Turbine blade tip durability analysis
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.
1981-01-01
An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.
Zhou, Xiao-Rong; Huang, Shui-Sheng; Gong, Xin-Guo; Cen, Li-Ping; Zhang, Cong; Zhu, Hong; Yang, Jun-Jing; Chen, Li
2012-04-01
To construct a performance evaluation and management system on advanced schistosomiasis medical treatment, and analyze and evaluate the work of the advanced schistosomiasis medical treatment over the years. By applying the database management technique and C++ programming technique, we inputted the information of the advanced schistosomiasis cases into the system, and comprehensively evaluated the work of the advanced schistosomiasis medical treatment through the cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. We made a set of software formula about cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. This system had many features such as clear building, easy to operate, friendly surface, convenient information input and information search. It could benefit the performance evaluation of the province's advanced schistosomiasis medical treatment work. This system can satisfy the current needs of advanced schistosomiasis medical treatment work and can be easy to be widely used.
Large space antennas: A systems analysis case history
NASA Technical Reports Server (NTRS)
Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)
1987-01-01
The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.
48 CFR 15.404-1 - Proposal analysis techniques.
Code of Federal Regulations, 2014 CFR
2014-10-01
... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... obtained through market research for the same or similar items. (vii) Analysis of data other than certified...
48 CFR 15.404-1 - Proposal analysis techniques.
Code of Federal Regulations, 2013 CFR
2013-10-01
... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... obtained through market research for the same or similar items. (vii) Analysis of data other than certified...
Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis.
Deeb, Sami El; Wätzig, Hermann; El-Hady, Deia Abd; Albishri, Hassan M; de Griend, Cari Sänger-van; Scriba, Gerhard K E
2014-01-01
Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Undergraduate Experiments in Thermoanalytical Chemistry.
ERIC Educational Resources Information Center
Hill, J. O.; Magee, R. J.
1988-01-01
Describes several experiments using the techniques of thermal analysis and thermometric titrimetry. Defines thermal analysis and several recent branches of the technique. Notes most of the experiments use simple equipment and standard laboratory techniques. (MVL)
WAATS: A computer program for Weights Analysis of Advanced Transportation Systems
NASA Technical Reports Server (NTRS)
Glatt, C. R.
1974-01-01
A historical weight estimating technique for advanced transportation systems is presented. The classical approach to weight estimation is discussed and sufficient data is presented to estimate weights for a large spectrum of flight vehicles including horizontal and vertical takeoff aircraft, boosters and reentry vehicles. A computer program, WAATS (Weights Analysis for Advanced Transportation Systems) embracing the techniques discussed has been written and user instructions are presented. The program was developed for use in the ODIN (Optimal Design Integration System) system.
Biomedical surface analysis: Evolution and future directions (Review)
Castner, David G.
2017-01-01
This review describes some of the major advances made in biomedical surface analysis over the past 30–40 years. Starting from a single technique analysis of homogeneous surfaces, it has been developed into a complementary, multitechnique approach for obtaining detailed, comprehensive information about a wide range of surfaces and interfaces of interest to the biomedical community. Significant advances have been made in each surface analysis technique, as well as how the techniques are combined to provide detailed information about biological surfaces and interfaces. The driving force for these advances has been that the surface of a biomaterial is the interface between the biological environment and the biomaterial, and so, the state-of-the-art in instrumentation, experimental protocols, and data analysis methods need to be developed so that the detailed surface structure and composition of biomedical devices can be determined and related to their biological performance. Examples of these advances, as well as areas for future developments, are described for immobilized proteins, complex biomedical surfaces, nanoparticles, and 2D/3D imaging of biological materials. PMID:28438024
48 CFR 15.404-1 - Proposal analysis techniques.
Code of Federal Regulations, 2010 CFR
2010-10-01
... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...
48 CFR 15.404-1 - Proposal analysis techniques.
Code of Federal Regulations, 2011 CFR
2011-10-01
... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...
48 CFR 15.404-1 - Proposal analysis techniques.
Code of Federal Regulations, 2012 CFR
2012-10-01
... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...
Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures
1980-04-01
AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite
A strategy for selecting data mining techniques in metabolomics.
Banimustafa, Ahmed Hmaidan; Hardy, Nigel W
2012-01-01
There is a general agreement that the development of metabolomics depends not only on advances in chemical analysis techniques but also on advances in computing and data analysis methods. Metabolomics data usually requires intensive pre-processing, analysis, and mining procedures. Selecting and applying such procedures requires attention to issues including justification, traceability, and reproducibility. We describe a strategy for selecting data mining techniques which takes into consideration the goals of data mining techniques on the one hand, and the goals of metabolomics investigations and the nature of the data on the other. The strategy aims to ensure the validity and soundness of results and promote the achievement of the investigation goals.
Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques
Park, Hye Sun; Park, Auh Whan; Chung, Sae Rom; Choi, Young Jun; Lee, Jeong Hyun
2017-01-01
Radiofrequency ablation (RFA) is a well-known, effective, and safe method for treating benign thyroid nodules and recurrent thyroid cancers. Thyroid-dedicated devices and basic techniques for thyroid RFA were introduced by the Korean Society of Thyroid Radiology (KSThR) in 2012. Thyroid RFA has now been adopted worldwide, with subsequent advances in devices and techniques. To optimize the treatment efficacy and patient safety, understanding the basic and advanced RFA techniques and selecting the optimal treatment strategy are critical. The goal of this review is to therefore provide updates and analysis of current devices and advanced techniques for RFA treatment of benign thyroid nodules and recurrent thyroid cancers. PMID:28670156
Advanced techniques for determining long term compatibility of materials with propellants
NASA Technical Reports Server (NTRS)
Green, R. L.
1972-01-01
The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.
Quadrant Analysis as a Strategic Planning Technique in Curriculum Development and Program Marketing.
ERIC Educational Resources Information Center
Lynch, James; And Others
1996-01-01
Quadrant analysis, a widely-used research technique, is suggested as useful in college or university strategic planning. The technique uses consumer preference data and produces information suitable for a wide variety of curriculum and marketing decisions. Basic quadrant analysis design is described, and advanced variations are discussed, with…
Advances in Mid-Infrared Spectroscopy for Chemical Analysis
NASA Astrophysics Data System (ADS)
Haas, Julian; Mizaikoff, Boris
2016-06-01
Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.
Isolation and analysis of ginseng: advances and challenges
Wang, Chong-Zhi
2011-01-01
Ginseng occupies a prominent position in the list of best-selling natural products in the world. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support ginseng’s use worldwide. In the past decade, rapid development of technology has advanced many aspects of ginseng research. The aim of this review is to illustrate the recent advances in the isolation and analysis of ginseng, and to highlight their new applications and challenges. Emphasis is placed on recent trends and emerging techniques. The current article reviews the literature between January 2000 and September 2010. PMID:21258738
Advanced grazing-incidence techniques for modern soft-matter materials analysis
Hexemer, Alexander; Müller-Buschbaum, Peter
2015-01-01
The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less
Advanced grazing-incidence techniques for modern soft-matter materials analysis
Hexemer, Alexander; Müller-Buschbaum, Peter
2015-01-01
The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632
Advanced techniques for determining long term compatibility of materials with propellants
NASA Technical Reports Server (NTRS)
Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.
1973-01-01
A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.
van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk
2017-10-01
Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.
Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing
2018-01-01
Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovici, E.; Northwood, D.O.; Shehata, M.T.
1999-01-01
The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).
NASA Technical Reports Server (NTRS)
Zamora, M. A.
1977-01-01
Consumables analysis/crew training simulator interface requirements were defined. Two aspects were investigated: consumables analysis support techniques to crew training simulator for advanced spacecraft programs, and the applicability of the above techniques to the crew training simulator for the space shuttle program in particular.
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)
1994-01-01
The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.
Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca
2018-01-01
Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
Wu, Meiye; Singh, Anup K
2012-01-01
Heterogeneity of cellular systems has been widely recognized but only recently have tools become available that allow probing of genes and proteins in single cells to understand it. While the advancement in single cell genomic analysis has been greatly aided by the power of amplification techniques (e.g., PCR), analysis of proteins in single cells has proven to be more challenging. However, recent advances in multi-parameter flow cytometry, microfluidics and other techniques have made it possible to measure wide variety of proteins in single cells. In this review, we highlight key recent developments in analysis of proteins in a single cell, and discuss their significance in biological research. PMID:22189001
Independent Research and Independent Exploratory Development Annual Report Fiscal Year 1975
1975-09-01
and Coding Study.(Z?80) ................................... ......... .................... 40 Optical Cover CMMUnicallor’s Using Laser Transceiverst...Using Auger Spectroscopy and PUBLICATIONS Additional Advanced Analytical Techniques," Wagner, N. K., "Auger Electron Spectroscopy NELC Technical Note 2904...K.. "Analysis of Microelectronic Materials Using Auger Spectroscopy and Additional Advanced Analytical Techniques," Contact: Proceedings of the
Statistical evaluation of vibration analysis techniques
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Miller, Patrice S.
1987-01-01
An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.
Advanced Navigation Strategies For Asteroid Sample Return Missions
NASA Technical Reports Server (NTRS)
Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.
2010-01-01
Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.
RLV Turbine Performance Optimization
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Dorney, Daniel J.
2001-01-01
A task was developed at NASA/Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. Final results of the preliminary design and the results of the two-dimensional (2D) detailed design of the first-stage vane of a supersonic turbine suitable for a reusable launch vehicle (R-LV) are presented. Analytical techniques for obtaining the results are also discussed.
A CHARTING TECHNIQUE FOR THE ANALYSIS OF BUSINESS SYSTEMS,
This paper describes a charting technique useful in the analysis of business systems and in studies of the information economics of the firm. The...planning advanced systems. It is not restricted to any particular kind of business or information system. (Author)
Kailasa, Suresh Kumar; Wu, Hui-Fen
2013-07-01
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Geospatial data and techniques have long been critical to advancing the analysis and management of freshwater ecosystems. However, these data and techniques have often been limited to specific sample sites or regional analyses because of the difficulty associated with generating ...
Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods
Punshon, Tracy
2015-01-01
Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the art methods, and use of spatially resolved techniques for localizing the distribution of As and Hg within rice grains. Total elemental analysis of foods is relatively well-established but the push for ever lower detection limits requires that methods be robust from potential matrix interferences which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal and plant-based foods, in particular for arsenic, cadmium and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012
Advances in the analysis and design of constant-torque springs
NASA Technical Reports Server (NTRS)
McGuire, John R.; Yura, Joseph A.
1996-01-01
In order to improve the design procedure of constant-torque springs used in aerospace applications, several new analysis techniques have been developed. These techniques make it possible to accurately construct a torque-rotation curve for any general constant-torque spring configuration. These new techniques allow for friction in the system to be included in the analysis, an area of analysis that has heretofore been unexplored. The new analysis techniques also include solutions for the deflected shape of the spring as well as solutions for drum and roller support reaction forces. A design procedure incorporating these new capabilities is presented.
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
ERIC Educational Resources Information Center
Lee, Alwyn Vwen Yen; Tan, Seng Chee
2017-01-01
Understanding ideas in a discourse is challenging, especially in textual discourse analysis. We propose using temporal analytics with unsupervised machine learning techniques to investigate promising ideas for the collective advancement of communal knowledge in an online knowledge building discourse. A discourse unit network was constructed and…
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Developing a Systematic Patent Search Training Program
ERIC Educational Resources Information Center
Zhang, Li
2009-01-01
This study aims to develop a systematic patent training program using patent analysis and citation analysis techniques applied to patents held by the University of Saskatchewan. The results indicate that the target audience will be researchers in life sciences, and aggregated patent database searching and advanced search techniques should be…
The creation of chiral chromatography techniques significantly advanced the development of methods for the analysis of individual enantiomers of chiral compounds. These techniques are being employed at the US EPA for human exposure and ecological research studies with indoor samp...
NASA Technical Reports Server (NTRS)
Garmestai, H.; Harris, K.; Lourenco, L.
1997-01-01
Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.
Data analysis techniques used at the Oak Ridge Y-12 plant flywheel evaluation laboratory
NASA Astrophysics Data System (ADS)
Steels, R. S., Jr.; Babelay, E. F., Jr.
1980-07-01
Some of the more advanced data analysis techniques applied to the problem of experimentally evaluating the performance of high performance composite flywheels are presented. Real time applications include polar plots of runout with interruptions relating to balance and relative motions between parts, radial growth measurements, and temperature of the spinning part. The technique used to measure torque applied to a containment housing during flywheel failure is also presented. The discussion of pre and post test analysis techniques includes resonant frequency determination with modal analysis, waterfall charts, and runout signals at failure.
ADP of multispectral scanner data for land use mapping
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1971-01-01
The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.
2012-02-09
different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16
Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.
Paninski, L; Cunningham, J P
2018-06-01
Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regional environmental analysis and management: New techniques for current problems
NASA Technical Reports Server (NTRS)
Honea, R. B.; Paludan, C. T. N.
1974-01-01
Advances in data acquisition and processing procedures for regional environmental analysis are discussed. Automated and semi-automated techniques employing Earth Resources Technology Satellite data and conventional data sources are presented. Experiences are summarized. The ERTS computer compatible tapes provide a very complete and flexible record of earth resources data and represent a viable medium to enhance regional environmental analysis research.
New test techniques and analytical procedures for understanding the behavior of advanced propellers
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Bober, L. J.; Neumann, H. E.
1983-01-01
Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.
NASA Technical Reports Server (NTRS)
Mclees, Robert E.; Cohen, Gerald C.
1991-01-01
The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.
New developments of X-ray fluorescence imaging techniques in laboratory
NASA Astrophysics Data System (ADS)
Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki
2015-11-01
X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.
Acoustic prediction methods for the NASA generalized advanced propeller analysis system (GAPAS)
NASA Technical Reports Server (NTRS)
Padula, S. L.; Block, P. J. W.
1984-01-01
Classical methods of propeller performance analysis are coupled with state-of-the-art Aircraft Noise Prediction Program (ANOPP:) techniques to yield a versatile design tool, the NASA Generalized Advanced Propeller Analysis System (GAPAS) for the novel quiet and efficient propellers. ANOPP is a collection of modular specialized programs. GAPAS as a whole addresses blade geometry and aerodynamics, rotor performance and loading, and subsonic propeller noise.
NASA Technical Reports Server (NTRS)
Anderson, B. H.
1983-01-01
A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.
Fundamentals of Digital Engineering: Designing for Reliability
NASA Technical Reports Server (NTRS)
Katz, R.; Day, John H. (Technical Monitor)
2001-01-01
The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, W.R.; Rechnitz, G.A.
1999-01-01
A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult tomore » adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.« less
Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2016-01-01
The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.
[Statistical analysis of German radiologic periodicals: developmental trends in the last 10 years].
Golder, W
1999-09-01
To identify which statistical tests are applied in German radiological publications, to what extent their use has changed during the last decade, and which factors might be responsible for this development. The major articles published in "ROFO" and "DER RADIOLOGE" during 1988, 1993 and 1998 were reviewed for statistical content. The contributions were classified by principal focus and radiological subspecialty. The methods used were assigned to descriptive, basal and advanced statistics. Sample size, significance level and power were established. The use of experts' assistance was monitored. Finally, we calculated the so-called cumulative accessibility of the publications. 525 contributions were found to be eligible. In 1988, 87% used descriptive statistics only, 12.5% basal, and 0.5% advanced statistics. The corresponding figures in 1993 and 1998 are 62 and 49%, 32 and 41%, and 6 and 10%, respectively. Statistical techniques were most likely to be used in research on musculoskeletal imaging and articles dedicated to MRI. Six basic categories of statistical methods account for the complete statistical analysis appearing in 90% of the articles. ROC analysis is the single most common advanced technique. Authors make increasingly use of statistical experts' opinion and programs. During the last decade, the use of statistical methods in German radiological journals has fundamentally improved, both quantitatively and qualitatively. Presently, advanced techniques account for 20% of the pertinent statistical tests. This development seems to be promoted by the increasing availability of statistical analysis software.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Zhu, Ming-Zhi; Chen, Gui-Lin; Wu, Jian-Lin; Li, Na; Liu, Zhong-Hua; Guo, Ming-Quan
2018-04-23
Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control. Copyright © 2018 John Wiley & Sons, Ltd.
Recent Advances in Techniques for Starch Esters and the Applications: A Review
Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong
2016-01-01
Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145
Advanced Fingerprint Analysis Project Fingerprint Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
GM Mong; CE Petersen; TRW Clauss
The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.
Wafer hot spot identification through advanced photomask characterization techniques
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2016-10-01
As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1981-01-01
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.
NASA Astrophysics Data System (ADS)
Bordovsky, Michal; Catrysse, Peter; Dods, Steven; Freitas, Marcio; Klein, Jackson; Kotacka, Libor; Tzolov, Velko; Uzunov, Ivan M.; Zhang, Jiazong
2004-05-01
We present the state of the art for commercial design and simulation software in the 'front end' of photonic circuit design. One recent advance is to extend the flexibility of the software by using more than one numerical technique on the same optical circuit. There are a number of popular and proven techniques for analysis of photonic devices. Examples of these techniques include the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), and the Finite Difference Time Domain (FDTD) method. For larger photonic circuits, it may not be practical to analyze the whole circuit by any one of these methods alone, but often some smaller part of the circuit lends itself to at least one of these standard techniques. Later the whole problem can be analyzed on a unified platform. This kind of approach can enable analysis for cases that would otherwise be cumbersome, or even impossible. We demonstrate solutions for more complex structures ranging from the sub-component layout, through the entire device characterization, to the mask layout and its editing. We also present recent advances in the above well established techniques. This includes the analysis of nano-particles, metals, and non-linear materials by FDTD, photonic crystal design and analysis, and improved models for high concentration Er/Yb co-doped glass waveguide amplifiers.
Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi
2018-04-04
In the present perspective, different approaches to the carotenoids analysis will be discussed providing a brief overview of the most advanced both monodimensional and bidimensional liquid chromatographic methodologies applied to the carotenoids analysis, followed by a discussion on the recents advanced supercritical fluid chromatography × liquid chromatography bidimensional approach with photodiode-array and mass spectrometry detection. Moreover a discussion on the online supercritical fluid extraction-supercritical fluid chromatography with tandem mass spectrometry detection applied to the determination of carotenoids and apocarotenoids will also be provided.
Cancer drug discovery: recent innovative approaches to tumor modeling.
Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M
2016-09-01
Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Study of advanced techniques for determining the long term performance of components
NASA Technical Reports Server (NTRS)
1973-01-01
The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.
Flight test techniques for the X-29A aircraft
NASA Technical Reports Server (NTRS)
Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.
1987-01-01
The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.
Whole-genome sequencing in bacteriology: state of the art
Dark, Michael J
2013-01-01
Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115
Operational numerical weather prediction on the CYBER 205 at the National Meteorological Center
NASA Technical Reports Server (NTRS)
Deaven, D.
1984-01-01
The Development Division of the National Meteorological Center (NMC), having the responsibility of maintaining and developing the numerical weather forecasting systems of the center, is discussed. Because of the mission of NMC data products must be produced reliably and on time twice daily free of surprises for forecasters. Personnel of Development Division are in a rather unique situation. They must develop new advanced techniques for numerical analysis and prediction utilizing current state-of-the-art techniques, and implement them in an operational fashion without damaging the operations of the center. With the computational speeds and resources now available from the CYBER 205, Development Division Personnel will be able to introduce advanced analysis and prediction techniques into the operational job suite without disrupting the daily schedule. The capabilities of the CYBER 205 are discussed.
Use of partial dissolution techniques in geochemical exploration
Chao, T.T.
1984-01-01
Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.
NASA Astrophysics Data System (ADS)
Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.
2017-09-01
With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.
Information Management for a Large Multidisciplinary Project
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.
1992-01-01
In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.
Concepts and techniques for ultrasonic evaluation of material mechanical properties
NASA Technical Reports Server (NTRS)
Vary, A.
1980-01-01
Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.
de Jong, Bouke; Siewers, Verena; Nielsen, Jens
2012-08-01
Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)
NASA Astrophysics Data System (ADS)
De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.
1993-01-01
The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.
Rare cell isolation and analysis in microfluidics
Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun
2014-01-01
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials
NASA Technical Reports Server (NTRS)
Prosser, William H.
1996-01-01
Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.
Jameson, K; Averley, P A; Shackley, P; Steele, J
2007-09-22
To compare the cost-effectiveness of dental sedation techniques used in the treatment of children, focusing on hospital-based dental general anaesthetic (DGA) and advanced conscious sedation in a controlled primary care environment. Data on fees, costs and treatment pathways were obtained from a primary care clinic specialising in advanced sedation techniques. For the hospital-based DGA cohort, data were gathered from hospital trusts in the same area. Comparison was via an average cost per child treated and subsequent sensitivity analysis. Analysing records spanning one year, the average cost per child treated via advanced conscious sedation was pound245.47. As some treatments fail (3.5% of cases attempted), and the technique is not deemed suitable for all patients (4-5%), DGA is still required and has been factored into this cost. DGA has an average cost per case treated of pound359.91, 46.6% more expensive than advanced conscious sedation. These cost savings were robust to plausible variation in all parameters. The costs of advanced conscious sedation techniques, applied in a controlled primary care environment, are substantially lower than the equivalent costs of hospital-based DGA, informing the debate about the optimum way of managing this patient group.
Arthropod surveillance programs: Basic components, strategies, and analysis
USDA-ARS?s Scientific Manuscript database
Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthro...
Artificial intelligence techniques used in respiratory sound analysis--a systematic review.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian
2014-02-01
Artificial intelligence (AI) has recently been established as an alternative method to many conventional methods. The implementation of AI techniques for respiratory sound analysis can assist medical professionals in the diagnosis of lung pathologies. This article highlights the importance of AI techniques in the implementation of computer-based respiratory sound analysis. Articles on computer-based respiratory sound analysis using AI techniques were identified by searches conducted on various electronic resources, such as the IEEE, Springer, Elsevier, PubMed, and ACM digital library databases. Brief descriptions of the types of respiratory sounds and their respective characteristics are provided. We then analyzed each of the previous studies to determine the specific respiratory sounds/pathology analyzed, the number of subjects, the signal processing method used, the AI techniques used, and the performance of the AI technique used in the analysis of respiratory sounds. A detailed description of each of these studies is provided. In conclusion, this article provides recommendations for further advancements in respiratory sound analysis.
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.
Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements
NASA Astrophysics Data System (ADS)
Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.
2011-09-01
Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.
Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan
2009-10-01
Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.
Hybrid soft computing systems for electromyographic signals analysis: a review.
Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates
2014-02-03
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.
Hybrid soft computing systems for electromyographic signals analysis: a review
2014-01-01
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979
Improving microstructural quantification in FIB/SEM nanotomography.
Taillon, Joshua A; Pellegrinelli, Christopher; Huang, Yi-Lin; Wachsman, Eric D; Salamanca-Riba, Lourdes G
2018-01-01
FIB/SEM nanotomography (FIB-nt) is a powerful technique for the determination and quantification of the three-dimensional microstructure in subsurface features. Often times, the microstructure of a sample is the ultimate determiner of the overall performance of a system, and a detailed understanding of its properties is crucial in advancing the materials engineering of a resulting device. While the FIB-nt technique has developed significantly in the 15 years since its introduction, advanced nanotomographic analysis is still far from routine, and a number of challenges remain in data acquisition and post-processing. In this work, we present a number of techniques to improve the quality of the acquired data, together with easy-to-implement methods to obtain "advanced" microstructural quantifications. The techniques are applied to a solid oxide fuel cell cathode of interest to the electrochemistry community, but the methodologies are easily adaptable to a wide range of material systems. Finally, results from an analyzed sample are presented as a practical example of how these techniques can be implemented. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Duggan, Jerome L.; And Others
The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…
Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory
ERIC Educational Resources Information Center
Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.
2007-01-01
A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…
Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013
Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
Estimating free-body modal parameters from tests of a constrained structure
NASA Technical Reports Server (NTRS)
Cooley, Victor M.
1993-01-01
Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.
Advances in Photopletysmography Signal Analysis for Biomedical Applications.
Moraes, Jermana L; Rocha, Matheus X; Vasconcelos, Glauber G; Vasconcelos Filho, José E; de Albuquerque, Victor Hugo C; Alexandria, Auzuir R
2018-06-09
Heart Rate Variability (HRV) is an important tool for the analysis of a patient’s physiological conditions, as well a method aiding the diagnosis of cardiopathies. Photoplethysmography (PPG) is an optical technique applied in the monitoring of the HRV and its adoption has been growing significantly, compared to the most commonly used method in medicine, Electrocardiography (ECG). In this survey, definitions of these technique are presented, the different types of sensors used are explained, and the methods for the study and analysis of the PPG signal (linear and nonlinear methods) are described. Moreover, the progress, and the clinical and practical applicability of the PPG technique in the diagnosis of cardiovascular diseases are evaluated. In addition, the latest technologies utilized in the development of new tools for medical diagnosis are presented, such as Internet of Things, Internet of Health Things, genetic algorithms, artificial intelligence and biosensors which result in personalized advances in e-health and health care. After the study of these technologies, it can be noted that PPG associated with them is an important tool for the diagnosis of some diseases, due to its simplicity, its cost⁻benefit ratio, the easiness of signals acquisition, and especially because it is a non-invasive technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep
2010-06-05
Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less
Contribution to the benchmark for ternary mixtures: Transient analysis in microgravity conditions.
Ahadi, Amirhossein; Ziad Saghir, M
2015-04-01
We present a transient experimental analysis of the DCMIX1 project conducted onboard the International Space Station for a ternary tetrahydronaphtalene, isobutylbenzene, n-dodecane mixture. Raw images taken in microgravity environment using the SODI (Selectable Optical Diagnostic) apparatus which is equipped with two wavelength diagnostic were processed and the results were analyzed in this work. We measured the concentration profile of the mixture containing 80% THN, 10% IBB and 10% nC12 during the entire experiment using an advanced image processing technique and accordingly we determined the Soret coefficients using an advanced curve-fitting and post-processing technique. It must be noted that the experiment has been repeated five times to ensure the repeatability of the experiment.
Advances in fMRI Real-Time Neurofeedback.
Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo
2017-12-01
Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Covariate selection with iterative principal component analysis for predicting physical
USDA-ARS?s Scientific Manuscript database
Local and regional soil data can be improved by coupling new digital soil mapping techniques with high resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The objective of this research was to advance data-driven digital soil mapping techniques for ...
Mountain Plains Learning Experience Guide: Marketing. Course: Advanced Salesmanship.
ERIC Educational Resources Information Center
Preston, T.; Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course covers wholesale and retail selling techniques, sales performance analysis, and intensive sales presentation practice. The course is comprised of four units: (1) Sales Preparation, (2) The Selling Process, (3) Special Selling Techniques, and (4) Sales…
Tutorial: Advanced fault tree applications using HARP
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.
1993-01-01
Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kuangcai
The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.
Single cell analysis of normal and leukemic hematopoiesis.
Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J
2018-02-01
The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Housner, J. M.
1983-01-01
The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Advanced proteomic liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fang; Smith, Richard D.; Shen, Yufeng
2012-10-26
Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.
Center of Excellence for Hypersonics Research
2012-01-25
detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure
Integrated analysis of remote sensing products from basic geological surveys. [Brazil
NASA Technical Reports Server (NTRS)
Dasilvafagundesfilho, E. (Principal Investigator)
1984-01-01
Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.
Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications
NASA Technical Reports Server (NTRS)
Simpson, M. A.; Tran, B. N.
1991-01-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications
NASA Astrophysics Data System (ADS)
Simpson, M. A.; Tran, B. N.
1991-08-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Matthew W.
2013-01-01
This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include themore » inherently weak Raman cross section and susceptibility to fluorescence interference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang
In implementation of nuclear safeguards, many different techniques are being used to monitor operation of nuclear facilities and safeguard nuclear materials, ranging from radiation detectors, flow monitors, video surveillance, satellite imagers, digital seals to open source search and reports of onsite inspections/verifications. Each technique measures one or more unique properties related to nuclear materials or operation processes. Because these data sets have no or loose correlations, it could be beneficial to analyze the data sets together to improve the effectiveness and efficiency of safeguards processes. Advanced visualization techniques and machine-learning based multi-modality analysis could be effective tools in such integratedmore » analysis. In this project, we will conduct a survey of existing visualization and analysis techniques for multi-source data and assess their potential values in nuclear safeguards.« less
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang
2013-01-01
The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313
Making a big thing of a small cell--recent advances in single cell analysis.
Galler, Kerstin; Bräutigam, Katharina; Große, Christina; Popp, Jürgen; Neugebauer, Ute
2014-03-21
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
The aerodynamic design of an advanced rotor airfoil
NASA Technical Reports Server (NTRS)
Blackwell, J. A., Jr.; Hinson, B. L.
1978-01-01
An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.
Understanding a Normal Distribution of Data (Part 2).
Maltenfort, Mitchell
2016-02-01
Completing the discussion of data normality, advanced techniques for analysis of non-normal data are discussed including data transformation, Generalized Linear Modeling, and bootstrapping. Relative strengths and weaknesses of each technique are helpful in choosing a strategy, but help from a statistician is usually necessary to analyze non-normal data using these methods.
An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Zhou, Ning
With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less
Advances in shock timing experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.
2016-03-01
Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.
Advances and unresolved challenges in the structural characterization of isomeric lipids.
Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W
2017-05-01
As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Kucha, Christopher T.; Liu, Li; Ngadi, Michael O.
2018-01-01
Fat is one of the most important traits determining the quality of pork. The composition of the fat greatly influences the quality of pork and its processed products, and contribute to defining the overall carcass value. However, establishing an efficient method for assessing fat quality parameters such as fatty acid composition, solid fat content, oxidative stability, iodine value, and fat color, remains a challenge that must be addressed. Conventional methods such as visual inspection, mechanical methods, and chemical methods are used off the production line, which often results in an inaccurate representation of the process because the dynamics are lost due to the time required to perform the analysis. Consequently, rapid, and non-destructive alternative methods are needed. In this paper, the traditional fat quality assessment techniques are discussed with emphasis on spectroscopic techniques as an alternative. Potential spectroscopic techniques include infrared spectroscopy, nuclear magnetic resonance and Raman spectroscopy. Hyperspectral imaging as an emerging advanced spectroscopy-based technology is introduced and discussed for the recent development of assessment for fat quality attributes. All techniques are described in terms of their operating principles and the research advances involving their application for pork fat quality parameters. Future trends for the non-destructive spectroscopic techniques are also discussed. PMID:29382092
Advances in Testing Techniques for Digital Microfluidic Biochips
Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer
2017-01-01
With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips. PMID:28749411
Advances in Testing Techniques for Digital Microfluidic Biochips.
Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer
2017-07-27
With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Tunable laser techniques for improving the precision of observational astronomy
NASA Astrophysics Data System (ADS)
Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew
2012-09-01
Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.
Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.
Marcinkowska, Monika; Barałkiewicz, Danuta
2016-12-01
Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Suzuki, Shigeru
2014-01-01
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891
NASA Technical Reports Server (NTRS)
Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw
1990-01-01
Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.
Magnetic separation techniques in sample preparation for biological analysis: a review.
He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke
2014-12-01
Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Shuldburg, Sara; Carroll, Jennifer
2017-01-01
An advanced undergraduate experiment involving the synthesis and characterization of a series of six unique cinnamamides is described. This experiment allows for a progressive mastery of skills students need to tackle more complex NMR structure elucidation problems. Characterization of the products involves IR spectroscopy, GCMS, and proton,…
Advanced proteomic liquid chromatography
Xie, Fang; Smith, Richard D.; Shen, Yufeng
2012-01-01
Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822
Incipient fault detection study for advanced spacecraft systems
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.
1986-01-01
A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.
NASA Technical Reports Server (NTRS)
Hotaling, S. P.
1993-01-01
Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.
Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks. PMID:22163582
NASA Astrophysics Data System (ADS)
Fiala, L.; Lokajicek, M.; Tumova, N.
2015-05-01
This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program coordinator Federico Carminati and the conference chair Denis Perret-Gallix for their global supervision. Further information on ACAT 2014 can be found at http://www.particle.cz/acat2014
Sample preparation for the analysis of isoflavones from soybeans and soy foods.
Rostagno, M A; Villares, A; Guillamón, E; García-Lafuente, A; Martínez, J A
2009-01-02
This manuscript provides a review of the actual state and the most recent advances as well as current trends and future prospects in sample preparation and analysis for the quantification of isoflavones from soybeans and soy foods. Individual steps of the procedures used in sample preparation, including sample conservation, extraction techniques and methods, and post-extraction treatment procedures are discussed. The most commonly used methods for extraction of isoflavones with both conventional and "modern" techniques are examined in detail. These modern techniques include ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction and microwave-assisted extraction. Other aspects such as stability during extraction and analysis by high performance liquid chromatography are also covered.
Advanced analysis technique for the evaluation of linear alternators and linear motors
NASA Technical Reports Server (NTRS)
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials
USDA-ARS?s Scientific Manuscript database
Raman imaging can analyze biological materials by generating detailed chemical images. Over the last decade, tremendous advancements in Raman imaging and data analysis techniques have overcome problems such as long data acquisition and analysis times and poor sensitivity. This review article introdu...
Simulation of the visual effects of power plant plumes
Evelyn F. Treiman; David B. Champion; Mona J. Wecksung; Glenn H. Moore; Andrew Ford; Michael D. Williams
1979-01-01
The Los Alamos Scientific Laboratory has developed a computer-assisted technique that can predict the visibility effects of potential energy sources in advance of their construction. This technique has been employed in an economic and environmental analysis comparing a single 3000 MW coal-fired power plant with six 500 MW coal-fired power plants located at hypothetical...
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
Conservation and restoration of forested wetlands: new techniques and perspectives
James Johnston; Steve Hartley; Antonio Martucci
2000-01-01
A partnership of state and federal agencies and private organizations is developing advanced spatial analysis techniques applied for conservation and restoration of forested wetlands. The project goal is to develop an application to assist decisionmakers in defining the eligibility of land sites for entry in the Wetland Reserve Program (WRP) of the U.S. Department of...
ERIC Educational Resources Information Center
Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.
2005-01-01
A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…
NASA Astrophysics Data System (ADS)
Fein, Howard
2003-09-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.
NASA Technical Reports Server (NTRS)
Landmann, A. E.; Tillema, H. F.; Marshall, S. E.
1989-01-01
The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.
Mass spectrometry. [in organic chemistry
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.
1978-01-01
A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Infrastructure development for radioactive materials at the NSLS-II
Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...
2017-11-04
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience
WANNER, A. A.; KIRSCHMANN, M. A.
2015-01-01
Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464
NASA Astrophysics Data System (ADS)
Oehler, Dorothy Z.; Cady, Sherry L.
2014-08-01
The past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.
Frantz, Terrill L
2012-01-01
This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities. Copyright © 2012 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.
Qumseya, Bashar J; Wang, Haibo; Badie, Nicole; Uzomba, Rosemary N; Parasa, Sravanthi; White, Donna L; Wolfsen, Herbert; Sharma, Prateek; Wallace, Michael B
2013-12-01
US guidelines recommend surveillance of patients with Barrett's esophagus (BE) to detect dysplasia. BE conventionally is monitored via white-light endoscopy (WLE) and a collection of random biopsy specimens. However, this approach does not definitively or consistently detect areas of dysplasia. Advanced imaging technologies can increase the detection of dysplasia and cancer. We investigated whether these imaging technologies can increase the diagnostic yield for the detection of neoplasia in patients with BE, compared with WLE and analysis of random biopsy specimens. We performed a systematic review, using Medline and Embase, to identify relevant peer-review studies. Fourteen studies were included in the final analysis, with a total of 843 patients. Our metameter (estimate) of interest was the paired-risk difference (RD), defined as the difference in yield of the detection of dysplasia or cancer using advanced imaging vs WLE. The estimated paired-RD and 95% confidence interval (CI) were obtained using random-effects models. Heterogeneity was assessed by means of the Q statistic and the I(2) statistic. An exploratory meta-regression was performed to look for associations between the metameter and potential confounders or modifiers. Overall, advanced imaging techniques increased the diagnostic yield for detection of dysplasia or cancer by 34% (95% CI, 20%-56%; P < .0001). A subgroup analysis showed that virtual chromoendoscopy significantly increased the diagnostic yield (RD, 0.34; 95% CI, 0.14-0.56; P < .0001). The RD for chromoendoscopy was 0.35 (95% CI, 0.13-0.56; P = .0001). There was no significant difference between virtual chromoendoscopy and chromoendoscopy, based on Student t test analysis (P = .45). Based on a meta-analysis, advanced imaging techniques such as chromoendoscopy or virtual chromoendoscopy significantly increase the diagnostic yield for identification of dysplasia or cancer in patients with BE. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Lee Kenneth
2017-03-01
This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.
DOT National Transportation Integrated Search
2014-03-01
Recent research in highway safety has focused on the more advanced and statistically proven techniques of highway : safety analysis. This project focuses on the two most recent safety analysis tools, the Highway Safety Manual (HSM) : and SafetyAnalys...
DOT National Transportation Integrated Search
1983-12-01
This research was performed to complete and advance the status of recently developed : procedures for analysis and design of weaving sections (known as the Leisch method and-initially published in the 1979 issue of ITE Journal). The objective was to ...
Research on golden-winged warblers: recent progress and current needs
Henry M. Streby; Ronald W. Rohrbaugh; David A. Buehler; David E. Andersen; Rachel Vallender; David I. King; Tom Will
2016-01-01
Considerable advances have been made in knowledge about Golden-winged Warblers (Vermivora chrysoptera) in the past decade. Recent employment of molecular analysis, stable-isotope analysis, telemetry-based monitoring of survival and behavior, and spatially explicit modeling techniques have added to, and revised, an already broad base of published...
The National Health Educator Job Analysis 2010: Process and Outcomes
ERIC Educational Resources Information Center
Doyle, Eva I.; Caro, Carla M.; Lysoby, Linda; Auld, M. Elaine; Smith, Becky J.; Muenzen, Patricia M.
2012-01-01
The National Health Educator Job Analysis 2010 was conducted to update the competencies model for entry- and advanced-level health educators. Qualitative and quantitative methods were used. Structured interviews, focus groups, and a modified Delphi technique were implemented to engage 59 health educators from diverse work settings and experience…
Analysis in Motion Initiative – Summarization Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin; Pirrung, Meg; Jasper, Rob
2017-06-22
Analysts are tasked with integrating information from multiple data sources for important and timely decision making. What if sense making and overall situation awareness could be improved through visualization techniques? The Analysis in Motion initiative is advancing the ability to summarize and abstract multiple streams and static data sources over time.
DOT National Transportation Integrated Search
1975-11-01
More than 20 representative classes of retrofit devices/concepts/techniques, including more than 130 specific items, were examined in the course of the study. A major portion of the analysis effort was directed to the evaluation of 16 advanced, novel...
Advanced STEM microanalysis of bimetallic nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Lyman, Charles E.; Dimick, Paul S.
2012-05-01
Individual particles within bimetallic nanoparticle populations are not always identical, limiting the usefulness of bulk analysis techniques such as EXAFS. The scanning transmission electron microscope (STEM) is the only instrument able to characterize supported nanoparticle populations on a particle-by-particle basis. Quantitative elemental analyses of sub-5-nm particles reveal phase separations among particles and surface segregation within particles. This knowledge can lead to improvements in bimetallic catalysts. Advanced STEMs with field-emission guns, aberration-corrected optics, and efficient signal detection systems allow analysis of sub-nanometer particles.
Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho
2013-01-01
Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011
Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho
2013-12-01
Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnologybased materials and living cells in both in vitro and in vivo settings.
Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis
NASA Astrophysics Data System (ADS)
Chou, Hui-Yu; Yang, Jyh-Bin
2017-10-01
The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.
Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.
2015-04-20
This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less
ERIC Educational Resources Information Center
Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.
2011-01-01
We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…
NASA Technical Reports Server (NTRS)
Ray, R. J.; Hicks, J. W.; Alexander, R. I.
1988-01-01
The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.
Kaitani, Toshiko; Nakagami, Gojiro; Iizaka, Shinji; Fukuda, Takashi; Oe, Makoto; Igarashi, Ataru; Mori, Taketoshi; Takemura, Yukie; Mizokami, Yuko; Sugama, Junko; Sanada, Hiromi
2015-01-01
The high prevalence of severe pressure ulcers (PUs) is an important issue that requires to be highlighted in Japan. In a previous study, we devised an advanced PU management protocol to enable early detection of and intervention for deep tissue injury and critical colonization. This protocol was effective for preventing more severe PUs. The present study aimed to compare the cost-effectiveness of the care provided using an advanced PU management protocol, from a medical provider's perspective, implemented by trained wound, ostomy, and continence nurses (WOCNs), with that of conventional care provided by a control group of WOCNs. A Markov model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness ratio of advanced PU management compared with conventional care. The number of quality-adjusted life-years gained, and the cost in Japanese yen (¥) ($US1 = ¥120; 2015) was used as the outcome. Model inputs for clinical probabilities and related costs were based on our previous clinical trial results. Univariate sensitivity analyses were performed. Furthermore, a Bayesian multivariate probability sensitivity analysis was performed using Monte Carlo simulations with advanced PU management. Two different models were created for initial cohort distribution. For both models, the expected effectiveness for the intervention group using advanced PU management techniques was high, with a low expected cost value. The sensitivity analyses suggested that the results were robust. Intervention by WOCNs using advanced PU management techniques was more effective and cost-effective than conventional care. © 2015 by the Wound Healing Society.
NASA Astrophysics Data System (ADS)
Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro
2012-06-01
ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.
Digital photoelasticity of glass: A comprehensive review
NASA Astrophysics Data System (ADS)
Ramesh, K.; Ramakrishnan, Vivek
2016-12-01
The recent advances in digital photoelasticity have made it possible to use it conveniently for the stress analysis of articles and components made of glass. Depending on the application, the retardation levels to be measured range from a few nanometres to several thousand nanometres, which necessitates different techniques and associated equipments. This paper reviews the recent advances in the photoelasticity of glass with a focus on the techniques/methods developed in the last decade. A brief introduction to the residual stress in glass is provided initially to bring out its tensorial nature. The subsequent sections are organised thematically rather than chronologically, for better readability and easy access of information.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.
1996-01-01
The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.
Recent Advances in Techniques for Hyperspectral Image Processing
NASA Technical Reports Server (NTRS)
Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony;
2009-01-01
Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms
Recent trends in particle size analysis techniques
NASA Technical Reports Server (NTRS)
Kang, S. H.
1984-01-01
Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.
Cryo-EM in drug discovery: achievements, limitations and prospects.
Renaud, Jean-Paul; Chari, Ashwin; Ciferri, Claudio; Liu, Wen-Ti; Rémigy, Hervé-William; Stark, Holger; Wiesmann, Christian
2018-06-08
Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances - including the development of direct electron detectors and more effective computational image analysis techniques - are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
NASA Astrophysics Data System (ADS)
Bi, L.
2016-12-01
Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.
Application of Laminar Flow Control Technology to Long-Range Transport Design
NASA Technical Reports Server (NTRS)
Gratzer, L. B.; George-Falvy, D.
1978-01-01
The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.
NASA Dryden Flight Loads Laboratory
NASA Technical Reports Server (NTRS)
Horn, Tom
2008-01-01
This viewgraph presentation reviews the work of the Dryden Flight Loads Laboratory. The capabilities and research interests of the lab are: Structural, thermal, & dynamic analysis; Structural, thermal, & dynamic ground-test techniques; Advanced structural instrumentation; and Flight test support.
Recent developments in microfluidics for cell studies.
Xiong, Bin; Ren, Kangning; Shu, Yiwei; Chen, Yin; Shen, Bo; Wu, Hongkai
2014-08-20
As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mantovani, Veronica; Galeotti, Fabio; Maccari, Francesca; Volpi, Nicola
2018-01-01
This article illustrates the basis and applications of methodologies for the analysis of simple and complex carbohydrates by means of CE. After a description of the most common and novel approaches useful for the analysis and characterization of carbohydrates, this review covers the recent advances in CE separation of monosaccharides, oligosaccharides, and polysaccharides. Various CE techniques are also illustrated for the study of carbohydrates derived from complex glyco-derivatives such as glycoproteins and glycolipids, essential for biopharmaceutical and glycoproteomics applications as well as for biomarker detection. Most glycans have no significant UV absorption, and derivatization with fluorophore groups prior to separation usually results in higher sensitivity and an improved electrophoretic profile. We also discuss the recent applications and separations by CE of derivatized simple and more complex carbohydrates with different chromophoric active tags. Overall, this review aims to give an overview of the most recent state-of-the-art techniques used in carbohydrate analysis by CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced computational tools for 3-D seismic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, J.; Glover, C.W.; Protopopescu, V.A.
1996-06-01
The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less
NASA Astrophysics Data System (ADS)
Spicer, James B.; Dagdigian, Paul; Osiander, Robert; Miragliotta, Joseph A.; Zhang, Xi-Cheng; Kersting, Roland; Crosley, David R.; Hanson, Ronald K.; Jeffries, Jay
2003-09-01
The research center established by Army Research Office under the Multidisciplinary University Research Initiative program pursues a multidisciplinary approach to investigate and advance the use of complementary analytical techniques for sensing of explosives and/or explosive-related compounds as they occur in the environment. The techniques being investigated include Terahertz (THz) imaging and spectroscopy, Laser-Induced Breakdown Spectroscopy (LIBS), Cavity Ring Down Spectroscopy (CRDS) and Resonance Enhanced Multiphoton Ionization (REMPI). This suite of techniques encompasses a diversity of sensing approaches that can be applied to detection of explosives in condensed phases such as adsorbed species in soil or can be used for vapor phase detection above the source. Some techniques allow for remote detection while others have highly specific and sensitive analysis capabilities. This program is addressing a range of fundamental, technical issues associated with trace detection of explosive related compounds using these techniques. For example, while both LIBS and THz can be used to carry-out remote analysis of condensed phase analyte from a distance in excess several meters, the sensitivities of these techniques to surface adsorbed explosive-related compounds are not currently known. In current implementations, both CRDS and REMPI require sample collection techniques that have not been optimized for environmental applications. Early program elements will pursue the fundamental advances required for these techniques including signature identification for explosive-related compounds/interferents and trace analyte extraction. Later program tasks will explore simultaneous application of two or more techniques to assess the benefits of sensor fusion.
Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve
2010-02-01
In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.
Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)
2011-01-01
A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
High throughput gene expression profiling: a molecular approach to integrative physiology
Liang, Mingyu; Cowley, Allen W; Greene, Andrew S
2004-01-01
Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487
An Investigation of the Characterization of Cloud Contamination in Hyperspectral Radiances
NASA Technical Reports Server (NTRS)
McCarty, William; Jedlovec, Gary J.; LeMarshall, John
2007-01-01
In regions lacking direct observations, the assimilation of radiances from infrared and microwave sounders is the primary method for characterizing the atmosphere in the analysis process. In recent years, technological advances have led to the launching of more advanced sounders, particularly in the thermal infrared spectrum. With the advent of these hyperspectral sounders, the amount of data available for the analysis process has and will continue to be dramatically increased. However, the utilization of infrared radiances in variational assimilation can be problematic in the presence of clouds; specifically the assessment of the presence of clouds in an instantaneous field of view (IFOV) and the contamination in the individual channels within the IFOV. Various techniques have been developed to determine if a channel is contaminated by clouds. The work presented in this paper and subsequent presentation will investigate traditional techniques and compare them to a new technique, the C02 sorting technique, which utilizes the high spectral resolution of the Atmospheric Infrared Sounder (AIRS) within the framework of the Gridpoint Statistical Interpolation (GSI) 3DVAR system. Ultimately, this work is done in preparation for the assessment of short-term forecast impacts with the regional assimilation of AIRS radiances within the analysis fields of the Weather Research and Forecast Nonhydrostatic Mesoscale Model (WRF-NMM) at the NASA Short-term Prediction Research and Transition (SPORT) Center.
ERIC Educational Resources Information Center
Nee, John G.; Kare, Audhut P.
1987-01-01
Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)
A Molecular Iodine Spectral Data Set for Rovibronic Analysis
ERIC Educational Resources Information Center
Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.
2013-01-01
A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Chiappa, Valentina; Donfrancesco, Cristina; Di Donato, Violante; Indini, Alice; Aletti, Giovanni; Raspagliesi, Francesco
2016-02-01
Optimal cytoreduction is one the main factors improving survival outcomes in patients affected by ovarian cancer (OC). It is estimated that approximately 40% of OC patients have gross disease located on the diaphragm. However, no mature data evaluating outcomes of surgical techniques for the management of diaphragmatic carcinosis exist. In the present study, we aimed to estimate surgery-related morbidity of different surgical techniques for diaphragmatic cytoreduction in advanced or recurrent OC. PubMed (MEDLINE), Web of Science, and Clincaltrials.gov databases were searched for records estimating outcomes of diaphragmatic peritoneal stripping (DPS) or diaphragmatic full-thickness resection (DFTR) for OC. The meta-analysis was performed using the Cochrane Review software. For the final analysis, 5 articles were available, including 272 patients. Diaphragmatic peritoneal stripping and DFTR were performed in 197 patients (72%) and 75 patients (28%), respectively. Pooled analysis suggested that the estimated pleural effusion rate was 43% and 51% after DPS and DFTR, respectively. The need for pleural punctures or chest tube placement was 4% and 9% after DPS and DFTR, respectively. The rate of postoperative pneumothorax (4% vs 9%; odds ratio, 0.31; 95% confidence interval, 0.05-2.08) and subdiaphragmatic abscess (3% vs 3%; odds ratio, 0.45; 95% confidence interval, 0.09-2.31) were similar after the execution of DPS and DFTR. Diaphragmatic surgery is a crucial step during cytoreduction for advanced or recurrent OC. Obviously, the choice to perform DPS or DFTR depends on the infiltration of the diaphragmatic muscle or not. Both the procedures are associated with a low pulmonary complication and chest tube placement rates.
Advanced integrated safeguards using front-end-triggering devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, J.A.; Whitty, W.J.
This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.
Verification, Validation and Sensitivity Studies in Computational Biomechanics
Anderson, Andrew E.; Ellis, Benjamin J.; Weiss, Jeffrey A.
2012-01-01
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation. The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of verification and validation principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques. PMID:17558646
Ali, Imran; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y
2014-04-01
NACE is an alternative technique to aqueous CE in the chiral separations of partially soluble racemates. Besides, partially water-soluble or insoluble chiral selectors may be exploited in the enantiomeric resolution in NACE. The high reproducibility due to low Joule heat generation and no change in BGE concentration may make NACE a routine analytical technique. These facts attracted scientists to use NACE for the chiral resolution. The present review describes the advances in the chiral separations by NACE and its application in pharmaceutical and biomedical analysis. The emphasis has been given to discuss the selection of the chiral selectors and organic solvents, applications of NACE, comparison between NACE and aqueous CE, and chiral recognition mechanism. Besides, efforts have also been made to predict the future perspectives of NACE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
NASA Astrophysics Data System (ADS)
Perea, D. E.; Evans, J. E.
2017-12-01
The ability to image biointerfaces over nanometer to micrometer length scales is fundamental to correlating biological composition and structure to physiological function, and is aided by a multimodal approach using advanced complementary microscopic and spectroscopic characterization techniques. Atom Probe Tomography (APT) is a rapidly expanding technique for atomic-scale three-dimensional structural and chemical analysis. However, the regular application of APT to soft biological materials is lacking in large part due to difficulties in specimen preparation and inabilities to yield meaningful tomographic reconstructions that produce atomic scale compositional distributions as no other technique currently can. Here we describe the atomic-scale tomographic analysis of biological materials using APT that is facilitated by an advanced focused ion beam based approach. A novel specimen preparation strategy is used in the analysis of horse spleen ferritin protein embedded in an organic polymer resin which provides chemical contrast to distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell of the ferritin protein. One-dimensional composition profiles directly reveal an enhanced concentration of P and Na at the surface of the ferrihydrite mineral core. We will also describe the development of a unique multifunctional environmental transfer hub allowing controlled cryogenic transfer of specimens under vacuum pressure conditions between an Atom Probe and cryo-FIB/SEM. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organometallic molecule made possible via controlled cryogenic transfer. The results demonstrate a viable application of APT analysis to study complex biological organic/inorganic interfaces relevant to energy and the environment. References D.E. Perea et al. An environmental transfer hub for multimodal atom probe tomography, Adv. Struct. Chem. Imag, 2017, 3:12 The research was performed at the Environmental Molecular Sciences Laboratory; a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.
Integrated Formulation of Beacon-Based Exception Analysis for Multimissions
NASA Technical Reports Server (NTRS)
Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail
2003-01-01
Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,
NASA Astrophysics Data System (ADS)
Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom
2016-06-01
Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.
Cooperative analysis expert situation assessment research
NASA Technical Reports Server (NTRS)
Mccown, Michael G.
1987-01-01
For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.
The workload book: Assessment of operator workload to engineering systems
NASA Technical Reports Server (NTRS)
Gopher, D.
1983-01-01
The structure and initial work performed toward the creation of a handbook for workload analysis directed at the operational community of engineers and human factors psychologists are described. The goal, when complete, will be to make accessible to such individuals the results of theoretically-based research that are of practical interest and utility in the analysis and prediction of operator workload in advanced and existing systems. In addition, the results of laboratory study focused on the development of a subjective rating technique for workload that is based on psychophysical scaling techniques are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehler, Dorothy Z.; Cady, Sherry L.
2014-12-01
he past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled withmore » assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.« less
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Integrating advanced visualization technology into the planetary Geoscience workflow
NASA Astrophysics Data System (ADS)
Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb
2011-09-01
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.
Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen
2017-05-25
Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.
Advanced study of global oceanographic requirements for EOS A/B: Appendix volume
NASA Technical Reports Server (NTRS)
1972-01-01
Tables and graphs are presented for a review of oceanographic studies using satellite-borne instruments. The topics considered include sensor requirements, error analysis for wind determination from glitter pattern measurements, coverage frequency plots, ground station rise and set times, a technique for reduction and analysis of ocean spectral data, rationale for the selection of a 2 PM descending orbit, and a priority analysis.
Natural laminar flow airfoil analysis and trade studies
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.
Surrogate marker analysis in cancer clinical trials through time-to-event mediation techniques.
Vandenberghe, Sjouke; Duchateau, Luc; Slaets, Leen; Bogaerts, Jan; Vansteelandt, Stijn
2017-01-01
The meta-analytic approach is the gold standard for validation of surrogate markers, but has the drawback of requiring data from several trials. We refine modern mediation analysis techniques for time-to-event endpoints and apply them to investigate whether pathological complete response can be used as a surrogate marker for disease-free survival in the EORTC 10994/BIG 1-00 randomised phase 3 trial in which locally advanced breast cancer patients were randomised to either taxane or anthracycline based neoadjuvant chemotherapy. In the mediation analysis, the treatment effect is decomposed into an indirect effect via pathological complete response and the remaining direct effect. It shows that only 4.2% of the treatment effect on disease-free survival after five years is mediated by the treatment effect on pathological complete response. There is thus no evidence from our analysis that pathological complete response is a valuable surrogate marker to evaluate the effect of taxane versus anthracycline based chemotherapies on progression free survival of locally advanced breast cancer patients. The proposed analysis strategy is broadly applicable to mediation analyses of time-to-event endpoints, is easy to apply and outperforms existing strategies in terms of precision as well as robustness against model misspecification.
Protein purification and analysis: next generation Western blotting techniques.
Mishra, Manish; Tiwari, Shuchita; Gomes, Aldrin V
2017-11-01
Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.
Pipe network flow analysis was among the first civil engineering applications programmed for solution on the early commercial mainframe computers in the 1960s. Since that time, advancements in analytical techniques and computing power have enabled us to solve systems with tens o...
Noncontact techniques for diesel engine diagnostics using exhaust waveform analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gore, D.A.; Cooke, G.J.
1987-01-01
RCA Corporation's continuing efforts to develop noncontact test techniques for diesel engines have led to recent advancements in deep engine diagnostics. The U.S. Army Tank-Automotive Command (TACOM) has been working with RCA for the development of new noncontact sensors and test techniques which use these sensors in conjunction with their family of Simplified Test Equipment (STE) to perform vehicle diagnostics. The STE systems are microprocessor-based maintenance tools that assist the Army mechanic in diagnosing malfunctions in both tactical and combat vehicles. The test systems support the mechanic by providing the sophisticated signal processing capabilities necessary for a wide range ofmore » diagnostic testing including exhaust waveform analysis.« less
NASA Technical Reports Server (NTRS)
Hall, David G.; Heidelberg, Laurence; Konno, Kevin
1993-01-01
The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.
NASA Technical Reports Server (NTRS)
Hall, David G.; Heidelberg, Laurence; Konno, Kevin
1993-01-01
The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.
Application of a novel new multispectral nanoparticle tracking technique
NASA Astrophysics Data System (ADS)
McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.
2018-06-01
Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.
The Role of a Physical Analysis Laboratory in a 300 mm IC Development and Manufacturing Centre
NASA Astrophysics Data System (ADS)
Kwakman, L. F. Tz.; Bicais-Lepinay, N.; Courtas, S.; Delille, D.; Juhel, M.; Trouiller, C.; Wyon, C.; de la Bardonnie, M.; Lorut, F.; Ross, R.
2005-09-01
To remain competitive IC manufacturers have to accelerate the development of most advanced (CMOS) technology and to deliver high yielding products with best cycle times and at a competitive pricing. With the increase of technology complexity, also the need for physical characterization support increases, however many of the existing techniques are no longer adequate to effectively support the 65-45 nm technology node developments. New and improved techniques are definitely needed to better characterize the often marginal processes, but these should not significantly impact fabrication costs or cycle time. Hence, characterization and metrology challenges in state-of-the-art IC manufacturing are both of technical and economical nature. TEM microscopy is needed for high quality, high volume analytical support but several physical and practical hurdles have to be taken. The success rate of FIB-SEM based failure analysis drops as defects often are too small to be detected and fault isolation becomes more difficult in the nano-scale device structures. To remain effective and efficient, SEM and OBIRCH techniques have to be improved or complemented with other more effective methods. Chemical analysis of novel materials and critical interfaces requires improvements in the field of e.g. SIMS, ToF-SIMS. Techniques that previously were only used sporadically, like EBSD and XRD, have become a `must' to properly support backend process development. At the bright side, thanks to major technical advances, techniques that previously were practiced at laboratory level only now can be used effectively for at-line fab metrology: Voltage Contrast based defectivity control, XPS based gate dielectric metrology and XRD based control of copper metallization processes are practical examples. In this paper capabilities and shortcomings of several techniques and corresponding equipment are presented with practical illustrations of use in our Crolles facilities.
An exploratory investigation of weight estimation techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Cook, E. L.
1981-01-01
The three basic methods of weight prediction (fixed-fraction, statistical correlation, and point stress analysis) and some of the computer programs that have been developed to implement them are discussed. A modified version of the WAATS (Weights Analysis of Advanced Transportation Systems) program is presented, along with input data forms and an example problem.
Incorporating an ERP Project into Undergraduate Instruction
Nyhus, Erika; Curtis, Nancy
2016-01-01
Electroencephalogram (EEG) is a relatively non-invasive, simple technique, and recent advances in open source analysis tools make it feasible to implement EEG as a component in undergraduate neuroscience curriculum. We have successfully led students to design novel experiments, record EEG data, and analyze event-related potentials (ERPs) during a one-semester laboratory course for undergraduates in cognitive neuroscience. First, students learned how to set up an EEG recording and completed an analysis tutorial. Students then learned how to set up a novel EEG experiment; briefly, they formed groups of four and designed an EEG experiment on a topic of their choice. Over the course of two weeks students collected behavioral and EEG data. Each group then analyzed their behavioral and ERP data and presented their results both as a presentation and as a final paper. Upon completion of the group project students reported a deeper understanding of cognitive neuroscience methods and a greater appreciation for the strengths and weaknesses of the EEG technique. Although recent advances in open source software made this project possible, it also required access to EEG recording equipment and proprietary software. Future efforts should be directed at making publicly available datasets to learn ERP analysis techniques and making publicly available EEG recording and analysis software to increase the accessibility of hands-on research experience in undergraduate cognitive neuroscience laboratory courses. PMID:27385925
Biosensors and their applications in detection of organophosphorus pesticides in the environment.
Hassani, Shokoufeh; Momtaz, Saeideh; Vakhshiteh, Faezeh; Maghsoudi, Armin Salek; Ganjali, Mohammad Reza; Norouzi, Parviz; Abdollahi, Mohammad
2017-01-01
This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.
NASA Astrophysics Data System (ADS)
Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.
2005-05-01
As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.
Validating an Air Traffic Management Concept of Operation Using Statistical Modeling
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2013-01-01
Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis
Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis
NASA Technical Reports Server (NTRS)
Pelton, Joseph N.
1991-01-01
The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.
NASA Technical Reports Server (NTRS)
Rana, D. S.
1980-01-01
The data reduction capabilities of the current data reduction programs were assessed and a search for a more comprehensive system with higher data analytic capabilities was made. Results of the investigation are presented.
Advanced technology airfoil research, volume 2. [conferences
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
The Utility of Template Analysis in Qualitative Psychology Research.
Brooks, Joanna; McCluskey, Serena; Turley, Emma; King, Nigel
2015-04-03
Thematic analysis is widely used in qualitative psychology research, and in this article, we present a particular style of thematic analysis known as Template Analysis. We outline the technique and consider its epistemological position, then describe three case studies of research projects which employed Template Analysis to illustrate the diverse ways it can be used. Our first case study illustrates how the technique was employed in data analysis undertaken by a team of researchers in a large-scale qualitative research project. Our second example demonstrates how a qualitative study that set out to build on mainstream theory made use of the a priori themes (themes determined in advance of coding) permitted in Template Analysis. Our final case study shows how Template Analysis can be used from an interpretative phenomenological stance. We highlight the distinctive features of this style of thematic analysis, discuss the kind of research where it may be particularly appropriate, and consider possible limitations of the technique. We conclude that Template Analysis is a flexible form of thematic analysis with real utility in qualitative psychology research.
Wang, J B; Jiang, W; Ji, Z; Cao, J Z; Liu, L P; Men, Y; Xu, C; Wang, X Z; Hui, Z G; Liang, J; Lyu, J M; Zhou, Z M; Xiao, Z F; Feng, Q F; Chen, D F; Zhang, H X; Yin, W B; Wang, L H
2016-08-01
This study aimed to evaluate the impact of technical advancement of radiation therapy in patients with LA-NSCLC receiving definitive radiotherapy (RT). Patients treated with definitive RT (≥50 Gy) between 2000 and 2010 were retrospectively reviewed. Overall survival (OS), cancer specific survival (CSS), locoregional progression-free survival (LRPFS), distant metastasis-free survival (DMFS) and progression-free survival (PFS) were calculated and compared among patients irradiated with different techniques. Radiation-induced lung injury (RILI) and esophageal injury (RIEI) were assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events 3.0 (NCI-CTCAE 3.0). A total of 946 patients were eligible for analysis, including 288 treated with two-dimensional radiotherapy (2D-RT), 209 with three-dimensional conformal radiation therapy (3D-CRT) and 449 with intensity-modulated radiation therapy (IMRT) respectively. The median follow-up time for the whole population was 84.1 months. The median OS of 2D-RT, 3D-CRT and IMRT groups were 15.8, 19.7 and 23.3 months, respectively, with the corresponding 5-year survival rate of 8.7%, 13.0% and 18.8%, respectively (P<0.001). The univariate analysis demonstrated significantly inferior OS, LRPFS, DMFS and PFS of 2D-RT than those provided by 3D-CRT or IMRT. The univariate analysis also revealed that the IMRT group had significantly loger LRPFS and a trend toward better OS and DMFS compared with 3D-CRT. Multivariate analysis showed that TNM stage, RT technique and KPS were independent factors correlated with all survival indexes. Compared with 2D-RT, the utilization of IMRT was associated with significantly improved OS, LRPFS, DMFS as well as PFS. Compared with 3D-CRT, IMRT provided superior DMFS (P=0.035), a trend approaching significance with regard to LRPFS (P=0.073) but no statistically significant improvement on OS, CSS and PFS in multivariate analysis. The incidence rates of RILI were significantly decreased in the IMRT group (29.3% vs. 26.6% vs.14.0%, P<0.001) whereas that of RIET rates were similar (34.7% vs. 29.7% vs. 35.3%, P=0.342) among the three groups. Radiation therapy technique is a factor affecting prognosis of LA-NSCLC patients. Advanced radiation therapy technique is associated with improved tumor control and survival, and decreased radiation-induced lung toxicity.
Advanced techniques in placental biology -- workshop report.
Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A
2006-04-01
Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.
Breath analysis using external cavity diode lasers: a review
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail
2017-04-01
Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.
Boonen, Kurt; Landuyt, Bart; Baggerman, Geert; Husson, Steven J; Huybrechts, Jurgen; Schoofs, Liliane
2008-02-01
MS is currently one of the most important analytical techniques in biological and medical research. ESI and MALDI launched the field of MS into biology. The performance of mass spectrometers increased tremendously over the past decades. Other technological advances increased the analytical power of biological MS even more. First, the advent of the genome projects allowed an automated analysis of mass spectrometric data. Second, improved separation techniques, like nanoscale HPLC, are essential for MS analysis of biomolecules. The recent progress in bioinformatics is the third factor that accelerated the biochemical analysis of macromolecules. The first part of this review will introduce the basics of these techniques. The field that integrates all these techniques to identify endogenous peptides is called peptidomics and will be discussed in the last section. This integrated approach aims at identifying all the present peptides in a cell, organ or organism (the peptidome). Today, peptidomics is used by several fields of research. Special emphasis will be given to the identification of neuropeptides, a class of short proteins that fulfil several important intercellular signalling functions in every animal. MS imaging techniques and biomarker discovery will also be discussed briefly.
Robertson, W M; Parker, J M
2012-03-01
A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America
Moller, Arlen C.; Merchant, Gina; Conroy, David E.; West, Robert; Hekler, Eric B.; Kugler, Kari C.; Michie, Susan
2017-01-01
As more behavioral health interventions move from traditional to digital platforms, the application of evidence-based theories and techniques may be doubly advantageous. First, it can expedite digital health intervention development, improving efficacy, and increasing reach. Second, moving behavioral health interventions to digital platforms presents researchers with novel (potentially paradigm shifting) opportunities for advancing theories and techniques. In particular, the potential for technology to revolutionize theory refinement is made possible by leveraging the proliferation of “real-time” objective measurement and “big data” commonly generated and stored by digital platforms. Much more could be done to realize this potential. This paper offers proposals for better leveraging the potential advantages of digital health platforms, and reviews three of the cutting edge methods for doing so: optimization designs, dynamic systems modeling, and social network analysis. PMID:28058516
Review of recent advances in analytical techniques for the determination of neurotransmitters
Perry, Maura; Li, Qiang; Kennedy, Robert T.
2009-01-01
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472
Why bundled payments could drive innovation: an example from interventional oncology.
Steele, Joseph R; Jones, A Kyle; Ninan, Elizabeth P; Clarke, Ryan K; Odisio, Bruno C; Avritscher, Rony; Murthy, Ravi; Mahvash, Armeen
2015-03-01
Some have suggested that the current fee-for-service health care payment system in the United States stifles innovation. However, there are few published examples supporting this concept. We implemented an innovative temporary balloon occlusion technique for yttrium 90 radioembolization of nonresectable liver cancer. Although our balloon occlusion technique was associated with similar patient outcomes, lower cost, and faster procedure times compared with the standard-of-care coil embolization technique, our technique failed to gain widespread acceptance. Financial analysis revealed that because the balloon occlusion technique avoided a procedural step associated with a lucrative Current Procedural Terminology billing code, this new technique resulted in a significant decrease in hospital and physician revenue in the current fee-for-service payment system, even though the new technique would provide a revenue enhancement through cost savings in a bundled payment system. Our analysis illustrates how in a fee-for-service payment system, financial disincentives can stifle innovation and advancement of health care delivery. Copyright © 2015 by American Society of Clinical Oncology.
Dual Nozzle Aerodynamic and Cooling Analysis Study.
1981-02-27
program and to the aerodynamic model computer program. This pro - cedure was used to define two secondary nozzle contours for the baseline con - figuration...both the dual-throat and dual-expander con - cepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow...preliminary heat transfer analysis of both con - cepts, and (5) engineering analysis of data from the NASA/MSFC hot-fire testing of a dual-throat
Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury
Bigler, Erin D.
2016-01-01
The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology perspective could represent a significant advancement for the field. PMID:27555810
NASA Technical Reports Server (NTRS)
Noor, A. K.
1983-01-01
Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.
Foulquier, Nathan; Redou, Pascal; Le Gal, Christophe; Rouvière, Bénédicte; Pers, Jacques-Olivier; Saraux, Alain
2018-05-17
Big data analysis has become a common way to extract information from complex and large datasets among most scientific domains. This approach is now used to study large cohorts of patients in medicine. This work is a review of publications that have used artificial intelligence and advanced machine learning techniques to study physio pathogenesis-based treatments in pSS. A systematic literature review retrieved all articles reporting on the use of advanced statistical analysis applied to the study of systemic autoimmune diseases (SADs) over the last decade. An automatic bibliography screening method has been developed to perform this task. The program called BIBOT was designed to fetch and analyze articles from the pubmed database using a list of keywords and Natural Language Processing approaches. The evolution of trends in statistical approaches, sizes of cohorts and number of publications over this period were also computed in the process. In all, 44077 abstracts were screened and 1017 publications were analyzed. The mean number of selected articles was 101.0 (S.D. 19.16) by year, but increased significantly over the time (from 74 articles in 2008 to 138 in 2017). Among them only 12 focused on pSS but none of them emphasized on the aspect of pathogenesis-based treatments. To conclude, medicine progressively enters the era of big data analysis and artificial intelligence, but these approaches are not yet used to describe pSS-specific pathogenesis-based treatment. Nevertheless, large multicentre studies are investigating this aspect with advanced algorithmic tools on large cohorts of SADs patients.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
NASA Technical Reports Server (NTRS)
Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver
2012-01-01
Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.
Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2015-01-01
The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523
Head and neck cancer: proteomic advances and biomarker achievements.
Rezende, Taia Maria Berto; de Souza Freire, Mirna; Franco, Octávio Luiz
2010-11-01
Tumors of the head and neck comprise an important neoplasia group, the incidence of which is increasing in many parts of the world. Recent advances in diagnostic and therapeutic techniques for these lesions have yielded novel molecular targets, uncovered signal pathway dominance, and advanced early cancer detection. Proteomics is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the analysis of different types of samples. The proteomic profiles of different types of cancer have been studied, and this has provided remarkable advances in cancer understanding. This review covers recent advances for head and neck cancer; it encompasses the risk factors, pathogenesis, proteomic tools that can help in understanding cancer, and new proteomic findings in this type of cancer. Copyright © 2010 American Cancer Society.
Deep Lake Explorer: Using citizen science to analyze underwater video from the Great Lakes
While underwater video collection technology continues to improve, advancements in underwater video analysis techniques have lagged. Crowdsourcing image interpretation using the Zooniverse platform has proven successful for many projects, but few projects to date have included vi...
Statistical and Economic Techniques for Site-specific Nematode Management.
Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L
2014-03-01
Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.
Atmospheric statistics for aerospace vehicle operations
NASA Technical Reports Server (NTRS)
Smith, O. E.; Batts, G. W.
1993-01-01
Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.
Recent advances in quantitative high throughput and high content data analysis.
Moutsatsos, Ioannis K; Parker, Christian N
2016-01-01
High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.
The Sixth Annual Thermal and Fluids Analysis Workshop
NASA Technical Reports Server (NTRS)
1995-01-01
The Sixth Annual Thermal and Fluids Analysis Workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysis. Paper topics included advances an uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.
Foster, Katherine T; Beltz, Adriene M
2018-08-01
Ambulatory assessment (AA) methodologies have the potential to increase understanding and treatment of addictive behavior in seemingly unprecedented ways, due in part, to their emphasis on intensive repeated assessments of an individual's addictive behavior in context. But, many analytic techniques traditionally applied to AA data - techniques that average across people and time - do not fully leverage this potential. In an effort to take advantage of the individualized, temporal nature of AA data on addictive behavior, the current paper considers three underutilized person-oriented analytic techniques: multilevel modeling, p-technique, and group iterative multiple model estimation. After reviewing prevailing analytic techniques, each person-oriented technique is presented, AA data specifications are mentioned, an example analysis using generated data is provided, and advantages and limitations are discussed; the paper closes with a brief comparison across techniques. Increasing use of person-oriented techniques will substantially enhance inferences that can be drawn from AA data on addictive behavior and has implications for the development of individualized interventions. Copyright © 2017. Published by Elsevier Ltd.
Evolution and Advances in Satellite Analysis of Volcanoes
NASA Astrophysics Data System (ADS)
Dean, K. G.; Dehn, J.; Webley, P.; Bailey, J.
2008-12-01
Over the past 20 years satellite data used for monitoring and analysis of volcanic eruptions has evolved in terms of timeliness, access, distribution, resolution and understanding of volcanic processes. Initially satellite data was used for retrospective analysis but has evolved to proactive monitoring systems. Timely acquisition of data and the capability to distribute large data files paralleled advances in computer technology and was a critical component for near real-time monitoring. The sharing of these data and resulting discussions has improved our understanding of eruption processes and, even more importantly, their impact on society. To illustrate this evolution, critical scientific discoveries will be highlighted, including detection of airborne ash and sulfur dioxide, cloud-height estimates, prediction of ash cloud movement, and detection of thermal anomalies as precursor-signals to eruptions. AVO has been a leader in implementing many of these advances into an operational setting such as, automated eruption detection, database analysis systems, and remotely accessible web-based analysis systems. Finally, limitations resulting from trade-offs between resolution and how they impact some weakness in detection techniques and hazard assessments will be presented.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Denoising of gravitational wave signals via dictionary learning algorithms
NASA Astrophysics Data System (ADS)
Torres-Forné, Alejandro; Marquina, Antonio; Font, José A.; Ibáñez, José M.
2016-12-01
Gravitational wave astronomy has become a reality after the historical detections accomplished during the first observing run of the two advanced LIGO detectors. In the following years, the number of detections is expected to increase significantly with the full commissioning of the advanced LIGO, advanced Virgo and KAGRA detectors. The development of sophisticated data analysis techniques to improve the opportunities of detection for low signal-to-noise-ratio events is, hence, a most crucial effort. In this paper, we present one such technique, dictionary-learning algorithms, which have been extensively developed in the last few years and successfully applied mostly in the context of image processing. However, to the best of our knowledge, such algorithms have not yet been employed to denoise gravitational wave signals. By building dictionaries from numerical relativity templates of both binary black holes mergers and bursts of rotational core collapse, we show how machine-learning algorithms based on dictionaries can also be successfully applied for gravitational wave denoising. We use a subset of signals from both catalogs, embedded in nonwhite Gaussian noise, to assess our techniques with a large sample of tests and to find the best model parameters. The application of our method to the actual signal GW150914 shows promising results. Dictionary-learning algorithms could be a complementary addition to the gravitational wave data analysis toolkit. They may be used to extract signals from noise and to infer physical parameters if the data are in good enough agreement with the morphology of the dictionary atoms.
NASA Technical Reports Server (NTRS)
Cardamone, P.; Lechi, G. M.; Cavallin, A.; Marino, C. M.; Zanferrari, A.
1977-01-01
The results obtained in the study of linears derived from the analysis of LANDSAT 2 images recorded over Friuli during 1975 are described. Particular attention is devoted to the comparison of several passes in different bands, scales and photographic supports. Moreover reference is made to aerial photographic interpretation in selected sites and to the information obtained by laser techniques.
NASA Astrophysics Data System (ADS)
Macander, M. J.; Frost, G. V., Jr.
2015-12-01
Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.
Steiner, Carine; Ducret, Axel; Tille, Jean-Christophe; Thomas, Marlene; McKee, Thomas A; Rubbia-Brandt, Laura A; Scherl, Alexander; Lescuyer, Pierre; Cutler, Paul
2014-01-01
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery. PMID:24339433
Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets
NASA Technical Reports Server (NTRS)
Mathur, Rohit
1997-01-01
This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.
Science and Technology Highlights | NREL
Leads to Enhanced Upgrading Methods NREL's efforts to standardize techniques for bio-oil analysis inform enhanced modeling capability and affordable methods to increase energy efficiency. December 2012 NREL Meets Performance Demands of Advanced Lithium-ion Batteries Novel surface modification methods are
Do Mouthwashes Really Kill Bacteria?
ERIC Educational Resources Information Center
Corner, Thomas R.
1984-01-01
Errors in determining the effectiveness of mouthwashes, disinfectants, and other household products as antibacterial agents may result from using broth cultures and/or irregularly shaped bits of filter paper. Presents procedures for a better technique and, for advanced students, two additional procedures for introducing quantitative analysis into…
Bioinformatics and the Undergraduate Curriculum
ERIC Educational Resources Information Center
Maloney, Mark; Parker, Jeffrey; LeBlanc, Mark; Woodard, Craig T.; Glackin, Mary; Hanrahan, Michael
2010-01-01
Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of…
Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.
2016-01-01
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322
NASA Astrophysics Data System (ADS)
Steig, Tracey W.; Timko, Mark A.
2005-04-01
Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.
Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System
NASA Technical Reports Server (NTRS)
Frazzini, R.; Vaughn, D.
1975-01-01
The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.
Recent advances in capillary ultrahigh pressure liquid chromatography.
Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M
2017-11-10
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)
1986-01-01
The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.
Recent Advances in Paper-Based Sensors
Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith
2012-01-01
Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667
Advanced space program studies. Overall executive summary
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1977-01-01
NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.
Advances in natural language processing.
Hirschberg, Julia; Manning, Christopher D
2015-07-17
Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.
Electrospray Modifications for Advancing Mass Spectrometric Analysis
Meher, Anil Kumar; Chen, Yu-Chie
2017-01-01
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082
From Pacemaker to Wearable: Techniques for ECG Detection Systems.
Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet
2018-01-11
With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.
Analysis of intracranial pressure: past, present, and future.
Di Ieva, Antonio; Schmitz, Erika M; Cusimano, Michael D
2013-12-01
The monitoring of intracranial pressure (ICP) is an important tool in medicine for its ability to portray the brain's compliance status. The bedside monitor displays the ICP waveform and intermittent mean values to guide physicians in the management of patients, particularly those having sustained a traumatic brain injury. Researchers in the fields of engineering and physics have investigated various mathematical analysis techniques applicable to the waveform in order to extract additional diagnostic and prognostic information, although they largely remain limited to research applications. The purpose of this review is to present the current techniques used to monitor and interpret ICP and explore the potential of using advanced mathematical techniques to provide information about system perturbations from states of homeostasis. We discuss the limits of each proposed technique and we propose that nonlinear analysis could be a reliable approach to describe ICP signals over time, with the fractal dimension as a potential predictive clinically meaningful biomarker. Our goal is to stimulate translational research that can move modern analysis of ICP using these techniques into widespread practical use, and to investigate to the clinical utility of a tool capable of simplifying multiple variables obtained from various sensors.
Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies
NASA Astrophysics Data System (ADS)
Ferguson, Carly N.; Gucinski-Ruth, Ashley C.
2016-05-01
Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.
Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Casiano, M. J.
2015-01-01
Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.
NASA Astrophysics Data System (ADS)
Wang, Jianxiong
2014-06-01
This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF
Robb, N
2014-03-01
The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
NASA Technical Reports Server (NTRS)
Meyer, J. D.
1977-01-01
Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.
Recent applications for HPLC-MS analysis of anthocyanins in Food materials
USDA-ARS?s Scientific Manuscript database
Anthocyanins are an important group of polyphenols that have health promoting properties. Analytical techniques for profiling anthocyanins have been widely reported in the last decade for in vitro and in vivo studies. A number of important technological advances in high-performance liquid chromatog...
The Case for Open Source Software: The Interactional Discourse Lab
ERIC Educational Resources Information Center
Choi, Seongsook
2016-01-01
Computational techniques and software applications for the quantitative content analysis of texts are now well established, and many qualitative data software applications enable the manipulation of input variables and the visualization of complex relations between them via interactive and informative graphical interfaces. Although advances in…
Advances in the study of the environmental fate, transport, and ecotoxicological effects of engineered nanomaterials (ENMs) have been hampered by a lack of adequate techniques for the detection and quantification of ENMs at environmentally relevant concentrations in complex media...
ERIC Educational Resources Information Center
Hosbach, Richard E.; Doyle, Robert E.
1976-01-01
Study of pre-1750 medicine reveals that Iroquois diagnosis and treatment of disease was more advanced than the medicine of their European counterparts. The Iroquois developed a cure for scurvy, treated hypertension, and head lice, and even designed sauna baths. Indian psychiatry also included modern day techniques such as dream analysis. (MR)
Gautam, Vibhav; Sarkar, Ananda K
2015-04-01
Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Md. Mostafizar; Yu, Peiqiang
Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutritionmore » models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.« less
Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.
Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng
2018-08-17
Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
Busse, Harald; Schmitgen, Arno; Trantakis, Christos; Schober, Ralf; Kahn, Thomas; Moche, Michael
2006-07-01
To present an advanced approach for intraoperative image guidance in an open 0.5 T MRI and to evaluate its effectiveness for neurosurgical interventions by comparison with a dynamic scan-guided localization technique. The built-in scan guidance mode relied on successive interactive MRI scans. The additional advanced mode provided real-time navigation based on reformatted high-quality, intraoperatively acquired MR reference data, allowed multimodal image fusion, and used the successive scans of the built-in mode for quick verification of the position only. Analysis involved tumor resections and biopsies in either scan guidance (N = 36) or advanced mode (N = 59) by the same three neurosurgeons. Technical, surgical, and workflow aspects were compared. The image quality and hand-eye coordination of the advanced approach were improved. While the average extent of resection, neurologic outcome after functional MRI (fMRI) integration, and diagnostic yield appeared to be slightly better under advanced guidance, particularly for the main surgeon, statistical analysis revealed no significant differences. Resection times were comparable, while biopsies took around 30 minutes longer. The presented approach is safe and provides more detailed images and higher navigation speed at the expense of actuality. The surgical outcome achieved with advanced guidance is (at least) as good as that obtained with dynamic scan guidance. (c) 2006 Wiley-Liss, Inc.
Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis.
Cohnstaedt, Lee W; Rochon, Kateryn; Duehl, Adrian J; Anderson, John F; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C; Obenauer, Peter J; Campbell, James F; Lysyk, Tim J; Allan, Sandra A
2012-03-01
Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium "Advancements in arthropod monitoring technology, techniques, and analysis" presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles.
Accoustic waveform logging--Advances in theory and application
Paillet, F.L.; Cheng, C.H.; Pennington , W.D.
1992-01-01
Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of formations. Advances in theory provide the analytical tools required to understand the properties of measured seismic waves, and to relate those properties to such quantities as shear and compressional velocity and attenuation, and primary and fracture porosity and permeability of potential reservoir rocks. The theory demonstrates that all parts of recorded waveforms are related to various modes of propagation, even in the case of dipole and quadrupole source logging. However, the theory also indicates that these mode properties can be used to design velocity and attenuation picking schemes, and shows how source frequency spectra can be selected to optimize results in specific applications. Synthetic microseismogram computations are an effective tool in waveform interpretation theory; they demonstrate how shear arrival picks and mode attenuation can be used to compute shear velocity and intrinsic attenuation, and formation permeability for monopole, dipole and quadrupole sources. Array processing of multi-receiver data offers the opportunity to apply even more sophisticated analysis techniques. Synthetic microseismogram data is used to illustrate the application of the maximum-likelihood method, semblance cross-correlation, and Prony's method analysis techniques to determine seismic velocities and attenuations. The interpretation of acoustic waveform logs is illustrated by reviews of various practical applications, including synthetic seismogram generation, lithology determination, estimation of geomechanical properties in situ, permeability estimation, and design of hydraulic fracture operations.
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1977-01-01
Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.
Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui
2012-06-20
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.
The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.
2008-01-01
Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Magic Angle Spinning NMR of Viruses
Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-01-01
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197
A Fishy Problem for Advanced Students
ERIC Educational Resources Information Center
Patterson, Richard A.
1977-01-01
While developing a research course for gifted high school students, improvements were made in a local pond. Students worked for a semester learning research techniques, statistical analysis, and limnology. At the end of the course, the three students produced a joint scientific paper detailing their study of the pond. (MA)
USDA-ARS?s Scientific Manuscript database
Traditional Chinese medicines (TCMs) have been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra Performance Liquid Chromatography (UHPLC) is a relatively new technique offering new possibilities in liquid chromatography. This paper reviews recen...
Sweat lipid mediator profiling: a non-invasive approach for cutaneous research
USDA-ARS?s Scientific Manuscript database
Sweat is a complex biological fluid with potential diagnostic value for the investigation of skin disorders. Previous efforts in sweat testing focused on analysis of small molecules and ions for forensic and diagnostic testing, but with advances in analytical and sweat collection techniques, there h...
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim; ...
2017-04-28
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea
In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects inmore » all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.« less
Current Status of Mycotoxin Analysis: A Critical Review.
Shephard, Gordon S
2016-07-01
It is over 50 years since the discovery of aflatoxins focused the attention of food safety specialists on fungal toxins in the feed and food supply. Since then, analysis of this important group of natural contaminants has advanced in parallel with general developments in analytical science, and current MS methods are capable of simultaneously analyzing hundreds of compounds, including mycotoxins, pesticides, and drugs. This profusion of data may advance our understanding of human exposure, yet constitutes an interpretive challenge to toxicologists and food safety regulators. Despite these advances in analytical science, the basic problem of the extreme heterogeneity of mycotoxin contamination, although now well understood, cannot be circumvented. The real health challenges posed by mycotoxin exposure occur in the developing world, especially among small-scale and subsistence farmers. Addressing these problems requires innovative approaches in which analytical science must also play a role in providing suitable out-of-laboratory analytical techniques.
Alternatives to current flow cytometry data analysis for clinical and research studies.
Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul
2018-02-01
Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.
Synergistic advances in diagnostic and therapeutic medical ultrasound
NASA Astrophysics Data System (ADS)
Lizzi, Frederic L.
2003-04-01
Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.
Braet, Filip; Wisse, Eddie; Bomans, Paul; Frederik, Peter; Geerts, Willie; Koster, Abraham; Soon, Lilian; Ringer, Simon
2007-03-01
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography. (c) 2007 Wiley-Liss, Inc.
Overview of Fluid Dynamics Activities at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See
1999-01-01
Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.
2014-01-01
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278
System analysis in rotorcraft design: The past decade
NASA Technical Reports Server (NTRS)
Galloway, Thomas L.
1988-01-01
Rapid advances in the technology of electronic digital computers and the need for an integrated synthesis approach in developing future rotorcraft programs has led to increased emphasis on system analysis techniques in rotorcraft design. The task in systems analysis is to deal with complex, interdependent, and conflicting requirements in a structured manner so rational and objective decisions can be made. Whether the results are wisdom or rubbish depends upon the validity and sometimes more importantly, the consistency of the inputs, the correctness of the analysis, and a sensible choice of measures of effectiveness to draw conclusions. In rotorcraft design this means combining design requirements, technology assessment, sensitivity analysis and reviews techniques currently in use by NASA and Army organizations in developing research programs and vehicle specifications for rotorcraft. These procedures span simple graphical approaches to comprehensive analysis on large mainframe computers. Examples of recent applications to military and civil missions are highlighted.
NASA Astrophysics Data System (ADS)
Nardi, F.; Grimaldi, S.; Petroselli, A.
2012-12-01
Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
Dynamic Analysis of Sounding Rocket Pneumatic System Revision
NASA Technical Reports Server (NTRS)
Armen, Jerald
2010-01-01
The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.
Book: Marine Bioacoustic Signal Processing and Analysis
2011-09-30
physicists , and mathematicians . However, more and more biologists and psychologists are starting to use advanced signal processing techniques and...Book: Marine Bioacoustic Signal Processing and Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT ...chapters than it should be, since the project must be finished by Dec. 31. I have started setting aside 2 hours of uninterrupted per workday to work
1993-04-01
surface analysis, 40 contamination control, ANCC ( Aerogel Mesh Contamination Collector) iPRICECODE 17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION...operational parameter space (temperature, vibration, radiation, vacuum and micrometorite environments). One embodiment of this device, the Aerogel Mesh...Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work
ERIC Educational Resources Information Center
Kim, Jinok; Chung, Gregory K. W. K.
2012-01-01
In this study we compared the effects of two math game designs on math and game performance, using discrete-time survival analysis (DTSA) to model players' risk of not advancing to the next level in the game. 137 students were randomly assigned to two game conditions. The game covered the concept of a unit and the addition of like-sized fractional…
Multiscale Analysis of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C. A.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.
The Performance of A Sampled Data Delay Lock Loop Implemented with a Kalman Loop Filter.
1980-01-01
que for analysis is computer simulation. Other techniques include state variable techniques and z-transform methods. Since the Kalman filter is linear...LOGIC NOT SHOWN Figure 2. Block diagram of the sampled data delay lock loop (SDDLL) Es A/ A 3/A/ Figure 3. Sampled error voltage ( Es ) as a function of...from a sum of two components. The first component is the previous filtered es - timate advanced one step forward by the state transition matrix. The 8
Added Value of Assessing Adnexal Masses with Advanced MRI Techniques
Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.
2015-01-01
This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542
NASA Technical Reports Server (NTRS)
Stauter, R. C.; Fleeter, S.
1982-01-01
Three dimensional aerodynamic data, required to validate and/or indicate necessary refinements to inviscid and viscous analyses of the flow through turbomachine blade rows, are discussed. Instrumentation and capabilities for pressure measurement, probe insertion and traversing, and flow visualization are reviewed. Advanced measurement techniques including Laser Doppler Anemometers, are considered. Data processing is reviewed. Predictions were correlated with the experimental data. A flow visualization technique using helium filled soap bubbles was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Young-Sun; Yoon, Wang-Jung
The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.
Study of advanced techniques for determining the long-term performance of components
NASA Technical Reports Server (NTRS)
1972-01-01
A study was conducted of techniques having the capability of determining the performance and reliability of components for spacecraft liquid propulsion applications for long term missions. The study utilized two major approaches; improvement in the existing technology, and the evolution of new technology. The criteria established and methods evolved are applicable to valve components. Primary emphasis was placed on the propellants oxygen difluoride and diborane combination. The investigation included analysis, fabrication, and tests of experimental equipment to provide data and performance criteria.
NASA Technical Reports Server (NTRS)
Zoladz, T.; Earhart, E.; Fiorucci, T.
1995-01-01
Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.
Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Varaljay, Vanessa
2009-01-01
The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.
Assessment of Remote Sensing Technologies for Location of Hydrogen and Helium Leaks
NASA Technical Reports Server (NTRS)
Sellar, R. Glenn; Sohn, Yongho; Mathur, Varun; Reardon, Peter
2001-01-01
In Phase 1 of this project, a hierarchy of techniques for H2 and He leak location was developed. A total of twelve specific remote sensing techniques were evaluated; the results are summarized. A basic diffusion model was also developed to predict the concentration and distribution of H2 or He resulting from a leak. The objectives of Phase 2 of the project consisted of the following four tasks: Advance Rayleigh Doppler technique from TRL 1 to TRL 2; Plan to advance Rayleigh Doppler technique from TRL 2 to TRL 3; Advance researchers and resources for further advancement; Extend diffusion model.
Comparison ofdvanced turboprop interior noise control ground and flight test data
NASA Technical Reports Server (NTRS)
Simpson, Myles A.; Tran, Boi N.
1992-01-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Comparison ofdvanced turboprop interior noise control ground and flight test data
NASA Astrophysics Data System (ADS)
Simpson, Myles A.; Tran, Boi N.
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Schmitt, M; Groß, K; Grub, J; Heib, F
2015-06-01
Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration behaviour (reactive de-wetting) are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
The development of advanced manufacturing systems
NASA Astrophysics Data System (ADS)
Doumeingts, Guy; Vallespir, Bruno; Darricau, Didier; Roboam, Michel
Various methods for the design of advanced manufacturing systems (AMSs) are reviewed. The specifications for AMSs and problems inherent in their development are first discussed. Three models, the Computer Aided Manufacturing-International model, the National Bureau of Standards model, and the GRAI model, are considered in detail. Hierarchical modeling tools such as structured analysis and design techniques, Petri nets, and the Icam definition method are used in the development of integrated manufacturing models. Finally, the GRAI method is demonstrated in the design of specifications for the production management system of the Snecma AMS.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
National space transportation systems planning
NASA Technical Reports Server (NTRS)
Lucas, W. R.
1985-01-01
In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.
Characterization of Structure and Damage in Materials in Four Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, I. M.; Schuh, C. A.; Vetrano, J. S.
2010-09-30
The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that havemore » pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.« less
Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Tutorial
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. L. Smith; S. T. Beck; S. T. Wood
2008-08-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of computer programs that were developed to create and analyze probabilistic risk assessment (PRAs). This volume is the tutorial manual for the SAPHIRE system. In this document, a series of lessons are provided that guide the user through basic steps common to most analyses preformed with SAPHIRE. The tutorial is divided into two major sections covering both basic and advanced features. The section covering basic topics contains lessons that lead the reader through development of a probabilistic hypothetical problem involving a vehicle accident, highlighting the program’smore » most fundamental features. The advanced features section contains additional lessons that expand on fundamental analysis features of SAPHIRE and provide insights into more complex analysis techniques. Together, these two elements provide an overview into the operation and capabilities of the SAPHIRE software.« less
Advanced Neuroimaging in Traumatic Brain Injury
Edlow, Brian L.; Wu, Ona
2013-01-01
Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483
Advanced Bode Plot Techniques for Ultrasonic Transducers
NASA Astrophysics Data System (ADS)
DeAngelis, D. A.; Schulze, G. W.
The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.
Glycopeptide Analysis, Recent Developments and Applications*
Desaire, Heather
2013-01-01
Glycopeptide-based analysis is used to inform researchers about the glycans on one or more proteins. The method's key attractive feature is its ability to link glycosylation information to exact locations (glycosylation sites) on proteins. Numerous applications for glycopeptide analysis are known, and several examples are described herein. The techniques used to characterize glycopeptides are still emerging, and recently, research focused on facilitating aspects of glycopeptide analysis has advanced significantly in the areas of sample preparation, MS fragmentation, and automation of data analysis. These recent developments, described herein, provide the foundation for the growth of glycopeptide analysis as a blossoming field. PMID:23389047
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.
Recent Methodology in Ginseng Analysis
Baek, Seung-Hoon; Bae, Ok-Nam; Park, Jeong Hill
2012-01-01
As much as the popularity of ginseng in herbal prescriptions or remedies, ginseng has become the focus of research in many scientific fields. Analytical methodologies for ginseng, referred to as ginseng analysis hereafter, have been developed for bioactive component discovery, phytochemical profiling, quality control, and pharmacokinetic studies. This review summarizes the most recent advances in ginseng analysis in the past half-decade including emerging techniques and analytical trends. Ginseng analysis includes all of the leading analytical tools and serves as a representative model for the analytical research of herbal medicines. PMID:23717112
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
NASA Astrophysics Data System (ADS)
Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John
2012-02-01
The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to materials on metallic surfaces for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases -- uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. The degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.
Advanced statistical methods for improved data analysis of NASA astrophysics missions
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.
1992-01-01
The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.
Multiscale Image Processing of Solar Image Data
NASA Astrophysics Data System (ADS)
Young, C.; Myers, D. C.
2001-12-01
It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.
Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis
Rochon, Kateryn; Duehl, Adrian J.; Anderson, John F.; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C.; Obenauer, Peter J.; Campbell, James F.; Lysyk, Tim J.; Allan, Sandra A.
2015-01-01
Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthropod monitoring technology, techniques, and analysis” presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and Culicoides (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles. PMID:26543242
Quantitative assessment of human motion using video motion analysis
NASA Technical Reports Server (NTRS)
Probe, John D.
1990-01-01
In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.
Design Analysis Kit for Optimization and Terascale Applications 6.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to: (1) enhance understanding of risk, (2) improve products, and (3) assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a computational model. However, Dakota also delivers advanced parametric analysis techniques enabling design exploration, optimization, model calibration, risk analysis, and quantification of margins and uncertainty with such models. It directly supports verificationmore » and validation activities. The algorithms implemented in Dakota aim to address challenges in performing these analyses with complex science and engineering models from desktop to high performance computers.« less
Fung, Eliza N; Bryan, Peter; Kozhich, Alexander
2016-04-01
LC-MS/MS has been investigated to quantify protein therapeutics in biological matrices. The protein therapeutics is digested by an enzyme to generate surrogate peptide(s) before LC-MS/MS analysis. One challenge is isolating protein therapeutics in the presence of large number of endogenous proteins in biological matrices. Immunocapture, in which a capture agent is used to preferentially bind the protein therapeutics over other proteins, is gaining traction. The protein therapeutics is eluted for digestion and LC-MS/MS analysis. One area of tremendous potential for immunocapture-LC-MS/MS is to obtain quantitative data where ligand-binding assay alone is not sufficient, for example, quantitation of antidrug antibody complexes. Herein, we present an overview of recent advance in enzyme digestion and immunocapture applicable to protein quantitation.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1993-01-01
The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
Review of advanced imaging techniques
Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron
2012-01-01
Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737
ERIC Educational Resources Information Center
Huang, Francis L.; Cornell, Dewey G.
2016-01-01
Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…
ERIC Educational Resources Information Center
Attwood, Paul V.
1997-01-01
Describes a self-instructional assignment approach to the teaching of advanced enzymology. Presents an assignment that offers a means of teaching enzymology to students that exposes them to modern computer-based techniques of analyzing protein structure and relates structure to enzyme function. (JRH)
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
Improving the Scalability of an Exact Approach for Frequent Item Set Hiding
ERIC Educational Resources Information Center
LaMacchia, Carolyn
2013-01-01
Technological advances have led to the generation of large databases of organizational data recognized as an information-rich, strategic asset for internal analysis and sharing with trading partners. Data mining techniques can discover patterns in large databases including relationships considered strategically relevant to the owner of the data.…
Guidelines for collecting and maintaining archives for genetic monitoring
Jennifer A. Jackson; Linda Laikre; C. Scott Baker; Katherine C. Kendall; F. W. Allendorf; M. K. Schwartz
2011-01-01
Rapid advances in molecular genetic techniques and the statistical analysis of genetic data have revolutionized the way that populations of animals, plants and microorganisms can be monitored. Genetic monitoring is the practice of using molecular genetic markers to track changes in the abundance, diversity or distribution of populations, species or ecosystems over time...
ERIC Educational Resources Information Center
Bussey, Katherine A.; Cavalier, Annie R.; Connell, Jennifer R.; Mraz, Margaret E.; Holderread, Ashley S.; Oshin, Kayode D.; Pintauer, Tomislav
2015-01-01
An integrated laboratory experiment applying concepts and techniques developed in organic chemistry, inorganic chemistry, and instrumental analysis is presented for use by students interested in undergraduate research. The experiment incorporates some advanced laboratory practices such as multistep organic synthesis and purification, detailed…
Eye Movement Correlates of Acquired Central Dyslexia
ERIC Educational Resources Information Center
Schattka, Kerstin I.; Radach, Ralph; Huber, Walter
2010-01-01
Based on recent progress in theory and measurement techniques, the analysis of eye movements has become one of the major methodological tools in experimental reading research. Our work uses this approach to advance the understanding of impaired information processing in acquired central dyslexia of stroke patients with aphasia. Up to now there has…
Using Micro-Analysis in Interviewer Training: "Continuers" and Interviewer Positioning
ERIC Educational Resources Information Center
Richards, Keith
2011-01-01
Despite the recent growth of interest in the interactional construction of research interviews and advances made in our understanding of the nature of such encounters, relatively little attention has been paid to the implications of this for interviewer training, with the result that advice on interviewing techniques tends to be very general.…
Presentation Trainer: What Experts and Computers Can Tell about Your Nonverbal Communication
ERIC Educational Resources Information Center
Schneider, J.; Börner, D.; van Rosmalen, P.; Specht, M.
2017-01-01
The ability to present effectively is essential for professionals; therefore, oral communication courses have become part of the curricula for higher education studies. However, speaking in public is still a challenge for many graduates. To tackle this problem, driven by the recent advances in computer vision techniques and prosody analysis,…
Nondestructive surface analysis for material research using fiber optic vibrational spectroscopy
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.
2001-11-01
The advanced methods of fiber optical vibrational spectroscopy (FOVS) has been developed in conjunction with interferometer and low-loss, flexible, and nontoxic optical fibers, sensors, and probes. The combination of optical fibers and sensors with Fourier Transform (FT) spectrometer has been used in the range from 2.5 to 12micrometers . This technique serves as an ideal diagnostic tool for surface analysis of numerous and various diverse materials such as complex structured materials, fluids, coatings, implants, living cells, plants, and tissue. Such surfaces as well as living tissue or plants are very difficult to investigate in vivo by traditional FT infrared or Raman spectroscopy methods. The FOVS technique is nondestructive, noninvasive, fast (15 sec) and capable of operating in remote sampling regime (up to a fiber length of 3m). Fourier transform infrared (FTIR) and Raman fiber optic spectroscopy operating with optical fibers has been suggested as a new powerful tool. These techniques are highly sensitive techniques for structural studies in material research and various applications during process analysis to determine molecular composition, chemical bonds, and molecular conformations. These techniques could be developed as a new tool for quality control of numerous materials as well as noninvasive biopsy.
Simplified Parallel Domain Traversal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
2011-01-01
Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep bymore » performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.« less
Advances in contact algorithms and their application to tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Tanner, John A.
1988-01-01
Currently used techniques for tire contact analysis are reviewed. Discussion focuses on the different techniques used in modeling frictional forces and the treatment of contact conditions. A status report is presented on a new computational strategy for the modeling and analysis of tires, including the solution of the contact problem. The key elements of the proposed strategy are: (1) use of semianalytic mixed finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) use of perturbed Lagrangian formulation for the determination of the contact area and pressure; and (3) application of multilevel iterative procedures and reduction techniques to generate the response of the tire. Numerical results are presented to demonstrate the effectiveness of a proposed procedure for generating the tire response associated with different Fourier harmonics.
Magenes, G; Bellazzi, R; Malovini, A; Signorini, M G
2016-08-01
The onset of fetal pathologies can be screened during pregnancy by means of Fetal Heart Rate (FHR) monitoring and analysis. Noticeable advances in understanding FHR variations were obtained in the last twenty years, thanks to the introduction of quantitative indices extracted from the FHR signal. This study searches for discriminating Normal and Intra Uterine Growth Restricted (IUGR) fetuses by applying data mining techniques to FHR parameters, obtained from recordings in a population of 122 fetuses (61 healthy and 61 IUGRs), through standard CTG non-stress test. We computed N=12 indices (N=4 related to time domain FHR analysis, N=4 to frequency domain and N=4 to non-linear analysis) and normalized them with respect to the gestational week. We compared, through a 10-fold crossvalidation procedure, 15 data mining techniques in order to select the more reliable approach for identifying IUGR fetuses. The results of this comparison highlight that two techniques (Random Forest and Logistic Regression) show the best classification accuracy and that both outperform the best single parameter in terms of mean AUROC on the test sets.
[Isolation and identification methods of enterobacteria group and its technological advancement].
Furuta, Itaru
2007-08-01
In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.
Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging
NASA Astrophysics Data System (ADS)
Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan
2017-08-01
Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.
Elementary and Advanced Computer Projects for the Physics Classroom and Laboratory
1992-12-01
are SPF/PC, MS Word, n3, Symphony, Mathematics, and FORTRAN. The authors’ programs assist data analysis in particular laboratory experiments and make...assist data analysis in particular laboratory experiments and make use of the Monte Carlo and other numerical techniques in computer simulation and...the language of science and engineering in industry and government laboratories (alth..4h C is becoming a powerful competitor ). RM/FORTRAN (cost $400
Ambient ionization and miniature mass spectrometry system for chemical and biological analysis
Ma, Xiaoxiao; Ouyang, Zheng
2016-01-01
Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
NASA Astrophysics Data System (ADS)
Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.
Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen
2012-01-01
Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.
NASA Technical Reports Server (NTRS)
Sopher, R.; Hallock, D. W.
1985-01-01
A time history analysis for rotorcraft dynamics based on dynamical substructures, and nonstructural mathematical and aerodynamic components is described. The analysis is applied to predict helicopter ground resonance and response to rotor damage. Other applications illustrate the stability and steady vibratory response of stopped and gimballed rotors, representative of new technology. Desirable attributes expected from modern codes are realized, although the analysis does not employ a complete set of techniques identified for advanced software. The analysis is able to handle a comprehensive set of steady state and stability problems with a small library of components.
Irreversible electroporation of locally advanced pancreatic neck/body adenocarcinoma
2015-01-01
Objective Irreversible electroporation (IRE) of locally advanced pancreatic adenocarcinoma of the neck has been used to palliate appropriate stage 3 pancreatic cancers without evidence of metastasis and who have undergone appropriate induction therapy. Currently there has not been a standardized reported technique for pancreatic mid-body tumors for patient selection and intra-operative technique. Patients Subjects are patients with locally advanced pancreatic adenocarcinoma of the body/neck who have undergone appropriate induction chemotherapy for a reasonable duration. Main outcome measures Technique of open IRE of locally advanced pancreatic adenocarcinoma of the neck/body is described, with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open IRE of the pancreatic neck/body with bracketing of the celiac axis and superior mesenteric artery with continuous intraoperative ultrasound imaging and consideration of intraoperative navigational system is described. Conclusions IRE of locally advanced pancreatic adenocarcinoma of the body/neck is feasible for appropriate patients with locally advanced unresectable pancreatic cancer. PMID:26029461
Foodomics: MS-based strategies in modern food science and nutrition.
Herrero, Miguel; Simó, Carolina; García-Cañas, Virginia; Ibáñez, Elena; Cifuentes, Alejandro
2012-01-01
Modern research in food science and nutrition is moving from classical methodologies to advanced analytical strategies in which MS-based techniques play a crucial role. In this context, Foodomics has been recently defined as a new discipline that studies food and nutrition domains through the application of advanced omics technologies in which MS techniques are considered indispensable. Applications of Foodomics include the genomic, transcriptomic, proteomic, and/or metabolomic study of foods for compound profiling, authenticity, and/or biomarker-detection related to food quality or safety; the development of new transgenic foods, food contaminants, and whole toxicity studies; new investigations on food bioactivity, food effects on human health, etc. This review work does not intend to provide an exhaustive revision of the many works published so far on food analysis using MS techniques. The aim of the present work is to provide an overview of the different MS-based strategies that have been (or can be) applied in the new field of Foodomics, discussing their advantages and drawbacks. Besides, some ideas about the foreseen development and applications of MS-techniques in this new discipline are also provided. Copyright © 2011 Wiley Periodicals, Inc.
Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.
Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas
2013-12-05
Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Applications of flight control system methods to an advanced combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.
1989-01-01
Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.
Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis.
Stein, Manuel; Janetzko, Halldor; Lamprecht, Andreas; Breitkreutz, Thorsten; Zimmermann, Philipp; Goldlucke, Bastian; Schreck, Tobias; Andrienko, Gennady; Grossniklaus, Michael; Keim, Daniel A
2018-01-01
Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.
Recent advances and opportunities in proteomic analyses of tumour heterogeneity.
Bateman, Nicholas W; Conrads, Thomas P
2018-04-01
Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2014-01-01
Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
A Passive System Reliability Analysis for a Station Blackout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia; Bucknor, Matthew; Grabaskas, David
2015-05-03
The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Haering, Diane; Huchez, Aurore; Barbier, Franck; Holvoët, Patrice; Begon, Mickaël
2017-01-01
Introduction Teaching acrobatic skills with a minimal amount of repetition is a major challenge for coaches. Biomechanical, statistical or computer simulation tools can help them identify the most determinant factors of performance. Release parameters, change in moment of inertia and segmental momentum transfers were identified in the prediction of acrobatics success. The purpose of the present study was to evaluate the relative contribution of these parameters in performance throughout expertise or optimisation based improvements. The counter movement forward in flight (CMFIF) was chosen for its intrinsic dichotomy between the accessibility of its attempt and complexity of its mastery. Methods Three repetitions of the CMFIF performed by eight novice and eight advanced female gymnasts were recorded using a motion capture system. Optimal aerial techniques that maximise rotation potential at regrasp were also computed. A 14-segment-multibody-model defined through the Rigid Body Dynamics Library was used to compute recorded and optimal kinematics, and biomechanical parameters. A stepwise multiple linear regression was used to determine the relative contribution of these parameters in novice recorded, novice optimised, advanced recorded and advanced optimised trials. Finally, fixed effects of expertise and optimisation were tested through a mixed-effects analysis. Results and discussion Variation in release state only contributed to performances in novice recorded trials. Moment of inertia contribution to performance increased from novice recorded, to novice optimised, advanced recorded, and advanced optimised trials. Contribution to performance of momentum transfer to the trunk during the flight prevailed in all recorded trials. Although optimisation decreased transfer contribution, momentum transfer to the arms appeared. Conclusion Findings suggest that novices should be coached on both contact and aerial technique. Inversely, mainly improved aerial technique helped advanced gymnasts increase their performance. For both, reduction of the moment of inertia should be focused on. The method proposed in this article could be generalized to any aerial skill learning investigation. PMID:28422954
Advances in Candida detection platforms for clinical and point-of-care applications
Safavieh, Mohammadali; Coarsey, Chad; Esiobu, Nwadiuto; Memic, Adnan; Vyas, Jatin Mahesh; Shafiee, Hadi; Asghar, Waseem
2016-01-01
Invasive candidiasis remains one of the most serious community and healthcare-acquired infections worldwide. Conventional Candida detection methods based on blood and plate culture are time-consuming and require at least 2–4 days to identify various Candida species. Despite considerable advances for candidiasis detection, the development of simple, compact and portable point-of-care diagnostics for rapid and precise testing that automatically performs cell lysis, nucleic acid extraction, purification and detection still remains a challenge. Here, we systematically review most prominent conventional and nonconventional techniques for the detection of various Candida species, including Candida staining, blood culture, serological testing and nucleic acid-based analysis. We also discuss the most advanced lab on a chip devices for candida detection. PMID:27093473
Masud, Mohammad Shahed; Borisyuk, Roman; Stuart, Liz
2017-07-15
This study analyses multiple spike trains (MST) data, defines its functional connectivity and subsequently visualises an accurate diagram of connections. This is a challenging problem. For example, it is difficult to distinguish the common input and the direct functional connection of two spike trains. The new method presented in this paper is based on the traditional pairwise cross-correlation function (CCF) and a new combination of statistical techniques. First, the CCF is used to create the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF and the corresponding time delay are used for detailed analysis of connectivity. Second, these two features of functional connectivity are used to classify connections. Finally, the visualization technique is used to represent the topology of functional connections. Examples are presented in the paper to demonstrate the new Advanced Correlation Grid method and to show how it enables discrimination between (i) influence from one spike train to another through an intermediate spike train and (ii) influence from one common spike train to another pair of analysed spike trains. The ACG method enables scientists to automatically distinguish between direct connections from spurious connections such as common source connection and indirect connection whereas existing methods require in-depth analysis to identify such connections. The ACG is a new and effective method for studying functional connectivity of multiple spike trains. This method can identify accurately all the direct connections and can distinguish common source and indirect connections automatically. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Chuji; Sahay, Peeyush
2009-01-01
Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503
Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Le Croissette, D. H.
1973-01-01
Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.
NASA Technical Reports Server (NTRS)
Parks, D. M.
1974-01-01
A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.
Sager, Monica; Yeat, Nai Chien; Pajaro-Van der Stadt, Stefan; Lin, Charlotte; Ren, Qiuyin; Lin, Jimmy
2015-01-01
Transcriptomic technologies are evolving to diagnose cancer earlier and more accurately to provide greater predictive and prognostic utility to oncologists and patients. Digital techniques such as RNA sequencing are replacing still-imaging techniques to provide more detailed analysis of the transcriptome and aberrant expression that causes oncogenesis, while companion diagnostics are developing to determine the likely effectiveness of targeted treatments. This article examines recent advancements in molecular profiling research and technology as applied to cancer diagnosis, clinical applications and predictions for the future of personalized medicine in oncology.
Jabłońska-Czapla, Magdalena
2015-01-01
Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
Hochman, Mark N
2007-04-01
This article will review standard techniques for intraligamentary injection and describe the technology and technique behind a new single-tooth anesthesia system. This system and technique represents a technological advancement and a greater understanding of intraligamentary anesthesia.
EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques
NASA Astrophysics Data System (ADS)
Neu, T. R.; Lawrence, J. R.
2006-12-01
Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose lectin-binding- analysis has been suggested as a suitable approach to image glycoconjugates within the polymer matrix of biofilm communities. More recently synchrotron radiation is increasingly recognized as a powerful tool for studying biological samples. Hard X-ray excitation can be used to map elemental composition whereas IR imaging allows examination of biological macromolecules. A further technique called soft X-ray scanning transmission microscopy (STXM) has the advantage of both techniques and may be employed to detect elements as well as biomolecules. Using the appropriate spectra, near edge X-ray absorption fine structure (NEXAFS) microscopy allows quantitative chemical mapping at 50 nm resolution. In this presentation the applicability of LSM and STXM will be demonstrated using several examples of different environmental biofilm systems. The techniques in combination provide a new view of complex microbial communities and their interaction with the environment. These advanced imaging techniques offer the possibility to study the spatial structure of cellular and polymeric compounds in biofilms as well as biofilm microhabitats, biofilm functionality and biofilm processes.
Advanced Weapon System (AWS) Sensor Prediction Techniques Study. Volume II
1981-09-01
models are suggested. TV. 1-1 ’ICourant Com’p’uter Sctence Report #9 December 1975 Scene Analysis: A Survey Carl Weiman Cou rant Institute of...some crucial differences. In the psycho- logical model of mechanical vision, the aim of scene analysis is to perceive and understand 2-0 images of 3-D...scenes. The meaning of this analogy can be clarified using a rudimentary informational model ; this yields a natural hierarchy from physical
The design of large petal-type paraboloidal solar collectors for the ASTEC Program requires a capability for determining the distortion and stress...analysis of a parabolic curved beam is given along with a numerical solution and digital program. The dynamic response of the ASTEC flight-test vehicle is discussed on the basis of modal analysis.
Comparison of Variance-to-Mean Ratio Methods for Reparables Inventory Management
2006-03-01
for Recoverable Items in the ALS [Advanced Logistics System] Marginal Analysis Algorithms”. Marginal analysis is a microeconomics technique used...in the Demands Workbook . The quantitative expected backorder and aircraft availability percentage result. Each of the 30 simulations is run five...10A, B-2A, C-17A and F-15E aircraft. The data was selected from D200A’s Ddb04 tables and flying hour programs respectively. The two workbook (OIM
Technology for large space systems: A bibliography with indexes (supplement 11)
NASA Technical Reports Server (NTRS)
1985-01-01
This bibliography contains 539 abstracts of reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1984 and December 31, 1984. Abstracts are arranged in the following categories: systems; analysis and design techniques; structural concepts; structural and thermal analysis; structural dynamics and control; electronics; advanced materials; assembly concepts; propulsion; and miscellaneous. Subject, personal author, corporate source, contract number, report number, and accession number indexes are listed.
Radar cross section studies/compact range research
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.
1989-01-01
Achievements in advancing the state-of-the-art in the measurement, control, and analysis of electromagnetic scattering from general aerodynamic targets are summarized. The major topics associated with this study include: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of standard targets; and (7) antenna studies. Progress in each of these areas is reported and related publications are listed.
NASA Technical Reports Server (NTRS)
Bennethum, W. H.; Sherwood, L. T.
1988-01-01
The results of a literature survey and concept analysis related to sensing techniques for measuring of surface temperature, strain, and heat flux for (non-specific) ceramic materials exposed to elevated temperatures (to 2200 K) are summarized. Concepts capable of functioning in a gas turbine hot section environment are favored but others are reviewed also. Recommendation are made for sensor development in each of the three areas.
Wang, Lu; Sun, Da-Wen; Pu, Hongbin; Cheng, Jun-Hu
2017-05-03
Nowadays, near-infrared spectroscopy (NIR) has become one of the most efficient and advanced techniques for analysis of food products. Many relevant researches have been conducted in this regard. However, no reviews about the applications of NIR for liquid food analysis are reported. Therefore, this review summarizes the recent research developments of NIR technology in the field of liquid foods, focusing on the detection of quality attributes of various liquid foods, including alcoholic beverages (red wines, rice wines, and beer), nonalcoholic beverages (juice, fruit vinegars, coffee beverages, and cola beverages), dairy products (milk and yogurt), and oils (vegetable, camellia, peanut, and virgin olive oils and frying oil). In addition, the classification and authentication detection of adulteration are also covered. It is hoped that the current paper can serve as a reference source for the future liquid food analysis by NIR techniques.
Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique
NASA Astrophysics Data System (ADS)
Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir
2018-03-01
The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.
Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches
NASA Astrophysics Data System (ADS)
Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando
2016-11-01
This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.
Interpersonal Coordination: Methods, Achievements, and Challenges
Cornejo, Carlos; Cuadros, Zamara; Morales, Ricardo; Paredes, Javiera
2017-01-01
Research regarding interpersonal coordination can be traced back to the early 1960s when video recording began to be utilized in communication studies. Since then, technological advances have extended the range of techniques that can be used to accurately study interactional phenomena. Although such a diversity of methods contributes to the improvement of knowledge concerning interpersonal coordination, it has become increasingly difficult to maintain a comprehensive view of the field. In the present article, we review the main capture methods by describing their major findings, levels of description and limitations. We group them into three categories: video analysis, motion tracking, and psychophysiological and neurophysiological techniques. Revised evidence suggests that interpersonal coordination encompasses a family of morphological and temporal synchronies at different levels and that it is closely related to the construction and maintenance of a common social and affective space. We conclude by arguing that future research should address methodological challenges to advance the understanding of coordination phenomena. PMID:29021769
Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.
Naphade, M R; Huang, T S
2002-01-01
Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.
Waseem, Rabia; Low, Kah Hin
2015-02-01
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Navigation Strategies for an Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.
2011-01-01
The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.
MR connectomics: a conceptual framework for studying the developing brain
Hagmann, Patric; Grant, Patricia E.; Fair, Damien A.
2012-01-01
The combination of advanced neuroimaging techniques and major developments in complex network science, have given birth to a new framework for studying the brain: “connectomics.” This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research. PMID:22707934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyman, Heino M.; Zhang, Xing; Tang, Keqi
2016-02-16
Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.
NASA Technical Reports Server (NTRS)
Korkan, Kenneth D.; Eagleson, Lisa A.; Griffiths, Robert C.
1991-01-01
Current research in the area of advanced propeller configurations for performance and acoustics are briefly reviewed. Particular attention is given to the techniques of Lock and Theodorsen modified for use in the design of counterrotating propeller configurations; a numerical method known as SSTAGE, which is a Euler solver for the unducted fan concept; the NASPROP-E numerical analysis also based on a Euler solver and used to study the near acoustic fields for the SR series propfan configurations; and a counterrotating propeller test rig designed to obtain an experimental performance/acoustic data base for various propeller configurations.
Advanced computer techniques for inverse modeling of electric current in cardiac tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.
1996-08-01
For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.
Distress detection, location, and communications using advanced space technology
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1977-01-01
This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.
Design and Analysis of Turbines for Space Applications
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Dorney, Daniel J.; Huber, Frank W.
2003-01-01
In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis of the turbomachinery is necessary. This analysis is used for component development, design parametrics, performance prediction, and environment definition. To support this requirement, a task was developed at NASAh4arshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. The turbine chosen on which to demonstrate the procedure was a supersonic design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned to obtain an increased efficiency. The redesign of the turbine was conducted with a consideration of system requirements, realizing that a highly efficient turbine that, for example, significantly increases engine weight, is of limited benefit. Both preliminary and detailed designs were considered. To generate an improved design, one-dimensional (1D) design and analysis tools, computational fluid dynamics (CFD), response surface methodology (RSM), and neural nets (NN) were used.
Adverbials of Result: Phraseology and Functions in the Problem-Solution Pattern
ERIC Educational Resources Information Center
Charles, Maggie
2011-01-01
This paper combines the use of corpus techniques with discourse analysis in order to investigate adverbials of result in the writing of advanced academic student writers. It focuses in detail on the phraseology and functions of "thus," "therefore," "then," "hence," "so" and "consequently." Two corpora of native-speaker theses are examined: 190,000…
Preliminary logging analysis system (PLANS): overview.
R.H. Twito; S.E. Reutebuch; R.J. McGaughey; C.N. Mann
1987-01-01
The paper previews a computer-aided design system, PLANS, that is useful for developing timber harvest and road network plans on large-scale topographic maps. Earlier planning techniques are reviewed, and the advantages are explained of using advanced planning systems like PLANS. There is a brief summary of the input, output, and function of each program in the PLANS...
A Quantitative Analysis of Organizational Factors That Relate to Data Mining Success
ERIC Educational Resources Information Center
Huebner, Richard A.
2017-01-01
The ubiquity of data in various forms has fueled the need for advanced data-mining techniques within organizations. The advent of data mining methods used to uncover hidden nuggets of information buried within large data sets has also fueled the need for determining how these unique projects can be successful. There are many challenges associated…
Near-earth orbital guidance and remote sensing
NASA Technical Reports Server (NTRS)
Powers, W. F.
1972-01-01
The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.
Effect Size in Single-Case Research: A Review of Nine Nonoverlap Techniques
ERIC Educational Resources Information Center
Parker, Richard I.; Vannest, Kimberly J.; Davis, John L.
2011-01-01
With rapid advances in the analysis of data from single-case research designs, the various behavior-change indices, that is, effect sizes, can be confusing. To reduce this confusion, nine effect-size indices are described and compared. Each of these indices examines data nonoverlap between phases. Similarities and differences, both conceptual and…
The Impact of Slavery on Racial Inequality in Poverty in the Contemporary U.S. South
ERIC Educational Resources Information Center
O'Connell, Heather A.
2012-01-01
Despite Civil Rights legislation, racial inequality persists, especially in the context of poverty. This study advances the literature on racial inequality and the Southern legacy of slavery by examining slavery's relationship with inequality in poverty. I analyze county-level U.S. Census data using regression and spatial data analysis techniques.…
RF Testing Of Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.
1988-01-01
Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.
Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD
Kume, Keiichiro
2014-01-01
The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364
Imaging flow cytometry for phytoplankton analysis.
Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S
2017-01-01
This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments. Copyright © 2016 Elsevier Inc. All rights reserved.
Open source tools for the information theoretic analysis of neural data.
Ince, Robin A A; Mazzoni, Alberto; Petersen, Rasmus S; Panzeri, Stefano
2010-01-01
The recent and rapid development of open source software tools for the analysis of neurophysiological datasets consisting of simultaneous multiple recordings of spikes, field potentials and other neural signals holds the promise for a significant advance in the standardization, transparency, quality, reproducibility and variety of techniques used to analyze neurophysiological data and for the integration of information obtained at different spatial and temporal scales. In this review we focus on recent advances in open source toolboxes for the information theoretic analysis of neural responses. We also present examples of their use to investigate the role of spike timing precision, correlations across neurons, and field potential fluctuations in the encoding of sensory information. These information toolboxes, available both in MATLAB and Python programming environments, hold the potential to enlarge the domain of application of information theory to neuroscience and to lead to new discoveries about how neurons encode and transmit information.
Advanced Video Analysis Needs for Human Performance Evaluation
NASA Technical Reports Server (NTRS)
Campbell, Paul D.
1994-01-01
Evaluators of human task performance in space missions make use of video as a primary source of data. Extraction of relevant human performance information from video is often a labor-intensive process requiring a large amount of time on the part of the evaluator. Based on the experiences of several human performance evaluators, needs were defined for advanced tools which could aid in the analysis of video data from space missions. Such tools should increase the efficiency with which useful information is retrieved from large quantities of raw video. They should also provide the evaluator with new analytical functions which are not present in currently used methods. Video analysis tools based on the needs defined by this study would also have uses in U.S. industry and education. Evaluation of human performance from video data can be a valuable technique in many industrial and institutional settings where humans are involved in operational systems and processes.
Advances in Molecular Rotational Spectroscopy for Applied Science
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.
2017-06-01
Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers.
Sun, Yunlian; Zhang, Man; Sun, Zhenan; Tan, Tieniu
2018-02-01
Biometrics is the technique of automatically recognizing individuals based on their biological or behavioral characteristics. Various biometric traits have been introduced and widely investigated, including fingerprint, iris, face, voice, palmprint, gait and so forth. Apart from identity, biometric data may convey various other personal information, covering affect, age, gender, race, accent, handedness, height, weight, etc. Among these, analysis of demographics (age, gender, and race) has received tremendous attention owing to its wide real-world applications, with significant efforts devoted and great progress achieved. This survey first presents biometric demographic analysis from the standpoint of human perception, then provides a comprehensive overview of state-of-the-art advances in automated estimation from both academia and industry. Despite these advances, a number of challenging issues continue to inhibit its full potential. We second discuss these open problems, and finally provide an outlook into the future of this very active field of research by sharing some promising opportunities.
Analysis of Oxygen, Anaesthesia Agent and Flows in Anaesthesia Machine
Garg, Rakesh; Gupta, Ramesh Chand
2013-01-01
The technical advancement in the anaesthesia workstations has made the peri-operative anaesthesia more safer. Apart from other monitoring options, respiratory gas analysis has become an integral part of the modern anaesthesia workstations. Monitoring devices, such as an oxygen analyser with an audible alarm, carbon dioxide analyser, a vapour analyser, whenever a volatile anaesthetic is delivered have also been recommended by various anaesthesia societies. This review article discusses various techniques for analysis of flow, volumes and concentration of various anaesthetic agents including oxygen, nitrous oxide and volatile anaesthetic agents. PMID:24249881
Dynamic malware analysis using IntroVirt: a modified hypervisor-based system
NASA Astrophysics Data System (ADS)
White, Joshua S.; Pape, Stephen R.; Meily, Adam T.; Gloo, Richard M.
2013-05-01
In this paper, we present a system for Dynamic Malware Analysis which incorporates the use of IntroVirt™. IntroVirt is an introspective hypervisor architecture and infrastructure that supports advanced analysis techniques for stealth-malwareanalysis. This system allows for complete guest monitoring and interaction, including the manipulation and blocking of system calls. IntroVirt is capable of bypassing virtual machine detection capabilities of even the most sophisticated malware, by spoofing returns to system call responses. Additional fuzzing capabilities can be employed to detect both malware vulnerabilities and polymorphism.
The Fourth Annual Thermal and Fluids Analysis Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
The Fourth Annual Thermal and Fluids Analysis Workshop was held from August 17-21, 1992, at NASA Lewis Research Center. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.
Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.
Schuster, Benjamin S; Ensign, Laura M; Allan, Daniel B; Suk, Jung Soo; Hanes, Justin
2015-08-30
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful. Copyright © 2015 Elsevier B.V. All rights reserved.
Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo
2016-09-01
Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Targeted Structural Optimization with Additive Manufacturing of Metals
NASA Technical Reports Server (NTRS)
Burt, Adam; Hull, Patrick
2015-01-01
The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.
Advanced microscopic methods for the detection of adhesion barriers in immunology in medical imaging
NASA Astrophysics Data System (ADS)
Lawrence, Shane
2017-07-01
Advanced methods of microscopy and advanced techniques of analysis stemming therefrom have developed greatly in the past few years.The use of single discrete methods has given way to the combination of methods which means an increase in data for processing to progress to the analysis and diagnosis of ailments and diseases which can be viewed by each and any method.This presentation shows the combination of such methods and gives example of the data which arises from each individual method and the combined methodology and suggests how such data can be streamlined to enable conclusions to be drawn about the particular biological and biochemical considerations that arise.In this particular project the subject of the methodology was human lactoferrin and the relation of the adhesion properties of hlf in the overcoming of barriers to adhesion mainly on the perimeter of the cellular unit and how this affects the process of immunity in any particular case.
Coordinating standards and applications for optical water quality sensor networks
Bergamaschi, B.; Pellerin, B.
2011-01-01
Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.
Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord
Andre, Jalal B.; Bammer, Roland
2012-01-01
Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130
Trailing Ballute Aerocapture: Concept and Feasibility Assessment
NASA Technical Reports Server (NTRS)
Miller, Kevin L.; Gulick, Doug; Lewis, Jake; Trochman, Bill; Stein, Jim; Lyons, Daniel T.; Wilmoth, Richard G.
2003-01-01
Trailing Ballute Aerocapture offers the potential to obtain orbit insertion around a planetary body at a fraction of the mass of traditional methods. This allows for lower costs for launch, faster flight times and additional mass available for science payloads. The technique involves an inflated ballute (balloon-parachute) that provides aerodynamic drag area for use in the atmosphere of a planetary body to provide for orbit insertion in a relatively benign heating environment. To account for atmospheric, navigation and other uncertainties, the ballute is oversized and detached once the desired velocity change (Delta V) has been achieved. Analysis and trades have been performed for the purpose of assessing the feasibility of the technique including aerophysics, material assessments, inflation system and deployment sequence and dynamics, configuration trades, ballute separation and trajectory analysis. Outlined is the technology development required for advancing the technique to a level that would allow it to be viable for use in space exploration missions.
Volatile organic compounds: sampling methods and their worldwide profile in ambient air.
Kumar, Anuj; Víden, Ivan
2007-08-01
The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.
CRISPR/Cas9 and genome editing in Drosophila.
Bassett, Andrew R; Liu, Ji-Long
2014-01-20
Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Analysis strategies for high-resolution UHF-fMRI data.
Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce
2018-03-01
Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.
Denoising time-domain induced polarisation data using wavelet techniques
NASA Astrophysics Data System (ADS)
Deo, Ravin N.; Cull, James P.
2016-05-01
Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.
Simulation/Emulation Techniques: Compressing Schedules With Parallel (HW/SW) Development
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Hoang, June
2014-01-01
NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA's Kedalion engineering analysis lab has been validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA's heritage culture. Kedalion has validated many of the Orion HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, inserting new techniques and skills into the Multi - Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, Commercial-off-the-shelf (COTS) products, early rapid prototyping, in-house expertise and tools, and extensive use of simulators and emulators, NASA has achieved cost effective paradigms that are currently serving the Orion program effectively. Elements of long lead custom hardware on the Orion program have necessitated early use of simulators and emulators in advance of deliverable hardware to achieve parallel design and development on a compressed schedule.
Recent advancement in the field of two-dimensional correlation spectroscopy
NASA Astrophysics Data System (ADS)
Noda, Isao
2008-07-01
The recent advancement in the field of 2D correlation spectroscopy is reviewed with the emphasis on a number of papers published during the last two years. Topics covered by this comprehensive review include books, review articles, and noteworthy developments in the theory and applications of 2D correlation spectroscopy. New 2D correlation techniques are discussed, such as kernel analysis and augmented 2D correlation, model-based correlation, moving window analysis, global phase angle, covariance and correlation coefficient mapping, sample-sample correlation, hybrid and hetero correlation, pretreatment and transformation of data, and 2D correlation combined with other chemometrics techniques. Perturbation methods of both static (e.g., temperature, composition, pressure and stress, spatial distribution and orientation) and dynamic types (e.g., rheo-optical and acoustic, chemical reactions and kinetics, H/D exchange, sorption and diffusion) currently in use are examined. Analytical techniques most commonly employed in 2D correlation spectroscopy are IR, Raman, and NIR, but the growing use of other probes is also noted, including fluorescence, emission, Raman optical activity and vibrational circular dichroism, X-ray absorption and scattering, NMR, mass spectrometry, and even chromatography. The field of applications for 2D correlation spectroscopy is very diverse, encompassing synthetic polymers, liquid crystals, Langmuir-Blodgett films, proteins and peptides, natural polymers and biomaterials, pharmaceuticals, food and agricultural products, water, solutions, inorganic, organic, hybrid or composite materials, and many more.
Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhoumi, Rola, E-mail: rmouneimne@cvm.tamu.edu; Mouneimne, Youssef; Ramos, Ernesto
2011-05-15
Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted inmore » the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.« less
NASA Astrophysics Data System (ADS)
Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.
2016-08-01
A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.
NASA Astrophysics Data System (ADS)
Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.
2015-11-01
A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.
ERIC Educational Resources Information Center
Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro
2002-01-01
Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)
Advanced techniques to prepare seed to sow
Robert P. Karrfalt
2013-01-01
This paper reviews research on improving the basic technique of cold stratification for tree and shrub seeds. Advanced stratification techniques include long stratification, stratification re-dry, or multiple cycles of warm-cold stratification. Research demonstrates that careful regulation of moisture levels and lengthening the stratification period have produced a...
Fourth NASA Inter-Center Control Systems Conference
NASA Technical Reports Server (NTRS)
1978-01-01
Space vehicle control applications are discussed, along with aircraft guidance, control, and handling qualities. System simulation and identification, engine control, advanced propulsion techniques, and advanced control techniques are also included.
Spartan service module finite element modeling technique and analysis
NASA Technical Reports Server (NTRS)
Lindenmoyer, A. J.
1985-01-01
Sounding rockets have served as a relatively inexpensive and easy method of carrying experiments into the upper atmosphere. Limited observation time and pointing capabilities suggested the development of a new sounding rocket type carrier compatible with NASA's Space Transportation System. This concept evolved into the Spartan program, now credited with a successful Spartan 101 mission launched in June 1985. The next series of Spartans will use a service module primary structure. This newly designed reusable and universal component in the Spartan carrier system required thorough analysis and evaluation for flight certification. Using advanced finite element modeling techniques, the structure was analyzed and determined acceptable by meeting strict design goals and will be tested for verification of the analytical results.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.
1987-01-01
The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.
Large-scale quantitative analysis of painting arts.
Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong
2014-12-11
Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.
Headspace techniques in foods, fragrances and flavors: an overview.
Rouseff, R; Cadwallader, K
2001-01-01
Headspace techniques have traditionally involved the collection of volatiles in the vapor state under either dynamic or static conditions as a means of determining concentrations in the product of interest. A brief overview of contemporary headspace applications and recent innovations are presented from the literature and Chapters in this book. New approaches used to concentrate volatiles under static conditions such as solid phase micro extraction, SPME, are examined. Advances in purge and trap applications and automation are also presented. Innovative methods of evaluating headspace volatiles using solid state sensor arrays (electronic noses) or mass spectrometers without prior separation are referenced. Numerous food and beverage headspace techniques are also reviewed. Advantages, limitations and alternatives to headspace analysis are presented.
NASA Astrophysics Data System (ADS)
Kaniyappan, Udayakumar; Gnanatheepam, Einstein; Aruna, Prakasarao; Dornadula, Koteeswaran; Ganesan, Singaravelu
2017-02-01
Cancer is one of the most common threat to human beings and it increases at an alarming level around the globe. In recent years, due to the advancements in opto-electronic technology, various optical spectroscopy techniques have emerged to assess the photophysicochemical and morphological conditions of normal and malignant tissues in micro as well as in macroscopic scale. In this regard, diffuse reflectance spectroscopy is considered to be the simplest, cost effective and rapid technique in diagnosis of cancerous tissues. In the present study, the hemoglobin concentration in normal and cancerous oral tissues was quantified and subsequent statistical analysis has been carried out to verify the diagnostic potentiality of the technique.
In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching.
Kalendar, Ruslan; Muterko, Alexandr; Shamekova, Malika; Zhambakin, Kabyl
2017-01-01
The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory "wet bench" experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html .
Quantum cascade lasers (QCLs) in biomedical spectroscopy.
Schwaighofer, Andreas; Brandstetter, Markus; Lendl, Bernhard
2017-10-02
Quantum cascade lasers (QCL) are the first room temperature semiconductor laser source for the mid-IR spectral region, triggering substantial development for the advancement of mid-IR spectroscopy. Mid-IR spectroscopy in general provides rapid, label-free and objective analysis, particularly important in the field of biomedical analysis. Due to their unique properties, QCLs offer new possibilities for development of analytical methods to enable quantification of clinically relevant concentration levels and to support medical diagnostics. Compared to FTIR spectroscopy, novel and elaborated measurement techniques can be implemented that allow miniaturized and portable instrumentation. This review illustrates the characteristics of QCLs with a particular focus on their benefits for biomedical analysis. Recent applications of QCL-based spectroscopy for analysis of a variety of clinically relevant samples including breath, urine, blood, interstitial fluid, and biopsy samples are summarized. Further potential for technical advancements is discussed in combination with future prospects for employment of QCL-based devices in routine and point-of-care diagnostics.
NASA Astrophysics Data System (ADS)
Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.
2018-01-01
A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2010-01-01
Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.
As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Engebrecht, C. Metzger; Horowitz, S.
As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadowski, F.G.; Covington, S.J.
1987-01-01
Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT high-resolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear power plant emergency at Chernobyl in the Soviet Ukraine. The results of the data processing and analysis illustrate the spectral and spatial capabilities of the two sensor systems and provide information about the severity and duration of the events occurring at the power plant site.
1976-07-01
experimental operations, one assesses the realibility of his data in terms of its repeatability. In fact, during the present experiments an effort was... Data Handler Documentation, lIT Research Institute, September 1974 9. Brindley, A.E., et al, Analysis , Test and Evaluation Support to the USAF Advanced...surface above the building foundation level. A.6.3 SURVEYING TECHNIQUE. ACCUKACY, FUTURE USLU An accuracy analysis was not run on the survey data , but
NASA Technical Reports Server (NTRS)
1973-01-01
A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.
Software for visualization, analysis, and manipulation of laser scan images
NASA Astrophysics Data System (ADS)
Burnsides, Dennis B.
1997-03-01
The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.
Integrated communication and control systems. I - Analysis
NASA Technical Reports Server (NTRS)
Halevi, Yoram; Ray, Asok
1988-01-01
The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.
Huang, Huilian; Liu, Min; Chen, Pei
2014-01-01
Traditional Chinese medicine has been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra-high performance liquid chromatography (UHPLC) is a relatively new technique offering new possibilities. This paper reviews recent developments in UHPLC in the separation and identification, fingerprinting, quantification, and metabolism of traditional Chinese medicine. Recently, the combination of UHPLC with MS has improved the efficiency of the analysis of these materials. PMID:25045170
Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers
NASA Astrophysics Data System (ADS)
Martynov, Denis
Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe. The initial phase of LIGO started in 2002, and since then data was collected during the six science runs. Instrument sensitivity improved from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010. In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation of detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted until 2014. This thesis describes results of commissioning work done at the LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers. The first part of this thesis is devoted to the description of methods for bringing the interferometer into linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details. Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument. The coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. Static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype are described in the last part of this thesis. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed. Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about six months. Since current sensitivity of advanced LIGO is already more than a factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, the upcoming science runs have a good chance for the first direct detection of gravitational waves.
Sensor failure detection system. [for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Laprad, R. F.; Mcglone, M. E.; Rock, S. M.; Akhter, M. M.
1981-01-01
Advanced concepts for detecting, isolating, and accommodating sensor failures were studied to determine their applicability to the gas turbine control problem. Five concepts were formulated based upon such techniques as Kalman filters and a screening process led to the selection of one advanced concept for further evaluation. The selected advanced concept uses a Kalman filter to generate residuals, a weighted sum square residuals technique to detect soft failures, likelihood ratio testing of a bank of Kalman filters for isolation, and reconfiguring of the normal mode Kalman filter by eliminating the failed input to accommodate the failure. The advanced concept was compared to a baseline parameter synthesis technique. The advanced concept was shown to be a viable concept for detecting, isolating, and accommodating sensor failures for the gas turbine applications.
Targeted Muscle Reinnervation for Transradial Amputation: Description of Operative Technique.
Morgan, Emily N; Kyle Potter, Benjamin; Souza, Jason M; Tintle, Scott M; Nanos, George P
2016-12-01
Targeted muscle reinnervation (TMR) is a revolutionary surgical technique that, together with advances in upper extremity prostheses and advanced neuromuscular pattern recognition, allows intuitive and coordinated control in multiple planes of motion for shoulder disarticulation and transhumeral amputees. TMR also may provide improvement in neuroma-related pain and may represent an opportunity for sensory reinnervation as advances in prostheses and haptic feedback progress. Although most commonly utilized following shoulder disarticulation and transhumeral amputations, TMR techniques also represent an exciting opportunity for improvement in integrated prosthesis control and neuroma-related pain improvement in patients with transradial amputations. As there are no detailed descriptions of this technique in the literature to date, we provide our surgical technique for TMR in transradial amputations.
Bayır, Şafak
2016-01-01
With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272
Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan
2017-02-01
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.
Recent advances in mass spectrometry-based proteomics of gastric cancer.
Kang, Changwon; Lee, Yejin; Lee, J Eugene
2016-10-07
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud
2017-01-01
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.
Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud
2017-01-01
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657
Advanced magnetic resonance imaging of neurodegenerative diseases.
Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo
2017-01-01
Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.
ERIC Educational Resources Information Center
Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro
2002-01-01
The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…
Biswas, Abhijit; Bayer, Ilker S; Biris, Alexandru S; Wang, Tao; Dervishi, Enkeleda; Faupel, Franz
2012-01-15
This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-11-01
testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Caring About Dostoyevsky: The Untapped Potential of Studying Literature.
Willems, Roel M; Jacobs, Arthur M
2016-04-01
Should cognitive scientists and neuroscientists care about Dostoyevsky? Engaging with fiction is a natural and rich behavior, providing a unique window onto the mind and brain, particularly for mental simulation, emotion, empathy, and immersion. With advances in analysis techniques, it is time that cognitive scientists and neuroscientists embrace literature and fiction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Theoretical Framework for Interaction Game Design
2016-05-19
modeling. We take a data-driven quantitative approach to understand conversational behaviors by measuring conversational behaviors using advanced sensing...current state of the art, human computing is considered to be a reasonable approach to break through the current limitation. To solicit high quality and...proper resources in conversation to enable smooth and effective interaction. The last technique is about conversation measurement , analysis, and
NASA Technical Reports Server (NTRS)
Hansman, Robert John, Jr.
1999-01-01
MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.
Integration of design and inspection
NASA Astrophysics Data System (ADS)
Simmonds, William H.
1990-08-01
Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.
Social network analysis in the study of nonhuman primates: A historical perspective
Brent, Lauren J.N.; Lehmann, Julia; Ramos-Fernández, Gabriel
2011-01-01
Advances over the last fifteen years have made social network analysis (SNA) a powerful tool for the study of nonhuman primate social behavior. Although many SNA-based techniques have been only very recently adopted in primatological research, others have been commonly used by primatologists for decades. The roots of SNA also stem from some of the same conceptual frameworks as the majority of nonhuman primate behavioral research. The rapid development of SNA in recent years has led to questions within the primatological community of where and how SNA fits within this field. We aim to address these questions by providing an overview of the historical relationship between SNA and the study of nonhuman primates. We begin with a brief history of the development of SNA, followed by a detailed description of the network-based visualization techniques, analytical methods and conceptual frameworks which have been employed by primatologists since as early as the 1960s. We also introduce some of the latest advances to SNA, thereby demonstrating that this approach contains novel tools for study of nonhuman primate social behavior which may be used to shed light on questions that cannot be addressed fully using more conventional methods. PMID:21433047
NASA Astrophysics Data System (ADS)
Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping
2005-12-01
We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90deg
Narayanan, Sarath Kumar; Cohen, Ralph Clinton; Shun, Albert
2014-06-01
Minimal access techniques have transformed the way pediatric surgery is practiced. Due to various constraints, surgical residency programs have not been able to tutor adequate training skills in the routine setting. The advent of new technology and methods in minimally invasive surgery (MIS), has similarly contributed to the need for systematic skills' training in a safe, simulated environment. To enable the training of the proper technique among pediatric surgery trainees, we have advanced a porcine non-survival model for endoscopic surgery. The technical advancements over the past 3 years and a subjective validation of the porcine model from 114 participating trainees using a standard questionnaire and a 5-point Likert scale have been described here. Mean attitude scores and analysis of variance (ANOVA) were used for statistical analysis of the data. Almost all trainees agreed or strongly agreed that the animal-based model was appropriate (98.35%) and also acknowledged that such workshops provided adequate practical experience before attempting on human subjects (96.6%). Mean attitude score for respondents was 19.08 (SD 3.4, range 4-20). Attitude scores showed no statistical association with years of experience or the level of seniority, indicating a positive attitude among all groups of respondents. Structured porcine-based MIS training should be an integral part of skill acquisition for pediatric surgery trainees and the experience gained can be transferred into clinical practice. We advocate that laparoscopic training should begin in a controlled workshop setting before procedures are attempted on human patients.
A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)
NASA Astrophysics Data System (ADS)
Zhang, H.; Tian, X.
2017-12-01
The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.
The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihn T. Pham; Jeffrey J. Einerson
2010-06-01
This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less
Advanced Manufacturing Processes in the Motor Vehicle Industry
DOT National Transportation Integrated Search
1983-05-01
Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...
Advances in the Surface Renewal Flux Measurement Method
NASA Astrophysics Data System (ADS)
Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.
2011-12-01
The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments underestimate the sensible heat flux, yielding results that are less than 50% of the sensible heat flux measured with finer sensors. We present the methodology for correcting the thermocouple signal to avoid underestimating the heat flux at both the smallest and the second smallest coherent structure scale.
The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer
Wei, Fang; Wong, David T.; Su, Wu-Chou
2015-01-01
The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936
Advances in Machine Learning and Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.
2012-03-01
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Commissioning and validation of COMPASS system for VMAT patient specific quality assurance
NASA Astrophysics Data System (ADS)
Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.
2016-03-01
Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.
Advanced wiring technique and hardware application: Airplane and space vehicle
NASA Technical Reports Server (NTRS)
Ernst, H. L.; Eichman, C. D.
1972-01-01
An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.
NASA Astrophysics Data System (ADS)
Li, Ning; Wang, Yan; Xu, Kexin
2006-08-01
Combined with Fourier transform infrared (FTIR) spectroscopy and three kinds of pattern recognition techniques, 53 traditional Chinese medicine danshen samples were rapidly discriminated according to geographical origins. The results showed that it was feasible to discriminate using FTIR spectroscopy ascertained by principal component analysis (PCA). An effective model was built by employing the Soft Independent Modeling of Class Analogy (SIMCA) and PCA, and 82% of the samples were discriminated correctly. Through use of the artificial neural network (ANN)-based back propagation (BP) network, the origins of danshen were completely classified.
Description of MSFC engineering photographic analysis
NASA Technical Reports Server (NTRS)
Earle, Jim; Williams, Frank
1988-01-01
Utilizing a background that includes development of basic launch and test photographic coverage and analysis procedures, the MSFC Photographic Evaluation Group has built a body of experience that enables it to effectively satisfy MSFC's engineering photographic analysis needs. Combining the basic soundness of reliable, proven techniques of the past with the newer technical advances of computers and computer-related devices, the MSFC Photo Evaluation Group is in a position to continue to provide photo and video analysis service center-wide and NASA-wide to supply an improving photo analysis product to meet the photo evaluation needs of the future; and to provide new standards in the state-of-the-art of photo analysis of dynamic events.