Science.gov

Sample records for advanced air ingress-related

  1. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  2. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  3. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  4. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-01

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air. PMID:24926965

  5. Classification Studies in an Advanced Air Classifier

    NASA Astrophysics Data System (ADS)

    Routray, Sunita; Bhima Rao, R.

    2016-01-01

    In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.

  6. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  7. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  8. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  9. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  10. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  11. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  12. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  13. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  14. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  15. 77 FR 65395 - Air Cargo Advance Screening (ACAS) Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Air Cargo Advance Screening (ACAS) Pilot Program Correction In notice document 2012-26031 appearing on pages 65006-65009 in the issue of October 24, 2012 make...

  16. QUEST FOR AN ADVANCED REGIONAL AIR QUALITY MODEL

    EPA Science Inventory

    Organizations interested in advancing the science and technology of regional air quality modeling on the "grand challenge" scale have joined to form CAMRAQ. hey plan to leverage their research finds by collaborating on the development and evaluation of CMSs so ambitious in scope ...

  17. The promise of advanced technology for future air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1978-01-01

    Progress in all weather 4-D navigation and wake vortex attenuation research is discussed and the concept of time based metering of aircraft is recommended for increased emphasis. The far term advances in aircraft efficiency were shown to be skin friction reduction and advanced configuration types. The promise of very large aircraft, possibly all wing aircraft is discussed, as is an advanced concept for an aerial relay transportation system. Very significant technological developments were identified that can improve supersonic transport performance and reduce noise. The hypersonic transport was proposed as the ultimate step in air transportation in the atmosphere. Progress in the key technology areas of propulsion and structures was reviewed. Finally, the impact of alternate fuels on future air transports was considered and shown not to be a growth constraint.

  18. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  19. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  20. Assessment of hazardous air pollutants for advanced power systems

    SciTech Connect

    Brekke, D.W.; Erickson, T.A.

    1995-12-01

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the US Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. This project focused on evaluating and manipulating the advanced power systems HAP data currently available for presentation to the US Department of Energy (DOE). The data were analyzed for trends associated with emission control systems and operating conditions. This project was an addition to an existing DOE program entitled Trace Element Emissions (TEE), which is being conducted by the Energy and Environmental Research Center (EERC). The purpose of this addition is to evaluate the current results of HAP emissions sampling from full-scale and demonstration units employing advanced power or hot-gas cleanup systems. The specific objectives of this program are to (1) perform a technical review and assessment of the data accumulated on the fate of trace metals in advanced coal power systems and compare them to emissions from conventional coal-fired power plants, and (2) assess the effectiveness of conventional and innovative control technologies relative to potential regulation requirements.

  1. Technical and Economic Evaluation of Advanced Air Cargo Systems

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    The current air cargo environment and the relevance of advanced technology aircraft in enhancing the efficiency of the 1990 air cargo system are discussed. NASA preliminary design studies are shown to indicate significant potential gains in aircraft efficiency and operational economics for future freighter concepts. Required research and technology elements are outlined to develop a better base for evaluating advanced design concepts. Current studies of the market operation are reviewed which will develop design criteria for a future dedicated cargo transport. Design features desirable in an all-freighter design are reviewed. NASA-sponsored studies of large, distributed-load freighters are reviewed and these designs are compared to current wide-body aircraft. These concepts vary in gross takeoff weight from 0.5 Gg (one million lbs.) to 1.5 Gg (three million lbs.) and are found to exhibit economic advantages over conventional design concepts.

  2. Air resonance of an advanced bearingless rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Jang, Jinseok; Chopra, Inderjit

    1988-01-01

    The air resonance of an advanced bearingless rotor in forward flight is investigated using a finite element formulation in space and time. The flexbeam, the torque tube, and the outboard blade are modeled as individual elastic beams, and the formulation includes five rigid body degrees of motion. It is shown that a large increase in stability is achieved by increased negative pitch-lag coupling arising from the vertical offset of the cuff restraint pin. It is also shown that body inertia has a significant effect on stability.

  3. Advanced Crew Interface Designs for Safer Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced crew interface designs to improve performance for safe air travel. NASA's goal is to provide enabling technologies that will increase aviation safety by a factor of five within 10 years, and by a factor of ten within 25 years. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  4. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  5. Recent developments on Air Liquide advanced technologies turbines

    NASA Astrophysics Data System (ADS)

    Delcayre, Franck; Gondrand, Cecile; Drevard, Luc; Durand, Fabien; Marot, Gerard

    2012-06-01

    Air Liquide Advanced Technologies has developed for more than 40 years turboexpanders mainly for hydrogen and helium liquefiers and refrigerators and has in total more than 600 references of cryogenic turbo-expanders and cold compressors. The latest developments are presented in this paper. The key motivation of these developments is to improve the efficiency of the machines, and also to widen the range of operation. New impellers have been designed for low and high powers, the operation range is now between 200W and 200kW. The thrust bearings have been characterized in order to maximize the load which can be withstood and to increase the turbo-expander cold power. Considering low power machines, 3D open wheels have been designed and machined in order to increase the adiabatic efficiencies. A new type of machine, a turbobooster for methane liquefaction has been designed, manufactured and tested at AL-AT test facility.

  6. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  7. Advanced over fire air retrofit for summer ozone compliance

    SciTech Connect

    Hayden, J.; Steitz, T.

    1998-07-01

    As part of a system wide Ozone Compliance Plan, Baltimore Gas and Electric (GBE) pursued a NOx reduction project at Brandon Shores Unit 1, a 680 MWg unit equipped with first generation low NOx burners. Strict current and proposed Ozone reduction regulations in the Northeastern United States required BGE to formulate a compliance plan. BGE reviewed many types of combustion and post-combustion NOx reduction techniques for the Station. An Over Fire Air (OFA) retrofit was evaluated as the least cost option to obtain compliance on a cost per ton of NOx removed. BGE selected an Advanced Over Fire (AOFA) System designed by Foster Wheeler (FW) to achieve their project goals for Brandon Shores Unit 1. The AOFA System demonstrated NOx reductions up to 44% at full load, with absolute NOx levels dropping to below 0.30 lb/MMBtu. All project goals for NOx, LOI (Loss on Ignition), CO, and boiler performance were met or exceeded. The Low NOx System proved to be a very cost effective method to reduce NOx for summertime Ozone compliance, while still allowing for optimum operating efficiency with the Low NOx System out of service during the non-Ozone season.

  8. 75 FR 57549 - Fisker Automotive; Grant of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... requirements submitted by a manufacturer of a plug-in hybrid electric car. The basis of the petition was..., especially in low- speed crashes. \\1\\ See 65 FR 30680 (May 12, 2000). The advanced air bag requirements were... developing advanced air bag systems. \\2\\ See, e.g., grant of petition to Panoz, 72 FR 28759 (May 22,...

  9. 78 FR 65426 - Technical Report: Evaluation of the Certified-Advanced Air Bags

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... SAFETY ADMINISTRATION Technical Report: Evaluation of the Certified-Advanced Air Bags AGENCY: National... reviewing and evaluating certified-advanced air bags. The report's title is: Evaluation of the Certified... Statistician, Evaluation Division, NVS-431, National Center for Statistics and Analysis, National...

  10. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  11. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  12. 77 FR 65006 - Air Cargo Advance Screening (ACAS) Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... December 5, 2003, CBP published a final rule in the Federal Register (68 FR 68140) to effectuate the... the air cargo is loaded and early enough so that CBP has sufficient time to identify, target, and... information other eligible filers may transmit to CBP. For non- consolidated shipments, the air carrier...

  13. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  14. REFINED PHOTOLYSIS RATES FOR ADVANCED AIR QUALITY MODELING SYSTEM

    EPA Science Inventory

    Accurate modeling of photochemistry is critical and fundamental to reducing the uncertainty in air quality model predictions. lmost all chemical reactions in the atmosphere are initiated by the photodissociation of a number of trace gases. irect measure of this photodissociation ...

  15. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  16. EMERGING TECHNOLOGY REPORT: DESTRUCTION OF ORGANIC CONTAMINANTS IN AIR USING ADVANCED ULTRAVIOLET FLASHLAMPS

    EPA Science Inventory

    This paper describes a new process for photo-oxidation of volatile organic compounds (VOCs) in air using an advanced ultraviolet source, a Purus xenon flashlamp. wo full scale air emissions control systems for trichloroethene (TCE) were constructed at Purus and tested at Lawrence...

  17. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Electronic information for air cargo required in advance of arrival. 122.48a Section 122.48a Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest...

  18. Air Monitoring: New Advances in Sampling and Detection

    PubMed Central

    Watson, Nicola; Davies, Stephen; Wevill, David

    2011-01-01

    As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt) level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples. PMID:22241966

  19. Recent advances in the development of Li-air batteries

    NASA Astrophysics Data System (ADS)

    Capsoni, Doretta; Bini, Marcella; Ferrari, Stefania; Quartarone, Eliana; Mustarelli, Piercarlo

    2012-12-01

    The global energy demand calls for more efficient storage systems. In this review, the state of the art of Li/air and Li/O2 batteries is discussed with particular attention on the more recent findings regarding all the battery compartments. Both aqueous and non-aqueous systems are considered, and the most critical issues for better battery design are addressed. Whereas the predicted charge/discharge values for these devices do justify the intense research efforts performed nowadays, great problems are still present which must be overcome in order to make Li/air and Li/O2 a reality for future large-scale applications.

  20. ADVANCED SORBENTS FOR CONTROL OF MULTIPLE AIR POLLUTANTS

    EPA Science Inventory

    EPA's Clean Air Interstate Rule (CAIR)and Utility MACT rulemaking are focusing on future reductions of NOX, SO2, and mercury emissions from power plants. Multipollutant sorbents could provide a cost-effective approach to control these emissions. This research will develop, charac...

  1. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  2. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  3. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  4. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  5. Air Ingress Analysis: Part 1 - Theoretical Approach

    SciTech Connect

    Chang Ho Oh

    2011-01-01

    Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy (DOE), is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature gas-cooled reactors (VHTRs). Phenomena identification and ranking studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air-ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the VHTR through the break, possibly causing oxidation of the graphite core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of lower plenum graphite caused by graphite oxidation can lead to a loss of mechanical strength. Excessive oxidation of core graphite can also lead to a release of fission products into the confinement, which could be detrimental to reactor safety. Analytical models developed in this study will improve our understanding of this phenomenon. This paper presents two sets of analytical models for the qualitative assessment of the air ingress phenomena. The results from the analytical models are compared with results of the computational fluid dynamic models (CFD) in the subsequent paper. The analytical models agree well with those CFD results.

  6. Assessment of the impact of advanced air-transport technology

    NASA Technical Reports Server (NTRS)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  7. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. J.; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1992-01-01

    An overview of the Advanced Cockpit Simulation Facility at the Massachusetts Institute of Technology is presented. Though detailed results depend on the specific application, graphical presentation of flight control and alert information has generally been found to be effective for situational awareness and subjectively selected by flight crews. Graphical display is most effective when it is consistent with the pilots cognitive map of the process being displayed or of the situation.

  8. 76 FR 60118 - Tesla Motors, Inc. Grant of Petition for Renewal of a Temporary Exemption From the Advanced Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... risks presented by air bag deployment. \\3\\ See 65 FR 30680 (May 12, 2000). The issuance of the advanced... advanced air bag system); Notice of Receipt of Petition of Lotus Cars Ltd., 76 FR 33406 (June 8, 2011... Manufacturers In general, frontal air bags for drivers and right front passengers have large net benefits....

  9. Advanced combustor design concept to control NOx and air toxics

    SciTech Connect

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  10. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  11. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  12. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  13. DIAGNOSTIC EVALUATION OF AIR QUALITY MODELS USING ADVANCED METHODS WITH SPECIALIZED OBSERVATIONS OF SELECTED AMBIENT SPECIES -PART II

    EPA Science Inventory

    This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...

  14. Advanced Remote-Sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred

    2006-01-01

    The Advanced Remote-sensing Imaging Emission Spectrometer (ARIES) will measure a wide range of earth quantities fundamental to the study of global climate change. It will build upon the success of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) instruments currently flying on the EOS Aqua Spacecraft. Both instruments are facility instruments for NASA providing data to thousands of scientists investigating land, ocean and atmospheric Earth System processes. ARIES will meet all the requirements of AIRS and MODIS in a single compact instrument, while providing the next-generation capability of improved spatial resolution for AIRS and improved spectral resolution for MODIS.

  15. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  16. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    NASA Astrophysics Data System (ADS)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  17. Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment.

    PubMed

    Pinto Filho, A C; Brandão, C C

    2001-01-01

    A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond. PMID:11394283

  18. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  19. EMERGING TECHNOLOGY REPORT: DESTRUCTION OF ORGANIC CONTAMINANTS IN AIR USING ADVANCED ULTRAVIOLET FLASHLAMPS

    EPA Science Inventory

    This paper describes a new process for photo-oxidation of volatile organic compounds (VOCs) in air using an advanced ultraviolet source, a Purus xenon flashlamp. The flashlamps have greater output at 200-250 nm than medium-pressure mercury lamps at the same power and therefore ca...

  20. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  1. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  2. 75 FR 51870 - Wheego Electric Cars, Inc.; Receipt of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... low- speed crashes. \\2\\ See 65 FR 30680 (May 12, 2000). The advanced air bag requirements were a... developing advanced air bag systems. \\3\\ See, e.g., grant of petition to Panoz, 72 FR 28759 (May 22, 2007), or grant of petition to Koenigsegg, 72 FR 17608 (April 9, 2007). The agency has carefully...

  3. 76 FR 7898 - Wheego Electric Cars, Inc.; Grant of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    .... \\1\\ See 65 FR 30680 (May 12, 2000). The advanced air bag requirements were a culmination of a... developing advanced air bag systems. \\2\\ See, e.g., grant of petition to Panoz, 72 FR 28759 (May 22, 2007), or grant of petition to Koenigsegg, 72 FR 17608 (April 9, 2007). The agency has carefully...

  4. 76 FR 33402 - Tesla Motors, Inc.; Receipt of Petition for Renewal of Temporary Exemption from the Advanced Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... crashes. \\2\\ See 65 FR 30680 (May 12, 2000). The issuance of the advanced air bag requirements was a... developing advanced air bag systems. \\3\\ See, e.g., grant of petition to Panoz, 72 FR 28759 (May 22, 2007), or grant of petition to Koenigsegg, 72 FR 17608 (April 9, 2007). Notwithstanding those...

  5. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  6. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect

    Nelson, W.R.

    1999-05-24

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  7. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  8. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  9. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  10. 19 CFR 103.31a - Advance electronic information for air, truck, and rail cargo; Importer Security Filing...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Advance electronic information for air, truck, and... AVAILABILITY OF INFORMATION Other Information Subject to Restricted Access § 103.31a Advance electronic... following types of advance electronic information are per se exempt from disclosure under §...

  11. AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2011-01-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  12. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  13. Recent theoretical advances in analysis of AIRS/AMSU sounding data

    NASA Astrophysics Data System (ADS)

    Susskind, Joel

    2007-04-01

    The AIRS Science Team Version 5.0 retrieval algorithm will become operational at the Goddard DAAC in early 2007 in the near real-time analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments are: 1) the development and implementation of a very accurate Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology is described briefly and results are shown, including comparison with those using AIRS Version 4, as well as a forecast impact experiment assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System.

  14. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  15. Investigation of novel electrolyte systems for advanced metal/air batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Hui

    It is a worldwide challenge to develop advanced green power sources for modern portable devices, transportation and stationary power generation. Metal/air batteries and fuel cells clearly stand out in view of their high specific energy, high energy efficiency and environment-friendliness. Advanced metal/air batteries based on metal ion conductors and proton exchange membrane (PEM) fuel cells operated at elevated temperatures (>120°C) can circumvent the limitations of current technologies and bring considerable advantages. The key is to develop suitable electrolytes to enable these new technologies. In this thesis research, investigation of novel electrolytes systems for advanced metal/air batteries and PEM fuel cells is conducted. Novel polymer gel electrolyte systems, [metal salt/ionic liquid/polymer] and [metal salt/liquid polyether/polymer] are prepared. Such systems contain no volatile solvents, conduct metal ions (Li+ or Zn 2+) with high ionic conductivity, possess wide electrochemical stability windows, and exhibit wide operating temperature ranges. They promise to enable non-aqueous, all-solid-state, thin-film Li/air batteries and Zn/air batteries. They are advantageous for application in other battery systems as well, such as rechargeable lithium and lithium ion batteries. In the case of proton exchange membranes, polymer gel electrolyte systems [acid/ionic liquid/polymer] are prepared. Especially, H3PO4/PMIH2PO 4/PBI is demonstrated as prospective proton exchange membranes for PEM fuel cells operating at elevated temperatures. Comprehensive electrochemical characterization, thermal analysis (TGA and DSC) and spectroscopy analysis (NMR and FTIR) are carried out to investigate these novel electrolyte systems and their ion transport mechanisms. The design and synthesis of novel ionic liquids and electrolyte systems based on them for advantageous application in various electrochemical power sources are highlighted in this work.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  18. Luminescence dating of glacial advances at Lago Buenos Aires (∼46 °S), Patagonia

    NASA Astrophysics Data System (ADS)

    Smedley, R. K.; Glasser, N. F.; Duller, G. A. T.

    2016-02-01

    Understanding the timing of past glacial advances in Patagonia is of global climatic importance because of the insight this can provide into the influence on glacier behaviour of changes in temperature and precipitation related to the Southern Westerlies. In this paper we present new luminescence ages determined using single grains of K-feldspar from proglacial outwash sediments that were deposited by the Patagonian Ice Sheet around Lago Buenos Aires (∼46 °S), east of the contemporary Northern Patagonian Icefield. The new luminescence ages indicate that major outwash accumulations formed around ∼110 ± 20 ka to 140 ± 20 ka and that these correspond to the Moreno I and II moraine ridges, which were previously dated using cosmogenic isotope dating to 150 ± 30 ka. Luminescence dating at Lago Buenos Aires has also identified outwash sediments that were deposited during glacial advances ∼30.8 ± 5.7 ka and ∼34.0 ± 6.1 ka (MIS 3) that are not recorded in the moraine record. Younger outwash accumulations were then deposited between ∼14.7 ± 2.1 and 26.2 ± 1.6 ka which correspond to the Fenix I - V moraine ridges. The combined chronology suggests that glacial advances occurred ∼110 ± 20 ka to 150 ± 30 ka (MIS 6), ∼30.8 ± 5.7 ka to ∼34.0 ± 6.1 ka (MIS 3), and ∼14.7 ± 2.1 to 26.2 ± 1.6 ka (MIS 2) at Lago Buenos Aires. Overall luminescence dating using single grains of K-feldspar has excellent potential to contribute towards the ever-increasing geochronological dataset constraining the timings of glacial advances in Patagonia.

  19. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  20. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  1. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  2. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles. PMID:23651993

  3. Emerging technology summary: Destruction of organic contaminants in air using advanced ultraviolet flashlamps

    SciTech Connect

    Not Available

    1993-07-01

    The summary describes a new process for photo-oxidation of volatile organic compounds (VOCs) in air using an advanced ultraviolet (UV) source, and a pulsed xenon flashlamp. The flashlamps have greater output at 200 to 250 nm than medium-pressure mercury lamps at the same power and, therefore, cause much more rapid direct photolysis of VOCs. The observation of quantum yields greater than unity indicate the involvement of chain reactions for trichloroethene (TCE), perchloroethene (PCE), 1,1-dichloroethylene (DCE), CHCl3, and CH2Cl2. TCE was examined more closely because of its widespread occurrence and very high destruction rate.

  4. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  5. 76 FR 47641 - Pagani Automobili SpA; Denial of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Ltd., 76 FR 33406 (June 8, 2011) (manufacturer has another model that fully complies with the advanced... risks presented by air bag deployment. \\6\\ See 65 FR 30680 (May 12, 2000). The issuance of the advanced... petition of Panoz, 72 FR 28759 (May 22, 2007); Grant of petition of Koenigsegg Automotive AB, 72 FR...

  6. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  7. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  8. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  9. ADAPTATION OF THE ADVANCED STATISTICAL TRAJECTORY REGIONAL AIR POLLUTION (ASTRAP) MODEL TO THE EPA VAX COMPUTER - MODIFICATIONS AND TESTING

    EPA Science Inventory

    The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model simulates long-term transport and deposition of oxides of and nitrogen. t is a potential screening tool for assessing long-term effects on regional visibility from sulfur emission sources. owever, a rigorou...

  10. Advanced fuel hydrocarbon remediation national test location - in situ air sparging system (revised)

    SciTech Connect

    Health, J.; Lory, E.

    1997-03-01

    Air sparging is the process of injecting clean air directly into an aquifer for remediation of contaminated groundwater. For removing contaminants, air sparging relies on two basic mechanisms working either alone or in tandem: biodegradation and volatilization. The objective of air sparging is to force air through contaminated aquifer materials to provide oxygen for bioremediation and/or to strip contaminants out of the aquifer.

  11. Location and repair of air leaks in the ATF (Advanced Toroidal Facility) vacuum vessel

    SciTech Connect

    Schwenterly, S.W.; Gabbard, W.A.; Schaich, C.R.; Yarber, J.L. )

    1989-01-01

    On the basis of partial pressure rate-of-rise and base pressure measurements, it was determined that the Advanced Toroidal Facility (ATF) vacuum vessel had an air leak in the low 10{sup -4} mbar-{ell}/s range. Pinpointing this leak by conventional helium leak-checking procedures was not possible, because large portions of the outside of the vessel are covered by the helcial field coils and a structural shell. Various alternative leak-detection schemes that were considered are summarized and their advantages and disadvantages noted. In the method ultimately employed, gun-rubber patches of various sizes ranging from 12.7 by 12.7 cm to 20.3 by 30.5 cm were positioned on the inside surfaces of the vessel and evacuated by the leak detector (LD). After roughly 5% of the surface was inspected in this way, a leak of > 10{sup -5} mbar-{ell}/s was discovered and localized to an area of 5 by 5 cm. Dye penetrant applied to this area disclosed three pinholes. Two small slag pockets were discovered while these points were being ground out. After these were rewelded, no furthered leakage could be found in the repaired area. Global leak rates measured after the machine was reevacuated indicated that this leak was about 30% of the overall leak rate. 1 ref., 5 figs., 1 tab.

  12. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  13. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  14. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  15. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  16. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  17. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    NASA Astrophysics Data System (ADS)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  18. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  19. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  20. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    NASA Technical Reports Server (NTRS)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations

  1. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  2. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  3. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  4. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  5. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  6. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    EPA Science Inventory

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evalua...

  7. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  8. Advanced feedback control of indoor air quality using real-time computational fluid dynamics

    SciTech Connect

    Ratnam, E.; Campbell, T.; Bradley, R.

    1998-10-01

    This paper describes the partial implementation of a novel method of controlling indoor air quality (IAQ) for critical applications. The proposed method uses a numerical modeling technique known as computational fluid dynamics (CFD) for modeling the effect of variable ventilation rates for intelligent and rapid control of air contamination in space. This paper describes how a CFD model is made to run in real time linked to a feedback control loop. The technique was simulated in a graphical programming language. The simulation results indicate that a quasi-transient potential flow CFD model is a viable technique for feedback control of IAQ, and it is currently being implemented in an experimental validation.

  9. Advanced Remote-sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred G.; Broberg, Steve E.

    2006-01-01

    This paper describes a space based instrument concept that will provide scientists with data needed to support key ongoing and future Earth System Science investigations. The measurement approach builds on the observations made by AIRS and MODIS and exceeds their capability with improved spatial and spectral resolution. This paper describes the expected products and the instrument concept that can meet those requirements.

  10. Advanced-technology laser-aided air pollution monitoring in Athens: the Greek differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Efthimiopoulos, Tom; Ehret, Gerhard; Kotsopoulos, Stavros A.; Zevgolis, Dimitrios; Economou, G.; Kosmidis, Constantine E.; Adamopoulos, A. D.; Doukas, A.; Gogou, P.-M.; Karaboulas, D.; Katsenos, J.

    1998-07-01

    This paper describes the needs for establishing a mobile laser laboratory (LIDAR) for air pollution monitoring in the Athens area. It also gives the specifications of the laser unit of the LIDAR system and the various studies to be performed in Athens area.

  11. "Advances in Coupled Air Quality, Farm Management and Biogeochemistry to address bidirectional ammonia flux"

    EPA Science Inventory

    A cropland farm management modeling system for regional air quality and field-scale applications of bi-directional ammonia exchange was presented at ITM XXI. The goal of this research is to improve estimates of nitrogen deposition to terrestrial and aquatic ecosystems and ambien...

  12. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the United States... its transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the... air to the United States (for example, if a shipment began its transportation from Hong Kong...

  13. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the United States... its transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the... air to the United States (for example, if a shipment began its transportation from Hong Kong...

  14. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the United States... its transportation from Hong Kong (HKG), and it transits through Narita, Japan (NRT), en route to the... air to the United States (for example, if a shipment began its transportation from Hong Kong...

  15. Czech Basic Course: Advanced Phase (Air Force), Lessons 1-23 and Supplementary Materials.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    The purpose of this volume is to acquaint students of the Defense Language Institute's "Czech: Basic Course" with specialized Air Force terminology. Twenty-three lessons focusing on military procedures and terminology are included. The lessons include Czech and English texts of a dialogue, reading passages, and a word list. An appendix contains…

  16. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  17. Advanced air separation for coal gasification-combined-cycle power plants: Final report

    SciTech Connect

    Kiersz, D.F.; Parysek, K.D.; Schulte, T.R.; Pavri, R.E.

    1987-08-01

    Union Carbide Corporation (UCC) and General Electric Company (GE) conducted a study to determine the benefits associated with extending the integration of integrated coal gasification-combined cycle (IGCC) systems to include the air separation plant which supplies oxygen to the gasifiers. This is achieved by extracting air from the gas turbine air compressors to feed the oxygen plant and returning waste nitrogen to the gas turbine. The ''Radiant Plus Convective Design'' (59/sup 0/F ambient temperature case) defined in EPRI report AP-3486 was selected as a base case into which the oxygen plant-gas turbine integration was incorporated and against which it was compared. General Electric Company's participation in evaluating gas turbine and power block performance ensured consistency between EPRI report AP-3486 and this study. Extending the IGCC integration to include an integrated oxygen plant-gas turbine results in a rare combination of benefits - higher efficiency and lower capital costs. Oxygen plant capital costs are over 20% less and the power requirement is reduced significantly. For the IGCC system, the net power output is higher for the same coal feed rate; this results in an overall improvement in heat rate of about 2% coupled with a reduction in capital costs of 2 to 3%. 6 refs., 11 figs., 7 tabs.

  18. Development of an advanced ceramic turbine wheel for an air turbine starter

    NASA Astrophysics Data System (ADS)

    Poplawsky, Carl J.; Lindberg, Laura; Robb, Scott; Roundy, James

    1992-10-01

    A ceramic turbine wheel has been designed as a retrofit for Waspaloy for a military cartridge mode air turbine starter. This results in reduced cost and weight while increasing resistance to temperature, erosion, and corrosion. Techniques used to perform ceramic turbine three-dimensional fast fracture reliability analysis were verified with spin testing of ceramic test rotors and correlated well with burst speed predictions. Reliability estimates have been made for design and proof conditions, providing guidance for selecting a ceramic supplier and for determining proof test yield. Room temperature whirlpit burst testing is planned to verify the mechanical design and reliability of the wheel.

  19. Development of an advanced ceramic turbine wheel for an air turbine starter

    SciTech Connect

    Poplawsky, C.J.; Lindberg, L.; Robb, S.; Roundy, J.

    1992-01-01

    A ceramic turbine wheel has been designed as a retrofit for Waspaloy for a military cartridge mode air turbine starter. This results in reduced cost and weight while increasing resistance to temperature, erosion, and corrosion. Techniques used to perform ceramic turbine three-dimensional fast fracture reliability analysis were verified with spin testing of ceramic test rotors and correlated well with burst speed predictions. Reliability estimates have been made for design and proof conditions, providing guidance for selecting a ceramic supplier and for determining proof test yield. Room temperature whirlpit burst testing is planned to verify the mechanical design and reliability of the wheel. 9 refs.

  20. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  1. Advanced bio-energy systems for Air Force installations. Final report Feb 80-Jan 81

    SciTech Connect

    Huff, W.J.; Bond, D.H.

    1981-10-01

    This investigation was sponsored by the US Air Force to determine the potential of using innovative biomass energy conversion technology interface with in-place energy generating hardware to sustain total annual facility energy requirements on a forested airbase. The investigation found that Eglin AFB, FL has high potential for such a system, but that certain components and subsystems require test, evaluation and demonstration in an Air Force base environment before full implementation is possible. The investigation found that a biomass energy island system could be achieved through a centralized biomass gasification/combined cycle system to produce 135,000 1b/hr 150 psig steam (saturated) and 27 Mwh/hr electrical power from 1480 green tons of wood chips daily. A phased implementation system is recommended, consisting of separate integrable test and evaluation modules for combined cycle wood gasification and for cogeneration, which would dovetail into an expanded basewide energy self-sufficient system. The investigation did not consider harvestation of base woodlands, which is the subject of a separate effort to define the wood resource aspects of a total biomass self-sufficient system.

  2. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  3. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this

  4. Application of Advanced Technologies to Small, Short-haul Air Transports

    NASA Technical Reports Server (NTRS)

    Adcock, C.; Coverston, C.; Knapton, B.

    1980-01-01

    A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.

  5. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  6. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700–900 °C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  7. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  8. Advanced combustor design concepts to control NOx and air toxics. Quarterly report, July--September 1995

    SciTech Connect

    Pershing, D.W.; Lighty, J.; Spinti, J.

    1995-10-31

    The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics. Existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. Since they will ultimately be a recipient of the enhanced design methodology, they are also providing ongoing review of the practical applicability of the tools being developed. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sub x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultra-low NO{sub x} conditions because it is possible that such conditions will alter the fate of volatile and semivolatile metal species and the emission of heavy hydrocarbons. Finally the University of Utah is responsible for the development of the improved NO{sub x} and carbon burnout submodels.

  9. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  10. A systematic approach to advanced cockpit warning systems for air transport operations: Line pilot preferences

    NASA Technical Reports Server (NTRS)

    Williams, D. H.; Simpson, C. A.

    1976-01-01

    Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.

  11. SPIRE, the ``Spin Triangle'': Athens, Hamburg, Buenos Aires: Advancing Nanospintronics and Nanomagnetism

    NASA Astrophysics Data System (ADS)

    Smith, Arthur R.

    2012-02-01

    Future technological advances at the frontier of `elec'tronics will increasingly rely on the use of the spin property of the electron at ever smaller length scales. As a result, it is critical to make substantial efforts towards understanding and ultimately controlling spin and magnetism at the nanoscale. In SPIRE, the goal is to achieve these important scientific advancements through a unique combination of experimental and theoretical techniques, as well as complementary expertise and coherent efforts across three continents. The key experimental tool of choice is spin-polarized scanning tunneling microscopy -- the premier method for accessing the spin structure of surfaces and nanostructures with resolution down to the atomic scale. At the same time, atom and molecule deposition and manipulation schemes are added in order to both atomically engineer, and precisely investigate, novel nanoscale spin structures. These efforts are being applied to an array of physical systems, including single magnetic atomic layers, self-assembled 2-D molecular arrays, single adatoms and molecules, and alloyed spintronic materials. Efforts are aimed at exploring complex spin structures and phenomena occurring in these systems. At the same time, the problems are approached, and in some cases guided, by the use of leading theoretical tools, including analytical approaches such as renormalization group theory, and computational approaches such as first principles density functional theory. The scientific goals of the project are achieved by a collaborative effort with the international partners, engaging students at all levels who, through their research experiences both at home and abroad, gain international research outlooks as well as understandings of cultural differences, by working on intriguing problems of mutual interest. A novel scientific journalism internship program based at Ohio University furthers the project's broader impacts.

  12. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  13. ZT-P: an advanced air core reversed field pinch prototype

    SciTech Connect

    Schoenberg, K.F.; Buchenauer, C.J.; Burkhardt, L.C.; Caudill, L.D.; Dike, R.S.; Dominguez, T.; Downing, J.N.; Forman, P.R.; Garcia, J.A.; Giger, A.J.

    1986-01-01

    The ZT-P experiment, with a major radius of 0.45 m and a minor radius of 0.07 m, was designed to prototype the next generation of reversed field pinch (RFP) machines at Los Alamos. ZT-P utilizes an air-core poloidal field system, with precisely wound and positioned rigid copper coils, to drive the plasma current and provide plasma equilibrium with intrinsically low magnetic field errors. ZT-P's compact configuration is adaptable to test various first wall and limiter designs at reactor-relevant current densities in the range of 5 to 20 MA/m/sup 2/. In addition, the load assembly design allows for the installation of toroidal field divertors. Design of ZT-P began in October 1983, and assembly was completed in October 1984. This report describes the magnetic, electrical, mechanical, vacuum, diagnostic, data acquisition, and control aspects of the machine design. In addition, preliminary data from initial ZT-P operation are presented. Because of ZT-P's prototypical function, many of its design aspects and experimental results are directly applicable to the design of a next generation RFP. 17 refs., 47 figs.

  14. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  15. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  16. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  17. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  18. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect

    Lee, In Young

    1993-09-01

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  19. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-01

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination. PMID:27269411

  20. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  1. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    EPA Science Inventory

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  2. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  3. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  4. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. PMID:20036449

  5. Air Quality Model Evaluation International Initiative (AQMEII): Advancing State of the Science in Regional Photochemical Modeling and Its Applications

    EPA Science Inventory

    Although the focus in the 1970s was primarily on urban air pollution models, it is well known that pollution problems such as acid rain, ozone, and fine particulate matter are regional in scope, requiring regional-scale multipollutant models. In North America and Europe, several ...

  6. FACILITATING ADVANCED URBAN METEOROLOGY AND AIR QUALITY MODELING CAPABILITIES WITH HIGH RESOLUTION URBAN DATABASE AND ACCESS PORTAL TOOLS

    EPA Science Inventory

    Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...

  7. ADVANCED EMISSIONS SPECIATION METHODOLOGIES FOR THE AUTO/OIL AIR QUALITY IMPROVEMENT RESEARCH PROGRAM - II. ALDEHYDES, KETONES, AND ALCOHOLS

    EPA Science Inventory

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air quality Improvement Research Program to provide emission data for comparison of...

  8. 77 FR 76064 - Reopening of Application Period for Participation in the Air Cargo Advance Screening (ACAS) Pilot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... published a general notice in the Federal Register (77 FR 65006, corrected in 77 FR 65395 \\1\\) announcing... October 26, 2012. The ACAS pilot is a voluntary test in which participants agree to submit a subset of the... Cargo Advance Screening (ACAS) Pilot Program AGENCY: U.S. Customs and Border Protection, DHS....

  9. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  10. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication

  11. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold Air Outbreaks One Month in Advance

    NASA Astrophysics Data System (ADS)

    Cai, Ming

    2016-04-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1‑2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30‑day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.

  12. Advanced Air Traffic Management Research (Human Factors and Automation): NASA Research Initiatives in Human-Centered Automation Design in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)

    1996-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.

  13. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  14. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  15. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  16. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

    PubMed Central

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N.; Kinney, Patrick L.; Arora, Narendra; Smith, Kirk R.

    2012-01-01

    Background In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested

  17. Turbulent Navier-Stokes Flow Analysis of an Advanced Semispan Diamond-Wing Model in Tunnel and Free Air at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.

  18. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    NASA Technical Reports Server (NTRS)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  19. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  20. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  1. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  2. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features (Phase II-Air Training Command, Military Airlift Command, and Strategic Air Command [and] Phase III-Electronic Warfare Trainers).

    ERIC Educational Resources Information Center

    Polzella, Donald J.; Hubbard, David C.

    This document consists of an interim report and a final report which describe the second and third phases of a project designed to determine the utility and utilization of sophisticated hardware and software capabilities known as advanced instructional features (AIFs). Used with an aircrew training device (ATD), AIFs permit a simulator instructor…

  3. USING ADVANCED STATISTICAL TECHNIQUES TO IDENTIFY THE DRIVERS AND OCCURRENCE OF HISTORICAL AND FUTURE EXTREME AIR QUALITY EVENTS IN THE UNITED STATES FROM OBSERVATIONS AND MODELS

    EPA Science Inventory

    This proposed project will result in fundamentally new insights into the connections between extreme weather and air quality. This will include probabilistic relationships between pollutants (PM2.5 and O3) and important meteorological drivers regionally within the United St...

  4. Identifying the Drivers and Occurrence of Historical and Future Extreme Air-quality Events in the United States Using Advanced Statistical Techniques

    NASA Astrophysics Data System (ADS)

    Porter, W. C.; Heald, C. L.; Cooley, D. S.; Russell, B. T.

    2013-12-01

    Episodes of air-quality extremes are known to be heavily influenced by meteorological conditions, but traditional statistical analysis techniques focused on means and standard deviations may not capture important relationships at the tails of these two respective distributions. Using quantile regression (QR) and extreme value theory (EVT), methodologies specifically developed to examine the behavior of heavy-tailed phenomena, we analyze extremes in the multi-decadal record of ozone (O3) and fine particulate matter (PM2.5) in the United States. We investigate observations from the Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) networks for connections to meteorological drivers, as provided by the National Center for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) product. Through regional characterization by quantile behavior and EVT modeling of the meteorological covariates most responsible for extreme levels of O3 and PM2.5, we estimate pollutant exceedance frequencies and uncertainties in the United States under current and projected future climates, highlighting those meteorological covariates and interactions whose influence on air-quality extremes differs most significantly from the behavior of the bulk of the distribution. As current policy may be influenced by air-quality projections, we then compare these estimated frequencies to those produced by NCAR's Community Earth System Model (CESM) identifying regions, covariates, and species whose extreme behavior may not be adequately captured by current models.

  5. Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2002-01-01

    A general overview of the Advanced Airspace Concept (AAC) is presented. The topics include: 1) Limitations of the existing system; 2) The Advanced Airspace Concept; 3) Candidate architecture for the AAC; 4) Separation assurance and conflict avoidance system (TSAFE); and 5) Ground-Air Interactions. This paper is in viewgraph form.

  6. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  7. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  8. PAN AIR analysis of the NASA/MCAIR 279-3: An advanced supersonic V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.; Erickson, Larry L.

    1986-01-01

    PAN AIR is a computer program for predicting subsonic or supersonic linear potential flow about arbitrary configurations. The program was applied to a highly complex single-engine-cruise V/STOL fighter/attack aircraft. Complexities include a close-coupled canard/wing, large inlets, and four exhaust nozzles mounted directly under the wing and against the fuselage. Modeling uncertainties involving canard wake location and flow-through approximation through the inlet and the exhaust nozzles were investigated. The recently added streamline capability of the program was utilized to evaluate visually the predicted flow over the model. PAN AIR results for Mach numbers of 0.6, 0.9, and angles of attack of 0, 5, and 10 deg. were compared with data obtained in the Ames 11- by 11-Foot Transonic Wind tunnel, at a Reynolds number of 3.69 x 10 to the 6th power based on c bar.

  9. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  10. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    NASA Astrophysics Data System (ADS)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  11. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  12. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  13. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  14. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE PAGESBeta

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  15. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  16. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  17. Advanced Rotorcraft Transmission Program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

  18. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  19. Air Force Seal Programs

    NASA Technical Reports Server (NTRS)

    Mayhew, Ellen R.

    1996-01-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Seal technology continues to be pursued by the Air Force to control leakage at the required conditions. This presentation briefly describes current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engines.

  20. Advanced Worker Protection System

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  1. Commercialization of advanced batteries

    SciTech Connect

    Mader, J.

    1996-11-01

    Mader and Associates has been working as a contractor for the South Coast Air Quality Management District (District) for the past several years. During this period it has performed various assessments of advanced battery technology as well as established the Advanced Battery Task Force. The following paper is Mader`s view of the status of battery technologies that are competing for the electric vehicle (EV) market being established by the California Air Resources Board`s Zero Emission Vehicle (ZEV) Mandate. The ZEV market is being competed for by various advanced battery technologies. And, given the likelihood of modifications to the Mandate, the most promising technologies should capture the following market share during the initial 10 years: Lead-Acid--8.4%, Nickel Metal Hydride--50.8%, Sodium Sulfur--7.8%, Lithium Ion 33.0%.

  2. Developing air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lee, Pius; Saylor, Rick; Meagher, James

    2012-05-01

    Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.

  3. Air Force seal activities

    NASA Technical Reports Server (NTRS)

    Mayhew, Ellen R.

    1994-01-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  4. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  5. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  6. Air transportation noise technology overview

    NASA Technical Reports Server (NTRS)

    Maggin, B.; Chestnutt, D.

    1973-01-01

    The NASA and DOT technology program planning for quieter air transportation systems is reviewed. To put this planning in context, the nature of the noise problem and the projected nature of the air transportation fleet are identified. The technology program planning reviewed here is discussed in relation to the following areas of activity: systems analysis, community acceptance, basic research and technology, and the various classes of civil aircraft, i.e. existing and advanced transports, powered-lift transports, and general aviation.

  7. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  8. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  9. Cascaded humidified advanced turbine

    SciTech Connect

    Nakhamkin, M.; Swenson, E.C.; Cohn, A.; Bradshaw, D.; Taylor, R.; Wilson, J.M.; Gaul, G.; Jahnke, F.; Polsky, M.

    1995-05-01

    This article describes how, by combining the best features of simple- and combined-cycle gas turbine power plants, the CHAT cycle concept offers power producers a clean, more efficient and less expensive alternative to both. The patented cascaded advanced turbine and its cascaded humidified advanced turbine (CHAT) derivative offer utilities and other power producers a practical advanced gas turbine power plant by combining commercially-available gas turbine and industrial compressor technologies in a unique way. Compared to combined-cycle plants, a CHAT power plant has lower emissions and specific capital costs-approximately 20 percent lower than what is presently available. Further, CHAT`s operating characteristics are especially well-suited to load following quick start-up scenarios and they are less susceptible to power degradation from higher ambient air temperature conditions.

  10. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  11. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  12. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  13. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  14. Air Controlman 1 & C: Rate Training Manual.

    ERIC Educational Resources Information Center

    Naval Training Command, Pensacola, FL.

    The manual is designed for use in preparing for advancement within the Navy Air Controlman rating, which designates a professional air traffic controller, unlike the more specialized center or tower controllers. However, minimum qualifications for the rating include completion of the Federal Aviation Administration (FAA) written examination for…

  15. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  16. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  17. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  18. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  19. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  20. Costs and Benefits of Advanced Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  1. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  2. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  3. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  4. Air Trafficco

    ERIC Educational Resources Information Center

    Kasunic, Kevin

    1970-01-01

    The work of the 14,000 air traffic controllers can be both challenging and nerve-racking. Concentration, steady nerves, and a clear voice are required to remember the routing and identification of the maze of aircraft and to instruct each of them accurately. Controllers must have a high school diploma and three years work experience or a college…

  5. Advance directives

    PubMed Central

    O’Sullivan, Rory; Mailo, Kevin; Angeles, Ricardo; Agarwal, Gina

    2015-01-01

    Abstract Objective To establish the prevalence of patients with advance directives in a family practice, and to describe patients’ perspectives on a family doctor’s role in initiating discussions about advance directives. Design A self-administered patient questionnaire. Setting A busy urban family medicine teaching clinic in Hamilton, Ont. Participants A convenience sample of adult patients attending the clinic over the course of a typical business week. Main outcome measures The prevalence of advance directives in the patient population was determined, and the patients’ expectations regarding the role of their family doctors were elucidated. Results The survey population consisted of 800 participants (a response rate of 72.5%) well distributed across age groups; 19.7% had written advance directives and 43.8% had previously discussed the topic of advance directives, but only 4.3% of these discussions had occurred with family doctors. In 5.7% of cases, a family physician had raised the issue; 72.3% of respondents believed patients should initiate the discussion. Patients who considered advance directives extremely important were significantly more likely to want their family doctors to start the conversation (odds ratio 3.98; P < .05). Conclusion Advance directives were not routinely addressed in the family practice. Most patients preferred to initiate the discussion of advance directives. However, patients who considered the subject extremely important wanted their family doctors to initiate the discussion. PMID:25873704

  6. [Air pollution].

    PubMed

    Bauters, Christophe; Bauters, Gautier

    2016-01-01

    Short-term exposure to particulate matter (PM) air pollution is associated with an increased cardiovascular mortality. Chronic exposure to PM is also associated with cardiovascular risk. Myocardial infarction and heart failure are the most common cardiovascular events associated with PM pollution. The pathophysiological mechanisms related to PM pollution are inflammation, thrombosis, vasomotion abnormalities, progression of atherosclerosis, increased blood pressure, and cardiac remodeling. A decrease in PM exposure may be particularly beneficial in subjects with a high cardiovascular risk. PMID:26547674

  7. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  8. Air filtering device

    SciTech Connect

    Backus, A.L.

    1992-07-28

    This patent describes a room air cleaning device. It comprises: a box housing having an air inlet and an air outlet provided therein; a vertical baffle coupled to the box housing opposite the air outlet and spaced form the box housing such that an air egress outlet is formed between the vertical baffle and the box housing; air cleansing means substantially disposed within the box housing and cleansing air passing into the inlet and out of the air egress outlet; a fan disposed within the box housing, the fan providing air movement through the air inlet and the air egress outlet; wherein air exits the room air cleaning device through the air egress outlet as a vertical plane of moving air; and wherein formation of the vertical plane of moving air contributes to the formation of a low pressure area drawing impure air toward the air inlet.

  9. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  10. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  11. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  12. Joint Effects of Ambient Air Pollutants on Pediatric AsthmaEmergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  13. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    EPA Science Inventory

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  14. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  15. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  16. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  17. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  18. Design of a fifth generation air superiority fighter

    NASA Astrophysics Data System (ADS)

    Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus

    2016-07-01

    Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.

  19. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  20. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  1. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  2. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  3. Pure Air`s Bailly scrubber: A four-year retrospective

    SciTech Connect

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  4. Human health effects of air pollution.

    PubMed Central

    Folinsbee, L J

    1993-01-01

    Over the past three or four decades, there have been important advances in the understanding of the actions, exposure-response characteristics, and mechanisms of action of many common air pollutants. A multidisciplinary approach using epidemiology, animal toxicology, and controlled human exposure studies has contributed to the database. This review will emphasize studies of humans but will also draw on findings from the other disciplines. Air pollutants have been shown to cause responses ranging from reversible changes in respiratory symptoms and lung function, changes in airway reactivity and inflammation, structural remodeling of pulmonary airways, and impairment of pulmonary host defenses, to increased respiratory morbidity and mortality. Quantitative and qualitative understanding of the effects of a small group of air pollutants has advanced considerably, but the understanding is by no means complete, and the breadth of effects of all air pollutants is only partially understood. PMID:8354181

  5. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  7. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  8. AIRS - the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigsten, Bjorn H.; Fetzer, Eric; Fishbein, Evan; Lee, Sung-Yung; Paganao, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in 2002, along with two companion microwave sounders. This AIRS sounding suite is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those of current weather satellites. From its sun synchronous polar orbit, the AIRS system provides more than 90% of the globe every 24 hours. Much of the post-launch period has been devoted to optimizing the 'retrieval' system used to derive atmospheric and other parameters from the observations and to validate those parameters. The geophysical parameters have been produced since the beginning of 2003 - the first data were released to the public in mid-2003, and future improved versions will be released periodically. The ongoing calibration/validation effort has confirmed that the system is very accurate and stable. There are a number of applications for the AIRS products, ranging from numerical weather prediction - where positive impact on forecast accuracy has already been demonstrated, to atmospheric research - where the AIRS water vapor products near the surface and in the mid and upper troposphere as well as in the stratosphere promise to make it possible to characterize and model phenomena that are key for short-term atmospheric processes, from weather patterns to long-term processes, such as interannual variability and climate change.

  9. Megacities, air quality and climate

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-02-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research.

  10. Air Controlman 3 and 2: Naval Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The Rate Training Manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement in the Air Controlman (AC) rating to Air Controlman Third and Second Class. Chapter 1 discusses air controlman qualifications, the enlisted rating structure, the Air Controlman rating, references…

  11. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  12. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  13. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  14. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  15. Healthy Air Outdoors

    MedlinePlus

    ... clean up the air are enforced. Learn more Climate Change Climate change threatens the health of millions of people, with ... What Makes Air Unhealthy Fighting for Healthy Air Climate Change Emergencies & Natural Disasters Tobacco Education and Training Ask ...

  16. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  17. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  18. Summary highlights of the Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1992-01-01

    The NASA/U.S. Army Advanced Rotorcraft Transmission (ART) program is charged with the development and demonstration of lightweight, durable drivetrains for next-generation rotorcraft: (1) a Future Air Attack Vehicle for tactical ground-support and air-to-air missions, and (2) an Advanced Cargo Aircraft for heavy-lift field-support operations. Both tilt-rotor and more conventional helicopter configurations have been studied by the ART program. ART performance goals are sought through the use of advanced component materials and lubrication systems, transmission and geartrain configurations, and airframe/drivetrain integrations.

  19. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  20. PremAir{trademark} catalyst systems: A new approach to clean air

    SciTech Connect

    Poles, T.; Anderson, D.R.; Durilla, M.; Heck, R.; Hoke, J.; Ober, R.; Rudy, W.

    1996-12-01

    PremAir{trademark} catalyst systems represents a new approach to air pollution control--one that focuses on destroying pollutants already in the air. PremAir is the trademark for a family of developmental catalysts capable of reducing ozone, carbon monoxide and potentially other pollutants in ambient air that comes into contact with catalyst-coated surfaces. The more air that comes into contact with the surface the more pollutants that can be destroyed. For this reason, Engelhard has focused its attention on heat-exchange equipment such as automotive radiators and air-conditioner condensers. It is because of advances in catalysis achieved at Engelhard that PremAir catalysts are active at the low temperatures found in these environments. In Los Angeles, which has the country`s worst smog problem, approximately one trillion cubic feet per day of air pass through car radiators and five trillion cubic feet per day pass through air conditioners. Most of the research, development and testing work performed to date has been on ozone catalysts and their application to car radiators. This paper discusses that work and the potential benefits associated with the PremAir technology. In addition, preliminary work on stationary applications of this new technology is discussed.

  1. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  2. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  3. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  4. AIR QUALITY MODELING FOR THE TWENTY-FIRST CENTURY

    EPA Science Inventory

    This presentation describes recent and evolving advances in the science of numerical air quality simulation modeling. Emphasis is placed on new developments in particulate matter modeling and atmospheric chemistry, diagnostic modeling tools, and integrated modeling systems. New...

  5. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  6. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    SciTech Connect

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  7. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  8. Lithium-air batteries: Something from nothing

    NASA Astrophysics Data System (ADS)

    Cheng, Fangyi; Chen, Jun

    2012-12-01

    The reversible reduction and evolution of oxygen are the key processes to be mastered before high-energy rechargeable lithium-air batteries can be successfully created. Now an advance towards this goal has been achieved with the synthesis of a pyrochlore catalyst that benefits from a mesoporous structure and oxygen deficiencies.

  9. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6. PMID:3778403

  10. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  11. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  14. Building Air Monitoring Networks

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The different components of air monitoring networks, the status of air monitoring in the United States, and the services and activities of the three major American network builders are detailed. International air monitoring networks and alert systems are identified, with emphasis on the Dutch air monitoring network. (BT)

  15. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  16. Sights from the air

    NASA Astrophysics Data System (ADS)

    Tartara, P.

    2009-04-01

    The first aerial shots were taken by aerostat balloon during the second half of the nineteen century for military purpose and subsequently utilized for civilian, archaeological and town planning uses (Roman Forum 1900, Pompei 1910, Venezia 1913, etc.). Sights from the air have given the most objective representation of the landscape and traces progressively left by human activities. After the First World War the use of airplanes for photogrammetric shots suitable to create cartography (territorial map making) has permitted to realize a good basic documentation; successively it has been increased by aerial reconnaissance during the Second World War. Aerial shots by RAF, USAF and Luftwaffe brought to the establishment of rich aerial photograph Archives, particularly in Europe, which have had a very low utilization for the historical restoration of landscape. From the fifties, aerial documentation becomes systematic for different scale analysis and territorial planning. The use of satellite imagery and multispectral bands integrates the historical and recent aerial photographs; the former is particularly helpful for cartography updating, for large scale environmental analysis, for study and research of territories with not available air photographs or lacking in aerial shots. The amount and density of archaeological buried evidences, unknown at the most, is very substantial in Italy and in the whole Mediterranean area; here air-photo interpretation is being applied at advanced levels, but not systematically, since several decades. Some archaeological research teams, working for the knowledge of territorial cultural heritage, utilize historical and recent aerial photographs intensively (aerial photographs previous the II WW, just before the intensive and extensive use of mechanical means to till the land, preserve a large amount of traces or cropmarks of buried evidences; recent shots taken on different conditions of climate and crops, allow to see and read important

  17. 12. VIEW OF (PRESUMED) OUTHOUSE SHED. DOOR HAS AN AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF (PRESUMED) OUTHOUSE SHED. DOOR HAS AN AIR FORCE INSIGNIA EMBLEM AFFIXED, 'AIR FORCE WEAPONS LABORATORY.' OTHER SIGN ON DOOR SAYS, 'BSD LIASON OFFICE.' INEL PHOTO NUMBER 65-6173, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  18. AIRS Level 1b Algorithm Theoretical Basis Document

    NASA Technical Reports Server (NTRS)

    Aumann, H.; Gregorich, D.; Gaiser, S.; Hagan, D.; Pagano, T.; Ting, D.

    2000-01-01

    The level 1b Algorithm Theoretical Basis Document (ATBD) describes the theoretical bases of the algorithms used to convert the raw detector output (data numbers) from the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder Brazil (HSB) to physical radiance units and, in the case of AIRS, perform in-orbit spectral calibrations.

  19. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  20. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  1. Rotor-Shaped Cyclopentadienyltetraphenyl-Cyclobutadienecobalt: An Advanced Inorganic Experiment

    ERIC Educational Resources Information Center

    MacFarland, Darren K.; Gorodetzer, Rebecca

    2005-01-01

    Organometallic complex synthesis in advanced inorganic or organic courses usually begin with the synthesis of ferrocene. A synthetic experiment of an alternative compound that has a more interesting structure and the same air stability that makes ferrocene desirable is presented.

  2. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Parker, R. D.; Buritz, R. S.; Taylor, A. R.; Bullwinkel, E. P.

    1982-11-01

    An experimental development program was conducted to develop and test advanced dielectric materials for capacitors for airborne power systems. High rep rate and low rate capacitors for use in pulse-forming networks, high voltage filter capacitors, and high frequency ac capacitors for series resonant inverters were considered. The initial goal was to develop an improved polysulfone film. Initially, low breakdown strength was thought to be related to inclusions of conductive particles. The effect of filtration of the casting solution was investigated. These experiments showed that more filtration was not the entire solution to low breakdown. The film samples were found to contain dissolved ionic impurities that move through the dielectric when voltage is applied and cause enhancement of the electric field. These contaminants enter the film via the resin and solvent, and can be partially removed. However, these treatments did not significantly improve the breakdown characteristics. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films. this is the first step toward a replacement for kraft paper.

  3. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  4. Future advances.

    PubMed

    Celesia, Gastone G; Hickok, Gregory

    2015-01-01

    Future advances in the auditory systems are difficult to predict, and only educated guesses are possible. It is expected that innovative technologies in the field of neuroscience will be applied to the auditory system. Optogenetics, Brainbow, and CLARITY will improve our knowledge of the working of neural auditory networks and the relationship between sound and language, providing a dynamic picture of the brain in action. CLARITY makes brain tissue transparent and offers a three-dimensional view of neural networks, which, combined with genetically labeling neurons with multiple, distinct colors (Optogenetics), will provide detailed information of the complex brain system. Molecular functional magnetic resonance imaging (MRI) will allow the study of neurotransmitters detectable by MRI and their function in the auditory pathways. The Human Connectome project will study the patterns of distributed brain activity that underlie virtually all aspects of cognition and behavior and determine if abnormalities in the distributed patterns of activity may result in hearing and behavior disorders. Similarly, the programs of Big Brain and ENIGMA will improve our understanding of auditory disorders. New stem-cell therapy and gene therapies therapy may bring about a partial restoration of hearing for impaired patients by inducing regeneration of cochlear hair cells. PMID:25726297

  5. Airing Out Anthrax

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The AiroCide TiO2 is an air-purifier that kills 93.3 percent of airborne pathogens that pass through it, including Bacillus anthraci, more commonly known as anthrax. It is essentially a spinoff of KES Science & Technology, Inc.'s Bio-KES system, a highly effective device used by the produce industry for ethylene gas removal to aid in preserving the freshness of fruits, vegetables, and flowers. The TiO2-based ethylene removal technology that is incorporated into the company's AiroCide TiO2 and Bio-KES products was first integrated into a pair of plant-growth chambers known as ASTROCULTURE(TM) and ADVANCED ASTROCULTURE(TM). Both chambers have housed commercial plant growth experiments in space on either the Space Shuttle or the International Space Station. The AiroCide TiO2 also has a proven record of destroying 98 percent of other airborne pathogens, such as microscopic dust mites, molds, and fungi. Moreover, the device is a verified killer of Influenza A (flu), E. coli, Staphylococcus aureas, Streptococcus pyogenes, and Mycoplasma pneumoniae, among many other harmful viruses.

  6. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  7. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  8. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  9. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  10. Advanced Propulsion for the XXIst Century

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2003-01-01

    This document represents a poster presentation offered at the AIAA/CAS International Air & Space Symposium and Exposition from July 14-17, 2003 in Dayton Ohio. This presentation outlines advanced space propulsion concepts as well as associated research and industry activities during the 21st century.

  11. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  12. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  13. Component Development - Advanced Fuel Cells for Transportation Applications

    SciTech Connect

    Butler, William

    2000-06-19

    Report summarizes results of second phase of development of Vairex air compressor/expander for automotive fuel cell power systems. Project included optimizing key system performance parameters, as well as reducing number of components and the project cost, size and weight of the air system. Objectives were attained. Advanced prototypes are in commercial test environments.

  14. GIS implementation in air pollution analysis

    SciTech Connect

    Chaaban, F.G.

    1998-07-01

    Air quality modeling and simulation is an indispensable tool used in different environmental studies that attempt to estimate air pollution levels caused by existing or planned combustion processes, to evaluate proposed emission reduction technologies, to select sites for new emission sources, and accordingly to establish emission control strategies in different energy conversion sectors. Modeling techniques, based on established mathematical formulation, are widely used for simulating air pollution caused mainly by the transportation and electric power sectors. Geographic information systems, GIS, link spatial information to alphanumeric information thus developing geographically referenced database. GIS systems have already been incorporated successfully into several fields in the energy sector and are proven to be a very efficient and robust tool for relevant analysis. In the environmental studies, GIS can answer many questions related to air pollution such as pollution sources as well as identification of regions in which the concentration may exceed limits set by local and international standards. The work presented in this paper is aimed at integrating GIS into air pollution analysis. The main objective is to estimate, using advanced graphical illustrations, the concentration levels of different types of air effluents emitted from point, line, or area sources. The integrated package is then used to examine the influence of various mitigation strategies on the air pollutants levels, and hence to evaluate the effectiveness of these strategies. The paper is concluded by case studies from the transportation and power sectors.

  15. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist. PMID:24684041

  16. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  17. Airing It Out.

    ERIC Educational Resources Information Center

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  18. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  19. Bad Air Day

    MedlinePlus

    ... children living near busy roadways—surrounded by particulate air pollution—are more likely to develop asthma and other ... found that genes may affect your response to air pollution. At least one gene seems to protect against ...

  20. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  1. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  2. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  3. Nuclear air cleaning

    SciTech Connect

    Bellamy, R.R.

    1994-12-31

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters.

  4. Software for Simulating Air Traffic

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel

    2006-01-01

    Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.

  5. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  6. 14 CFR 151.111 - Advance planning proposals: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the...

  7. 14 CFR 151.111 - Advance planning proposals: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the...

  8. 14 CFR 151.111 - Advance planning proposals: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the...

  9. 14 CFR 151.111 - Advance planning proposals: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the...

  10. 14 CFR 151.111 - Advance planning proposals: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the...

  11. Advanced batteries for electric vehicles

    SciTech Connect

    Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. )

    1994-11-01

    The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

  12. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  13. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  14. Into Thin Air.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)

  15. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel ...

  16. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  17. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  18. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  19. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  20. Air Force cryocooler development for spacecraft

    NASA Technical Reports Server (NTRS)

    Haskin, William L.

    1987-01-01

    An overview is given of Air Force sponsored cryocooler development for long duration spacecraft missions. Alternate approaches are being pursued to insure eventual success. The types of closed cycle cryocoolers that are now in advanced development include Vuilleumier, turbo-Brayton, and rotary-reciprocating refrigerators. Linear Stirling coolers with magnetic bearings have also been jointly sponsored by NASA and the Air Force. Technology is also being explored for future coolers using magnetic materials at low temperatures and for refrigerators with sorption compresssors. All of these cryocoolers are presently configured primarily for use with infrared sensor systems, but the designs could be adapted for use with cryogenic fluid storage systems or other applications.

  1. Positive Displacement Compressor Technology for Air Congitioners

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for air conditioners are presented in this paper. HFC refrigerants such is R410A and R407C are promising candidates as an alternative for R22. Performance of rotary and scroll compressors in the operation with R410A and R407C are described. In addition, compressor technologies such as efficiency improvement, reliability and simulation methods are described in both cases of rotary and scroll compressors. Advanced compressor technologies developed for air conditioners are desired in the field of the global environment protection and the energy saving.

  2. Clear air turbulence - An airborne alert system

    NASA Technical Reports Server (NTRS)

    Stearns, L. P.; Caracena, F.; Kuhn, P. M.; Kurkowski, R. L.

    1981-01-01

    An infrared radiometer system has been developed that can alert a pilot of an aircraft 2 to 9 minutes in advance of an encounter with clear air turbulence. The time between the warning and the clear air turbulence event varies with the flight altitude of the aircraft. In turbulence-free areas, the incidence of false alarms is found to be less than one in 3.4 hours of flight time compared to less than one per 10 hours of flight time in areas with turbulence.

  3. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  4. Air Sparging Decision Tool

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  5. Innovative technology summary report: advanced worker protection system

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  6. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  7. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  8. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  9. Materials for advanced batteries

    SciTech Connect

    Murphy, D.W.; Broadhead, J.

    1980-01-01

    The requirements of battery systems are considered along with some recent studies of materials of importance in aqueous electrochemical energy-storage systems, lithium-aluminum/iron sulfide batteries, solid electrolytes, molten salt electrolytes in secondary batteries, the recharging of the lithium electrode in organic electrolytes, intercalation electrodes, and interface phenomena in advanced batteries. Attention is given to a lead-acid battery overview, the design and development of micro-reference electrodes for the lithium/metal-sulfide cell system, molten salt electrochemical studies and high energy density cell development, a selenium (IV) cathode in molten chloroaluminates, and the behavior of hard and soft ions in solid electrolytes. Other topics explored are related to the use of the proton conductor hydrogen uranyl phosphate tetrahydrate as the solid electrolyte in hydride-air batteries and hydrogen-oxygen fuel cells, the behavior of the passivating film in Li/SOCl2 cells under various conditions, and the analysis of surface insulating films in lithium nitride crystals.

  10. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  11. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  12. Hepa room air purifier

    SciTech Connect

    Davis, G.B.

    1986-12-16

    This patent describes a portable air purification apparatus comprising a housing including a base portion and cover means, the base portion including an air deflection means and a plate means mounted in spaced relationship to the air deflection means so as to create a substantially continuous air exhaust opening therebetween. A centrifugal fan means is disposed between the plate means and the air deflection means and is mounted so as to direct air radially outwardly therefrom through the air exhaust opening, at least one opening through the plate means to permit air flow therethrough to the centrifugal fan means. The motor means carried by the base portion and extends upwardly with respect to the opening in the plate means, the motor means having drive shaft means for driving the centrifugal fan means. An air filter means is mounted between the base portion and the cover means so that air is drawn therethrough toward the centrifugal fan means, and a means for secures the cover means relative to the base means to thereby retain the air filter means therebetween.

  13. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  14. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  15. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  16. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  17. ADVANCES IN INDOOR AIR VAPOR INTRUSION: GUIDANCE AND APPLICATION

    EPA Science Inventory

    Ongoing efforts between the Office of Research and Development and the Office of Solid Waste and Emergency Response have included technical guidance support, field demonstration activities, data analysis, and technology transfer activities in evaluating the impacts of vapor intru...

  18. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  19. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  20. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  1. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  2. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  3. Air compliance falls short without CEMs

    SciTech Connect

    Wagner, G.H. II

    1994-06-01

    Four titles of the Clean Air Act Amendments of 1990 refer to or require the use of continuous emission moniotrs (CEMs). The code of Federal regulations, Title 40, part 60, Appendix B lists the Performance Specifications for the design, installation and initial performance evaluation of CEMs. Emission monitors are required by 40 CFR 503 for sewage sludge incinerators and by 40 CFR 264/266 foir boilers and industrial furnaces. Technology advances of CEMs are discussed.

  4. Apperception of Clouds in AIRS Data

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.

    2005-01-01

    Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a

  5. Developing Interoperable Air Quality Community Portals

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.

    2009-04-01

    Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.

  6. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  7. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  8. Hyperspectral air-to-air seeker

    NASA Astrophysics Data System (ADS)

    Gat, Nahum; Barhen, Jacob; Gulati, Sandeep; Steiner, Todd D.

    1994-07-01

    Synthetic hyperspectral signatures representing an airborne target engine radiation, a decoy flare, and the engine plume radiation are used to demonstrate computational techniques for the discrimination between such objects. Excellent discrimination is achieved for a `single look' at SNR of -10 dB. Since the atmospheric transmittance perturbs the signature of all objects in an identical fashion, the transmittance is equivalent to a modulation of the target radiance (in the spectral domain). The proper spectral signal decomposition may, therefore, recover the original unperturbed signature accurately enough to allow discrimination. The algorithms described here, and in two accompanying papers, have been tested over the spectral range that includes the VNIR and MWIR and are most appropriate for an intelligent, autonomous, air-to-air or surface-to-air guided munitions. With additional enhancements, the techniques apply to ground targets and other dual-use applications.

  9. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  10. Hospital air is sick.

    PubMed

    Brownson, K

    2000-11-01

    Indoor air quality has deteriorated so much since the 1970s oil shortage and subsequent energy-efficient construction of buildings that people are becoming seriously ill by just breathing the indoor air. This is a problem with all industrial buildings and hospital staff are at particular risk. There are various things that hospital managers from different departments can do to make the air safe for staff and patients to breathe. PMID:11185833

  11. Noncontact Acoustic Manipulation in Air

    NASA Astrophysics Data System (ADS)

    Kozuka, Teruyuki; Yasui, Kyuichi; Tuziuti, Toru; Towata, Atsuya; Iida, Yasuo

    2007-07-01

    A noncontact manipulation technique is useful for micromachine technology, biotechnology, and new materials processing. In this paper, we describe an advanced manipulation technique for transporting small objects in air. A standing wave field was generated by two sound beams crossing each other generated by bolted Langevin transducers. Expanded polystyrene particles were trapped at the nodes of the sound pressure in the standing wave field. The position of a trapped particle was shifted by changing the phase difference between the two sound beams. When the trapped particle is transported, it spatially oscillate periodically in a direction perpendicular to that of particle transportation. The numerical calculation of an acoustic field revealed that it is caused by the reflection of an ultrasonic wave at each transducer surface.

  12. Solar Air Sampler

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Nation's first solar-cell-powered air monitoring station was installed at Liberty State Park, New Jersey. Jointly sponsored by state agencies and the Department of Energy, system includes display which describes its operation to park visitors. Unit samples air every sixth day for a period of 24 hours. Air is forced through a glass filter, then is removed each week for examination by the New Jersey Bureau of Air Pollution. During the day, solar cells provide total power for the sampling equipment. Excess energy is stored in a bank of lead-acid batteries for use when needed.

  13. Personal continuous air monitor

    DOEpatents

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  14. Applications Using AIRS Data

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  15. ADVANCED STEAM GENERATORS

    SciTech Connect

    Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A.; Woike, Mark R.; Willis; Brian P.

    2001-11-06

    Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about

  16. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  17. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  18. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  19. Air emissions testing

    SciTech Connect

    Johnson, L.D.

    1993-01-01

    The article presents a brief overview of air emission sampling methods and analysis procedures related to stationary sources such as incinerators, power plants, and industrial boilers. It is intended primarily for the laboratory chemist or manager who is familiar with samples and methods associated with water or waste sources, but not with those associated with air and stack gas emissions.

  20. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  1. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  2. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  3. Bad Air For Children

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    1976-01-01

    Children are especially sensitive to air pollution and consequences to them maybe of longer duration than to adults. The effects of low-level pollution on children are the concern of this article. The need for research on the threat of air pollution to childrens' health is emphasized. (BT)

  4. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  5. Protective air lock

    DOEpatents

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  6. Lawsuits in the Air.

    ERIC Educational Resources Information Center

    Hays, Larry

    2000-01-01

    Discusses why indoor air quality problems in schools should be treated, not only as a health problem issue, but as a potential for legal actions. What types of proof are needed to make a legal claim involving indoor air problems are addressed as are the elements which constitute a "sick building." (GR)

  7. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  8. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  9. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  10. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  11. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  12. Air Cargo Marketing Development

    NASA Technical Reports Server (NTRS)

    Kersey, J. W.

    1972-01-01

    The factors involved in developing a market for air cargo services are discussed. A comparison is made between the passenger traffic problems and those of cargo traffic. Emphasis is placed on distribution analyses which isolates total distribution cost, including logistical costs such as transportation, inventory, materials handling, packaging, and processing. Specific examples of methods for reducing air cargo costs are presented.

  13. Air pollution and society

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2010-12-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  14. IMMUNOTOXICITY OF AIR POLLUTANTS

    EPA Science Inventory

    The most common ubiquitous air pollutants, as well as some point source (e.g. metals) air pollutants, decrease the function of pulmonary host defense mechanisms against infection. Most of this knowledge is based on animal studies and involves cellular antibacterial defenses such ...

  15. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  16. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  17. AIRE-Linux

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  18. [Pulmogenic air embolism].

    PubMed

    Adebahr, G

    1985-01-01

    Interstitial emphysema and pulmonic hemorrhage alone are not the causes of pulmonic air embolism. The conditions making the entrance of air from the lungs to the vessels of pulmonary circulation are obviously present only if the expiration pressure is suddenly strongly elevated. Based on this point of view, investigations were performed in autopsy cases--falls from a height, being run over, a gunshot in the abdomen. We have succeeded in proving the entrance of air into capillaries and branches of the pulmonary vein. The precipitation of thrombocytes at the margin of large air bubbles in pulmonary veins shows the finding of air in the vessels as a vital or supravital reaction. PMID:4090761

  19. Advance Care Planning

    MedlinePlus

    ... Division of Geriatrics and Clinical Gerontology Division of Neuroscience FAQs Funding Opportunities Intramural Research Program Office of ... Is Advance Care Planning? Advance care planning involves learning about the types of decisions that might need ...

  20. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  1. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  2. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    EPA Science Inventory

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  3. Mobile Air Quality Studies (MAQS)-an international project

    PubMed Central

    2010-01-01

    Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone. PMID:20380704

  4. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  5. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  6. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  7. Air travel and pneumothorax.

    PubMed

    Hu, Xiaowen; Cowl, Clayton T; Baqir, Misbah; Ryu, Jay H

    2014-04-01

    The number of medical emergencies onboard aircraft is increasing as commercial air traffic increases and the general population ages, becomes more mobile, and includes individuals with serious medical conditions. Travelers with respiratory diseases are at particular risk for in-flight events because exposure to lower atmospheric pressure in a pressurized cabin at cruising altitude may result in not only hypoxemia but also pneumothorax due to gas expansion within enclosed pulmonary parenchymal spaces based on Boyle's law. Risks of pneumothorax during air travel pertain particularly to those patients with cystic lung diseases, recent pneumothorax or thoracic surgery, and chronic pneumothorax. Currently available guidelines are admittedly based on sparse data and include recommendations to delay air travel for 1 to 3 weeks after thoracic surgery or resolution of the pneumothorax. One of these guidelines declares existing pneumothorax to be an absolute contraindication to air travel although there are reports of uneventful air travel for those with chronic stable pneumothorax. In this article, we review the available data regarding pneumothorax and air travel that consist mostly of case reports and retrospective surveys. There is clearly a need for additional data that will inform decisions regarding air travel for patients at risk for pneumothorax, including those with recent thoracic surgery and transthoracic needle biopsy. PMID:24687705

  8. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  9. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  10. Advanced midwifery practice or advancing midwifery practice?

    PubMed

    Smith, Rachel; Leap, Nicky; Homer, Caroline

    2010-09-01

    Advanced midwifery practice is a controversial notion in midwifery, particularly at present in Australia. The proposed changes in legislation around access to the publicly funded Medical Benefits Scheme (MBS) and the Pharmaceutical Benefits Scheme (PBS) in 2009-2010 have meant that the issue of advanced midwifery practice has again taken prominence. Linking midwifery access to MBS and PBS to a safety and quality framework that includes an 'advanced midwifery credentialling framework' is particularly challenging. The Haxton and Fahy paper in the December 2009 edition of Women and Birth is timely as it enables a reflection upon these issues and encourages debate and discussion about exactly what is midwifery, what are we educating our students for and is working to the full scope of practice practising at advanced level? This paper seeks to address some of these questions and open up the topic for further debate. PMID:20018582

  11. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  12. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  13. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  14. Air Shower Simulations

    SciTech Connect

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  15. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  16. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  17. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  18. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  20. Advanced information society (12)

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Seisuke

    In this paper, the original Japanese idea of "advanced information society" was reviewed at the first step. Thus, advancement of information/communication technology, advancement of information/communication needs and tendency of industrialization of information" were examined. Next, by comparing studies on advanced information society in various countries, the Japanese characteristics of consensus building was reviewed. Finally, in pursuit of prospect and tasks for the society, advancement of innovation and convergence information/communication technology, information/communication needs, institutional environment for utilization of information/communication and countermeasures against information pollution. Matching of information/communication technology and needs, besides with countermeasures against information pollution were discussed.

  1. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  2. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  3. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  4. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  5. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  6. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  7. Steam conservation and boiler plant efficiency advancements

    SciTech Connect

    Fiorino, D.P.

    1999-07-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. They were: (1) Reheating of dehumidified clean room makeup air with heat extracted during precooling; (2) Preheating of deionization feedwater with refrigerant heat of condensation; (3) Preheating of boiler combustion air with heat extracted from boiler flue gas; (4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust; (5) Variable-speed operation of boiler feedwater pumps and forced-draft fans; and (6) Preheating of boiler makeup water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) saved about $1,010,000 per year by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the cost of steam produced by about 13%, or $293,500 per year, by reducing use of natural gas and electricity at the steam boiler plant. These advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

  8. Advanced heat pump

    NASA Astrophysics Data System (ADS)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  9. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  10. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  11. AIRS-Light instrument concept and critical technology development

    NASA Astrophysics Data System (ADS)

    Maschhoff, Kevin R.

    2002-12-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes, to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 μm band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation.

  12. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  13. Field Validation of ICF Residential Building Air-Tightness

    SciTech Connect

    Sacs, I.; Ternes, M.P.

    2001-01-01

    Recent advances in home construction methods have made considerable progress in addressing energy savings issues. Certain methods are potentially capable of tightening the building envelope, consequently reducing air leakage and minimizing heating and air conditioning related energy losses. Insulated concrete form (ICF) is an economically viable alternative to traditional woodframe construction. Two homes, one of wood-frame, the other of ICF construction, were studied. Standard air leakage testing procedures were used to compare air tightness characteristics achieved by the two construction types. The ICF home showed consistently lower values for air leakage in these tests. The buildings otherwise provided similar data during testing, suggesting that the difference in values is due to greater airtight integrity of the ICF construction method. Testing on more homes is necessary to be conclusive. However, ICF construction shows promise as a tighter building envelope construction method.

  14. Air Traffic Network Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.

  15. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  16. Images in the air

    NASA Astrophysics Data System (ADS)

    Riveros, H. G.; Rosenberger, Franz

    2012-05-01

    This article discusses two 'magic tricks' in terms of underlying optical principles. The first trick is new and produces a 'ghost' in the air, and the second is the classical real image produced with two parabolic mirrors.

  17. Air bag restraint device

    DOEpatents

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  18. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  19. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  20. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  1. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  2. Air Age Education Workshop.

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes a three-day program aimed at public school educators and community leaders. The goal was to encourage these people to include air age education in their programs. Activities included hands-on projects. (MA)

  3. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  4. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  5. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  6. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  7. Electrical discharges in air

    NASA Astrophysics Data System (ADS)

    Antanasijević, R.; Banjanac, R.; Dragić, A.; Joković, D.; Joksimović, D.; Marić, Z.; Panić, B.; Udovičić, V.; Vigier, J. P.

    2002-12-01

    An experiment on electrical discharges in air under normal atmospheric conditions has been performed. The ratio between output and input energy is greater than 1, which confirms the results already reported by Graneau et al.

  8. Air bag restraint device

    DOEpatents

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  9. Indoor Air Quality

    MedlinePlus

    ... is critical. Learn how to recognize and eliminate pollution sources in and around your home, on the ... especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ...

  10. Hybrid Air-Electrode for Li/Air Batteries

    SciTech Connect

    Xiao, Jie; Xu, Wu; Wang, Deyu; Zhang, Jiguang

    2010-01-20

    A novel hybrid air-electrode is designed to improve the power density of Li/air batteries operating in an ambient environment. Three lithium insertion materials, MnO2, V2O5, and CFx (x = 1.0 to 1.15), are mixed with activated carbon to prepare different hybrid air-electrodes used in Li/air batteries. When compared with pure carbon-based Li/air batteries, the batteries using hybrid air-electrodes demonstrate significantly improved power capacities, especially for the CFx-based hybrid Li/air batteries. Because it is hydrophobic, CFx also facilitates the formation of air-flow channels in the carbon matrix, and alleviates air-electrode blocking problem during the discharge process. These hybrid air-electrodes provide a promising approach to improve the power density of Li/air batteries.

  11. Nuclear air cushion vehicles.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  12. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  13. AIR QUALITY MODELING OF HAZARDOUS POLLUTANTS: CURRENT STATUS AND FUTURE DIRECTIONS

    EPA Science Inventory

    The paper presents a review of current air toxics modeling applications and discusses possible advanced approaches. Many applications require the ability to predict hot spots from industrial sources or large roadways that are needed for community health and Environmental Justice...

  14. Compendium of methods for the determination of air pollutants in indoor air

    SciTech Connect

    Winberry, W.T.; Forehand, L.; Murphy, N.T.; Ceroli, A.; Phinney, B.

    1990-04-01

    Determination of pollutants in indoor air is a complex task because of the wide variety of compounds of interest and the lack of standardized sampling and analysis procedures. To assist agencies and persons responsible for sampling and analysis of indoor pollutants, the methods compendium provides current, technically-reviewed sampling and analysis procedures in a standardized format for determination of selected pollutants of primary importance in indoor air. Each chapter contains one or more active or passive sampling procedures along with one or more appropriate analytical procedures. The ten chapters of the compendium cover determination of volatile organic compounds, nicotine, carbon monoxide and carbon dioxide, air exchange rate, nitrogen dioxide, formaldehyde, benzo(a)pyrene and other polynuclear aromatic hydrocarbons, acid gases and aerosols, particulate matter, and pesticides. As further advancements are made, the procedures may be modified or updated, or additional methods may be added as appropriate.

  15. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  16. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  17. 77 FR 1513 - Air Show and Air Races; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL TRANSPORTATION SAFETY BOARD Air Show and Air Races; Public Hearing TIME AND DATE: 9 a.m., Tuesday, January 10, 2012... hearing is to examine current regulations and oversight practices for air shows and air races,...

  18. Arterial air embolism

    PubMed Central

    Nicks, Rowan

    1967-01-01

    The incidence and the outcome of systemic air embolism in 340 consecutive patients who underwent cardiac surgery under cardiopulmonary bypass in this unit for congenital defects of the cardiac septa and diseases involving the aortic and mitral valves have been studied. This was thought to have occurred in 40 patients, of whom 10 died. The distribution of air embolism according to the types of operation undertaken was as follows: six of 127 for atrial septal defect; six of 36 for ventricular septal defect; seven of 42 for mitral valve replacement; seven of 47 for aortic valve débridement; and 14 of 55 for aortic valve replacement. The cause was considered to have been systolic ejection of air into the aorta which, following cardiotomy, had been trapped in the pulmonary veins, the left atrium, the ventricular trabeculae, and the aortic root. Since the adoption of a more rigid `debubbling' routine, air embolism has not occurred. The incidence of pulmonary complications occurring in these patients after bypass was studied. Unilateral atelectasis, which occurred in five patients, resulted from retained bronchial secretions in all and was cured by bronchoscopic aspiration in all. The cause of bilateral atelectases, occurring in nine patients and fatal in eight of these, appeared to be related to cardiopulmonary factors and not to air embolism. Acute air injection made into the pulmonary artery of a dog resulted in pulmonary hypertension and a grossly deficient pulmonary circulation, but changes were largely resolved within a week. In view of this, it is considered that pulmonary air embolism may temporarily embarrass the right heart after the repair of a ventricular septal defect in a patient with an elevated pulmonary vascular resistance and diminished pulmonary vascular bed. Images PMID:6035795

  19. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  20. 11. EXTERIOR VIEW OF UNITED STATES AIR FORCE MAN EXAMINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EXTERIOR VIEW OF UNITED STATES AIR FORCE MAN EXAMINING CONTENTS OF SHIELDING TANK AS FUEL ELEMENT ASSEMBLY IS RAISED AND LOWERED. INEL PHOTO NUMBER 65-6172, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  1. COMPUTATIONAL MODELING ISSUES IN NEXT GENERATION AIR QUALITY MODELS

    EPA Science Inventory

    EPA's Atmospheric Research and Exposure Assessment Laboratory is leading a major effort to advance urban/regional multi-pollutant air quality modeling through development of a third-generation modeling system, Models-3. he Models-3 system is being developed within a high-performa...

  2. MONITORING AIR POLLUTION TRANSPORT

    EPA Science Inventory

    The Advancements in the remote sensing of environmental conditions over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan.

  3. MONITORING AIR POLLUTION TRASPORT

    EPA Science Inventory

    The Advancements in the remote sensing of environmental conditions over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems (GEOSS) 10- Year Implementation Plan.

  4. Advance Care Planning.

    PubMed

    Stallworthy, Elizabeth J

    2013-04-16

    Advance care planning should be available to all patients with chronic kidney disease, including end-stage kidney disease on renal replacement therapy. Advance care planning is a process of patient-centred discussion, ideally involving family/significant others, to assist the patient to understand how their illness might affect them, identify their goals and establish how medical treatment might help them to achieve these. An Advance Care Plan is only one useful outcome from the Advance Care Planning process, the education of patient and family around prognosis and treatment options is likely to be beneficial whether or not a plan is written or the individual loses decision making capacity at the end of life. Facilitating Advance Care Planning discussions requires an understanding of their purpose and communication skills which need to be taught. Advance Care Planning needs to be supported by effective systems to enable the discussions and any resulting Plans to be used to aid subsequent decision making. PMID:23586906

  5. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  6. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  7. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  8. Air Force Research Laboratory Cryocooler Technology Development

    NASA Astrophysics Data System (ADS)

    Davis, Thomas M.; Smith, D. Adam; Easton, Ryan M.

    2004-06-01

    This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Cooling Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. This paper will describe the range of Stirling, pulse tube; reverse Brayton, and Joule-Thomson cycle cryocoolers currently under development to meet current and future Air Force and Department of Defense requirements. Cooling requirements at 10K, 35K, 60K, 95K, and multistage cooling requirements at 35/85K are addressed. In order to meet these various requirements, the Air Force Research Laboratory, Space Vehicles Directorate is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory, working with industry partners, is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of gimbaled transport systems, 35K and 10K thermal storage units, heat pipes, cryogenic straps, and thermal switches.

  9. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  10. Atmospheric Infrared Sounder (AIRS) Project Status

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2006-01-01

    This viewgraph presentation reviews the status of the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). These instruments are on board the EOS Aqua Spacecraft that was launched May 4, 2002. The instruments are working normally. The objectives of the mission were to improve weather forecasting, assist in climate studies, and provide information as to the composition of Earth's atmosphere. The Aqua spacecraft is operating normally, the the primary life-limiting resource is fuel for maneuvers. The presentation also contains charts indicating who are using the data. There is information on the type of data available, and the propsal process. Also there is a few views of some of the planned instruments that were made possible in part due to the success of AIRS.

  11. Fungi as contaminants in indoor air

    NASA Astrophysics Data System (ADS)

    Miller, J. David

    This article reviews the subject of contamination of indoor air with fungal spores. In the last few years there have been advances in several areas of research on this subject. A number of epidemiological studies have been conducted in the U.K., U.S.A. and Canada. These suggest that exposure to dampness and mold in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. There is now evidence that other consequences of exposure to spores of some fungi may be important. In particular, exposure to low molecular weight compounds retained in spores of some molds such as mycotoxins and β 1,3 glucans appears to contribute to some symptoms reported. Fungal contamination of building air is almost always caused by poor design and/or maintenance. Home owners and building operators need to take evidence of fungal contamination seriously.

  12. Air diverter for supercharger

    SciTech Connect

    Johnson, K.A.

    1986-10-28

    An engine supercharger is described which consists of a turbine housing, a main turbine wheel of the radial-inflow type located within the turbine housing, a compressor housing having an air entrance passageway, and a compressor wheel of the centrifugal type located within the compressor housing. It also includes a main shaft of annular construction interconnecting the turbine wheel and the compressor wheel whereby the two wheels rotate as a unit, an auxiliary turbine wheel of the axial flow type located downstream from the main turbine wheel, and a fan of the axial flow type located upstream from the compressor wheel. An auxiliary shaft extends within the main shaft between the auxiliary turbine and fan whereby the auxiliary turbine and fan rotate as a unit. An annular air collector chamber means is located immediately downstream from the fan in surrounding relation to the aforementioned entrance passageway for diverting some of the fan air from the compressor wheel. The fan comprises a hub and blades radiating outwardly therefrom. The air collector chamber is defined in part by an annular wall having a free edge located within the fan blade axial profile whereby the annular wall intercepts air discharged from outer tip areas of the fan blades to divert same away from the compressor wheel into the collector chamber.

  13. Infants Can Study Air Science.

    ERIC Educational Resources Information Center

    Ward, Alan

    1983-01-01

    Provided are activities and demonstrations which can be used to teach infants about the nature of air, uses of air, and objects that fly in the air. The latter include airships, hot-air balloons, kites, parachutes, airplanes, and Hovercraft. (JN)

  14. Kinetic theory of runaway air-breakdown

    SciTech Connect

    Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.

    1993-09-01

    The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  15. Kinetic theory of runaway air breakdown

    SciTech Connect

    Roussel-Dupre, R.A. ); Gurevich, A.V. ); Tunnell, T. ); Milikh, G.M. )

    1994-03-01

    The kinetic theory for an air breakdown mechanism advanced in a previous paper [Phys. Lett. A 165, 463 (1992)] is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  16. Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing T

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing Treatment testing; close up - throttle valve -wide open; oil and air lines plus instrumentation between collector and gearbox.

  17. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  18. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  19. REGIONAL AIR QUALITY AND ACID DEPOSITION MODELING AND THE ROLE FOR VISUALIZATION

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. his paper p...

  20. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports--1976.

    ERIC Educational Resources Information Center

    Barlow, Esther M., Comp.

    This annotated bibliography presents a listing of technical reports (1976) dealing with personnel and training research conducted by the Air Force Human Resources Laboratory, an institution charged with the planning and execution of United States Air Force exploratory and advanced development programs for selection, motivation, training,…

  1. Air cleaning system

    SciTech Connect

    Tidwell, J.H.

    1987-06-16

    This patent describes an air cleaning system comprising: a motor housing; a motor mounted within the housing; a fan attached to and rotatably driven by the motor; a fan chamber surrounding the fan and having an air inlet and outlet; a separator housing means mounted adjacent to and in spaced relation with the motor housing, the separator housing means having an inlet disposed in communication with a chamber within separator housing means; an outlet disposed in communication with the fan chamber; an air driven separator means mounted in chamber of the separator housing means to receive airflow from inlet for rotation of the separator means and removal of foreign matter from airflow by centrifugal force responsive to rotation of the separator means; the airflow is further directed through the outlet of separator housing means to the fan chamber to be ejected by the fan.

  2. Air encapsulation during infiltration

    USGS Publications Warehouse

    Constantz, J.; Herkelrath, W.N.; Murphy, F.

    1988-01-01

    A series of field and laboratory experiments were performed to measure the effects of air encapsulation within the soil's transmission zone upon several infiltration properties. In the field, infiltration rates were measured using a double-cap infiltrometer and soil-water contents were measured using time-domain reflectometry (TDR). In the laboratory, infiltration experiments were peformed using repacked soil columns using TDR and CO 2 flooding. Results suggest that a significant portion of the total encapsulated air resided in interconnected pores within the soil's transmission zone. For the time scale considered, this residual air caused the effective hydraulic conductivity of the transmission zone to remain at a level no greater than 20% of the saturated hydraulic conductivity of the soil. -from Authors

  3. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  4. Fireman's Air Tanks

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Together with NASA's Johnson Space Center, A-T-O Inc.'s Scott Aviation has developed light-weight firefighter's air tanks. New backpack system weighs only 20 pounds for 30 minute air supply, 13 pounds less than conventional firefighting tanks. They are pressurized at 4,500 psi, (twice current tanks). Made of aluminum liner wrapped by resin-impregnated glass fibers, eliminating corrosion as well as lightening the load. Redesigned face mask permits better vision. Warning device to tell fireman he is running out of air is personalized so it can't be heard by others reducing confusion in an already hectic environment. Structural Composites Inc., The Boeing Co., and Martin- Marietta Corp. have developed uses for this technology.

  5. An outlook for cargo aircraft of the future. [assessment of the future of air cargo by analyzing statistics and trends

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.; Whitehead, A. H., Jr.; Alford, W. J., Jr.

    1975-01-01

    An assessment is provided of the future of air cargo by analyzing air cargo statistics and trends, by noting air cargo system problems and inefficiencies, by analyzing characteristics of air-eligible commodities, and by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. NASA's proposed program is reviewed which would sponsor the research needed to provide for development of advanced designs by 1985.

  6. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  7. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  8. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  9. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  10. Space Derived Air Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    COPAMS, Commonwealth of Pennsylvania Air Monitoring System, derives from technology involved in building unmanned spacecraft. The Nimbus spacecraft carried experimental sensors to measure temperature, pressure, ozone, and water vapor, and instruments for studying solar radiation and telemetry. The process which relayed these findings to Earth formed the basis for COPAMS. The COPAMS system consists of data acquisition units which measure and record pollution level, and sense wind speed and direction, etc. The findings are relayed to a central station where the information is computerized. The system is automatic and supplemented by PAQSS, PA Air Quality Surveillance System.

  11. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  12. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  13. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  14. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  15. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  16. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  17. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  18. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  19. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  20. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  1. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  2. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  3. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  4. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  5. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  6. Microwave Regenerable Air Purification Device

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  7. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. Advanced nuclear rocket engine mission analysis

    SciTech Connect

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  9. Bi-functional air electrodes for metal-air batteries. Final report, September 15, 1993--December 14, 1994

    SciTech Connect

    Swette, L.L.; Manoukian, M.; LaConti, A.B.

    1995-12-01

    The program was directed to the need for development of bifunctional air electrodes for Zn-Air batteries for the consumer market. The Zn-Air system, widely used as a primary cell for hearing-aid batteries and as a remote-site power source in industrial applications, has the advantage of high energy density, since it consumes oxygen from the ambient air utilizing a thin, efficient fuel-cell-type gas-diffusion electrode, and is comparatively low in cost. The disadvantages of the current technology are a relatively low rate capability, and the lack of simple reversibility. {open_quotes}Secondary{close_quotes} Zn-Air cells require a third electrode for oxygen evolution or mechanical replacement of the Zinc anodes; thus the development of a bifunctional air electrode (i.e., an electrode that can alternately consume and evolve oxygen) would be a significant advance in Zn-Air cell technology. Evaluations of two carbon-free non-noble metal perovskite-type catalyst systems, La{sub 1-x}CA{sub x}CoO{sub 3} as bifunctional catalysts for potential application in Zn-air batteries were carried out. The technical objectives were to develop higher-surface-area materials and to fabricate reversible electrodes by modifying the hydrophobic/hydrophilic balance of the catalyst-binder structures.

  10. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  11. DETROIT AIR TOXICS INITIATIVE

    EPA Science Inventory

    The project will include both a risk assessment and a risk reduction component. The assessment component will capitalize on the strong air toxics database that currently exists for the Detroit area. Data from several monitoring studies/projects will be utilized to characterize ...

  12. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  13. The air afterglow revisited

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1972-01-01

    The air afterglow, 0 + NO2 chemiluminescence, is discussed in terms of fluorescence, photodissociation, and quantum theoretical calculations of NO2. The experimental results presented include pressure dependence, M-dependence, spectral dependence of P and M, temperature dependence, and infrared measurements. The NO2 energy transfer model is also discussed.

  14. Clean Air by Design.

    ERIC Educational Resources Information Center

    Crawford, Gary N.

    1995-01-01

    Planning new construction is an opportunity to recognize indoor environmental quality (IEQ) issues. Provides an overview of some common IEQ issues associated with construction projects. A building's heating, ventilating, and air-conditioning (HVAC) system is by far the single most common cause of IEQ problems and complaints. (MLF)

  15. Images in the Air

    ERIC Educational Resources Information Center

    Riveros, H. G.; Rosenberger, Franz

    2012-01-01

    This article discusses two "magic tricks" in terms of underlying optical principles. The first trick is new and produces a "ghost" in the air, and the second is the classical real image produced with two parabolic mirrors. (Contains 2 figure and 6 photos.)

  16. Air weapon fatalities.

    PubMed Central

    Milroy, C M; Clark, J C; Carter, N; Rutty, G; Rooney, N

    1998-01-01

    AIMS: To describe characteristics of a series of people accidentally and deliberately killed by air powered weapons. METHODS: Five cases of fatal airgun injury were identified by forensic pathologists and histopathologists. The circumstances surrounding the case, radiological examination, and pathological findings are described. The weapon characteristics are also reported. RESULTS: Three of the victims were adult men, one was a 16 year old boy, and one an eight year old child. Four of the airguns were .22 air rifles, the other a .177 air rifle. Two committed suicide, one person shooting himself in the head, the other in the chest. In both cases the guns were fired at contact range. Three of the cases were classified as accidents: in two the pellet penetrated into the head and in one the chest. CONCLUSIONS: One person each year dies from an air powered weapon injury in the United Kingdom. In addition there is considerable morbidity from airgun injuries. Fatalities and injuries are most commonly accidents, but deliberately inflicted injuries occur. Airguns are dangerous weapons when inappropriately handled and should not be considered as toys. Children should not play with airguns unsupervised. Images PMID:9797730

  17. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  18. Assessing Air Quality.

    ERIC Educational Resources Information Center

    Bloomfield, Molly

    2000-01-01

    Introduces the Science and Math Investigative Learning Experiences (SMILE) program. Presents an air quality problem as an example of an integrated challenge problem activity developed by the SMILE program. Explains the process of challenge problems and provides a list of the National Science Education Standards addressed by challenge problems.…

  19. Regulation of air traffic

    NASA Technical Reports Server (NTRS)

    DEVALUEZ

    1922-01-01

    The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.

  20. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  1. Understanding Our Environment: Air.

    ERIC Educational Resources Information Center

    DiSpezio, Michael

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit uses the contemporary dilemma of acid rain as a vehicle for teaching weather and the characteristics of air and atmosphere. The project involves a…

  2. Ames Air Revitalization

    NASA Technical Reports Server (NTRS)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  3. The Air up There

    ERIC Educational Resources Information Center

    Thomas, Jeffrey

    2010-01-01

    To engage students in a real-world issue (Bransford, Brown, and Cocking 2000) that affects their communities, the author designed an entire unit to investigate air pollution in their home state, Connecticut. The unit's goal is to understand how the use of resources, such as fossil fuels, might affect their quality of life. Through this unit,…

  4. Walking On Air

    NASA Video Gallery

    This video features a series of time lapse sequences photographed by the Expedition 30 crew aboard the International Space Station. Set to the song “Walking in the Air,” by Howard Blake, the v...

  5. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  6. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  7. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  8. INDOOR AIR REFERENCE BIBLIOGRAPHY

    EPA Science Inventory

    In October 1986, Congress passed the Superfund Amendments and Reauthorization Act (SARA, PL 99-499). he ultimate goal of SARA Title IV is the dissemination of information to the public. his activity includes the publication of scientific and technical information on indoor air qu...

  9. Air Structures: Inflatable Alternatives

    ERIC Educational Resources Information Center

    Valerio, Joseph M.; And Others

    1973-01-01

    Describes and evaluates several avant garde'' examples of air structures. Included are a soft'' child's playpen, a pneudome that employs a water ballast for anchoring, a one-acre enclosed campus, an instant city'' constructed for an industrial design conference, and the Fuji Pavilion, at Expo '70 in Osaka, Japan, that was large enough to cover…

  10. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  11. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  12. 14 CFR 294.34 - Advance approval by the Department.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Advance approval by the Department. 294.34 Section 294.34 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS General Rules for Registrants §...

  13. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  14. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  15. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  16. AIR Technology: A Step Towards ARINC 653 in Space

    NASA Astrophysics Data System (ADS)

    Rufino, J.; Craveiro, J.; Schoofs, T.; Tatibana, C.; Windsor, J.

    2009-05-01

    The Integrated Modular Avionics and the ARINC 653 specifications are assuming a key role in the provision of a standard operating system interface for safety-critical applications in both the aeronautic and space markets. The AIR Technology, designed within the scope of an ESA initiative to develop a proof of concept, implements the notion of robust temporal and spatial partitioning. A different operating system kernel may be used per partition, furnishing the bare services to build the ARINC 653 application programming interface. This paper describes the advances done during AIR-II, an initiative to evolve the AIR Technology proof of concept towards an industrial product. Current prototype activities are based on RTEMS and on the SPARC V8 LEON3 processor and work is being done on the integration of Linux in the AIR Technology.

  17. Assessment of HAPs emissions from advanced power systems

    SciTech Connect

    Erickson, T.A.; Brekke, D.W.; Botros, P.E.

    1996-12-31

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the U. S. Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. Eleven trace elements are included in the CAAA list of HAPS, as shown in Table 1. The EPA will define those sources that require regulation and limit their emissions according to regulatory directives. This project focused on evaluating and manipulating the advanced power systems HAPs data currently available for presentation to the U.S. Department of Energy (DOE). Trace components included in the 189 HAPs of the 1990 CAAA are: antimony compounds; arsenic compounds; beryllium compounds; cadmium compounds; chromium compounds; cobalt compounds; lead compounds; manganese compounds; mercury compounds; nickel compounds; and selenium compounds. The review of trace element emissions from advanced power systems and hot-gas cleanup systems included data from Tidd Station, General Electric hot-gas cleanup, Louisiana Gasification Technology Incorporated, and the Cool Water plant. Very few other sources of information were located, and those that were contained significantly flawed information that was not of value to this project. To offset the shortage of information, thermochemical equilibrium predictions were used in evaluating advanced control systems. An outline of the systems reviewed is given in Table 2. In addition to the four demonstration and 1 full-scale systems reviewed, nine conventional systems were also reviewed for comparison with the advanced systems.

  18. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  19. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  20. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.