . These results are promising for the development of a new, objective, automated and label-free Raman based methods for the diagnosis and first assessment of AML.

  14. Tetraspanin CD81 is an adverse prognostic marker in acute myeloid leukemia

    PubMed Central

    Roumier, Christophe; Peyrouze, Pauline; Gonzales, Fanny; Berthon, Céline; Quesnel, Bruno; Preudhomme, Claude; Behal, Hélène; Duhamel, Alain; Roche-Lestienne, Catherine; Cheok, Meyling

    2016-01-01

    CD81 is a cell surface protein which belongs to the tetraspanin family. While in multiple myeloma its expression on plasma cells is associated with worse prognosis, this has not yet been explored in acute myeloid leukemia (AML). We measured membrane expression of CD81 on AML cells at diagnosis, evaluated its association with AML characteristics and its influence on patient outcome after intensive chemotherapy in a cohort of 134 patients. CD81 was detected in 92/134 (69%) patients. Patients with AML expressing CD81 had elevated leukocyte count (P=0.02) and were more likely classified as intermediate or adverse-risk by cytogenetics (P<0.001). CD81 expression had a negative impact on survival (event-free survival, overall survival and relapse-free survival) in univariate (P<0.001) and in multivariate analyses (P=0.003, 0.002 and <0.001, respectively). CD81 has a negative impact on OS in patients with NPM1 mutation (P=0.01) and in patients ELN-favorable (P=0.002). In conclusion, this cell surface marker may be a new prognostic marker for diagnostic risk classification and a potential therapeutic target for drug development in AML. PMID:27566555

  15. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor

    PubMed Central

    Lutterbach, Bart; Hou, Yue; Durst, Kristie L.; Hiebert, Scott W.

    1999-01-01

    The inv(16) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). The inv(16) fusion protein acts by dominantly interfering with AML-1/core binding factor β-dependent transcriptional regulation. Here we demonstrate that the inv(16) fusion protein cooperates with AML-1B to repress transcription. This cooperativity requires the ability of the translocation fusion protein to bind to AML-1B. Mutational analysis and cell fractionation experiments indicated that the inv(16) fusion protein acts in the nucleus and that repression occurs when the complex is bound to DNA. We also found that the inv(16) fusion protein binds to AML-1B when it is associated with the mSin3A corepressor. An AML-1B mutant that fails to bind mSin3A was impaired in cooperative repression, suggesting that the inv(16) fusion protein acts through mSin3 and possibly other corepressors. Finally, we demonstrate that the C-terminal portion of the inv(16) fusion protein contains a repression domain, suggesting a molecular mechanism for AML-1-mediated repression. PMID:10536006

  16. RALB provides critical survival signals downstream of Ras in acute myeloid leukemia

    PubMed Central

    Eckfeldt, Craig E.; Pomeroy, Emily J.; Lee, Robin D.W.; Hazen, Katherine S.; Lee, Lindsey A.; Moriarity, Branden S.; Largaespada, David A.

    2016-01-01

    Mutations that activate RAS proto-oncogenes and their effectors are common in acute myeloid leukemia (AML); however, efforts to therapeutically target Ras or its effectors have been unsuccessful, and have been hampered by an incomplete understanding of which effectors are required for AML proliferation and survival. We investigated the role of Ras effector pathways in AML using murine and human AML models. Whereas genetic disruption of NRAS(V12) expression in an NRAS(V12) and Mll-AF9-driven murine AML induced apoptosis of leukemic cells, inhibition of phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) signaling did not reproduce this effect. Conversely, genetic disruption of RALB signaling induced AML cell death and phenocopied the effects of suppressing oncogenic Ras directly – uncovering a novel role for RALB signaling in AML survival. Knockdown of RALB led to decreased phosphorylation of TBK1 and reduced BCL2 expression, providing mechanistic insight into RALB survival signaling in AML. Notably, we found that patient-derived AML blasts have higher levels of RALB-TBK1 signaling compared to normal blood leukocytes, supporting a pathophysiologic role for RALB signaling for AML patients. Overall, our work provides new insight into the specific roles of Ras effector pathways in AML and has identified RALB signaling as a key survival pathway. PMID:27556501

  17. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells.

    PubMed

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk

    2017-03-18

    Previously, we reported that radotinib, a BCR-ABL1 tyrosine kinase inhibitor, induced cytotoxicity in acute myeloid leukemia (AML) cells. However, the effects of radotinib in the subpopulation of c-KIT-positive AML cells were unclear. We observed that low-concentration radotinib had more potent cytotoxicity in c-KIT-positive cells than c-KIT-negative cells from AML patients. To address this issue, cell lines with high c-KIT expression, HEL92.1.7, and moderate c-KIT expression, H209, were selected. HEL92.1.7 cells were grouped into intermediate and high c-KIT expression populations. The cytotoxicity of radotinib against the HEL92.1.7 cell population with intermediate c-KIT expression was not different from that of the population with high c-KIT expression. When H209 cells were grouped into c-KIT expression-negative and c-KIT expression-positive populations, radotinib induced cytotoxicity in the c-KIT-positive population, but not the c-KIT-negative population. Thus, radotinib induces cytotoxicity in c-KIT-positive cells, regardless of the c-KIT expression intensity. Therefore, radotinib induces significant cytotoxicity in c-KIT-positive AML cells, suggesting that radotinib is a potential target agent for the treatment of c-KIT-positive malignancies including AML.

  18. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia

    PubMed Central

    Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique

    2016-01-01

    Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041

  19. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes

    PubMed Central

    Jacamo, Rodrigo; Qi, Yuan; Su, Xiaoping; Cai, Tianyu; Chan, Steven M.; Lodi, Alessia; Sweeney, Shannon R.; Ma, Helen; Davis, Richard Eric; Baran, Natalia; Haferlach, Torsten; Su, Xiaohua; Flores, Elsa Renee; Gonzalez, Doriann; Konoplev, Sergej; Samudio, Ismael; DiNardo, Courtney; Majeti, Ravi; Schimmer, Aaron D.; Li, Weiqun; Wang, Taotao; Tiziani, Stefano; Konopleva, Marina

    2016-01-01

    Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes. PMID:27806325

  20. RNA-Guided CRISPR-Cas9 System-Mediated Engineering of Acute Myeloid Leukemia Mutations.

    PubMed

    Brabetz, Oliver; Alla, Vijay; Angenendt, Linus; Schliemann, Christoph; Berdel, Wolfgang E; Arteaga, Maria-Francisca; Mikesch, Jan-Henrik

    2017-03-17

    Current acute myeloid leukemia (AML) disease models face severe limitations because most of them induce un-physiological gene expressions that do not represent conditions in AML patients and/or depend on external promoters for regulation of gene expression/repression. Furthermore, many AML models are based on reciprocal chromosomal translocations that only reflect the minority of AML patients, whereas more than 50% of patients have a normal karyotype. The majority of AML, however, is driven by somatic mutations. Thus, identification as well as a detailed molecular and functional characterization of the role of these driver mutations via improved AML models is required for better approaches toward novel targeted therapies. Using the IDH2 R140Q mutation as a model, we present a new effective methodology here using the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to reproduce or remove AML-associated mutations in or from human leukemic cells, respectively, via introduction of a DNA template at the endogenous gene locus via homologous recombination. Our technology represents a precise way for AML modeling to gain insights into AML development and progression and provides a basis for future therapeutic approaches.

  1. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia

    PubMed Central

    Andresen, Vibeke; Erikstein, Bjarte S; Mukherjee, Herschel; Sulen, André; Popa, Mihaela; Sørnes, Steinar; Reikvam, Håkon; Chan, Kok-Ping; Hovland, Randi; McCormack, Emmet; Bruserud, Øystein; Myers, Andrew G; Gjertsen, Bjørn T

    2016-01-01

    Mutated nucleophosmin 1 (NPM1) acts as a proto-oncogene and is present in ~30% of patients with acute myeloid leukemia (AML). Here we examined the in vitro and in vivo anti-leukemic activity of the NPM1 and chromosome region maintenance 1 homolog (CRM1) interacting natural product avrainvillamide (AVA) and a fully syntetic AVA analog. The NPM1-mutated cell line OCI-AML3 and normal karyotype primary AML cells with NPM1 mutations were significantly more sensitive towards AVA than cells expressing wild-type (wt) NPM1. Furthermore, the presence of wt p53 sensitized cells toward AVA. Cells exhibiting fms-like tyrosine kinase 3 (FLT3) internal tandem duplication mutations also displayed a trend toward increased sensitivity to AVA. AVA treatment induced nuclear retention of the NPM1 mutant protein (NPMc+) in OCI-AML3 cells and primary AML cells, caused proteasomal degradation of NPMc+ and the nuclear export factor CRM1 and downregulated wt FLT3 protein. In addition, both AVA and its analog induced differentiation of OCI-AML3 cells together with an increased phagocytotic activity and oxidative burst potential. Finally, the AVA analog displayed anti-proliferative activity against subcutaneous xenografted HCT-116 and OCI-AML3 cells in mice. Our results demonstrate that AVA displays enhanced potency against defined subsets of AML cells, suggesting that therapeutic intervention employing AVA or related compounds may be feasible. PMID:27906185

  2. Outcomes for newly diagnosed patients with acute myeloid leukemia dosed on actual or adjusted body weight

    PubMed Central

    Bivona, Cory; Rockey, Michelle; Henry, Dave; Grauer, Dennis; Abhyankar, Sunil; Aljitawi, Omar; Ganguly, Siddhartha; McGuirk, Joseph; Singh, Anurag; Lin, Tara L.

    2015-01-01

    Purpose Data from solid tumor malignancies suggest that actual body weight (ABW) dosing improves overall outcomes. There is the potential to compromise efficacy when chemotherapy dosages are reduced, but the impact of dose adjustment on clinical response and toxicity in hematologic malignancies is unknown. The purpose of this study was to evaluate the outcomes of utilizing a percent of ABW for acute myeloid leukemia (AML) induction chemotherapy dosing. Methods This retrospective, single-center study included 146 patients who received 7 + 3 induction (cytarabine and anthracycline) for treatment of AML. Study design evaluated the relationship between percentage of ABW dosing and complete response (CR) rates in patients newly diagnosed with AML. Results Percentage of ABW dosing did not influence CR rates in patients undergoing induction chemotherapy for AML (p = 0.83); nor did it influence rate of death at 30 days or relapse at 6 months (p = 0.94). When comparing patients dosed at 90–100 % of ABW compared to <90 % ABW, CR rates were not significantly different in patients classified as poor risk (p = 0.907). All favorable risk category patients obtained CR. Conclusions Preemptive dose reductions for obesity did not influence CR rates for patients with AML undergoing induction chemotherapy and did not influence the composite endpoint of death at 30 days or disease relapse at 6 months. PMID:26231954

  3. Clonal Architecture of Secondary Acute Myeloid Leukemia Defined by Single-Cell Sequencing

    PubMed Central

    Hughes, Andrew E. O.; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A.; Fulton, Robert; Fulton, Lucinda L.; Eades, William C.; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F.; White, Brian S.; Shao, Jin; Link, Daniel C.; DiPersio, John F.; Mardis, Elaine R.; Wilson, Richard K.; Ley, Timothy J.; Walter, Matthew J.; Graubert, Timothy A.

    2014-01-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions—the population frequency of individual clones, their genetic composition, and their evolutionary relationships—which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells. PMID:25010716

  4. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    PubMed

    Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A

    2014-07-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  5. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

    PubMed Central

    Alcalay, Myriam; Meani, Natalia; Gelmetti, Vania; Fantozzi, Anna; Fagioli, Marta; Orleth, Annette; Riganelli, Daniela; Sebastiani, Carla; Cappelli, Enrico; Casciari, Cristina; Sciurpi, Maria Teresa; Mariano, Angela Rosa; Minardi, Simone Paolo; Luzi, Lucilla; Muller, Heiko; Di Fiore, Pier Paolo; Frosina, Guido; Pelicci, Pier Giuseppe

    2003-01-01

    Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins. PMID:14660751

  6. Mixed Phenotypic Acute Leukemia (mixed myeloid/B-cell) with Myeloid Sarcoma of the Thyroid Gland: A Rare Entity with Rarer Asssociation - Detected on FDG PET/CT

    PubMed Central

    Khanna, Gaurav; Damle, Nishikant Avinash; Agarwal, Shipra; Roy, Maitrayee; Jain, Deepali; Mallick, Soumyaranjan; Ahmed, Shamim; Tripathi, Madhavi; Gogia, Ajay

    2017-01-01

    Mixed phenotypic acute leukemia (MPAL) is a rare clinical entity. MPAL associated with myeloidsarcoma (MS) is still rarer with only three cases mentioned in English literature. MS has been described in myriads of location, most commonly in skin, gums and lymph nodes. Although theoritically possible, it is very rare to find MS involving the thyroid gland. The diagnosis of MS can be elusive, very often masquerades and mislabeled as lymphoma. A high index of clinical suspicion coupled with PET/CT findings along with morphological clues and thorough peripheral blood, and bone marrow evaluation is mandatory for arriving at the definitive diagnosis. We report the case of a 58-year-old female presenting with thyroid swelling that was subsequently diagnosed to be MS of the thyroid with underlying MPAL (mixed myeloid/B-cell) only after 18F-FDG PET/CT, which revealed an unusual abnormal pattern of multifocal intense FDG uptake in the thyroid gland. PMID:28242986

  7. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

    PubMed Central

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido

    2014-01-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286

  8. Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia

    PubMed Central

    Laszlo, George S.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Beddoe, Mary E.; Fitzgibbon, Matthew P.; Ries, Rhonda E.; Lamba, Jatinder K.; McIntosh, Martin W.; Meshinchi, Soheil; Walter, Roland B.

    2016-01-01

    With the demonstration of improved survival of some acute myeloid leukemia (AML) patients with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO), CD33 has been validated as a target for antigen-specific immunotherapy. Since previous studies identified a CD33 splice variant missing exon 2 (CD33∆E2) and, consequently, the immune-dominant membrane-distal V-set domain, we investigated the expression and functional characteristics of CD33 transcript variants in AML. In primary AML specimens, we not only found full-length CD33 (CD33FL) and CD33∆E2 but also corresponding variants containing an alternate exon 7 predicted to encode a CD33 protein lacking most of the intracellular domain (CD33E7a and, not previously described, CD33∆E2,E7a) in almost all cases. In acute leukemia cell sublines engineered to express individual CD33 splice variants, all splice variants had endocytic properties. CD33FL and CD33E7a mediated similar degrees of GO cytotoxicity, whereas CD33∆E2 and CD33∆E2,E7a could not serve as target for GO. Co-expression of CD33∆E2 did not interfere with CD33FL endocytosis and did not impact CD33FL-mediated GO cytotoxicity. Together, our findings document a greater-than-previously thought complexity of CD33 expression in human AML. They identify CD33 variants that lack exon 2 and are not recognized by current CD33-directed therapeutics as potential target for future unconjugated or conjugated antibodies. PMID:27248327

  9. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia

    PubMed Central

    Zhang, Mei-Jie; Bacigalupo, Andrea A.; Bashey, Asad; Appelbaum, Frederick R.; Aljitawi, Omar S.; Armand, Philippe; Antin, Joseph H.; Chen, Junfang; Devine, Steven M.; Fowler, Daniel H.; Luznik, Leo; Nakamura, Ryotaro; O’Donnell, Paul V.; Perales, Miguel-Angel; Pingali, Sai Ravi; Porter, David L.; Riches, Marcie R.; Ringdén, Olle T. H.; Rocha, Vanderson; Vij, Ravi; Weisdorf, Daniel J.; Champlin, Richard E.; Horowitz, Mary M.; Fuchs, Ephraim J.; Eapen, Mary

    2015-01-01

    We studied adults with acute myeloid leukemia (AML) after haploidentical (n = 192) and 8/8 HLA-matched unrelated donor (n = 1982) transplantation. Haploidentical recipients received calcineurin inhibitor (CNI), mycophenolate, and posttransplant cyclophosphamide for graft-versus-host disease (GVHD) prophylaxis; 104 patients received myeloablative and 88 received reduced intensity conditioning regimens. Matched unrelated donor transplant recipients received CNI with mycophenolate or methotrexate for GVHD prophylaxis; 1245 patients received myeloablative and 737 received reduced intensity conditioning regimens. In the myeloablative setting, day 30 neutrophil recovery was lower after haploidentical compared with matched unrelated donor transplants (90% vs 97%, P = .02). Corresponding rates after reduced intensity conditioning transplants were 93% and 96% (P = .25). In the myeloablative setting, 3-month acute grade 2-4 (16% vs 33%, P < .0001) and 3-year chronic GVHD (30% vs 53%, P < .0001) were lower after haploidentical compared with matched unrelated donor transplants. Similar differences were observed after reduced intensity conditioning transplants, 19% vs 28% (P = .05) and 34% vs 52% (P = .002). Among patients receiving myeloablative regimens, 3-year probabilities of overall survival were 45% (95% CI, 36-54) and 50% (95% CI, 47-53) after haploidentical and matched unrelated donor transplants (P = .38). Corresponding rates after reduced intensity conditioning transplants were 46% (95% CI, 35-56) and 44% (95% CI, 0.40-47) (P = .71). Although statistical power is limited, these data suggests that survival for patients with AML after haploidentical transplantation with posttransplant cyclophosphamide is comparable with matched unrelated donor transplantation. PMID:26130705

  10. Formaldehyde Exposure and Mortality Risks From Acute Myeloid Leukemia and Other Lymphohematopoietic Malignancies in the US National Cancer Institute Cohort Study of Workers in Formaldehyde Industries

    PubMed Central

    Dell, Linda D.; Boffetta, Paolo; Gallagher, Alexa E.; Crawford, Lori; Lees, Peter SJ.; Mundt, Kenneth A.

    2015-01-01

    Objectives: To evaluate associations between cumulative and peak formaldehyde exposure and mortality from acute myeloid leukemia (AML) and other lymphohematopoietic malignancies. Methods: Cox proportional hazards analyses. Results: Acute myeloid leukemia was unrelated to cumulative exposure. Hodgkin lymphoma relative risk estimates in the highest exposure categories of cumulative and peak exposures were, respectively, 3.76 (Ptrend = 0.05) and 5.13 (Ptrend = 0.003). There were suggestive associations with peak exposure observed for chronic myeloid leukemia, albeit based on very small numbers. No other lymphohematopoietic malignancy was associated with either chronic or peak exposure. Conclusions: Insofar as there is no prior epidemiologic evidence supporting associations between formaldehyde and either Hodgkin leukemia or chronic myeloid leukemia, any causal interpretations of the observed risk patterns are at most tentative. Findings from this re-analysis do not support the hypothesis that formaldehyde is a cause of AML. PMID:26147546

  11. Clinical study of Mito-FLAG regimen in treatment of relapsed acute myeloid leukemia.

    PubMed

    Luo, Sheng; Cai, Fangfang; Jiang, Lei; Zhang, Shenghui; Shen, Zhijian; Sun, Lan; Gao, Shenmeng

    2013-03-01

    Patients with relapsed acute myeloid leukemia (AML) have unfavorable prognosis and require innovative therapeutic approaches. In this study we used fludarabine combined with a middle dose of cytosine arabinoside (Ara-C), mitoxantrone and granulocyte-colony stimulating factor (G-CSF) as a salvage therapy for patients with relapsed AML in China. Forty-five patients with relapsed AML were treated with the Mito-FLAG regimen consisting of mitoxantrone (7 mg/m(2), day 1, 3 and 5), fludarabine (30 mg/m(2), days 1-5), Ara-C (1 g/m(2), over 3 h every 12 h, days 1-5) and G-CSF [5 μg/kg/day subcutaneously from day 0 until the white blood count (WBC) was >20×10(9)/l]. Patients with a partial response (PR) received another course of the same regimen. Patients with a suitable donor and aged <50 years received allogeneic stem cell transplantation (allo-SCT). Twenty-three patients (51%) and 3 patients (7%) achieved complete remission (CR) and PR, respectively, following one or two courses of Mito-FLAG, and the overall response (OR) rate was 58%. Nine patients (20%) received allo-SCT and 4 patients (9%) succumbed early. Hematological toxicity and infections were the most prominent toxicities of this regimen. Other toxicities included nausea, vomiting, bleeding, hyperbilirubinemia, renal toxicity and arrhythmia. The probability of overall survival (OS) at 4 years was 19% (95% CI, 11-26%) and the probability of 4-year disease-free survival (DFS) was 29% for all 23 patients in CR (95% CI, 18-41%). Our data suggest that Mito-FLAG is a highly effective and well-tolerated salvage regimen for relapsed AML.

  12. Obesity over the Life Course and Risk of Acute Myeloid Leukemia and Myelodysplastic Syndromes

    PubMed Central

    Poynter, Jenny N.; Richardson, Michaela; Blair, Cindy K.; Roesler, Michelle A.; Hirsch, Betsy A.; Nguyen, Phuong; Cioc, Adina; Warlick, Erica; Cerhan, James R.; Ross, Julie A.

    2015-01-01

    Background Overweight and obesity are known risk factors for a number of cancers, with recent evidence suggesting that risk of hematologic cancer is also increased in obese individuals. We evaluated associations between body mass index (BMI) at differing time points during the life course in population-based case control studies of acute myeloid leukemia (AML) and myelodysplatic syndromes (MDS). Methods Cases were identified by the Minnesota Cancer Surveillance System. Controls were identified through the Minnesota State driver’s license/identification card list. BMI was calculated using self-reported height and weight at ages 18, 35, and 50 years and two years prior to interview, and categorized as normal (18.5–25 kg/m2), overweight (25–29.9 kg/m2), obese class I (30–34.9 kg/m2), and obese class II/III (35+ kg/m2). All analyses were stratified by sex. Unconditional logistic regression was used to calculate odds ratios and 95% confidence intervals. Results We included 420 AML cases, 265 MDS cases and 1388 controls. Obesity two years prior to diagnosis was associated with AML in both males and females (OR=2.22, 95% CI 1.28, 3.85 and OR=1.85, 95% CI 1.08, 3.15 for BMI ≥ 35 vs. BMI 18.5–24.9, respectively). In contrast, associations between obesity and MDS were observed only in females. Weight change in adulthood was not consistently associated with either outcome. Conclusion Our results extend the emerging literature suggesting that obesity is a risk factor for hematologic malignancy and provide evidence that that the association remains regardless of timing of obesity. Obesity in adulthood is a modifiable risk factor for both MDS and AML. PMID:26720913

  13. Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study.

    PubMed

    Laursen, Anne Cathrine Lund; Sandahl, Julie Damgaard; Kjeldsen, Eigil; Abrahamsson, Jonas; Asdahl, Peter; Ha, Shau-Yin; Heldrup, Jesper; Jahnukainen, Kirsi; Jónsson, Ólafur G; Lausen, Birgitte; Palle, Josefine; Zeller, Bernward; Forestier, Erik; Hasle, Henrik

    2016-09-01

    Trisomy 8 (+8) is a common cytogenetic aberration in acute myeloid leukemia (AML); however, the impact of +8 in pediatric AML is largely unknown. We retrospectively investigated 609 patients from the NOPHO-AML database to determine the clinical and cytogenetic characteristics of +8 in pediatric AML and to investigate its prognostic impact. Complete cytogenetic data were available in 596 patients (98%) aged 0-18 years, diagnosed from 1993 to 2012, and treated according to the NOPHO-AML 1993 and 2004 protocols in the Nordic countries and Hong Kong. We identified 86 patients (14%) with +8. Trisomy 8 was combined with other cytogenetic aberrations in 68 patients (11%) (+8 other) and in 18 patients (3%), it was the sole abnormality (+8 alone). Trisomy 8 was associated with FAB M5 (36%) but otherwise clinically comparable with non-trisomy 8 patients. Trisomy 8 was favorable in patients of young age and with t(9;11). Trisomy 8 alone was associated with older age (median age 10.1 years), FAB M2 (33%), and FLT3-ITD mutations (58%). The 5-year event-free survival for patients with +8 alone was 50% and 5-year overall survival was 75%. In conclusion, +8 is one of the most common cytogenetic aberrations in pediatric AML. Trisomy 8 positive AML is a heterogeneous group and the majority of cases have additional cytogenetic aberrations. Patients with +8 alone differed from patients with +8 other and were associated with older age, FAB M2, and FLT3-ITD aberrations. There were no differences in survival despite the more frequent occurrence of FLT3-ITD in +8 alone. © 2016 Wiley Periodicals, Inc.

  14. Synergistic anti-leukemic interactions between ABT-199 and panobinostat in acute myeloid leukemia ex vivo

    PubMed Central

    Schwartz, Jonathan; Niu, Xiaojia; Walton, Eric; Hurley, Laura; Lin, Hai; Edwards, Holly; Taub, Jeffrey W; Wang, Zhihong; Ge, Yubin

    2016-01-01

    Cure rates for acute myeloid leukemia (AML) remain suboptimal; thus new treatment strategies are needed for this deadly disease. Poor clinical outcomes have been associated with overexpression of the anti-apoptotic Bcl-2 family proteins Bcl-2, Bcl-xL, and Mcl-1, which have garnered great interest as therapeutic targets. While the Bcl-2-selective inhibitor ABT-199 has demonstrated promising preclinical anti-leukemic activities, intrinsic drug resistance remains a problem. In our most recent study, we identified Mcl-1 sequestration of Bim as a mechanism of intrinsic resistance to ABT-199 in AML cells, thus upregulating Bim could overcome such resistance. Histone deacetylase (HDAC) inhibitors (HDACI) are a class of agents that have been confirmed to upregulate Bim. This prompted our hypothesis that combining an HDACI with ABT-199 would overcome intrinsic resistance to ABT-199 and result in synergistic anti-leukemic activity against AML. In this study, we investigated the anti-leukemic activity of panobinostat, a pan-HDACI, in combination with ABT-199 in AML cell lines and primary patient samples. We found that the combined drug treatment resulted in synergistic induction of cell death in both AML cell lines and primary patient samples. Panobinostat treatment resulted in upregulation of Bim, which remained elevated in the presence of ABT-199. In addition, shRNA knockdown of Bim in AML cell lines significantly attenuated apoptosis induced by combined panobinostat and ABT-199. Our results provide compelling evidence that Bim plays a key role in the combined anti-leukemic activity of panobinostat and ABT-199 against AML, and support clinical evaluation of combined panobinostat and ABT-199 in the treatment of AML. PMID:27725868

  15. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    PubMed Central

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML. PMID:27347147

  16. Tobacco Smoke Exposure and the Risk of Childhood Acute Lymphoblastic and Myeloid Leukemias by Cytogenetic Subtype

    PubMed Central

    Metayer, Catherine; Zhang, Luoping; Wiemels, Joseph L.; Bartley, Karen; Schiffman, Joshua; Ma, Xiaomei; Aldrich, Melinda C.; Chang, Jeffrey S.; Selvin, Steve; Fu, Cecilia H.; Ducore, Jonathan; Smith, Martyn T.; Buffler, Patricia A.

    2013-01-01

    Background Tobacco smoke contains carcinogens known to damage somatic and germ cells. We investigated the effect tobacco smoke on the risk of childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML), especially subtypes of pre-natal origin like ALL with translocation t(12;21) or high-hyperdiploidy (51–67 chromosomes). Methods We collected information on exposures to tobacco smoking before conception, during pregnancy, and after birth in 767 ALL cases, 135 AML cases, and 1,139 controls (1996–2008). Among cases, chromosome translocations, deletions, or aneuploidy were identified by conventional karyotype and fluorescence in-situ hybridization. Results Multivariable regression analyses for ALL and AML overall showed no definite evidence of associations with self-reported (yes/no) parental prenatal active smoking and child's passive smoking. However, children with history of paternal prenatal smoking combined with postnatal passive smoking had a 1.5-fold increased risk of ALL (95% CI: 1.01–2.23), compared to those without smoking history (ORs for pre- or postnatal smoking only were close to one). This joint effect was seen for B-cell precursor ALL with t(12;21) (OR=2.08; 95% CI: 1.04–4.16), but not high hyperdiploid B-cell ALL. Similarly, child's passive smoking was associated with an elevated risk of AML with chromosome structural changes (OR=2.76; 95% CI: 1.01–7.58), but not aneuploidy. Conclusions our data suggest that exposure to tobacco smoking before were associated with increased risks of childhood ALL and AML; and risks varied by timing of exposure (before and/or after birth) and cytogenetic subtype, based on imprecise estimates. Impact Parents should limit exposures to tobacco smoke before and after the child's birth. PMID:23853208

  17. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  18. Upregulation of microRNA-375 is associated with poor prognosis in pediatric acute myeloid leukemia.

    PubMed

    Wang, Zhengyan; Hong, Ze; Gao, Feng; Feng, Weijing

    2013-11-01

    A genome-wide serum miRNA expression analysis previously showed the upregulation of microRNA-375 (miR-375) in acute myeloid leukemia (AML) patients compared with healthy controls. The aim of this study was to investigate the expression patterns and the prognostic relevance of miR-375 in pediatric AML. Expression levels of miR-375 in bone marrow mononuclear cells were detected by real-time quantitative PCR in a cohort of 106 patients with newly diagnosed pediatric AML. Expression levels of miR-375 in the bone marrow of pediatric AML patients were significantly higher than those in normal controls (P < 0.001). Then, miR-375 upregulation occurred more frequently in French-American-British classification subtype M7 than in other subtypes (P < 0.001). Regarding to cytogenetic risk, the expression levels of miR-375 in pediatric AML patients with unfavorable karyotypes were dramatically higher than those in intermediate and favorable groups (P = 0.002). Moreover, high miR-375 expression was significantly associated with shorter relapse-free survival (P < 0.001) and overall survival (P < 0.001) in pediatric AML patients. Multivariate analysis further identified miR-375 expression and cytogenetics risk as independent prognostic factors for both relapse-free survival and overall survival. In particular, the prognostic relevance of miR-375 expression was more obvious in the subgroup of patients with intermediate-risk cytogenetics. Our findings suggest for the first time that the upregulation of miR-375 may be one of the molecular mechanisms involved in the development and progression of pediatric AML. Since its correlation with poor relapse-free survival and overall survival, miR-375 may be a novel biomarker to improve the management of pediatric AML patients.

  19. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia.

    PubMed

    Han, Yixiang; Ye, Aifang; Bi, Laixi; Wu, Jianbo; Yu, Kang; Zhang, Shenghui

    2014-08-01

    Although Th17 cells play crucial roles in the pathogenesis of many autoimmune and inflammatory disorders, their roles in malignancies are currently under debate. The role and mechanism of Th17 cells in patients with acute myeloid leukemia (AML) remain poorly understood. Here we demonstrated that the frequency of Th17 cells was significantly increased in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells from AML patients compared with healthy donors. Plasma levels of interleukin (IL)-17, IL-22, IL-23, IL-1β, IL-6, and transforming growth factor (TGF)-β1 were significantly increased in blood and bone marrow in AML patients compared with healthy donors. The in vitro experiments demonstrated that IL-1β, IL-6, IL-23, but not TGF-β1 promoted the generation and differentiation of Th17 cells from naive CD4(+) T cells in humans. IL-17A, a signature cytokine secreted by Th17 cells, induced the proliferation of IL-17 receptor (IL-17R)-positive AML cells via IL-17R, in which activation of PI3K/Akt and Jak/Stat3 signaling pathway may play important roles. In addition, combination of IL-17A and IL-22 significantly reduced the generation of Th1 cells and the production of interferon (IFN)-γ from healthy donor or AML patient peripheral blood mononuclear cells. Patients with high Th17 cell frequency had poor prognosis, whereas patients with high Th1 cell frequency had prolonged survival. Combined analysis of Th1 and Th17 cell frequencies improved the ability to predict patient outcomes. In conclusion, Th17 cells play a crucial role in the pathogenesis of AML and may be an important therapeutic target and prognostic predictor.

  20. Increased fibrinogen levels at diagnosis are associated with adverse outcome in patients with acute myeloid leukemia.

    PubMed

    Berger, Martin D; Heini, Alexander D; Seipel, Katja; Mueller, Beatrice; Angelillo-Scherrer, Anne; Pabst, Thomas

    2016-06-15

    Increased plasma fibrinogen levels are associated with shortened overall survival (OS) in some solid tumor types. In contrast, the prognostic significance of varying fibrinogen levels in acute myeloid leukemia (AML) at diagnosis is unknown. In this study, we assessed the prognostic significance of fibrinogen levels in AML patients. In a comprehensive retrospective single-center study, we determined the survival rates of 375 consecutive AML patients undergoing at least one cycle of intensive chemotherapy induction treatment. Patients were dichotomized between low (<4.1 g/L) and high fibrinogen levels (≥4.1 g/L) at diagnosis of AML before initiation of treatment. Subsequently, quartile ranges were applied to analyze the association of varying fibrinogen levels on survival. We observed that the rates of complete remission, early death, and admission to intensive care unit were equal in the low versus high fibrinogen group. However, OS was significantly better in the low fibrinogen group (27.3 vs 13.5 months; p = 0.0009) as well as progression-free survival (12.3 vs 7.8 months; p = 0.0076). This survival difference remained significant in the multivariate analysis (p = 0.003). Assessing quartiles of fibrinogen values, we further confirmed this observation. Our data suggest that high fibrinogen levels at diagnosis of AML are associated with unfavorable OS and progression-free survival but not with increased mortality during induction treatment. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening.

    PubMed

    Houshmand, Mohammad; Soleimani, Masoud; Atashi, Amir; Saglio, Giuseppe; Abdollahi, Mohammad; Nikougoftar Zarif, Mahin

    2017-02-01

    Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.

  2. Breakthrough disseminated zygomycosis induced massive gastrointestinal bleeding in a patient with acute myeloid leukemia receiving micafungin.

    PubMed

    Suzuki, Kei; Sugawara, Yumiko; Sekine, Takao; Nakase, Kazunori; Katayama, Naoyuki

    2014-11-01

    A 69-year-old man, who had been receiving prednisolone for 11 months for treatment of interstitial pneumonia, was diagnosed with acute myeloid leukemia. During induction therapy, he developed severe pneumonia. Although meropenem and micafungin were started, he died of circulatory failure owing to massive gastrointestinal bleeding. Autopsy specimens obtained from the stomach revealed fungal hyphae, which had invaded diffusely into submucosal vessels and caused the massive gastric bleeding. The same hyphae were also observed in both lungs. A diagnosis of disseminated zygomycosis was confirmed by its characteristic histopathological findings. Because zygomycetes are spontaneously resistant to the newer antifungal agents, such as voriconazole or micafungin, it seems likely that the prevalence of zygomycosis as a breakthrough infection may increase in the future. Zygomycosis is a rare, but life-threatening, deep fungal infection that appears in immunologically or metabolically compromised hosts. Its manifestations are clinically similar to those of invasive aspergillosis. In addition to the well-established epidemiology of zygomycosis, this case suggests the following new characteristics. (1) Although the gastrointestinal manifestation of zygomycosis is relatively rare, it is observed more frequently than invasive aspergillosis. (2) Gastrointestinal zygomycosis occasionally leads to the development of necrotic ulcers and may induce hemorrhagic shock.(3) We should be cautious of an occurrence of breakthrough zygomycosis when we use echinocandins for patients with known risk factors, especially steroid use and neutropenia. (4) For patients who are receiving broad-spectrum antibiotics and echinocandins, who are negative for culture studies and aspergillus antigen, and who present with unresolved fever, it is important to make a prompt clinical diagnosis of zygomycosis.

  3. Serum posaconazole levels during acute myeloid leukaemia induction therapy: correlations with breakthrough invasive fungal infections.

    PubMed

    Cattaneo, Chiara; Panzali, Annafranca; Passi, Angela; Borlenghi, Erika; Lamorgese, Cinzia; Petullà, Marta; Re, Alessandro; Caimi, Luigi; Rossi, Giuseppe

    2015-06-01

    The usefulness of posaconazole therapeutic drug monitoring (TDM) is still a matter of debate. A correlation between posaconazole serum levels and breakthrough invasive fungal infections (IFI) has not been clearly demonstrated so far. We analysed posaconazole serum levels in patients with acute myeloid leukaemia (AML) during induction therapy and correlated them with the incidence of breakthrough IFI and the need of systemic antifungal therapy. Overall, 77 AML patients receiving posaconazole were evaluated for serum levels; breakthrough IFI were observed in five with at least one posaconazole TDM (6.5%). Median serum level was 534 ng ml(-1) (IQ range: 298.5-750.5 ng ml(-1) ) and did not change significantly over time. Four of the 40 patients with median posaconazole levels <500 ng ml(-1) developed IFI, as compared with only 1 of the 37 patients with median levels ≥500 (10% vs. 2.7%, P = 0.19). Median posaconazole levels on day 7 were 384.5 ng ml(-1) (IQ range: 207-659 ng ml(-1) ) and 560.5 ng ml(-1) (IQ range: 395-756 ng ml(-1) ) in patients requiring or not systemic antifungal treatment respectively (P = 0.067). These results seem to confirm that higher median serum levels of posaconazole correlate with higher prophylactic efficacy against proven/probable IFI and with lesser need of systemic antifungal therapy.

  4. The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

    PubMed

    Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos

    2012-02-01

    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

  5. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia.

    PubMed

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi; Schenk, Tino; Klein, Hans-Ulrich; Rohde, Christian; Pabst, Caroline; Sauer, Tim; Lerdrup, Mads; Tavor, Sigal; Stölzel, Friedrich; Herold, Sylvia; Ehninger, Gerhard; Köhler, Gabriele; Pan, Kuan-Ting; Urlaub, Henning; Serve, Hubert; Dugas, Martin; Spiekermann, Karsten; Vick, Binje; Jeremias, Irmela; Berdel, Wolfgang E; Hansen, Klaus; Zelent, Arthur; Wickenhauser, Claudia; Müller, Lutz P; Thiede, Christian; Müller-Tidow, Carsten

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction of histone H3K27 trimethylation as a novel pathway of acquired resistance to tyrosine kinase inhibitors (TKIs) and cytotoxic drugs in AML. Low EZH2 protein levels correlated with poor prognosis in AML patients. Suppression of EZH2 protein expression induced chemoresistance of AML cell lines and primary cells in vitro and in vivo. Low EZH2 levels resulted in derepression of HOX genes, and knockdown of HOXB7 and HOXA9 in the resistant cells was sufficient to improve sensitivity to TKIs and cytotoxic drugs. The endogenous loss of EZH2 expression in resistant cells and primary blasts from a subset of relapsed AML patients resulted from enhanced CDK1-dependent phosphorylation of EZH2 at Thr487. This interaction was stabilized by heat shock protein 90 (HSP90) and followed by proteasomal degradation of EZH2 in drug-resistant cells. Accordingly, inhibitors of HSP90, CDK1 and the proteasome prevented EZH2 degradation, decreased HOX gene expression and restored drug sensitivity. Finally, patients with reduced EZH2 levels at progression to standard therapy responded to the combination of bortezomib and cytarabine, concomitant with the re-establishment of EZH2 expression and blast clearance. These data suggest restoration of EZH2 protein as a viable approach to overcome treatment resistance in this AML patient population.

  6. Epigenetic dysregulation of NKD2 is a valuable predictor assessing treatment outcome in acute myeloid leukemia.

    PubMed

    Li, Xi-Xi; Zhou, Jing-Dong; Zhang, Ting-Juan; Yang, Lei; Wen, Xiang-Mei; Ma, Ji-Chun; Yang, Jing; Zhang, Zhi-Hui; Lin, Jiang; Qian, Jun

    2017-01-01

    AIM: The present study was aimed to investigate NKD2 expression as well as promoter methylation and further analyze their clinical significance in patients with acute myeloid leukemia (AML). METHODS: Real-time quantitative PCR was carried out to detect the pattern of NKD2 expression in 113 AML patients and 24 controls. Real-time quantitative methylation-specific PCR (RQ-MSP) and bisulfite sequencing PCR (BSP) were carried out to detect NKD2 promoter methylation in 101 AML patients and 24 controls with available DNA. RESULTS: The level of NKD2 transcript in AML patients was significantly down-regulated as compared with controls (P=0.039). NKD2 methylation level in AML patients was significantly higher than controls (P=0.044). Moreover, NKD2 methylation negatively correlated with NKD2 expression in AML patients (R=-0.218, P=0.029). Furthermore, demethylation of NKD2 could increase NKD2 expression in the leukemic cell line THP1 (P<0.05). NKD2 low-expressed and high-expressed patients showed no statistical significance in complete remission (CR) rate among cytogenetically normal AML (CN-AML). However, low NKD2 expression was associated with shorter overall survival (OS) time and acted as independent risk factor in CN-AML according to Kaplan-Meier (P=0.029) and Cox regression analyses (P=0.022). Furthermore, gene expression (GEP) data also confirmed the prognostic value of NKD2 expression in CN-AML patients. Moreover, NKD2 showed significantly increased level in post-CR than initial diagnosis in follow-up AML patients (P=0.024). CONCLUSION: Decreased NKD2 expression inactivated by promoter hypermethylation is a common event in AML and is associated with adverse outcome in CN-AML patients.

  7. Principal results of the Medical Research Council's 8th acute myeloid leukaemia trial.

    PubMed

    Rees, J K; Gray, R G; Swirsky, D; Hayhoe, F G

    1986-11-29

    Between 1978 and 1983, 1127 patients with de-novo acute myeloid leukaemia (AML) were entered into the Medical Research Council (MRC)'s 8th AML trial. All received the same induction therapy consisting of daunorubicin, cytarabine, and 6-thioguanine--DAT (1 + 5). The 67% who entered complete remission were randomised to consolidation with two or six further courses of DAT. Adults under the age of 55 were randomised for central nervous system (CNS) prophylaxis with intrathecal cytarabine and methotrexate. Finally, those still in remission after 1 year of cytarabine and 6-thioguanine (AT) maintenance were randomised to receive either late intensification with cyclophosphamide, vincristine, cytarabine, and prednisolone (COAP) or continued AT. The median survival for the whole group was 12 months; the median duration of first remission was 15 months, with relapse-free survival at 5 years estimated at 18%. The factors most strongly associated with poor survival were performance status and age at presentation, but even among those over 60 years of age, half went into remission. Six courses of DAT consolidation gave a small advantage over two courses in reducing the number of late relapses but no significant survival advantage. Late intensification showed a marginally significant advantage over continued AT maintenance. The incidence of CNS relapse was low and unaffected by prophylaxis. The second remission rate varied from 10% when the first remission was shorter than 6 months to 61% when it had continued for more than 2 years. 40 patients received histocompatible allogeneic bone-marrow transplants in first remission. There was a high procedure-related death rate, particularly among patients over 30 years of age. Thus, initially at least, the transplanted group had shorter survival than a comparable group of chemotherapy-treated patients. Treatment specifications remained unchanged throughout the trial but those enrolled in the later half of the trial had a better (p = 0

  8. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia.

    PubMed

    Schneider, Constanze; Oellerich, Thomas; Baldauf, Hanna-Mari; Schwarz, Sarah-Marie; Thomas, Dominique; Flick, Robert; Bohnenberger, Hanibal; Kaderali, Lars; Stegmann, Lena; Cremer, Anjali; Martin, Margarethe; Lohmeyer, Julian; Michaelis, Martin; Hornung, Veit; Schliemann, Christoph; Berdel, Wolfgang E; Hartmann, Wolfgang; Wardelmann, Eva; Comoglio, Federico; Hansmann, Martin-Leo; Yakunin, Alexander F; Geisslinger, Gerd; Ströbel, Philipp; Ferreirós, Nerea; Serve, Hubert; Keppler, Oliver T; Cinatl, Jindrich

    2017-02-01

    The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.

  9. Therapy-related acute myeloid leukemia following treatment of lymphoid malignancies

    PubMed Central

    Bertoli, Sarah; Sterin, Arthur; Tavitian, Suzanne; Oberic, Lucie; Ysebaert, Loïc; Bouabdallah, Reda; Vergez, François; Sarry, Audrey; Bérard, Emilie; Huguet, Françoise; Laurent, Guy; Prébet, Thomas; Vey, Norbert; Récher, Christian

    2016-01-01

    Therapy-related acute myeloid leukemia (t-AML) is a heterogeneous entity most frequently related to breast cancer or lymphoproliferative diseases (LD). Population-based studies have reported an increased risk of t-AML after treatment of lymphomas. The aim of this study was to describe the characteristics and outcome of 80 consecutive cases of t-AML following treatment of LD. t-AML accounted for 2.3% of all AML cases, occurred 60 months after LD diagnosis, and were characterized by a high frequency of FAB M6 AML and poor-risk cytogenetic abnormalities. Time to t-AML diagnosis was influenced by patient age, type of LD, and treatment. Among the 48 t-AML patients treated with intensive chemotherapy, median overall survival (OS) was 7.7 months compared to 26.1 months in de novo, 4.2 months in post-myeloproliferative neoplasm, 9.4 months in post-myelodysplastic syndrome, 8.6 months in post-chronic myelomonocytic leukemia AML, 13.4 months in t-AML secondary to the treatment of solid cancer, and 14.7 months in breast cancer only. OS of post-LD t-AML patients was significantly influenced by age, performance status, myelodysplastic syndrome prior to LD/t-AML, and treatment regimen for LD. Thus, t-AML following lymphoid malignancies treatment should be considered as very high-risk secondary AML. New treatment strategies in patients with LD/t-AML are needed urgently. PMID:27852053

  10. Expression and functional roles of the chemokine receptor CXCR7 in acute myeloid leukemia cells

    PubMed Central

    Kim, Ha-Yon; Lee, So-Yeon; Kim, Deog-Young; Moon, Ji-Young; Choi, Yoon-Seok; Song, Ik-Chan; Lee, Hyo-Jin; Yun, Hwan-Jung; Kim, Samyong

    2015-01-01

    Background The C-X-C chemokine receptor 7 (CXCR7) has been shown to be a decoy receptor for CXCR4 in certain cell types. We investigated the expression status and functional roles of CXCR7 in acute myeloid leukemia (AML) cells in vitro. Methods CXCR7 mRNA was knocked down in AML cells by using small interfering RNA (siRNA) technology, and subsequent biological alterations in the cells were evaluated in vitro. Results All AML cell lines examined in this study (U937, K562, KG1a, HL-60, and MO7e) and primary CD34+ cells obtained from patients with AML expressed CXCR7 mRNA at various levels. Western blotting showed that all AML cells produced CXCR7. Furthermore, all AML cells expressed CXCR7 in both the cytoplasm and on the cell surface at various levels. Stromal cell-derived factor-1 (SDF-1; C-X-C motif ligand 12 (CXCL12)) induced internalization of cell surface CXCR7. However, neither hypoxia nor the examined hematopoietic growth factors (interleukin-1β (IL-1β), IL-3, IL-6, granulocyte-colony-stimulating factor, granulocyte, macrophage-colony-stimulating factor, and stem cell factor) and proinflammatory cytokines (interferon-γ, transforming growth factor-β, and tumor necrosis factor-α) were found to alter cell surface CXCR7 expression. The transfection of AML cells with CXCR4 siRNA, but not CXCR7 siRNA, significantly impaired the CXCL12-induced transmigration of the cells. The transfection of AML cells with CXCR7 siRNA did not affect the survival or proliferation of these cells. Knockdown of CXCR7, but not CXCR4, induced the upregulation of CXCL12 mRNA expression and CXCL12 production in AML cells. Conclusion CXCR7 is involved in the regulation of autocrine CXCL12 in AML cells. PMID:26770949

  11. Metronomic therapy with oral 6-mercaptopurine in elderly acute myeloid leukemia: A prospective pilot study

    PubMed Central

    Kapoor, Akhil; Beniwal, Surender Kumar; Kalwar, Ashok; Singhal, Mukesh Kumar; Nirban, Raj Kumar; Kumar, Harvindra Singh

    2016-01-01

    Introduction: Acute myeloid leukemia (AML) in elderly patients differs biologically from that in younger patients and is known to have unfavorable chromosomal rearrangements, higher resistance, and lower tolerance to chemotherapy. In such circumstances, instead of giving full-blown chemotherapy, palliative metronomic chemotherapy (MCT) could be a treatment option. Patients and Methods: We performed a prospective pilot study of old AML patients (age >60 years) not amenable to curative treatment. Thirty-two patients were enrolled into the study and were treated with daily oral 6-mercaptopurine 75 mg/m2. The following inclusion criteria were used: age >60 years, nonpromyelocytic AML, the absence of uncontrolled comorbidities, and patient not amenable to curative treatment. Overall survival (OS) was calculated using Kaplan–Meier method and Cox regression analysis were used to calculate the hazards ratio of significant factors. Results: The median age of the patients was 69 years (range: 61–86 years) with male: female ratio of 2.5:1. About 59.4% of patients had Eastern Cooperative Oncology Group performance status of 2 while rest had the status of 3. The median OS was 6 months (95% confidence interval [CI]: 4.4–7.6). Males had median OS of 7 months (95% CI: 5.4–8.6) versus females with OS of 3 months (95% CI: 1.5–4.4; P = 0.008). There was no survival difference on the basis of baseline hemoglobin or French-American-British class. There were no Grade 4 toxicities and no episode of febrile neutropenia. Conclusions: MCT with oral 6-mercaptopurine is an attractive treatment option in elderly AML patients who are not amenable to curative therapy with minimal toxicities. PMID:27275453

  12. lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia

    PubMed Central

    Pan, Jia-Qi; Zhang, Yan-Qing; Wang, Jing-Hua; Xu, Ping; Wang, Wei

    2017-01-01

    Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with great variability of prognostic behaviors. Previous studies have reported that long non-coding RNAs (lncRNAs) play an important role in AML and may thus be used as potential prognostic biomarkers. However, thus use of lncRNAs as prognostic biomarkers in AML and their detailed mechanisms of action in this disease have not yet been well characterized. For this purpose, in the present study, the expression levels of lncRNAs and mRNAs were calculated using the RNA-seq V2 data for AML, following which a lncRNA-lncRNA co-expression network (LLCN) was constructed. This revealed a total of 8 AML prognosis-related lncRNA modules were identified, which displayed a significant correlation with patient survival (p≤0.05). Subsequently, a prognosis-related lncRNA module pathway network was constructed to interpret the functional mechanism of the prognostic modules in AML. The results indicated that these prognostic modules were involved in the AML pathway, chemokine signaling pathway and WNT signaling pathway, all of which play important roles in AML. Furthermore, the investigation of lncRNAs in these prognostic modules suggested that an lncRNA (ZNF571-AS1) may be involved in AML via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway by regulating KIT and STAT5. The results of the present study not only provide potential lncRNA modules as prognostic biomarkers, but also provide further insight into the molecular mechanisms of action of lncRNAs. PMID:28204819

  13. Light scatter characteristics of blast cells in acute myeloid leukaemia: association with morphology and immunophenotype.