Science.gov

Sample records for advanced analytical chemistry

  1. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  2. [Recent advancement of photonic-crystal-based analytical chemistry].

    PubMed

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  3. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  4. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  5. An advanced search engine for patent analytics in medicinal chemistry.

    PubMed

    Pasche, Emilie; Gobeill, Julien; Teodoro, Douglas; Gaudinat, Arnaud; Vishnykova, Dina; Lovis, Christian; Ruch, Patrick

    2012-01-01

    Patent collections contain an important amount of medical-related knowledge, but existing tools were reported to lack of useful functionalities. We present here the development of TWINC, an advanced search engine dedicated to patent retrieval in the domain of health and life sciences. Our tool embeds two search modes: an ad hoc search to retrieve relevant patents given a short query and a related patent search to retrieve similar patents given a patent. Both search modes rely on tuning experiments performed during several patent retrieval competitions. Moreover, TWINC is enhanced with interactive modules, such as chemical query expansion, which is of prior importance to cope with various ways of naming biomedical entities. While the related patent search showed promising performances, the ad-hoc search resulted in fairly contrasted results. Nonetheless, TWINC performed well during the Chemathlon task of the PatOlympics competition and experts appreciated its usability.

  6. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  7. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  8. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  9. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-01

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  10. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  11. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  12. [Final goal and problems in clinical chemistry examination measured by advanced analytical instruments].

    PubMed

    Sasaki, M; Hashimoto, E

    1993-07-01

    In the field of clinical chemistry of Japan, the automation of analytical instruments first appeared in the 1960's with the rapid developments in electronics industry. After a series of improvements and modifications in the past thirty years, these analytical instruments became excellent with multifunctions. From the results of these developments, it is now well recognized that automated analytical instruments are indispensable to manage the modern clinical Laboratory. On the other hand, these automated analytical instruments uncovered the various problems which had been hitherto undetected when the manually-operated instruments were used. For instances, the variation of commercially available standard solutions due to the lack of government control causes the different values obtained in institutions. In addition, there are many problems such as a shortage of medical technologists, a complication to handle the sampling and an increased labor costs. Furthermore, the inadequacies in maintenance activities cause the frequent erroneous reports of laboratory findings in spite of the latest and efficient analytical instruments equipped. Thus, the working process in clinical laboratory must be systematized to create the rapidity and the effectiveness. In the present report, we review the developmental history of automation system for analytical instruments, discuss the problems to create the effective clinical laboratory and explore the ways to deal with these emerging issues for the automation technology in clinical laboratory.

  13. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  14. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  15. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  16. [Photonic crystals for analytical chemistry].

    PubMed

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  17. Analytical chemistry of nickel.

    PubMed

    Stoeppler, M

    1984-01-01

    Analytical chemists are faced with nickel contents in environmental and biological materials ranging from the mg/kg down to the ng/kg level. Sampling and sample treatment have to be performed with great care at lower levels, and this also applies to enrichment and separation procedures. The classical determination methods formerly used have been replaced almost entirely by different forms of atomic absorption spectrometry. Electroanalytical methods are also of increasing importance and at present provide the most sensitive approach. Despite the powerful methods available, achieving reliable results is still a challenge for the analyst requiring proper quality control measures.

  18. Microcomputer Applications in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    The first part of this paper addresses the following topics: (1) the usefulness of microcomputers; (2) applications for microcomputers in analytical chemistry; (3) costs; (4) major microcomputer systems and subsystems; and (5) which microcomputer to buy. Following these brief comments, the major focus of the paper is devoted to a discussion of…

  19. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  20. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  1. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    PubMed

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life.

  2. Emphasizing Mineral Chemistry in an Analytical Chemistry Unit.

    ERIC Educational Resources Information Center

    Dunn, Jeffrey G.; And Others

    1995-01-01

    Describes an analytical chemistry unit in the second year of the chemistry degree course at Curtin University that was designed to reflect the numerous employment opportunities for chemistry graduates in the mineral processing industries and private analytical laboratories. Presents the lecture syllabus, the laboratory course description, and…

  3. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  4. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  5. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  6. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed. PMID:26076112

  7. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  8. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-02-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  9. Report: Analytical Chemistry in a Changing World.

    ERIC Educational Resources Information Center

    Laitinen, H. A.

    1980-01-01

    Examines some of the changes that have occurred in the field of analytic chemistry, with emphasis on how the field has adapted to changes in science and technology. Current trends also are identified and discussed. (CS)

  10. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  11. Information Theory in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Eckschlager, Karel; Stepanek, Vladimir

    1982-01-01

    Discusses information theory in analytical practice. Topics include information quantities; ways of obtaining formulas for the amount of information in structural, qualitative, and trace analyses; and information measures in comparing and optimizing analytical methods and procedures. Includes tables outlining applications of information theory to…

  12. Contributions of Analytical Chemistry to the Clinical Laboratory.

    ERIC Educational Resources Information Center

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  13. An Experimental Introduction to Interlaboratory Exercises in Analytical Chemistry

    ERIC Educational Resources Information Center

    Puignou, L.; Llaurado, M.

    2005-01-01

    An experimental exercise on analytical proficiency studies in collaborative trials is proposed. This practical provides students in advanced undergraduate courses in chemistry, pharmacy, and biochemistry, with the opportunity to improve their quality assurance skills. It involves an environmental analysis, determining the concentration of a…

  14. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  15. Advanced Chemistry Basins Model

    SciTech Connect

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  16. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  17. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    DOE R&D Accomplishments Database

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  18. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  19. Analytical Chemistry Core Capability Assessment - Preliminary Report

    SciTech Connect

    Barr, Mary E.; Farish, Thomas J.

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  20. Advanced epidemiologic and analytical methods.

    PubMed

    Albanese, E

    2016-01-01

    Observational studies are indispensable for etiologic research, and are key to test life-course hypotheses and improve our understanding of neurologic diseases that have long induction and latency periods. In recent years a plethora of advanced design and analytic techniques have been developed to strengthen the robustness and ultimately the validity of the results of observational studies, and to address their inherent proneness to bias. It is the responsibility of clinicians and researchers to critically appraise and appropriately contextualize the findings of the exponentially expanding scientific literature. This critical appraisal should be rooted in a thorough understanding of advanced epidemiologic methods and techniques commonly used to formulate and test relevant hypotheses and to keep bias at bay. PMID:27637951

  1. Recent Advances in Azaborine Chemistry

    PubMed Central

    Campbell, Patrick G.; Marwitz, Adam J. V.

    2013-01-01

    The chemistry of organoboron compounds has been primarily dominated by their use as powerful reagents in synthetic organic chemistry. Recently, the incorporation of boron as part of a functional target structure has emerged as a useful way to generate diversity in organic compounds. A commonly applied strategy is the replacement of a CC unit with its isoelectronic BN unit. In particular, the BN/CC isosterism of the ubiquitous arene motif has undergone a renaissance in the past decade. The parent molecule of the 1,2-dihydro-1,2-azaborine family has now been isolated. New mono- and polycyclic BN heterocycles have been synthesized for potential use in biomedical and materials science applications. This review is a tribute to Dewar's first synthesis of a monocyclic 1,2-dihydro-1,2-azaborine 50 years ago and discusses recent advances in the synthesis and characterization of carbon(C)-boron(B)-nitrogen(N)-containing heterocycles. PMID:22644658

  2. Applications of Optical Microcavity Resonators in Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Wade, James H.; Bailey, Ryan C.

    2016-06-01

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  3. Applications of Optical Microcavity Resonators in Analytical Chemistry.

    PubMed

    Wade, James H; Bailey, Ryan C

    2016-06-12

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  4. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  5. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  6. Experimental design in analytical chemistry--part II: applications.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Jalali-Heravi, Mehdi

    2014-01-01

    This paper reviews the applications of experimental design to optimize some analytical chemistry techniques such as extraction, chromatography separation, capillary electrophoresis, spectroscopy, and electroanalytical methods.

  7. ROLE OF ANALYTICAL CHEMISTRY IN ENVIRONMENTAL RISK MANAGEMENT RESEARCH

    EPA Science Inventory

    Analytical chemistry is an important tier of environmental protection and has been traditionally linked to compliance and/or exposure monitoring activities for environmental contaminants. The adoption of the risk management paradigm has led to special challenges for analytical ch...

  8. Analytical Chemistry Laboratory progress report for FY 1989

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  9. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  10. The evolution of analytical chemistry methods in foodomics.

    PubMed

    Gallo, Monica; Ferranti, Pasquale

    2016-01-01

    The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science. PMID:26363946

  11. The evolution of analytical chemistry methods in foodomics.

    PubMed

    Gallo, Monica; Ferranti, Pasquale

    2016-01-01

    The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science.

  12. Incorporating Information Literacy Skills into Analytical Chemistry: An Evolutionary Step

    ERIC Educational Resources Information Center

    Walczak, Mary M.; Jackson, Paul T.

    2007-01-01

    The American Chemical Society (ACS) has recently decided to incorporate various information literacy skills for teaching analytical chemistry to the students. The methodology has been found to be extremely effective, as it provides better understanding to the students.

  13. Analytical chemistry methods for mixed oxide fuel, March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  14. INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY

    EPA Science Inventory

    Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.

  15. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  16. Teaching Analytical Chemistry with Automatic Analyzers

    ERIC Educational Resources Information Center

    Schubert, Leo

    1972-01-01

    Discusses the advantages of using automated analytical procedures in providing rapid, inexpensive alternatives to traditional methods and in teaching skills used in many professions and industry. (CP)

  17. Gatlinburg conference: barometer of progress in analytical chemistry

    SciTech Connect

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status.

  18. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  19. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  20. Questionable Word Usage in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Mellon, M. G.

    1987-01-01

    Examines the use of different terms in chemistry. Addresses the use of imprecise, uninformative, inappropriate, and wrong terms, as well as the lack of clarity in imprecise or uninformative names for methods of chemical analysis. Provides lists of examples of both types of terminology problems. (TW)

  1. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  2. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  3. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  4. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  5. Magnetic solids in analytical chemistry: a review.

    PubMed

    Aguilar-Arteaga, K; Rodriguez, J A; Barrado, E

    2010-08-01

    Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. These solids can be used to pre-concentrate analytes and for the magnetic separation and molecular identification of biomolecules, and organic and inorganic species. Magnetic solid separation techniques also offer benefits over centrifugation, filtration, and solid-phase extraction. In this review, we describe the synthesis, characterization and applications of a series of solids including silica supports, carbon nanotubes, alumina, organic polymers and other materials, mostly containing magnetite or paramagnetic metals. Also addressed are the future perspectives of magnetic solid applications.

  6. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  7. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  8. Analytical chemistry and ecotoxicology--tasks, needs and trends.

    PubMed

    Eggen, Rik I L; Suter, Marc J-F

    2007-05-01

    Thousands of synthetic chemicals are continuously released into the environment, where they have the potential to produce adverse effects on ecosystems, even at low concentrations. To avoid adverse effects induced by environmental pollutants, science and society have developed methods and tools to (1) measure the fate and distribution of the pollutants (analytical chemistry), (2) analyze effects of pollutants on biota in standardized bioassays (ecotoxicology), and (3) combine the data for risk assessment procedures. Though such procedures are well established, new issues in environmental chemistry and ecotoxicology arise and continue to challenge scientists. Furthermore, analytical chemistry has undergone enormous technological progress and new techniques from the life sciences area have been added to the ecotoxicology toolbox. Here our view on the tasks and needs in environmental chemistry and ecotoxicology is presented and the current trends under development in the field are illustrated.

  9. Glossary of Analytical Chemistry Terms (GAT)

    NASA Astrophysics Data System (ADS)

    Wenclawiak, Bernd

    Why is it so important to have a glossary of analytical terms? Because there are so many different acronyms, abbreviations, and incorrectly used ‘terms', that even specialists sometimes have problems in understanding each other. A glossary is like a dictionary with the terms being the words in the vocabulary. Unfortunately not all words are found in one source. This chapter is a compilation of the most used terms.

  10. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    PubMed

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  11. Synergistic relationships between Analytical Chemistry and written standards.

    PubMed

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  12. Synergistic relationships between Analytical Chemistry and written standards.

    PubMed

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. PMID:23845474

  13. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  14. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. PMID:27506339

  15. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties.

  16. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  17. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  19. Analytical chemistry methods for metallic core components: Revision March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of alloys used to fabricate core components. These alloys are 302, 308, 316, 316-Ti, and 321 stainless steels and 600 and 718 Inconels and they may include other 300-series stainless steels.

  20. Using Presentation Software to Flip an Undergraduate Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Fitzgerald, Neil; Li, Luisa

    2015-01-01

    An undergraduate analytical chemistry course has been adapted to a flipped course format. Course content was provided by video clips, text, graphics, audio, and simple animations organized as concept maps using the cloud-based presentation platform, Prezi. The advantages of using Prezi to present course content in a flipped course format are…

  1. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  2. An Interactive Analytical Chemistry Summer Camp for Middle School Girls

    ERIC Educational Resources Information Center

    Robbins, Mary E.; Schoenfisch, Mark H.

    2005-01-01

    A summer outreach program, which was implemented for the first time in the summer of 2004, that provided middle school girls with an opportunity to conduct college-level analytical chemistry experiments under the guidance of female graduate students is explained. The program proved beneficial to participants at each level.

  3. Active Learning Strategies in the Analytical Chemistry Classroom.

    ERIC Educational Resources Information Center

    Ross, Michael R.; Fulton, Robert B.

    1994-01-01

    Describes an analytical chemistry course restructured around the use of cooperative groups to help students become active learners in a non-competitive environment. Five years of experience with the course indicates that the syllabus covers almost exactly the same content as old courses and that test scores compare favorably on the national level.…

  4. Advances in text analytics for drug discovery.

    PubMed

    Roberts, Phoebe M; Hayes, William S

    2005-05-01

    The automated extraction of biological and chemical information has improved over the past year, with advances in access to content, entity extraction of genes, chemicals, kinetic data and relationships, and algorithms for generating and testing hypotheses. As the systems for reading and understanding scientific literature grow more powerful, so must the infrastructure in which to assemble information. Advances in infrastructure systems are discussed in this review. Research efforts have flourished as a result of text analytics competitions that attract participants from various disciplines, from computer science to bioinformatics.

  5. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  6. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    PubMed

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. PMID:26592608

  7. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    PubMed

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    SciTech Connect

    Not Available

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  9. Role-Playing in Analytical Chemistry: The Alumni Speak

    NASA Astrophysics Data System (ADS)

    Jackson, Paul T.; Walters, John P.

    2000-08-01

    Cooperative learning constructs take a variety of forms. Over the last 15 years, one such pedagogical structure, role-playing, has been used in the analytical chemistry curriculum at St. Olaf College. A long-term assessment of this teaching method was conducted through use of a survey distributed to alumni graduating between 1987 and 1997. The graduates overwhelmingly indicated that the use of role-playing had a positive impact on their careers as well as their lives. Furthermore, many non-achievement learning outcomes attributed to cooperative learning experiences were reinforced through the survey response. Role-playing created an effective environment in which to develop communication and collaborative skills in addition to the technical skills that are essential to analytical chemistry. These results support continued evolutionary development of this teaching method.

  10. Automatic Titrators in the Analytical and Physical Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Williams, Kathryn R.

    1998-09-01

    In 1995 the University of Florida received an NSF-ILI grant to purchase six automatic titrators, which have now been successfully integrated into the analytical and physical chemistry teaching laboratories. After they have mastered fundamental techniques, students in the introductory analytical laboratory gain experience with automated analyses in three experiments: the iodimetric analysis of ascorbic acid, the determination of polymer molecular weight, and the analysis of chloride by ion selective electrode. The titrators are also used in the instrumental analysis laboratory for Karl Fischer titrations and the coulometric analysis of EDTA. A physical chemistry experiment, the kinetics of methyl acetate hydrolysis, has also been modified for use with the titrators Instructor write-ups for all experiments may be obtained via JCE Online.

  11. Pattern recognition used to investigate multivariate data in analytical chemistry

    SciTech Connect

    Jurs, P.C.

    1986-06-06

    Pattern recognition and allied multivariate methods provide an approach to the interpretation of the multivariate data often encountered in analytical chemistry. Widely used methods include mapping and display, discriminant development, clustering, and modeling. Each has been applied to a variety of chemical problems, and examples are given. The results of two recent studies are shown, a classification of subjects as normal or cystic fibrosis heterozygotes and simulation of chemical shifts of carbon-13 nuclear magnetic resonance spectra by linear model equations.

  12. Analytical chemistry laboratory. Progress report for FY 1997

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  13. Application of Multidimensional Spectrum Analysis for Analytical Chemistry

    SciTech Connect

    Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi

    1999-12-31

    Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.

  14. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    SciTech Connect

    Barr, Mary E.; Farish, Thomas J.

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  15. Flue gas desulfurization (FGD) chemistry and analytical methods handbook

    SciTech Connect

    Noblett, J.G.; Burke, J.M.

    1990-08-01

    The purpose of this handbook is to provide a comprehensive guide to sampling, analytical, and physical test methods essential to the operation, maintenance, and understanding of flue gas desulfurization (FGD) system chemistry. EPRI sponsored the first edition of this three-volume report in response to the needs of electric utility personnel responsible for establishing and operating commercial FGD analytical laboratories. The second, revised editions of Volumes 1 and 2 were prompted by the results of research into various non-standard aspects of FGD system chemistry. Volume 1 of the handbook explains FGD system chemistry in the detail necessary to understand how the processes operate and how process performance indicators can be used to optimize system operation. Volume 2 includes 63 physical-testing and chemical-analysis methods for reagents, slurries, and solids, and information on the applicability of individual methods to specific FGD systems. Volume 3 contains instructions for FGD solution chemistry computer program designated by EPRI as FGDLIQEQ. Executable on IBM-compatible personal computers, this program calculates the concentrations (activities) of chemical species (ions) in scrubber liquor and can calculate driving forces for important chemical reactions such as S0{sub 2} absorption and calcium sulfite and sulfate precipitation. This program and selected chemical analyses will help an FGD system operator optimize system performance, prevent many potential process problems, and define solutions to existing problems. 22 refs., 17 figs., 28 tabs.

  16. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  17. Making advanced analytics work for you.

    PubMed

    Barton, Dominic; Court, David

    2012-10-01

    Senior leaders who write off the move toward big data as a lot of big talk are making, well, a big mistake. So argue McKinsey's Barton and Court, who worked with dozens of companies to figure out how to translate advanced analytics into nuts-and-bolts practices that affect daily operations on the front lines. The authors offer a useful guide for leaders and managers who want to take a deliberative approach to big data-but who also want to get started now. First, companies must identify the right data for their business, seek to acquire the information creatively from diverse sources, and secure the necessary IT support. Second, they need to build analytics models that are tightly focused on improving performance, making the models only as complex as business goals demand. Third, and most important, companies must transform their capabilities and culture so that the analytical results can be implemented from the C-suite to the front lines. That means developing simple tools that everyone in the organization can understand and teaching people why the data really matter. Embracing big data is as much about changing mind-sets as it is about crunching numbers. Executed with the right care and flexibility, this cultural shift could have payoffs that are, well, bigger than you expect.

  18. Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis

    ERIC Educational Resources Information Center

    Kennedy, Brian J.

    2008-01-01

    This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…

  19. On the outside looking in: redefining the role of analytical chemistry in the biosciences.

    PubMed

    Hare, Dominic J; New, Elizabeth J

    2016-07-12

    Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward.

  20. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    PubMed

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-01

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  1. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGES

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  2. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  3. Recent advances in analytical methods for mycotoxins.

    PubMed

    Gilbert, J

    1993-01-01

    Recent advances in analytical methods are reviewed using the examples of aflatoxins and trichothecene mycotoxins. The most dramatic advances are seen as being those based on immunological principles utilized for aflatoxins to produce simple screening methods and for rapid specific clean-up. The possibilities of automation using immunoaffinity columns is described. In contrast for the trichothecenes immunological methods have not had the same general impact. Post-column derivatization using bromine or iodine to enhance fluorescence for HPLC detection of aflatoxins has become widely employed and there are similar possibilities for improved HPLC detection for trichothecenes using electrochemical or trichothecene-specific post-column reactions. There have been improvements in the use of more rapid and specific clean-up methods for trichothecenes, whilst HPLC and GC remain equally favoured for the end-determination. More sophisticated instrumental techniques such as mass spectrometry (LC/MS, MS/MS) and supercritical fluid chromatography (SFC/MS) have been demonstrated to have potential for application to mycotoxin analysis, but have not as yet made much general impact.

  4. Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine.

    PubMed

    Durner, Jürgen

    2010-02-01

    Clinical chemistry and laboratory medicine can look back over more than 150 years of eventful history. The subject encompasses all the medicinal disciplines as well as the remaining natural sciences. Clinical chemistry demonstrates how new insights from basic research in biochemical, biological, analytical chemical, engineering, and information technology can be transferred into the daily routine of medicine to improve diagnosis, therapeutic monitoring, and prevention. This Review begins with a presentation of the development of clinical chemistry. Individual steps between the drawing of blood and interpretation of laboratory data are then illustrated; here not only are pitfalls described, but so are quality control systems. The introduction of new methods and trends into medicinal analysis is explored, along with opportunities and problems associated with personalized medicine.

  5. Selectivity in analytical chemistry: two interpretations for univariate methods.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-01-01

    Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled. The error based selectivity is very general and very safe but its application to a range of samples (as opposed to a single sample) requires the knowledge of some constraint about the possible sample compositions. The selectivity concepts based on the response surface are easily applied to linear response surfaces but may lead to difficulties and counterintuitive results when applied to nonlinear response surfaces. A particular advantage of this class of selectivity is that with linear response surfaces it can provide a concentration independent measure of selectivity. In contrast, the error based selectivity concept allows only yes/no type decision about selectivity.

  6. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    SciTech Connect

    Not Available

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  7. Laser ablation in analytical chemistry-a review.

    PubMed

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  8. EXAMPLES OF THE ROLE OF ANALYTICAL CHEMISTRY IN ENVIRONMENTAL RISK MANAGEMENT RESEARCH

    EPA Science Inventory

    Analytical chemistry is an important tier of environmental protection and has been traditionally linked to compliance and/or exposure monitoring activities for environmental contaminants. The adoption of the risk management paradigm has led to special challenges for analytical ch...

  9. NC CATCH: Advancing Public Health Analytics.

    PubMed

    Studnicki, James; Fisher, John W; Eichelberger, Christopher; Bridger, Colleen; Angelon-Gaetz, Kim; Nelson, Debi

    2010-01-01

    The North Carolina Comprehensive Assessment for Tracking Community Health (NC CATCH) is a Web-based analytical system deployed to local public health units and their community partners. The system has the following characteristics: flexible, powerful online analytic processing (OLAP) interface; multiple sources of multidimensional, event-level data fully conformed to common definitions in a data warehouse structure; enabled utilization of available decision support software tools; analytic capabilities distributed and optimized locally with centralized technical infrastructure; two levels of access differentiated by the user (anonymous versus registered) and by the analytical flexibility (Community Profile versus Design Phase); and, an emphasis on user training and feedback. The ability of local public health units to engage in outcomes-based performance measurement will be influenced by continuing access to event-level data, developments in evidence-based practice for improving population health, and the application of information technology-based analytic tools and methods.

  10. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  11. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  12. The Analytical Chemistry of Drug Monitoring in Athletes

    NASA Astrophysics Data System (ADS)

    Bowers, Larry D.

    2009-07-01

    The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes’ health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: The World Anti-Doping Code, The List of Prohibited Substances and Methods, and The International Standard for Laboratories. Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

  13. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed.

  14. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    PubMed

    Offroy, Marc; Duponchel, Ludovic

    2016-03-01

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). PMID:26873463

  15. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    PubMed

    Offroy, Marc; Duponchel, Ludovic

    2016-03-01

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data).

  16. Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials.

    PubMed

    Russell, Shane R; Claridge, Shelley A

    2016-04-01

    Because noncovalent interface functionalization is frequently required in graphene-based devices, biomolecular self-assembly has begun to emerge as a route for controlling substrate electronic structure or binding specificity for soluble analytes. The remarkable diversity of structures that arise in biological self-assembly hints at the possibility of equally diverse and well-controlled surface chemistry at graphene interfaces. However, predicting and analyzing adsorbed monolayer structures at such interfaces raises substantial experimental and theoretical challenges. In contrast with the relatively well-developed monolayer chemistry and characterization methods applied at coinage metal surfaces, monolayers on graphene are both less robust and more structurally complex, levying more stringent requirements on characterization techniques. Theory presents opportunities to understand early binding events that lay the groundwork for full monolayer structure. However, predicting interactions between complex biomolecules, solvent, and substrate is necessitating a suite of new force fields and algorithms to assess likely binding configurations, solvent effects, and modulations to substrate electronic properties. This article briefly discusses emerging analytical and theoretical methods used to develop a rigorous chemical understanding of the self-assembly of peptide-graphene interfaces and prospects for future advances in the field.

  17. Moisture Analysis in Lotion by Karl Fischer Coulometry. An Experiment for Introductory Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Mabrouk, Patricia Ann; Castriotta, Kristine

    2001-10-01

    This paper describes an experiment that can be used in an introductory analytical chemistry laboratory course. It allows the student analyst to measure the moisture content of various hand and body lotions using the coulometric Karl Fischer (KF) technique, providing a modern alternative to the traditional electrochemical experiments usually explored in introductory analytical chemistry courses. The experiment introduces students to an important technique in industry and commerce, which is highly sensitive, accurate, and precise, and which can be used to study a wide range of samples. The measurement times are short, allowing students to experience the analytical problem-solving process from start to finish in a single 3-hour laboratory period. One KF coulometer can adequately service even a large analytical chemistry class (>80 students). In spring 2000, students identified the KF experiment as the most popular, most useful, and most educational experiment in our analytical chemistry laboratory curriculum.

  18. Computing Advances in the Teaching of Chemistry.

    ERIC Educational Resources Information Center

    Baskett, W. P.; Matthews, G. P.

    1984-01-01

    Discusses three trends in computer-oriented chemistry instruction: (1) availability of interfaces to integrate computers with experiments; (2) impact of the development of higher resolution graphics and greater memory capacity; and (3) role of videodisc technology on computer assisted instruction. Includes program listings for auto-titration and…

  19. Recent advances in analytical satellite theory

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1978-01-01

    Recent work on analytical satellite perturbation theory has involved the completion of a revision to 4th order for zonal harmonics, the addition of a treatment for ocean tides, an extension of the treatment for the noninertial reference system, and the completion of a theory for direct solar-radiation pressure and earth-albedo pressure. Combined with a theory for tesseral-harmonics, lunisolar, and body-tide perturbations, these formulations provide a comprehensive orbit-computation program. Detailed comparisons with numerical integration and observations are presented to assess the accuracy of each theoretical development.

  20. Recent advances in the chemistry of organic thiocyanates.

    PubMed

    Castanheiro, Thomas; Suffert, Jean; Donnard, Morgan; Gulea, Mihaela

    2016-02-01

    Organic thiocyanates are important synthetic intermediates to access valuable sulfur-containing compounds. In this review the different methods for their preparation and their synthetic applications will be presented. The literature of the last 15 years will be covered, highlighting selected recent advances in the chemistry of this class of compounds. We hope to offer chemists the tools to have a good grasp of this singular functionality and open the door to further progress in this chemistry.

  1. A conflict of analysis: analytical chemistry and milk adulteration in Victorian Britain.

    PubMed

    Steere-Williams, Jacob

    2014-08-01

    This article centres on a particularly intense debate within British analytical chemistry in the late nineteenth century, between local public analysts and the government chemists of the Inland Revenue Service. The two groups differed in both practical methodologies and in the interpretation of analytical findings. The most striking debates in this period were related to milk analysis, highlighted especially in Victorian courtrooms. It was in protracted court cases, such as the well known Manchester Milk Case in 1883, that analytical chemistry was performed between local public analysts and the government chemists, who were often both used as expert witnesses. Victorian courtrooms were thus important sites in the context of the uneven professionalisation of chemistry. I use this tension to highlight what Christopher Hamlin has called the defining feature of Victorian public health, namely conflicts of professional jurisdiction, which adds nuance to histories of the struggle of professionalisation and public credibility in analytical chemistry.

  2. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    ERIC Educational Resources Information Center

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  3. Evaluating the Effectiveness of the Chemistry Education by Using the Analytic Hierarchy Process

    ERIC Educational Resources Information Center

    Yüksel, Mehmet

    2012-01-01

    In this study, an attempt was made to develop a method of measurement and evaluation aimed at overcoming the difficulties encountered in the determination of the effectiveness of chemistry education based on the goals of chemistry education. An Analytic Hierarchy Process (AHP), which is a multi-criteria decision technique, is used in the present…

  4. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  5. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    ERIC Educational Resources Information Center

    Akcay, Hüsamettin; Durmaz, Asli; Tüysüz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  6. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...-Chemistry Laboratories, Inc. (the Licensee) pursuant to 10 CFR part 30. By application dated October...

  7. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  8. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    NASA Astrophysics Data System (ADS)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    This text, written in English, was developed by the Division of Analytical Chemistry of the Federation of European Chemical Societies to support the university-level Eurocurriculum in analytical chemistry, a major effort of academics and other analytical scientists throughout Europe and an outgrowth of the economic unification of European countries. The goal of a uniform curriculum and text for analytical chemistry across national borders is laudable, and the editors, led by the late Robert Kellner, deserve commendation for their accomplishments. (The U.S., in contrast, has been late in considering the analytical chemistry curriculum and only recently has published a pamphlet, Curricular Developments in the Analytical Sciences, an outgrowth of several NSF-sponsored workshops.) I can't remember another analytical text that begins with mention of the "big bang" and the beginnings of the universe (!), but I don't believe that the authors and publisher are looking to export their curriculum to neighboring planets. However, I am sure that they are interested in the North American market and its strong analytical chemistry community. It is in this context and in comparison with leading analytical texts in the U.S. that I write this review. At first glance, Analytical Chemistry overwhelms. It is a large book of more than 900 pages, a mass of 2.3 kg, and a volume of nearly 3 L. It is not a book that is easy to stuff into a backpack for the trip to class or lab. Students also may resent paying top dollar for a book that might not last the semester, given that the pages of my review copy began to pull away from the binding after only a few days of gentle use. Beneath the snazzy cover there is a dearth of color printing and photographs. This, combined with a smallish font and figures that are inconsistent in size, quality, and font, makes for a book that is not especially easy on the eyes. The large margins provide ample space for the numerous figures, figure captions, and

  9. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  10. Advances in molten salt chemistry: Vol. 4

    SciTech Connect

    Mamautov, G.; Braunstein, J.

    1981-01-01

    This book presents information on the following topics: electronic properties of solutions of liquid metals and ionic melts; metal-metal halide, metal-chalcogen, and metal-metal solutions; metallic models; the use of high pressure in the study of molten salts; the purpose of high pressure experimentation; melting point curves and phase diagrams; compressibilities and equations of state; electrical conductivity measurements; physical chemistry and electrochemistry of alkali carbonate melts; equilibrium properties of molten carbonates; electrochemical characteristics and corrosion; stability of ceramics; some new molten salt electrolytic processes; sodium metal production by the use of a beta-alumina diaphragm; recovery of metallic sodium or caustic soda and sulfur from flue gas; high temperature electrolysis of water; and LiCl electrolysis by the use of a bipolar liquid metal electrode.

  11. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  12. Advances in bile acid medicinal chemistry.

    PubMed

    Sharma, R; Long, A; Gilmer, J F

    2011-01-01

    Bile acids (BAs) are a family of steroidal molecules derived from cholesterol and biosynthesised in the pericentral hepatocytes of the liver. Structurally they may be regarded as consisting of two components, a rigid steroid nucleus and a short aliphatic side chain terminating in an alcohol or carboxyl group. Traditionally BAs are known for their ability to act as solubilising agents in the gut, aiding in the absorption of dietary lipids through the formation of mixed micelles. However the identification of BAs as ligands of the farnesoid X receptor (FXR) has lead to the realisation that these molecules have a wider range of biological effects. BAs regulate lipid and glucose homeostasis through activation of the FXR and the G-protein coupled receptor, TGR5. They can activate apoptotic, inflammatory and carcinogenic signalling pathways. BAs have also been shown to have anti-inflammatory effects. Interestingly, BAs are not restricted to the hepatic-intestinal system. Plasma BAs regulate BA synthesis and metabolism. BAs have recently been identified in cerebrospinal fluid. The BA, ursodeoxycholic acid has a potential role as a neuroprotectant in Huntington's disease and its taurine conjugate exhibits neuro-protective effects in vitro that may be relevant to Alzheimer's disease. This renaissance in BA biology has lead to the development of numerous medicinal chemistry programmes with different therapeutic targets, using BAs as lead structures. BA derivatives with increased efficacy and potency for FXR and TGR5 hold significant promise for the treatment of metabolic disorders. The peculiar effects of BAs on cell viability have been exploited for the design of selective cytocidal agents for treatment of various cancers. BA derivatives have also been screened with much success for anti-microbial and antifungal properties. Other targets include carbonic anhydrase for treatment of glaucoma and the glucocorticoid receptor for antiinflammatory effects. In this review

  13. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    SciTech Connect

    Not Available

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  14. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  15. Fifty years of continuous improvement: (What has DOE done for analytical chemistry?)

    SciTech Connect

    Shults, W.D.

    1993-11-01

    Over the past fifty years, analytical scientist within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ``high impact`` research/development areas that either originated within or were brought to maturity within the DOE laboratories. ``High impact`` means they lead to new subdisciplines or to new ways of doing business.

  16. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  17. Advances in chemistry applied to forensic science.

    PubMed

    Rendle, David F

    2005-12-01

    Acts of terrorism, an increase in the use of firearms, drug abuse, the use of so-called date-rape drugs, and driving whilst under the influence of drugs, are just some of the subjects frequently in the news. In the absence of fingermarks and of material leading to the recovery of DNA, the forensic scientist has to rely upon chemical analysis of trace amounts of materials including explosives, drugs, toxicological specimens, firearms discharge residues, fibres, glass, paint, soil etc., in order to establish or eliminate links between suspect and victim and/or scene. This tutorial review describes analytical problems facing the forensic chemist, and the current methods and techniques employed to tackle them. PMID:16284668

  18. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review

    PubMed Central

    Scida, Karen; Stege, Patricia W.; Haby, Gabrielle; Messina, Germán A.; García, Carlos D.

    2011-01-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005–2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  19. Analytical Chemistry for Homeland Defense and National Security

    SciTech Connect

    S.Randolph Long; Dan rock; Gary Eiceman; Chris Rowe Taitt; Robert J.Cotter; Dean D.Fetterolf; David R.Walt; Basil I. Swanson; Scott A McLuckey; Robin L.Garrell; Scott D. Cunningham

    2002-08-18

    The budget was requested to support speaker expenses to attend and speak in the day long symposium at the ACS meeting. The purpose of the symposium was to encourage analytical chemists to contribute to national security.

  20. Experimental and Analytical Studies of Solar System Chemistry

    NASA Technical Reports Server (NTRS)

    Burnett, Donald S.

    2003-01-01

    The cosmochemistry research funded by this grant resulted in the publications given in the attached Publication List. The research focused in three areas: (1) Experimental studies of trace element partitioning. (2) Studies of the minor element chemistry and O isotopic compositions of MgAlO4 spinels from Ca-Al-Rich Inclusions in carbonaceous chondrite meteorites, and (3) The abundances and chemical fractionations of Th and U in chondritic meteorites.

  1. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based Graduate-Level Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Toh, Chee-Seng

    2007-01-01

    A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.

  2. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  3. Analytical Chemistry Laboratory progress report for FY 1992

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.; Bass, D.A.

    1992-12-01

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc.

  4. Recent advances in click chemistry applied to dendrimer synthesis.

    PubMed

    Arseneault, Mathieu; Wafer, Caroline; Morin, Jean-François

    2015-01-01

    Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field. PMID:26007183

  5. Recent advances in click chemistry applied to dendrimer synthesis.

    PubMed

    Arseneault, Mathieu; Wafer, Caroline; Morin, Jean-François

    2015-01-01

    Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.

  6. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    SciTech Connect

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  7. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    SciTech Connect

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  9. Waste minimization in analytical chemistry through innovative sample preparation techniques.

    SciTech Connect

    Smith, L. L.

    1998-05-28

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural

  10. A Selection of Recent Advances in C1 Chemistry.

    PubMed

    Mesters, Carl

    2016-06-01

    This review presents a selection of recent publications related to the chemistry and catalysis of C1 molecules, including methane, methanol, carbon monoxide, and carbon dioxide. These molecules play an important role in the current supply of energy and chemicals and will likely become even more relevant because of the need to decarbonize fuels (shift from coal to natural gas) in line with CO2 capture and use to mitigate global warming, as well as a gradual shift on the supply side from crude oil to natural gas. This review includes both recent industrial developments, such as the huge increase in methanol-to-olefins-capacity build in China and the demonstration of oxidative coupling of methane, and scientific developments in these chemistries facilitated by improved capabilities in, for example, analytical tools and computational modeling.

  11. A Selection of Recent Advances in C1 Chemistry.

    PubMed

    Mesters, Carl

    2016-06-01

    This review presents a selection of recent publications related to the chemistry and catalysis of C1 molecules, including methane, methanol, carbon monoxide, and carbon dioxide. These molecules play an important role in the current supply of energy and chemicals and will likely become even more relevant because of the need to decarbonize fuels (shift from coal to natural gas) in line with CO2 capture and use to mitigate global warming, as well as a gradual shift on the supply side from crude oil to natural gas. This review includes both recent industrial developments, such as the huge increase in methanol-to-olefins-capacity build in China and the demonstration of oxidative coupling of methane, and scientific developments in these chemistries facilitated by improved capabilities in, for example, analytical tools and computational modeling. PMID:27276549

  12. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  13. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    PubMed

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  14. Exploration of Antarctic Subglacial environments: a challenge for analytical chemistry

    NASA Astrophysics Data System (ADS)

    Traversi, R.; Becagli, S.; Castellano, E.; Ghedini, C.; Marino, F.; Rugi, F.; Severi, M.; Udisti, R.

    2009-12-01

    The large number of subglacial lakes detected in the Dome C area in East Antarctica suggests that this region may be a valuable source of paleo-records essential for understanding the evolution of the Antarctic ice cap and climate changes in the last several millions years. In the framework of the Project on “Exploration and characterization of Concordia Lake, Antarctica”, supported by Italian Program for Antarctic Research (PNRA), a glaciological investigation of the Dome C “Lake District” are planned. Indeed, the glacio-chemical characterisation of the ice column over subglacial lakes will allow to evaluate the fluxes of major and trace chemical species along the ice column and in the accreted ice and, consequently, the availability of nutrients and oligo-elements for possible biological activity in the lake water and sediments. Melting and freezing at the base of the ice sheet should be able to deliver carbon and salts to the lake, as observed for the Vostok subglacial lake, which are thought to be able to support a low concentration of micro-organisms for extended periods of time. Thus, this investigation represents the first step for exploring the subglacial environments including sampling and analysis of accreted ice, lake water and sediments. In order to perform reliable analytical measurements, especially of trace chemical species, clean sub-sampling and analytical techniques are required. For this purpose, the techniques already used by the CHIMPAC laboratory (Florence University) in the framework of international Antarctic drilling Projects (EPICA - European Project for Ice Coring in Antarctica, TALDICE - TALos Dome ICE core, ANDRILL MIS - ANTarctic DRILLing McMurdo Ice Shelf) were optimised and new techniques were developed to ensure a safe sample handling. CHIMPAC laboratory has been involved since several years in the study of Antarctic continent, primarily focused on understanding the bio-geo-chemical cycles of chemical markers and the

  15. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  16. Incorporating Students' Self-Designed, Research-Based Analytical Chemistry Projects into the Instrumentation Curriculum

    ERIC Educational Resources Information Center

    Gao, Ruomei

    2015-01-01

    In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…

  17. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  18. [Analytical chemistry in works of Maria Skłodowska-Curie].

    PubMed

    Hulanicki, Adam

    2012-01-01

    Maria Skłodowska-Curie--a Nobel Prize winner in chemistry--the elements of learning of chemistry gained just by a dint of work of more than ten months in Warsaw in the Institute of Industry and Agriculture Museum. The Nobel Prize concerned a contribution to the progress of chemistry through the discovery of radium and polonium, separation of radium and study of properties of this amazing element. It was awarded for an extremely arduous work, during which the chemical reactions being the principles of analytical chemistry were realized. Unlike to a typical analytical procedure, an initial attempt here was the thousands of kilograms of uranium ore: pitchblende. The final effect was small amounts of new elements: polonium and radium. Both the knowledge and the intuition of the researcher let her have a triumph. The difficulties she experienced because the properties of the searched chemical elements could only be evaluated thanks to the knowledge on other chemical elements. A significant achievement was the determination of the samples by means of radioactivity measurement, which gave rise to radiochemical analytical methods. An extreme analytical precision was demanded in multiple processes of fractional crystallization and precipitation which finally led to the calculation of the atomic mass of radium. PMID:22849241

  19. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  20. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    ERIC Educational Resources Information Center

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  1. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    ERIC Educational Resources Information Center

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  2. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  3. Teaching Effective Communication in a Writing-Intensive Analytical Chemistry Course.

    ERIC Educational Resources Information Center

    Whelan, Rebecca J.; Zare, Richard N.

    2003-01-01

    Presents a variety of activities, assignments, and mentoring structures to address the challenges of teaching writing while at the same time delivering analytical chemistry content. Emphasizes the importance of students being able to communicate in the language of their chosen field. (Author/NB)

  4. Twenty-ninth ORNL/DOE conference on analytical chemistry in energy technology. Abstracts of papers

    SciTech Connect

    Not Available

    1986-01-01

    This booklet contains separate abstracts of 55 individual papers presented at this conference. Different sections in the book are titled as follows: laser techniques; resonance ionization spectroscopy; laser applications; new developments in mass spectrometry; analytical chemistry of hazardous waste; and automation and data management. (PLG)

  5. Student Learning and Evaluation in Analytical Chemistry Using a Problem-Oriented Approach and Portfolio Assessment

    ERIC Educational Resources Information Center

    Boyce, Mary C.; Singh, Kuki

    2008-01-01

    This paper describes a student-focused activity that promotes effective learning in analytical chemistry. Providing an environment where students were responsible for their own learning allowed them to participate at all levels from designing the problem to be addressed, planning the laboratory work to support their learning, to providing evidence…

  6. [Analytical chemistry in works of Maria Skłodowska-Curie].

    PubMed

    Hulanicki, Adam

    2012-01-01

    Maria Skłodowska-Curie--a Nobel Prize winner in chemistry--the elements of learning of chemistry gained just by a dint of work of more than ten months in Warsaw in the Institute of Industry and Agriculture Museum. The Nobel Prize concerned a contribution to the progress of chemistry through the discovery of radium and polonium, separation of radium and study of properties of this amazing element. It was awarded for an extremely arduous work, during which the chemical reactions being the principles of analytical chemistry were realized. Unlike to a typical analytical procedure, an initial attempt here was the thousands of kilograms of uranium ore: pitchblende. The final effect was small amounts of new elements: polonium and radium. Both the knowledge and the intuition of the researcher let her have a triumph. The difficulties she experienced because the properties of the searched chemical elements could only be evaluated thanks to the knowledge on other chemical elements. A significant achievement was the determination of the samples by means of radioactivity measurement, which gave rise to radiochemical analytical methods. An extreme analytical precision was demanded in multiple processes of fractional crystallization and precipitation which finally led to the calculation of the atomic mass of radium.

  7. Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Groy, Thomas L.

    2011-01-01

    The enantiomeric excesses determined for eight amino acids and one hydroxy acid of carbonaceous chondrite meteorites represent to date the only case of molecular asymmetry measured outside the biosphere. Because of the chiral homogeneity of life's structures and functions, the findings have been debated for the possible relevance that a-biotic chiral symmetry-breaking might have had in the origin of terrestrial homochirality. While the many unknowns surrounding the origin of life have inevitably hindered the inquiries raised in this discourse, the hypotheses put forward in regard to the origin of extraterrestrial chiral asymmetry, which is a defined physico-chemical phenomenon, have been approached analytically and their scrutiny has aided the understanding of pre-biotic chemical evolution. We report here on our current knowledge of the asymmetric effects that could have influenced the chiral symmetry breaking of molecules in cosmochemical environments and how they correlate with the data obtained from meteorite analyses. We also address recent proposals that aqueous processes might have influenced the chirality of amino acids in meteorites and show that the crystallization behavior of isovaline, the most abundant non-racemic amino acid in the Murchison meteorite, excludes its attainment of enantiomeric excesses via phase changes such as crystallization or sublimation.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    SciTech Connect

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  9. Advances in actinide solid-state and coordination chemistry

    SciTech Connect

    Burns, Peter C; Ikeda, Y.; Czerwinski, K.

    2011-01-31

    Actinide solid-state and coordination chemistry has advanced through unexpected results that have further revealed the complex nature of the 5f elements. Nanoscale control of actinide materials is emerging, as shown by the creation of a considerable range of cluster and tubular topologies. Departures from established structural trends for actinyl ions are provided by cation-cation interactions in which an O atom of one actinyl ion is an equatorial ligand of a bipyramid of another actinyl ion. The solid-state structural complexity of actinide materials has been further demonstrated by open framework materials with interesting properties. The U(VI) tetraoxide core has been added to this cation's repertoire of coordination possibilities. The emergence of pentavalent uranium solid-state and coordination chemistry has resulted from the prudent selection of ligands. Finally, analogues of the uranyl ion have challenged our understanding of this normally unreactive functional group.

  10. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    PubMed

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples.

  11. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment

    PubMed Central

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364

  12. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    ERIC Educational Resources Information Center

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  13. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    NASA Astrophysics Data System (ADS)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    This text, written in English, was developed by the Division of Analytical Chemistry of the Federation of European Chemical Societies to support the university-level Eurocurriculum in analytical chemistry, a major effort of academics and other analytical scientists throughout Europe and an outgrowth of the economic unification of European countries. The goal of a uniform curriculum and text for analytical chemistry across national borders is laudable, and the editors, led by the late Robert Kellner, deserve commendation for their accomplishments. (The U.S., in contrast, has been late in considering the analytical chemistry curriculum and only recently has published a pamphlet, Curricular Developments in the Analytical Sciences, an outgrowth of several NSF-sponsored workshops.) I can't remember another analytical text that begins with mention of the "big bang" and the beginnings of the universe (!), but I don't believe that the authors and publisher are looking to export their curriculum to neighboring planets. However, I am sure that they are interested in the North American market and its strong analytical chemistry community. It is in this context and in comparison with leading analytical texts in the U.S. that I write this review. At first glance, Analytical Chemistry overwhelms. It is a large book of more than 900 pages, a mass of 2.3 kg, and a volume of nearly 3 L. It is not a book that is easy to stuff into a backpack for the trip to class or lab. Students also may resent paying top dollar for a book that might not last the semester, given that the pages of my review copy began to pull away from the binding after only a few days of gentle use. Beneath the snazzy cover there is a dearth of color printing and photographs. This, combined with a smallish font and figures that are inconsistent in size, quality, and font, makes for a book that is not especially easy on the eyes. The large margins provide ample space for the numerous figures, figure captions, and

  14. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  15. Advances in analytical technologies for environmental protection and public safety.

    PubMed

    Sadik, O A; Wanekaya, A K; Andreescu, S

    2004-06-01

    Due to the increased threats of chemical and biological agents of injury by terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat chemical and biochemical toxins. In addition to the right mix of policies and training of medical personnel on how to recognize symptoms of biochemical warfare agents, the major success in combating terrorism still lies in the prevention, early detection and the efficient and timely response using reliable analytical technologies and powerful therapies for minimizing the effects in the event of an attack. The public and regulatory agencies expect reliable methodologies and devices for public security. Today's systems are too bulky or slow to meet the "detect-to-warn" needs for first responders such as soldiers and medical personnel. This paper presents the challenges in monitoring technologies for warfare agents and other toxins. It provides an overview of how advances in environmental analytical methodologies could be adapted to design reliable sensors for public safety and environmental surveillance. The paths to designing sensors that meet the needs of today's measurement challenges are analyzed using examples of novel sensors, autonomous cell-based toxicity monitoring, 'Lab-on-a-Chip' devices and conventional environmental analytical techniques. Finally, in order to ensure that the public and legal authorities are provided with quality data to make informed decisions, guidelines are provided for assessing data quality and quality assurance using the United States Environmental Protection Agency (US-EPA) methodologies. PMID:15173903

  16. Over a century of detection and quantification capabilities in analytical chemistry--historical overview and trends.

    PubMed

    Belter, Magdalena; Sajnóg, Adam; Barałkiewicz, Danuta

    2014-11-01

    The detection limit (LD) and the quantification limit (LQ) are important parameters in the validation process. Estimation of these parameters is especially important when trace and ultra-trace quantities of analyte are to be detected. When the apparatus response from the analyte is below the detection limit, it does not necessarily mean that the analyte is not present in the sample. It may be a message that the analyte concentration could be below the detection capabilities of the instrument or analytical method. By using a more sensitive detector or a different analytical method it is possible to quantitatively determine the analyte in a given sample. The terms associated with detection capabilities have been present in the scientific literature for at least the past 100 years. Numerous terms, definitions and approaches to calculations have been presented during that time period. This paper is an attempt to collect and summarize the principal approaches to the definition and calculation of detection and quantification abilities published from the beginning of 20th century up until the present. Some of the most important methods are described in detail. Furthermore, the authors would like to popularize the knowledge of metrology in chemistry, particularly that part of it which concerns validation of the analytical procedure.

  17. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    SciTech Connect

    Lyon, W. S.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  18. 75 years of the Division of Analytical Chemistry of the American Chemical Society.

    PubMed

    Hirsch, Roland F

    2013-04-01

    The Division of Analytical Chemistry is celebrating the 75th anniversary of its founding in 1938. We celebrate the continuing high importance of our discipline for all aspects of chemical science and for its applications in so many aspects of everyday life. We especially celebrate the accomplishments of our fellow analytical chemists through the years, and the impact we have had on the profession. This article is a short history of the Division within the context of the parallel development of our profession and our science.

  19. Insights from advanced analytics at the Veterans Health Administration.

    PubMed

    Fihn, Stephan D; Francis, Joseph; Clancy, Carolyn; Nielson, Christopher; Nelson, Karin; Rumsfeld, John; Cullen, Theresa; Bates, Jack; Graham, Gail L

    2014-07-01

    Health care has lagged behind other industries in its use of advanced analytics. The Veterans Health Administration (VHA) has three decades of experience collecting data about the veterans it serves nationwide through locally developed information systems that use a common electronic health record. In 2006 the VHA began to build its Corporate Data Warehouse, a repository for patient-level data aggregated from across the VHA's national health system. This article provides a high-level overview of the VHA's evolution toward "big data," defined as the rapid evolution of applying advanced tools and approaches to large, complex, and rapidly changing data sets. It illustrates how advanced analysis is already supporting the VHA's activities, which range from routine clinical care of individual patients--for example, monitoring medication administration and predicting risk of adverse outcomes--to evaluating a systemwide initiative to bring the principles of the patient-centered medical home to all veterans. The article also shares some of the challenges, concerns, insights, and responses that have emerged along the way, such as the need to smoothly integrate new functions into clinical workflow. While the VHA is unique in many ways, its experience may offer important insights for other health care systems nationwide as they venture into the realm of big data. PMID:25006147

  20. Insights from advanced analytics at the Veterans Health Administration.

    PubMed

    Fihn, Stephan D; Francis, Joseph; Clancy, Carolyn; Nielson, Christopher; Nelson, Karin; Rumsfeld, John; Cullen, Theresa; Bates, Jack; Graham, Gail L

    2014-07-01

    Health care has lagged behind other industries in its use of advanced analytics. The Veterans Health Administration (VHA) has three decades of experience collecting data about the veterans it serves nationwide through locally developed information systems that use a common electronic health record. In 2006 the VHA began to build its Corporate Data Warehouse, a repository for patient-level data aggregated from across the VHA's national health system. This article provides a high-level overview of the VHA's evolution toward "big data," defined as the rapid evolution of applying advanced tools and approaches to large, complex, and rapidly changing data sets. It illustrates how advanced analysis is already supporting the VHA's activities, which range from routine clinical care of individual patients--for example, monitoring medication administration and predicting risk of adverse outcomes--to evaluating a systemwide initiative to bring the principles of the patient-centered medical home to all veterans. The article also shares some of the challenges, concerns, insights, and responses that have emerged along the way, such as the need to smoothly integrate new functions into clinical workflow. While the VHA is unique in many ways, its experience may offer important insights for other health care systems nationwide as they venture into the realm of big data.

  1. Reference Intervals of Common Clinical Chemistry Analytes for Adults in Hong Kong

    PubMed Central

    Lo, YC

    2012-01-01

    Background Defining reference intervals is a major challenge because of the difficulty in recruiting volunteers to participate and testing samples from a significant number of healthy reference individuals. Historical literature citation intervals are often suboptimal because they’re be based on obsolete methods and/or only a small number of poorly defined reference samples. Methods Blood donors in Hong Kong gave permission for additional blood to be collected for reference interval testing. The samples were tested for twenty-five routine analytes on the Abbott ARCHITECT clinical chemistry system. Results were analyzed using the Rhoads EP evaluator software program, which is based on the CLSI/IFCC C28-A guideline, and defines the reference interval as the 95% central range. Results Method specific reference intervals were established for twenty-five common clinical chemistry analytes for a Chinese ethnic population. The intervals were defined for each gender separately and for genders combined. Gender specific or combined gender intervals were adapted as appropriate for each analyte. Conclusion A large number of healthy, apparently normal blood donors from a local ethnic population were tested to provide current reference intervals for a new clinical chemistry system. Intervals were determined following an accepted international guideline. Laboratories using the same or similar methodologies may adapt these intervals if deemed validated and deemed suitable for their patient population. Laboratories using different methodologies may be able to successfully adapt the intervals for their facilities using the reference interval transference technique based on a method comparison study.

  2. Reference Intervals of Hematology and Clinical Chemistry Analytes for 1-Year-Old Korean Children

    PubMed Central

    Lee, Hye Ryun; Roh, Eun Youn; Chang, Ju Young

    2016-01-01

    Background Reference intervals need to be established according to age. We established reference intervals of hematology and chemistry from community-based healthy 1-yr-old children and analyzed their iron status according to the feeding methods during the first six months after birth. Methods A total of 887 children who received a medical check-up between 2010 and 2014 at Boramae Hospital (Seoul, Korea) were enrolled. A total of 534 children (247 boys and 287 girls) were enrolled as reference individuals after the exclusion of data obtained from children with suspected iron deficiency. Hematology and clinical chemistry analytes were measured, and the reference value of each analyte was estimated by using parametric (mean±2 SD) or nonparametric methods (2.5-97.5th percentile). Iron, total iron-binding capacity, and ferritin were measured, and transferrin saturation was calculated. Results As there were no differences in the mean values between boys and girls, we established the reference intervals for 1-yr-old children regardless of sex. The analysis of serum iron status according to feeding methods during the first six months revealed higher iron, ferritin, and transferrin saturation levels in children exclusively or mainly fed formula than in children exclusively or mainly fed breast milk. Conclusions We established reference intervals of hematology and clinical chemistry analytes from community-based healthy children at one year of age. These reference intervals will be useful for interpreting results of medical check-ups at one year of age. PMID:27374715

  3. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    PubMed

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.

  4. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  5. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. PMID:24238710

  6. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  7. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory

    NASA Astrophysics Data System (ADS)

    Cancilla, Devon A.

    2001-12-01

    Environmental chemists face difficult challenges related to generating, interpreting, and communicating complex chemical data in a manner understandable by nonchemists. For this reason, it is essential that environmental chemistry students develop the skills necessary not only to collect and interpret complex data sets, but also to communicate their findings in a credible manner in nonscientific forums. Key to this requirement is an understanding of the quality assurance/quality control (QA/QC) elements used to support specific findings. This paper describes the development of a problem-based undergraduate environmental analytical chemistry laboratory and its integration with an undergraduate environmental law course. The course is designed to introduce students to the principles of performance-based analytical methods and the use of environmental indicators to perform environmental assessments. Conducting a series of chemical and toxicological tests, chemistry students perform an environmental assessment on the watershed of the mythical City of Rowan. Law students use these assessments to develop legal arguments under both the Safe Drinking Water Act and the Clean Water Act.

  8. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  9. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    MacAlady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  10. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    SciTech Connect

    Not Available

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  11. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  12. Advanced analytical facilities report of the planetary materials and geochemistry working group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The role of advanced analytical facilities; upgrading/replacement of the existing facilities; the relationship of advanced facilities to the present program; and possible facilities are examined. Major conclusions and recommendations are presented.

  13. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    PubMed

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-01

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. PMID:24079550

  14. Applications of everyday IT and communications devices in modern analytical chemistry: A review.

    PubMed

    Grudpan, Kate; Kolev, Spas D; Lapanantnopakhun, Somchai; McKelvie, Ian D; Wongwilai, Wasin

    2015-05-01

    This paper reviews the development and recent use of everyday communications and IT equipment (mobile phones, digital cameras, scanners, webcams, etc) as detection devices for colorimetric chemistries. Such devices can readily be applied for visible detection using reaction formats such as microfluidic paper based analytical devices (µPADs), indicator papers, and well plate reaction vessels. Their use is highly advantageous with respect to cost, simplicity and portability, and offers many opportunities in the areas of point of care diagnosis, and at-site monitoring of environmental, agricultural, food and beverage parameters.

  15. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    PubMed

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-01

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory.

  16. Applications of everyday IT and communications devices in modern analytical chemistry: A review.

    PubMed

    Grudpan, Kate; Kolev, Spas D; Lapanantnopakhun, Somchai; McKelvie, Ian D; Wongwilai, Wasin

    2015-05-01

    This paper reviews the development and recent use of everyday communications and IT equipment (mobile phones, digital cameras, scanners, webcams, etc) as detection devices for colorimetric chemistries. Such devices can readily be applied for visible detection using reaction formats such as microfluidic paper based analytical devices (µPADs), indicator papers, and well plate reaction vessels. Their use is highly advantageous with respect to cost, simplicity and portability, and offers many opportunities in the areas of point of care diagnosis, and at-site monitoring of environmental, agricultural, food and beverage parameters. PMID:25702989

  17. Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

    PubMed

    Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu

    2014-10-01

    Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012.

  18. Use of standards in nuclear analytical chemistry at ORNL - a historical perspective

    SciTech Connect

    Dyer, F.F.

    1994-12-31

    Standards, the glue that holds empirical science together, have long been recognized as important in nuclear analytical chemistry at Oak Ridge National Laboratory (ORNL). From the earliest days of the nuclear analytical program at ORNL, personnel have been vigorously involved with the evaluation of decay schemes and half-lives to improve radioactive standards. One of the more interesting uses of standards at ORNL was in the Apollo program, where radionuclides were determined in moon rocks by measuring samples containing known amounts of radionuclides that simulated the actual samples in size and shape. This paper briefly reviews some of the early uses of standards at ORNL and contrasts the application of standards in some current work in multielement neutron activation analysis (NAA) that uses germanium gamma-ray detectors with similar work that was performed in the 1960s that made use of NaI(Tl) detectors.

  19. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    PubMed

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed.

  20. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  1. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry. PMID:26785308

  2. Analytical Chemistry at the Laboratoire d'Electrochimie Physique et Analytique.

    PubMed

    Bondarenko, Alexandra; Cortés-Salazar, Fernando; Gasilova, Natalia; Lesch, Andreas; Qiao, Liang; Girault, Hubert H

    2015-01-01

    The Laboratoire d'Electrochimie Physique et Analytique (LEPA) has moved to the new Energypolis campus in Sion. This laboratory is involved in energy research in particular by studying charge transfer reactions at soft interfaces and developing interfacial redox electrocatalysis, by pioneering the concept of photo-ionic cells and by integrating redox flow batteries for the production of hydrogen at the pilot scale. Nonetheless, this laboratory has a long tradition in analytical chemistry with the development of microfabrication techniques such as laser photo-ablation, screen-printing and more recently inkjet printing for the design and fabrication of biosensors and immunosensors. As shown in the present review, the laboratory has recently pioneered new technologies for electrochemical and mass spectrometry imaging and for the screening of allergy in patients. The role of the laboratory in the Valais landscape will be to foster the collaboration with the HES to develop teaching and research in analytical chemistry as this field is a major source of employment for chemists.

  3. Recent advances in the chemistry and biology of pyridopyrimidines.

    PubMed

    Buron, F; Mérour, J Y; Akssira, M; Guillaumet, G; Routier, S

    2015-05-01

    The interest in pyridopyrimidine cores for pharmaceutical products makes this scaffold a highly useful building block for organic chemistry. These derivatives have found applications in various areas of medicine such as anticancer, CNS, fungicidal, antiviral, anti-inflammatory, antimicrobial, and antibacterial therapies. This review mainly focuses on the progress achieved since 2004 in the chemistry and biological activity of pyridopyrimidines.

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    SciTech Connect

    Lyon, W.S.

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  5. Sample Acquisition and Analytical Chemistry Challenges to Verifying Compliance to Aviators Breathing Oxygen (ABO) Purity Specification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has been developing and testing two different types of oxygen separation systems. One type of oxygen separation system uses pressure swing technology, the other type uses a solid electrolyte electrochemical oxygen separation cell. Both development systems have been subjected to long term testing, and performance testing under a variety of environmental and operational conditions. Testing these two systems revealed that measuring the product purity of oxygen, and determining if an oxygen separation device meets Aviator's Breathing Oxygen (ABO) specifications is a subtle and sometimes difficult analytical chemistry job. Verifying product purity of cryogenically produced oxygen presents a different set of analytical chemistry challenges. This presentation will describe some of the sample acquisition and analytical chemistry challenges presented by verifying oxygen produced by an oxygen separator - and verifying oxygen produced by cryogenic separation processes. The primary contaminant that causes gas samples to fail to meet ABO requirements is water. The maximum amount of water vapor allowed is 7 ppmv. The principal challenge of verifying oxygen produced by an oxygen separator is that it is produced relatively slowly, and at comparatively low temperatures. A short term failure that occurs for just a few minutes in the course of a 1 week run could cause an entire tank to be rejected. Continuous monitoring of oxygen purity and water vapor could identify problems as soon as they occur. Long term oxygen separator tests were instrumented with an oxygen analyzer and with an hygrometer: a GE Moisture Monitor Series 35. This hygrometer uses an aluminum oxide sensor. The user's manual does not report this, but long term exposure to pure oxygen causes the aluminum oxide sensor head to bias dry. Oxygen product that exceeded the 7 ppm specification was improperly accepted, because the sensor had biased. The bias is permanent - exposure to air does not cause the sensor to

  6. Development of an Advanced Training Course for Teachers and Researchers in Chemistry

    ERIC Educational Resources Information Center

    Dragisich, Vera; Keller, Valerie; Black, Rebecca; Heaps, Charles W.; Kamm, Judith M.; Olechnowicz, Frank; Raybin, Jonathan; Rombola, Michael; Zhao, Meishan

    2016-01-01

    Based on our long-standing Intensive Training Program for Effective Teaching Assistants in Chemistry, we have developed an Advanced Training Course for Teachers and Researchers in Chemistry at The University of Chicago. The topics in this course are designed to train graduate teaching assistants (GTAs) to become effective teachers and well-rounded…

  7. Independent Learning Project for Advanced Chemistry (ILPAC). Teachers' and Technicians' Notes for First Year Units.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    The Independent Learning Project for Advanced Chemistry (ILPAC) has produced units of study for students in A-level chemistry. Students completing ILPAC units assume a greater responsibility for their own learning and can work, to some extent, at their own pace. By providing guidance, and detailed solutions to exercises in the units, supported by…

  8. What Does a Student Know Who Earns a Top Score on the Advanced Placement Chemistry Exam?

    ERIC Educational Resources Information Center

    Claesgens, Jennifer; Daubenmire, Paul L.; Scalise, Kathleen M.; Balicki, Scott; Gochyyev, Perman; Stacy, Angelica M.

    2014-01-01

    This paper compares the performance of students at a high-performing U.S. public school (n = 64) on the advanced placement (AP) chemistry exam to their performance on the ChemQuery assessment system. The AP chemistry exam was chosen because, as the National Research Council acknowledges, it is the "perceived standard of excellence and school…

  9. ADVANCES IN GREEN CHEMISTRY: CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION, ISBN 81-901238-5-8

    EPA Science Inventory

    16. Abstract Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation
    Microwave-accelerated chemical syntheses in solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predomi...

  10. Recent trends and advances in food chemistry and analysis: research highlights from the IX Italian Congress of Food Chemistry.

    PubMed

    Novellino, Ettore; Ritieni, Alberto; Rastrelli, Luca

    2013-02-27

    The IX Italian Congress of Food Chemistry (ChimAlSi_2012) contributed 12 lectures, 66 conferences, and 290 posters to the wealth of food knowledge; these were presented in four sessions: food safety, analytical techniques, bioactive compounds, and nutraceuticals. Emerging topics were discussed in two workshops dealing with food contaminants, and food and health. It has been an excellent forum for passionate exchange of recent results obtained in traditional and emerging fields of food chemistry. The symposium allowed coverage of the broad diversity of food-related topics, comprising food contaminants and food quality and the application of analytical approaches, such as sensorial, physical, chemical, spectroscopic, hyphenated mass spectrometric, biological and chemometric techniques, as well as nutrition and health aspects.

  11. Surface chemistry: Key to control and advance myriad technologies

    PubMed Central

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  12. Chemistry, College Level. Annotated Bibliography of Tests.

    ERIC Educational Resources Information Center

    Educational Testing Service, Princeton, NJ. Test Collection.

    Most of the 30 tests cited in this bibliography are those of the American Chemical Society. Subjects covered include physical chemistry, organic chemistry, inorganic chemistry, analytical chemistry, and other specialized areas. The tests are designed only for advanced high school, and both bachelor/graduate degree levels of college students. This…

  13. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  14. Teaching Effective Communication in a Writing-Intensive Analytical Chemistry Course

    NASA Astrophysics Data System (ADS)

    Whelan, Rebecca J.; Zare, Richard N.

    2003-08-01

    Effective writing and speaking skills are vital for chemical professionals, yet traditional academic preparation does little to develop these skills. In this report, we describe classroom-tested strategies for teaching writing and speaking. In the context of a required lecture and laboratory course in analytical chemistry, students gain extensive experience with reading, writing, revising, and speaking in the way that professional chemists do. Students improve their writing skills by preparing four laboratory reports that follow the conventions of the chemical literature. One of the reports is prepared collaboratively to reflect the real experience of professional chemists. Individualized conferences and critiques by more experienced peers lead to extensive revision of a graded report. Several activities encourage the students to develop an appreciation of the organization and strategy of a scientific article. Finally, the students practice oral communication by preparing and delivering a short presentation, including visual aids, based on a paper from the literature.

  15. Do New Pennies Lose Their Shells? Hypothesis Testing in the Sophomore Analytical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Stolzberg, Richard J.

    1998-11-01

    Post-1982 pennies have a varying copper content that can be investigated in the introductory analytical chemistry lab. Groups of four students analyzed ten pennies sampled from the entire minting period to test the hypothesis that the copper shell wears out with time. The results of the flame atomic absorption spectrometry measurements disproved the hypothesis. Four groups observed an increase of 2 mg of copper per year of circulation, the opposite of the behavior expected if the hypothesis were true. Two groups reported a strong positive correlation between copper content and original penny mass. Only one group observed random variations in copper content. Copper-clad copper pennies have a dynamically changing copper content that could be the result of minting variability or changes accompanying the storage of pennies. Student reactions to these results are noted. Future experiments are suggested.

  16. Ascorbic Acid as a Standard for Iodometric Titrations. An Analytical Experiment for General Chemistry

    NASA Astrophysics Data System (ADS)

    Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.

    1999-10-01

    Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.

  17. Analytical Models of Exoplanetary Atmospheres. III. Gaseous C-H-O-N Chemistry with Nine Molecules

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Tsai, Shang-Min

    2016-10-01

    We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary atmospheres that include the carbon, oxygen, and nitrogen networks. Our hydrogen-dominated solutions involve acetylene (C2H2), ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO), ethylene (C2H4), hydrogen cyanide (HCN), methane (CH4), molecular nitrogen (N2), and water (H2O). By considering only the gas phase, we prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of 10 degrees). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs free energy minimization and demonstrate that they are accurate at the ˜ 1 % level for temperatures from 500 to 3000 K. In hydrogen-dominated atmospheres, the ratio of abundances of HCN to CH4 is nearly constant across a wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our validated formulae allow for the convenient benchmarking of chemical kinetics codes and provide an efficient way of enforcing chemical equilibrium in atmospheric retrieval calculations.

  18. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques

    PubMed Central

    Oedit, Amar; Ramautar, Rawi; Hankemeier, Thomas

    2016-01-01

    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid‐liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre‐concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012–November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed. PMID:26864699

  19. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  20. Infrared Ion Spectroscopy at Felix: Applications in Peptide Dissociation and Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Oomens, Jos

    2016-06-01

    Infrared free electron lasers such as those in Paris, Berlin and Nijmegen have been at the forefront of the development of infrared ion spectroscopy. In this contribution, I will give an overview of new developments in IR spectroscopy of stored ions at the FELIX Laboratory. In particular, I will focus on recent developments made possible by the coupling of a new commercial ion trap mass spectrometer to the FELIX beamline. The possibility to record IR spectra of mass-selected molecular ions and their reaction products has in recent years shed new light on our understanding of collision induced dissociation (CID) reactions of protonated peptides in mass spectrometry (MS). We now show that it is possible to record IR spectra for the products of electron transfer dissociation (ETD) reactions [M + nH]n+ + A- → [M + nH](n-1)+ + A → {dissociation of analyte} These reactions are now widely used in novel MS-based protein sequencing strategies, but involve complex radical chemistry. The spectroscopic results allow stringent verification of computationally predicted product structures and hence reaction mechanisms and H-atom migration. The sensitivity and high dynamic range of a commercial mass spectrometer also allows us to apply infrared ion spectroscopy to analytes in complex "real-life" mixtures. The ability to record IR spectra with the sensitivity of mass-spectrometric detection is unrivalled in analytical sciences and is particularly useful in the identification of small (biological) molecules, such as in metabolomics. We report preliminary results of a pilot study on the spectroscopic identification of small metabolites in urine and plasma samples.

  1. Tetraglyme Trap for the Determination of Volatile Organic Compounds in Urban Air: Projects for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.

    2004-01-01

    The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…

  2. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  3. Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics Lecture: Broadband Rotational Spectroscopy for Chemical Kinetics, Molecular Structure, and Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2013-03-01

    Advances in high-speed digital electronics have enabled a new generation of molecular rotational spectroscopy techniques that provide instantaneous broadband spectral coverage. These techniques use a chirped excitation pulse to coherently excite the molecular sample over a spectral bandwidth of 10 GHz or larger through rapid passage. The subsequent time-domain emission is recorded using high-speed digitizers (up to 100 Gigasample/s) and the frequency domain spectrum is produced by fast Fourier transformation. The chirped-pulse Fourier transform (CP-FT) method has been implemented in the microwave frequency range (2-40 GHz) for studies of cold samples in pulsed jet sources and in the mm-wave/terahertz (THz) frequency range for studies of samples at room-temperature. The method has opened new applications for molecular rotational spectroscopy in the area of chemical kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. In these applications, the isomerization rate is obtained from an analysis of the overall line shapes which are modified by chemical exchange leading to coalescence behavior similar to the effect in NMR spectroscopy. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly increased the size range of molecules and molecular clusters for structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Application to the structure of water clusters with up to 15 water molecules will be presented. When coupled with advances in solid-state mm-wave/THz devices, this method provides a direct digital technique for analytical chemistry of room-temperature gases based on molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Work

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    SciTech Connect

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  5. Advances in Assays and Analytical Approaches for Botulinum Toxin Detection

    SciTech Connect

    Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.; Bruckner-Lea, Cindy J.; Marks, James D.

    2010-08-04

    Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.

  6. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    SciTech Connect

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  7. Understanding the impact of pre-analytic variation in haematological and clinical chemistry analytes on the power of association studies

    PubMed Central

    Gaye, Amadou; Peakman, Tim; Tobin, Martin D; Burton, Paul R

    2014-01-01

    Background: Errors, introduced through poor assessment of physical measurement or because of inconsistent or inappropriate standard operating procedures for collecting, processing, storing or analysing haematological and biochemistry analytes, have a negative impact on the power of association studies using the collected data. A dataset from UK Biobank was used to evaluate the impact of pre-analytical variability on the power of association studies. Methods: First, we estimated the proportion of the variance in analyte concentration that may be attributed to delay in processing using variance component analysis. Then, we captured the proportion of heterogeneity between subjects that is due to variability in the rate of degradation of analytes, by fitting a mixed model. Finally, we evaluated the impact of delay in processing on the power of a nested case-control study using a power calculator that we developed and which takes into account uncertainty in outcome and explanatory variables measurements. Results: The results showed that (i) the majority of the analytes investigated in our analysis, were stable over a period of 36 h and (ii) some analytes were unstable and the resulting pre-analytical variation substantially decreased the power of the study, under the settings we investigated. Conclusions: It is important to specify a limited delay in processing for analytes that are very sensitive to delayed assay. If the rate of degradation of an analyte varies between individuals, any delay introduces a bias which increases with increasing delay. If pre-analytical variation occurring due to delays in sample processing is ignored, it affects adversely the power of the studies that use the data. PMID:25085103

  8. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  9. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  10. Development and validation of a path analytic model of students' performance in chemistry

    NASA Astrophysics Data System (ADS)

    Anamuah-Mensah, Jophus; Erickson, Gaalen; Gaskell, Jim

    This article reports the development and validation of an integrated model of performance on a chemical concept - volumetric analysis. From the chemical literature a path-analytic model of performance on volumetric analysis calculation was postulated based on studies utilizing the proportional reasoning schema of Piaget and the Cumulative learning theory of Gagne. This integrated model hypothesized some relationships among the variables: direct proportional reasoning, inverse proportional reasoning, prerequisite concepts (content) and performance on volumetric analysis calculations. This model was postulated for the two groups of students involved in the study - that is those who use algorithms with understanding and those who use algorithms without understanding. Two hundred and sixty-five grade twelve chemistry students in eight schools (14 classes) in the lower mainland of British Columbia, Canada participated fully in the study. With the exception of the test on volumetric analysis calculations all the other tests were administered prior to the teaching of the unit on volumetric analysis. The results of the study indicate that for subjects using algorithms without understanding, their performance on VA problems is not influenced by proportional reasoning strategies while for those who use algorithms with understanding, their performance is influenced by proportional reasoning strategies.

  11. Analytical chemistry measurement assurance programs: More than just measurement control programs

    SciTech Connect

    Clark, J.P.; Shull, A.H.

    1997-01-01

    Assurance of measurement accuracy and precision is required and/or recommended by regulations and guides for good laboratory practices for analytical chemistry laboratories. Measurement Control programs(MCPs) and or Measurement Assurance programs (MAPs) are means for determining and controlling the accuracy and precision of a laboratory`s measurements. Regulations and guides often allow for interpretation of what is necessary to assure measurement quality and how it is done. Consequently, a great diversity exists between laboratories` measurement quality control programs. This paper will describe various levels of measurement control(MC) and the differences between a comprehensive MAP and various levels of MCPs. It will explain the benefits of establishing a comprehensive MAP based on a set of basic principles. MCPs range from go/no-go testing of a check standard`s measurement against control limits to a comprehensive MAP. Features of the latter include: an independent verisimilitude (matrix matched) standard having known uncertainties; customer tolerance limits as well as control limits; statistical tests for bias and precision testing; and estimating the total measurement process uncertainty based upon the combination of both the measurement system and standard`s uncertainties. A commercial measurement assurance program (JTIPMAP TradeMark) was evaluated by the author`s laboratories and compared to locally developed as well as other commercial software packages. Results of the evaluation, comparisons, conclusions and recommendations are presented.

  12. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  13. Advances in Chemistry and Bioactivity of the Genus Chisocheton Blume.

    PubMed

    Shilpi, Jamil A; Saha, Sanjib; Chong, Soon-Lim; Nahar, Lutfun; Sarker, Satyajit D; Awang, Khalijah

    2016-05-01

    Chisocheton is one of the genera of the family Meliaceae and consists of ca. 53 species; the distribution of most of those are confined to the Indo-Malay region. Species of broader geographic distribution have undergone extensive phytochemical investigations. Previous phytochemical investigations of this genus resulted in the isolation of mainly limonoids, apotirucallane, tirucallane, and dammarane triterpenes. Reported bioactivities of the isolated compounds include cytotoxic, anti-inflammatory, antifungal, antimalarial, antimycobacterial, antifeedant, and lipid droplet inhibitory activities. Aside from chemistry and biological activities, this review also deals briefly with botany, distribution, and uses of various species of this genus. PMID:26970405

  14. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  15. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  16. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    NASA Astrophysics Data System (ADS)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  17. Recent advances in optical measurement methods in physics and chemistry

    SciTech Connect

    Gerardo, J.B.

    1985-01-01

    Progress being made in the development of new scientific measurement tools based on optics and the scientific advances made possible by these new tools is impressive. In some instances, new optical-based measurement methods have made new scientific studies possible, while in other instances they have offered an improved method for performing these studies, e.g., better signal-to-noise ratio, increased data acquisition rate, remote analysis, reduced perturbation to the physical or chemical system being studied, etc. Many of these advances were made possible by advances in laser technology - spectral purity, spectral brightness, tunability, ultrashort pulse width, amplitude stability, etc. - while others were made possible by improved optical components - single-made fibers, modulators, detectors, wavelength multiplexes, etc. Attention is limited to just a few of many such accomplishments made recently at Sandia. 17 references, 16 figures.

  18. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    PubMed

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  19. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  20. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  1. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  2. Recent advances in glycerol polymers: chemistry and biomedical applications.

    PubMed

    Zhang, Heng; Grinstaff, Mark W

    2014-11-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, the underlying chemistry of glycerol that provides access to a range of monomers for subsequent polymerizations is described. Then, the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth are reviewed. Next, several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity are described. Fourth, the growing market opportunity for the use of polymers in medicine is described. Finally, the findings are concluded and summarized, as well as the potential opportunities for continued research efforts are discussed.

  3. Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach

    PubMed Central

    2014-01-01

    Background There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing durable molecular markers to follow these genes in breeding populations. In this report, fruit from two cultivars, varying for presence-absence of volatile compounds, along with segregating progeny, were analyzed using GC/MS and RNAseq. Expression data were bulked in silico according to presence/absence of a given volatile compound, in this case γ-decalactone, a compound conferring a peach flavor note to fruits. Results Computationally sorting reads in segregating progeny based on γ-decalactone presence eliminated transcripts not directly relevant to the volatile, revealing transcripts possibly imparting quantitative contributions. One candidate encodes an omega-6 fatty acid desaturase, an enzyme known to participate in lactone production in fungi, noted here as FaFAD1. This candidate was induced by ripening, was detected in certain harvests, and correlated with γ-decalactone presence. The FaFAD1 gene is present in every genotype where γ-decalactone has been detected, and it was invariably missing in non-producers. A functional, PCR-based molecular marker was developed that cosegregates with the phenotype in F1 and BC1 populations, as well as in many other cultivars and wild Fragaria accessions. Conclusions Genetic, genomic and analytical chemistry techniques were combined to identify FaFAD1, a gene likely controlling a key flavor volatile in strawberry. The same data may now be re-sorted based on presence/absence of any other volatile to identify other flavor-affecting candidates, leading to rapid generation of gene-specific markers. PMID:24742080

  4. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    ERIC Educational Resources Information Center

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  5. Statement of work for analytical services provided to Westinghouse Hanford Company by the Pacific Northwest National Laboratory analytical chemistry laboratory

    SciTech Connect

    Perry, J.K., Westinghouse Hanford

    1996-05-24

    The purpose of this Statement of Work is to establish laboratory analytical criteria and requirements associated with radioactive airborne emissions measurements. The criteria and requirements in this document apply to airborne emissions measurement activities funded by WHC managed facilities in the 300 and 400 areas.

  6. FGD chemistry and analytical methods handbook: Volume 2, Chemical and physical test methods: Revision 1: Final report

    SciTech Connect

    Not Available

    1988-11-01

    The purpose of this handbook is to provide a comprehensive guide to sampling, analytical, and physical test methods essential to the operation, maintenance, and understanding of flue gas desulfurization (FGD) system chemistry. EPRI sponsored the first edition of this three-volume report in response to the needs of electric utility personnel responsible for establishing and operating commercial FGD analytical laboratories. The second, revised editions of Volumes 1 and 2 were prompted by the results of research into various non-standard aspects of FGD system chemistry. Volume 1 of the handbook explains FGD system chemistry in the detail necessary to understand how the processes operate and how process performance indicators can be used to optimize system operation. Volume 2 includes 63 physical-testing and chemical-analysis methods for reagents, slurries, and solids and information on the applicability of individual methods to specific FGD systems. Volume 3 contains instructions for an FGD solution chemistry computer program designed by EPRI as FGDLIQEQ. Executable on IBM-compatible personal computers, this program calculates the concentrations (activities) of chemical species (ions) in scrubber liquor and can calculate driving forces for important chemical reactions such as SO/sub 2/ absorption and calcium sulfite and surface precipitation. This program and selected chemical analyses will help an FGD system operator optimize system performance, prevent many potential process problems, and define solutions to existing problems.

  7. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  8. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  9. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  10. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  11. The Halogens. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the elements and compounds of Group IV (halogens) of the periodic table. Level one deals with the physical and chemical properties of the individual elements. Level two considers…

  12. Bonding and Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S4.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical bonding is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides an introduction to the main types of chemical bonding and important aspects of structure. The main emphasis is placed on such topics as ionic and covalent bonding,…

  13. s-Block Elements. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two sections and an appendix, focuses on the elements and compounds of Groups I and II (the s-block) of the periodic table. The groups are treated concurrently to note comparisons between groups and to…

  14. Chemical Energetics. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical energetics is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides a clear yet detailed and thorough introduction to the topic. Level one extends ideas from previous courses, introduces and emphasizes the importance of Hess'…

  15. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  16. Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…

  17. The Mole. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the mole is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, designed to help students consolidate some of the ideas about the mole learned in previous courses, consists of two levels. The first level focuses on: (1) relative mass; (2) the concept of the mole as the unit…

  18. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  19. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  20. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  1. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    ERIC Educational Resources Information Center

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  2. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  3. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  4. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    NASA Astrophysics Data System (ADS)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p < 0.001) compared to that of the students in the comparison group. PBL was shown to have a positive effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  5. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    PubMed

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    SciTech Connect

    Shults, W.D.; Lyon, W.S.

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  7. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  8. The influence of surface chemistry on GSR particles: using XPS to complement SEM/EDS analytical techniques

    NASA Astrophysics Data System (ADS)

    Schwoeble, A. J.; Strohmeier, Brian R.; Piasecki, John D.

    2010-06-01

    Gunshot residue particles (GSR) were examined using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) to illustrate the size, shape, morphology, and elemental composition normally observed in particulate resulting from a discharged firearm. Determining the presence of lead (Pb), antimony (Sb), and barium (Ba), barring other elemental tags, fused together in a single particle with the correct morphology, is all that is required for the positive identification of GSR. X-ray photoelectron spectroscopy (XPS), however, can reveal more detailed information on surface chemistry than SEM/EDS. XPS is a highly surface-sensitive (<= ~10 nm), non-destructive, analytical technique that provides qualitative information for all elements except hydrogen and helium. Nanometer-scale sampling depth and its ability to provide unique chemical state information make XPS a potential technique for providing important knowledge on the surface chemistry of GSR that complements results obtained from SEM/EDS analysis.

  9. Analysis of the Essential Nutrient Strontium in Marine Aquariums by Atomic Absorption Spectroscopy: An Undergraduate Analytical Chemistry Laboratory Exercise

    NASA Astrophysics Data System (ADS)

    Gilles de Pelichy, Laurent D.; Adam, Carl; Smith, Eugene T.

    1997-10-01

    An undergraduate atomic absorption spectroscopy (AAS) laboratory experiment is presented involving the analysis of the essential nutrient strontium in a real-life sample, sea water. The quantitative analysis of strontium in sea water is a problem well suited for an undergraduate analytical chemistry laboratory. Sea water contains numerous components which prevent the direct quantitative determination of strontium. Students learn first hand about the role of interferences in analytical measurements, and about the method of standard addition which is used to minimize these effects. This laboratory exercise also introduces undergraduate students to practical problems associated with AAS. We encourage students as a part of this experiment to collect and analyze marine water samples from local pet shops.

  10. A Multidisciplinary Science Summer Camp for Students with Emphasis on Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Schwarz, Gunnar; Frenzel, Wolfgang; Richter, Wolfgang M.; Ta¨uscher, Lothar; Kubsch, Georg

    2016-01-01

    This paper presents the course of events of a five-day summer camp on environmental chemistry with high emphasis on chemical analysis. The annual camp was optional and open for students of all disciplines and levels. The duration of the summer camp was five and a half days in the Feldberg Lake District in northeast Germany (federal state of…

  11. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  12. Using Cooperative Learning to Teach Chemistry: A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Warfa, Abdi-Rizak M.

    2016-01-01

    A meta-analysis of recent quantitative studies that examine the effects of cooperative learning (CL) on achievement outcomes in chemistry is presented. Findings from 25 chemical education studies involving 3985 participants (N[subscript treatment] = 1,845; N[subscript control] = 2,140) and published since 2001 show positive association between…

  13. Development and Validation of a Path Analytic Model of Students' Performance in Chemistry.

    ERIC Educational Resources Information Center

    Anamuah-Mensah, Jophus; And Others

    1987-01-01

    Reported the development and validation of an integrated model of performance on chemical concept-volumetric analysis. Model was tested on 265 chemistry students in eight schools.Results indicated that for subjects using algorithms without understanding, performance on volumetric analysis problems was not influenced by proportional reasoning…

  14. The role of big data and advanced analytics in drug discovery, development, and commercialization.

    PubMed

    Szlezák, N; Evers, M; Wang, J; Pérez, L

    2014-05-01

    In recent years, few ideas have captured the imagination of health-care practitioners as much as the advent of "big data" and the advanced analytical methods and technologies used to interpret it-it is a trend seen as having the potential to revolutionize biology, medicine, and health care.(1,2,3) As new types of data and tools become available, a unique opportunity is emerging for smarter and more effective discovery, development, and commercialization of innovative biopharmaceutical drugs.

  15. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  16. Opening Remarks for "Analytical Chemistry, Monitoring, and Environmental Fate and Transport" Session at Fluoros 2015

    EPA Science Inventory

    There have been a number of revolutionary developments during the past decade that have led to a much more comprehensive understanding of per- and polyfluoroalkyl substances (PFASs) in the environment. Improvements in analytical instrumentation have made liquid chromatography tri...

  17. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  18. High School Students' Attitudes and Beliefs on Using the Science Writing Heuristic in an Advanced Placement Chemistry Class

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    This paper discusses student attitudes and beliefs on using the Science Writing Heuristic (SWH) in an advanced placement (AP) chemistry classroom. During the 2007 school year, the SWH was used in a class of 24 AP chemistry students. Using a Likert-type survey, student attitudes and beliefs on the process were determined. Methods for the study are…

  19. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  20. Advancing Chemistry with the Lanthanide and Actinide Elements Final Report, September 2013

    SciTech Connect

    Evans, William John

    2013-09-11

    The objective of this research is to use the unique chemistry available from complexes of the lanthanides and actinides, as well as related heavy metals such as scandium, yttrium, and bismuth to advance chemistry in energy-related areas. The lanthanides and actinides have a combination of properties in terms of size, charge, electropositive character, and f valence orbitals that provides special opportunities to probe reactivity and catalysis in ways not possible with the other metals in the periodic table. We seek to discover reaction pathways and structural types that reveal new options in reaction chemistry related to energy. Identification of new paradigms in structure and reactivity should stimulate efforts to develop new types of catalytic processes that at present are not under consideration because either the transformation or the necessary intermediates are unknown. This project is one half of my laboratory’s DOE research which was split 50:50 between Catalysis and Heavy Element Chemistry programs in 2010. Hence, this report is for a half-project.

  1. Selected clinical chemistry analytes correlate with the pathogenesis of inclusion body hepatitis experimentally induced by fowl aviadenoviruses.

    PubMed

    Matos, Miguel; Grafl, Beatrice; Liebhart, Dieter; Schwendenwein, Ilse; Hess, Michael

    2016-10-01

    In the present study, clinical chemistry was applied to assess the pathogenesis and progression of experimentally induced inclusion body hepatitis (IBH). For this, five fowl aviadenovirus (FAdV) strains from recent IBH field outbreaks were used to orally inoculate different groups of day-old specific pathogen-free chickens, which were weighed, sampled and examined during necropsy by sequential killing. Mortalities of 50% and 30% were recorded in two groups between 6 and 9 days post-infection (dpi), along with a decreased weight of 23% and 20%, respectively, compared to the control group. Macroscopical changes were seen in the liver and kidney between 6 and 10 dpi, with no lesions being observed in the other organs. Histological lesions were observed in the liver and pancreas during the same period. Plasma was collected from killed birds of each group at each time point and the following clinical chemistry analytes were investigated: aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), bile acids, total protein, albumin, uric acid and lipase. Plasma protein profile, AST and GLDH, together with bile acids values paralleled the macroscopical and histopathological lesions in the liver, while plasma lipase activity levels coincided with lesions observed in pancreas. In agreement with the histology and clinical chemistry, viral load in the target organs, liver and pancreas, was highest at 7 dpi. Thus, clinical chemistry was found to be a valuable tool in evaluating and monitoring the progression of IBH in experimentally infected birds, providing a deeper knowledge of the underlying pathophysiological mechanisms of a FAdV infection in chickens.

  2. Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics

    PubMed Central

    Chen, Jason S.; Edmonds, David J.; Estrada, Anthony A.

    2009-01-01

    Lead-in Ever since the world-shaping discovery of penicillin, nature’s molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for anti-infective agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug development stories, the overwhelming majority of which have their origins in nature. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies for future developments in the field. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on the total synthesis, analog design, and biological evaluation of molecules with novel mechanisms of action. PMID:19130444

  3. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    SciTech Connect

    Lyon, W.S.

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  4. Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers

    SciTech Connect

    1997-12-31

    Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    SciTech Connect

    Lyon, W.S.

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    SciTech Connect

    Lyon, W.S.

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  7. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  8. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  9. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  10. Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.

    ERIC Educational Resources Information Center

    Gostowski, Rudy

    A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…

  11. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  12. Constructing Environmental Impact Statements. An Organizational Focus for Teaching Analytical Environmental Chemistry

    NASA Astrophysics Data System (ADS)

    Libes, Susan M.

    1999-12-01

    Preparation of an environmental impact statement (EIS) is the organizational focus for an undergraduate lab course in environmental chemistry. Students work collaboratively through the semester to prepare an EIS following National Environmental Policy Act (NEPA) guidelines. This involves several stages of activity including a scoping process, field sampling, and laboratory analyses, modeling of the results to predict impacts, and report writing. To maximize student interest and make sampling practical, the proposed activity for which the EIS is prepared is locally based. Laboratory analyses are performed using the U.S. EPA's standard methods for turbidity, color, coliforms, nutrients, trace metals, alkalinity, petroleum hydrocarbons, and chlorinated pesticides. The completed EIS is defended in a mock public hearing at which students play assigned roles. In addition to requiring a high degree of group work, this approach emphasizes the interdisciplinary nature of environmental chemistry and the difficulty of using scientific data to perform risk assessments. Preparation of an EIS is a federal or state requirement for many construction projects and hence students get a chance to experience a potential career area as well as acquire a marketable skill.

  13. Computerized real-time quality control program for analytical chemistry laboratories

    SciTech Connect

    Dill, M.S.; Floyd, M.A.; Morrow, R.W.

    1985-10-01

    A unique computer program has been developed for complete quality control/quality assurance of the operation and statistical control of the testing in the analytical laboratory. The system operates similar to a scanner on a production line with effective checkpoints and furnishes immediate feedback by automatically generated mail messages to appropriate personnel when any non-conformance is encountered. Corrective action is required by the technician prior to proceeding with the analysis.

  14. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR). PMID:25882406

  15. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR).

  16. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  17. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial-process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  18. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  19. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory. PMID:27139664

  20. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.

  1. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces. PMID:16902710

  2. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  3. The development of paper microzone-based green analytical chemistry methods for determining the quality of wines.

    PubMed

    Vaher, M; Kaljurand, M

    2012-08-01

    The colorimetric determination of the concentration of polyphenols, flavonoids, and anthocyanins in wine samples, using a mobile phone camera for sample spot capture on a paper microzone and a remote computer with dedicated software for quantification, is presented as an illustrative application of green analytical chemistry. A comparison of the results with conventional spectrophotometry demonstrates that both methods yield similar results. Developing the assay took approximately 2 months, and the use of chemicals, compared with spectrophotometry, was reduced by about two orders of magnitude: the paper assay consumed 0.4 mL of reagent for 100 samples, whereas the spectrophotometric assay required 100 mL. The relative testing times for 100 samples were 7 h by spectrophotometry and 2 h for paper-a savings on the order of 3.5. No analytical instrumentation was used for the colorimetry on paper microzones. Instead, the assay took advantage of the existing communication technology and free software. The assay was found to be effective, with a nonlinear response at the concentration range of 0.2-5 g/L. The detection limit of the proposed method is in sub-grams per liter. PMID:22434277

  4. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    PubMed

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  5. The development of paper microzone-based green analytical chemistry methods for determining the quality of wines.

    PubMed

    Vaher, M; Kaljurand, M

    2012-08-01

    The colorimetric determination of the concentration of polyphenols, flavonoids, and anthocyanins in wine samples, using a mobile phone camera for sample spot capture on a paper microzone and a remote computer with dedicated software for quantification, is presented as an illustrative application of green analytical chemistry. A comparison of the results with conventional spectrophotometry demonstrates that both methods yield similar results. Developing the assay took approximately 2 months, and the use of chemicals, compared with spectrophotometry, was reduced by about two orders of magnitude: the paper assay consumed 0.4 mL of reagent for 100 samples, whereas the spectrophotometric assay required 100 mL. The relative testing times for 100 samples were 7 h by spectrophotometry and 2 h for paper-a savings on the order of 3.5. No analytical instrumentation was used for the colorimetry on paper microzones. Instead, the assay took advantage of the existing communication technology and free software. The assay was found to be effective, with a nonlinear response at the concentration range of 0.2-5 g/L. The detection limit of the proposed method is in sub-grams per liter.

  6. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

    PubMed Central

    Pohanka, Miroslav

    2015-01-01

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman’s assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone’s integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans’s assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results’ relevance. PMID:26110404

  7. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2012-04-01

    Modern analytical chemistry of industrial products is in need of rapid, robust, and cheap analytical methods to continuously monitor product quality parameters. For this reason, spectroscopic methods are often used to control the quality of industrial products in an on-line/in-line regime. Vibrational spectroscopy, including mid-infrared (MIR), Raman, and near-infrared (NIR), is one of the best ways to obtain information about the chemical structures and the quality coefficients of multicomponent mixtures. Together with chemometric algorithms and multivariate data analysis (MDA) methods, which were especially created for the analysis of complicated, noisy, and overlapping signals, NIR spectroscopy shows great results in terms of its accuracy, including classical prediction error, RMSEP. However, it is unclear whether the combined NIR + MDA methods are capable of dealing with much more complex interpolation or extrapolation problems that are inevitably present in real-world applications. In the current study, we try to make a rather general comparison of linear, such as partial least squares or projection to latent structures (PLS); "quasi-nonlinear", such as the polynomial version of PLS (Poly-PLS); and intrinsically non-linear, such as artificial neural networks (ANNs), support vector regression (SVR), and least-squares support vector machines (LS-SVM/LSSVM), regression methods in terms of their robustness. As a measure of robustness, we will try to estimate their accuracy when solving interpolation and extrapolation problems. Petroleum and biofuel (biodiesel) systems were chosen as representative examples of real-world samples. Six very different chemical systems that differed in complexity, composition, structure, and properties were studied; these systems were gasoline, ethanol-gasoline biofuel, diesel fuel, aromatic solutions of petroleum macromolecules, petroleum resins in benzene, and biodiesel. Eighteen different sample sets were used in total. General

  8. ELISA and GC-MS as Teaching Tools in the Undergraduate Environmental Analytical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Wilson, Ruth I.; Mathers, Dan T.; Mabury, Scott A.; Jorgensen, Greg M.

    2000-12-01

    An undergraduate experiment for the analysis of potential water pollutants is described. Students are exposed to two complementary techniques, ELISA and GC-MS, for the analysis of a water sample containing atrazine, desethylatrazine, and simazine. Atrazine was chosen as the target analyte because of its wide usage in North America and its utility for students to predict environmental degradation products. The water sample is concentrated using solid-phase extraction for GC-MS, or diluted and analyzed using a competitive ELISA test kit for atrazine. The nature of the water sample is such that students generally find that ELISA gives an artificially high value for the concentration of atrazine. Students gain an appreciation for problems associated with measuring pollutants in the aqueous environment: sensitivity, accuracy, precision, and ease of analysis. This undergraduate laboratory provides an opportunity for students to learn several new analysis and sample preparation techniques and to critically evaluate these methods in terms of when they are most useful.

  9. Ruthenium Vinylidene and Acetylide Complexes. An Advanced Undergraduate Multi-technique Inorganic/Organometallic Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    McDonagh, Andrew M.; Deeble, Geoffrey J.; Hurst, Steph; Cifuentes, Marie P.; Humphrey, Mark G.

    2001-02-01

    This experiment describes the isolation and characterization of complexes containing examples of two important monohapto ligands, namely vinylidene (C=CHR) and alkynyl (C ? CR) ligands. The former is a tautomer of acetylene that has minimal (10-10 s) existence as an uncomplexed molecule, providing an interesting example of the stabilization of reactive organic species at transition metals--an important motif in organometallic chemistry. The latter ligand affords complexes that have attracted a great deal of interest recently for their potentially useful electronic or optical properties, illustrating a major focus of contemporary organometallic chemistry, the search for useful materials. The particular strength of this experiment is in demonstrating the utility of a range of spectroscopic and analytical techniques in inorganic complex identification. The students observe unusual chemical shifts in the 13C NMR (vinylidene metal-bound carbon), meet heteronuclear NMR (31P), assign intense metal-to-ligand charge transfer (MLCT) bands in the UV-visible spectra, observe the utility of mass spectra in characterizing complexes of poly-isotopic transition metals, and are introduced to redox potentials (cyclic voltammetry).

  10. Recent advances in semi-analytical scattering models for NDT simulation

    NASA Astrophysics Data System (ADS)

    Darmon, M.; Chatillon, S.; Mahaut, S.; Calmon, P.; Fradkin, L. J.; Zernov, V.

    2011-01-01

    For several years, CEA-LIST and partners have been developing ultrasonic simulation tools with the aim of modelling non-destructive evaluation. The existing ultrasonic modules allow us to simulate fully real ultrasonic inspection scenarios in a range of applications which requires the computation of the propagated beam, as well as its interaction with flaws. To fulfil requirements of an intensive use (for parametric studies), the choice has been made to adopt mainly analytical approximate or exact methods to model the scattering of ultrasound by flaws. The applied analytical theories (Kirchhoff and Born approximations, GTD, SOV...) were already described in previous GDR communication. Over the years, this "semi-analytical" approach has been enriched by adaptations and improvements of the existing models or by new models, in order to extend the applicability of the simulation tools. This paper is devoted to the following recent advances performed in the framework of this approach: The SOV method based on the exact analytical model for the scattering from a cylindrical cavity has been extended in 3D to account for field variations along the cylinder. This new 3D model leads to an improvement in simulation of small side-drilled holes. Concerning the geometrical theories of diffraction (GTD), subroutines for calculation of the 2D wedge diffraction coefficients (for bulk or Rayleigh incident waves) have been developed by the Waves and Fields Group and uniform corrections (UAT and UTD) are under investigation. Modelling of the contribution of the head wave and creeping wave to the echoes arising from a wedge. Numerous experimental validations of the developed models are provided. New possibilities offered by these new developments are emphasized.

  11. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  12. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    ERIC Educational Resources Information Center

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  13. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  14. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  15. Assessing spatial, temporal, and analytical variation of groundwater chemistry in a large nuclear complex, USA.

    PubMed

    Chou, Charissa J

    2006-08-01

    Statistical analyses were applied at the Hanford Site, USA, to assess groundwater contamination problems that included (1) determining local backgrounds to ascertain whether a facility is affecting the groundwater quality and (2) determining a 'pre-Hanford' groundwater background to allow formulation of background-based cleanup standards. The primary purpose of this paper is to extend the random effects models for (1) assessing the spatial, temporal, and analytical variability of groundwater background measurements; (2) demonstrating that the usual variance estimate s2, which ignores the variance components, is a biased estimator; (3) providing formulas for calculating the amount of bias; and (4) recommending monitoring strategies to reduce the uncertainty in estimating the average background concentrations. A case study is provided. Results indicate that (1) without considering spatial and temporal variability, there is a high probability of false positives, resulting in unnecessary remediation and/or monitoring expenses; (2) the most effective way to reduce the uncertainty in estimating the average background, and enhance the power of the statistical tests in general, is to increase the number of background wells; and (3) background for a specific constituent should be considered as a statistical distribution, not as a single value or threshold. The methods and the related analysis of variance tables discussed in this paper can be used as diagnostic tools in documenting the extent of inherent spatial and/or temporal variation and to help select an appropriate statistical method for testing purposes.

  16. Assessing Spatial, Temporal, and Analytical Variation of Groundwater Chemistry in a Large Nuclear Complex, USA

    SciTech Connect

    Chou, Charissa J.

    2006-08-01

    Statistical analyses were applied at the Hanford Site, USA to assess groundwater contamination problems that included (1) determining local backgrounds to ascertain whether a facility is affecting the groundwater quality; and (2) determining a ‘pre-Hanford’ groundwater background to allow formulation of background-based cleanup standards. The primary purpose of this paper is to extend the random effects models for (1) assessing the spatial, temporal, and analytical variability of groundwater background measurements; (2) demonstrating that the usual variance estimate s-squared, which ignores the variance components, is a biased estimator; (3) providing formulas for calculating the amount of bias; and (4) recommending monitoring strategies to reduce the uncertainty in estimating the average background concentrations. A case study is provided. Results indicate that (1) without considering spatial and temporal variability, there is a high probability of false positives, resulting in unnecessary remediation and/or monitoring expenses; (2) the most effective way to reduce the uncertainty in estimating the average background, and enhance the power of the statistical tests in general, is to increase the number of background wells; and (3) background for a specific constituent should be considered as a statistical distribution, not as a single value or threshold. The methods and the related analysis of variance tables discussed in this paper can be used as diagnostic tools in documenting the extent of inherent spatial and/or temporal variation and to help select an appropriate statistical method for testing purposes.

  17. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  18. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  19. A One-Pot Synthesis of m-Terphenyls: A Guided Exploration of Reaction Chemistry, Chromatography, and Spectroscopy. A Miniproject for the Advanced Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Anam, Kishorekumar T.; Curtis, Michael P.; Irfan, Muhammad J.; Johnson, Michael P.; Royer, Andrew P.; Shahmohammadi, Kianor; Vinod, Thottumkara K.

    2002-05-01

    This four-week project-based laboratory exercise, developed for advanced organic chemistry students, involves a one-pot synthesis of m-terphenyls. Chemistry of aryl diazonium salts and Grignard reagents and reactivity of aryne intermediates toward nucleophilic reagents form the reaction chemistry basis for the project. The project exposes students to a number of important laboratory techniques (thin-layer chromatography, gas chromatography-mass spectrometry, and column chromatography) for monitoring reaction progress and product isolation. A variety of spectroscopic techniques, including IR, 1H NMR, 13C NMR, and attached proton test are used for product characterization. Students are also introduced to a useful empirical relationship to help predict (with considerable accuracy) the 13C chemical shift values of carbon atoms of substituted benzenes.

  20. Insights into the physical chemistry of materials from advances in HAADF-STEM

    SciTech Connect

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.

  1. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGES

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  2. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. PMID:25847169

  3. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested.

  4. The Mosquito Online Advanced Analytic Service: a case study for school research projects in Thailand.

    PubMed

    Wongkoon, Siriwan; Jaroensutasinee, Mullica; Jaroensutasinee, Krisanadej

    2013-07-01

    The Mosquito Online Advanced Analytic Service (MOAAS) provides an essential tool for querying, analyzing, and visualizing patterns of mosquito larval distribution in Thailand. The MOAAS was developed using Structured Query Language (SQL) technology as a web-based tool for data entry and data access, webMathematica technology for data analysis and data visualization, and Google Earth and Google Maps for Geographic Information System (GIS) visualization. Fifteen selected schools in Thailand provided test data for MOAAS. Users performed data entry using the web-service, data analysis, and data visualization tools with webMathematica, data visualization with bar charts, mosquito larval indices, and three-dimensional (3D) bar charts overlaying on the Google Earth and Google Maps. The 3D bar charts of the number of mosquito larvae were displayed along with spatial information. The mosquito larvae information may be useful for dengue control efforts and health service communities for planning and operational activities.

  5. The Mosquito Online Advanced Analytic Service: a case study for school research projects in Thailand.

    PubMed

    Wongkoon, Siriwan; Jaroensutasinee, Mullica; Jaroensutasinee, Krisanadej

    2013-07-01

    The Mosquito Online Advanced Analytic Service (MOAAS) provides an essential tool for querying, analyzing, and visualizing patterns of mosquito larval distribution in Thailand. The MOAAS was developed using Structured Query Language (SQL) technology as a web-based tool for data entry and data access, webMathematica technology for data analysis and data visualization, and Google Earth and Google Maps for Geographic Information System (GIS) visualization. Fifteen selected schools in Thailand provided test data for MOAAS. Users performed data entry using the web-service, data analysis, and data visualization tools with webMathematica, data visualization with bar charts, mosquito larval indices, and three-dimensional (3D) bar charts overlaying on the Google Earth and Google Maps. The 3D bar charts of the number of mosquito larvae were displayed along with spatial information. The mosquito larvae information may be useful for dengue control efforts and health service communities for planning and operational activities. PMID:24050090

  6. Big data, advanced analytics and the future of comparative effectiveness research.

    PubMed

    Berger, Marc L; Doban, Vitalii

    2014-03-01

    The intense competition that accompanied the growth of internet-based companies ushered in the era of 'big data' characterized by major innovations in processing of very large amounts of data and the application of advanced analytics including data mining and machine learning. Healthcare is on the cusp of its own era of big data, catalyzed by the changing regulatory and competitive environments, fueled by growing adoption of electronic health records, as well as efforts to integrate medical claims, electronic health records and other novel data sources. Applying the lessons from big data pioneers will require healthcare and life science organizations to make investments in new hardware and software, as well as in individuals with different skills. For life science companies, this will impact the entire pharmaceutical value chain from early research to postcommercialization support. More generally, this will revolutionize comparative effectiveness research.

  7. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering. PMID:27640372

  8. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering.

  9. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories. PMID:7889593

  10. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  11. Synchrotron IR spectromicroscopy: chemistry of living cells.

    PubMed

    Holman, Hoi-Ying N; Bechtel, Hans A; Hao, Zhao; Martin, Michael C

    2010-11-01

    Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  12. Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry.

    PubMed

    Youngvises, Napaporn; Thanurak, Porapichcha; Chaida, Thanatcha; Jukmunee, Jaroon; Alsuhaimi, Awadh

    2015-01-01

    Microfluidics minimize the amounts of reagents and generate less waste. While microdevices are commonly single-sided, producing a substrate with microchannels on multiple surfaces would increase their usefulness. Herein, a polymethymethacrylate substrate incorporating microchannel structures on two sides was sandwiched between two polydimethylsiloxane sheets to create a multi-analysis device, which was used for the spectrophotometric analysis of the ferrous ion (Fe(2+)) and the ferric ion (Fe(3+)), by utilizing colorimetric detection. To monitor the signals from both channel networks, dual optical sensors were integrated into the system. The linear ranges for Fe(2+) and Fe(3+) analyses were 0.1 - 20 mg L(-1) (R(2) = 0.9988) and 1.0 - 40 mg L(-1) (R(2) = 0.9974), respectively. The detection limits for Fe(2+) and Fe(3+) were 0.1 and 0.5 mg L(-1), respectively. The percent recoveries of Fe(2+) and Fe(3+) were 93.5 - 104.3 with an RSD < 8%. The microdevice demonstrated capabilities for simultaneous analysis, low waste generation (7.2 mL h(-1)), and high sample throughput (180 h(-1)), making it ideal for greener analytical chemistry applications. PMID:25958864

  13. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  14. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  15. SUPPORT FOR CHEMISTRY SYMPOSIA AT THE 2011 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE MEETING FEBRUARY 17-21, 2011

    SciTech Connect

    Prof. Charles Casey, University of Wisconsin-Madison

    2011-08-20

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the

  16. Support for chemistry symposia at the 2011 American Association for the Advancement of Science meeting, February 17-21 2011

    SciTech Connect

    Charles Casey

    2011-08-20

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the

  17. Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks

    2016-06-01

    Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.

  18. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    NASA Astrophysics Data System (ADS)

    Wright, John C.

    1996-09-01

    this course by cooperative take-home examinations. Students can discuss problems but their answers must be their own. This format allows more realistic and complex questions, although there are limits to the sophistication level that is achievable. Typical questions might include simulating the spectra that result for different pH and reagent concentrations when Cd2+, a chelating agent, and a complexation indicator are mixed. The question uses concepts that appeared in the first research paper exercise, but it requires reformulating it in a different context. Students report that the examinations are a reliable indicator of their comprehension and problem-solving skills. Correlation plots of cooperative vs. traditional examination results show no significant differences. Spreadsheets Spreadsheet programs have become recognized as very powerful devices for teaching in analytical chemistry because they provide the power required to tackle complex equilibria. At the same time, they are accessible to the unsophisticated student and they are important tools for a student to master. The spreadsheet programs are used in both lecture and laboratory contexts. Exercises are assigned that increase student proficiency gradually. Starting from a simple successive approximation exercise, students advance to creating species distribution functions (alpha-plots) for weak acids and then to modeling a titration curve including nonideality corrections. They also use computers for data acquisition in conjunction with a scanning spectrophotometer and data analysis of the overlapping spectra in a two-component mixture. Open-Ended Laboratory Projects The open-ended projects are the heart of the course. They have well-defined goals, but students are free to use their own creativity in reaching the goals. A listing of projects that have been used in the course is given in Table 1. The measurement of the pKa of an indicator and the development of a spectroscopic pH meter were projects used in

  19. Leveraging advanced data analytics, machine learning, and metrology models to enable critical dimension metrology solutions for advanced integrated circuit nodes

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Zhang, Yunlin; Kagalwala, Taher; Bailey, Todd

    2014-10-01

    Integrated circuit (IC) technology is changing in multiple ways: 193i to extreme ultraviolet exposure, planar to nonplanar device architecture, from single exposure lithography to multiple exposure and directed self-assembly (DSA) patterning, and so on. Critical dimension (CD) control requirement is becoming stringent and more exhaustive: CD and process windows are shrinking, three-sigma CD control of <2 nm is required in complex geometries, and a metrology uncertainty of <0.2 nm is required to achieve the target CD control for advanced IC nodes (e.g., 14, 10, and 7 nm nodes). There are fundamental capability and accuracy limits in all the metrology techniques that are detrimental to the success of advanced IC nodes. Reference or physical CD metrology is provided by atomic force microscopy (CD-AFM) and TEM while workhorse metrology is provided by CD-SEM, scatterometry, and model-based infrared reflectrometry (MBIR). Precision alone is not sufficient for moving forward. No single technique is sufficient to ensure the required accuracy of patterning. The accuracy of CD-AFM is ˜1 nm and the precision in TEM is poor due to limited statistics. CD scanning electron microscopy (CD-SEM), scatterometry, and MBIR need to be calibrated by reference measurements for ensuring the accuracy of patterned CDs and patterning models. There is a dire need for a measurement with <0.5 nm accuracy and the industry currently does not have that capability with inline measurements. Being aware of the capability gaps for various metrology techniques, we have employed data processing techniques and predictive data analytics, along with patterning simulation and metrology models and data integration techniques to selected applications demonstrating the potential solution and practicality of such an approach to enhance CD metrology accuracy. Data from multiple metrology techniques have been analyzed in multiple ways to extract information with associated uncertainties and integrated to extract

  20. Integrated assessment of runoff from livestock farming operations: analytical chemistry, in vitro bioassays, and in vivo fish exposures

    USGS Publications Warehouse

    Cavallin, Jenna E.; Durhan, Elizabeth J.; Evans, Nicola; Jensen, Kathleen M.; Kahl, Michael D.; Kolpin, Dana W.; Kolodziej, Edward P.; Foreman, William T.; LaLone, Carlie A.; Makynen, Elizabeth A.; Seidl, Sara M.; Thomas, Linnea M.; Villeneuve, Daniel L.; Weberg, Matthew A.; Wilson, Vickie S.; Ankley, Gerald T.

    2014-01-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture. 

  1. Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures.

    PubMed

    Cavallin, Jenna E; Durhan, Elizabeth J; Evans, Nicola; Jensen, Kathleen M; Kahl, Michael D; Kolpin, Dana W; Kolodziej, Edward P; Foreman, William T; LaLone, Carlie A; Makynen, Elizabeth A; Seidl, Sara M; Thomas, Linnea M; Villeneuve, Daniel L; Weberg, Matthew A; Wilson, Vickie S; Ankley, Gerald T

    2014-08-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture. PMID:24831736

  2. Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures.

    PubMed

    Cavallin, Jenna E; Durhan, Elizabeth J; Evans, Nicola; Jensen, Kathleen M; Kahl, Michael D; Kolpin, Dana W; Kolodziej, Edward P; Foreman, William T; LaLone, Carlie A; Makynen, Elizabeth A; Seidl, Sara M; Thomas, Linnea M; Villeneuve, Daniel L; Weberg, Matthew A; Wilson, Vickie S; Ankley, Gerald T

    2014-08-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture.

  3. Knowledge Style Profiling: An Exploration of Cognitive, Temperament, Demographic and Organizational Characteristics among Decision Makers Using Advanced Analytical Technologies

    ERIC Educational Resources Information Center

    Polito, Vincent A., Jr.

    2010-01-01

    The objective of this research was to explore the possibilities of identifying knowledge style factors that could be used as central elements of a professional business analyst's (PBA) performance attributes at work for those decision makers that use advanced analytical technologies on decision making tasks. Indicators of knowledge style were…

  4. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  5. Evaluation of clinical chemistry analytes from a single mouse using diluted plasma: effective way to reduce the number of animals in toxicity studies.

    PubMed

    Goyal, Vinod Kumar; Pandey, Santosh Kumar; Kakade, Somesh; Nirogi, Ramakrishna

    2016-10-01

    Clinical chemistry is an essential analytical tool in many areas of research, drug assessment and development, and in the evaluation of general health. A certain amount of blood is required to evaluate all blood analytes. Experiments where mice are used, it is difficult to measure all analytes due to the small amount of blood that can be obtained from a single animal. To overcome this problem, separate cohorts of animals are used in toxicity studies for hematology and biochemistry analysis. This requires the use of extra animals and additional resources. Hence interpretation of results derived from using these different animals can be unreliable. This study was undertaken to explore the possibility of using diluted plasma for measuring various biochemistry analytes. Plasma from mice was diluted to 3, 5 and 10-fold with Water for Injection, and various biochemistry analytes were analyzed using an automated analyzer. Results of diluted and undiluted plasma from the same mouse were compared. Most of the analytes from the diluted plasma were found to be well within the ranges of the undiluted plasma except for sodium, potassium and chloride. Diluting plasma to analyze some analytes also freed up undiluted plasma for analyzing electrolytes. In conclusion, in order to obtain reliable and interpretable data from a single mouse it is worthwhile considering diluting the plasma, which should reduce the number of animals used in an experiment.

  6. AALIM: a cardiac clinical decision support system powered by advanced multi-modal analytics.

    PubMed

    Amir, Arnon; Beymer, David; Grace, Julia; Greenspan, Hayit; Gruhl, Daniel; Hobbs, Allen; Pohl, Kilian; Syeda-Mahmood, Tanveer; Terdiman, Joseph; Wang, Fei

    2010-01-01

    Modern Electronic Medical Record (EMR) systems often integrate large amounts of data from multiple disparate sources. To do so, EMR systems must align the data to create consistency between these sources. The data should also be presented in a manner that allows a clinician to quickly understand the complete condition and history of a patient's health. We develop the AALIM system to address these issues using advanced multimodal analytics. First, it extracts and computes multiple features and cues from the patient records and medical tests. This additional metadata facilitates more accurate alignment of the various modalities, enables consistency check and empowers a clear, concise presentation of the patient's complete health information. The system further provides a multimodal search for similar cases within the EMR system, and derives related conditions and drugs information from them. We applied our approach to cardiac data from a major medical care organization and found that it produced results with sufficient quality to assist the clinician making appropriate clinical decisions.

  7. Advances in Analytical and Numerical Dispersion Modeling of Pollutants Releasing from an Area-source

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Praneeth

    The air quality near agricultural activities such as tilling, plowing, harvesting, and manure application is of main concern because they release fine particulate matter into the atmosphere. These releases are modeled as area-sources in the air quality modeling research. None of the currently available dispersion models relate and incorporate physical characteristics and meteorological conditions for modeling the dispersion and deposition of particulates emitting from such area-sources. This knowledge gap was addressed by developing the advanced analytical and numerical methods for modeling the dispersion of particulate matter. The development, application, and evaluation of new dispersion modeling methods are discussed in detail in this dissertation. In the analytical modeling, a ground-level area source analytical dispersion model known as particulate matter deposition -- PMD was developed for predicting the concentrations of different particle sizes. Both the particle dynamics (particle physical characteristics) and meteorological conditions which have significant effect on the dispersion of particulates were related and incorporated in the PMD model using the formulations of particle gravitational settling and dry deposition velocities. The modeled particle size concentrations of the PMD model were evaluated statistically after applying it to particulates released from a biosolid applied agricultural field. The evaluation of the PMD model using the statistical criteria concluded effective and successful inclusion of dry deposition theory for modeling particulate matter concentrations. A comprehensive review of analytical area-source dispersion models, which do not account for dry deposition and treat pollutants as gases, was conducted and determined three models -- the Shear, the Parker, and the Smith. A statistical evaluation of these dispersion models was conducted after applying them to two different field data sets and the statistical results concluded that

  8. Development of new methods and polyphosphazene chemistries for advanced materials applications

    NASA Astrophysics Data System (ADS)

    Hindenlang, Mark D.

    The work described within this thesis focuses on the design, synthesis, and characterization of new phosphazenes with potential in advanced materials applications. Additionally, these unique polymers required the development of novel reaction methods or the investigation of new phosphazene chemistry to achieve their synthesis. Chapter 1 lays out some of the basic principles and fundamentals of polymer chemistry. Chapter 2 investigates the use of iodinated polyphosphazenes as x-ray opaque materials. Single-substituent polymers with 4-iodophenoxy or 4-iodophenylanaline ethyl ester units as the only side groups were prepared. Although a single-substitutent polymer with 3,5-diiodotyrosine ethyl ester groups was difficult to synthesize, probably because of steric hindrance, mixed-substituent polymers that contained the non-iodinated ethyl esters of glycyine, alanine, or phenylalanine plus a corresponding iodinated substituent, could be synthesized. Multinuclear NMR spectroscopy was used to follow the substitution of side groups onto the phosphazene back bone and judge the ratio of substituents. Chapter 3 details the initial investigation into 3,4-dihydroxy-L-phenylalanine ethyl ester and dopamine substituted polyphosphazenes that could be applied to a number of applications. L-DOPAEE was acetonide protected to prevent crosslinking reactions by the catechole functionality. Cyclic small molecule studies and macromolecular substitution reactions on the linear high polymer were conducted with the protected L-DOPA. Continuing studies into protection of the dopamine catechol have elucidated a viable method for the synthesis of amino-linked dopamine polymers. Chapter 4 describes a method for the synthesis of phosphazenes with quaternary amine complexes as potential antibacterial agents. Replacement reactions of pyridine alkoxides and chlorophosphazenes were first attempted at the small molecule level to study the reactivities of pyridine alkoxides. The formation of an

  9. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    NASA Astrophysics Data System (ADS)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  10. Advances in the analytical methodologies: Profiling steroids in familiar pathways-challenging dogmas.

    PubMed

    Bloem, Liezl M; Storbeck, Karl-Heinz; Swart, Pieter; du Toit, Therina; Schloms, Lindie; Swart, Amanda C

    2015-09-01

    . Undoubtedly, the continuous advances in the analytical methodologies used for steroid profiling and quantification will give impetus to the unraveling of the remaining enigmas, old and new, of both hormone biosynthesis and metabolism.

  11. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. PMID:26183807

  12. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product.

  13. Bridging the Cognitive-Affective Gaps: Teaching Chemistry while Advancing Affective Objectives. The Singapore Curricular Experience

    ERIC Educational Resources Information Center

    Tan, Kok Siang; Goh, Ngoh Khang; Chia, Lian Sai

    2006-01-01

    Chemistry teachers face constraints when trying to integrate cognitive and affective objectives, and hence thoughtful lesson planning is required to achieve the goal. Chemistry teachers can educate students to be knowledgeable about chemical concepts, processes and the benefits of responsible practice by the chemical industry, while being aware,…

  14. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  15. Filling a Plastic Bag with Carbon Dioxide: A Student-Designed Guided-Inquiry Lab for Advanced Placement and College Chemistry Courses

    ERIC Educational Resources Information Center

    Lanni, Laura M.

    2014-01-01

    A guided-inquiry lab, suitable for first-year general chemistry or high school advanced placement chemistry, is presented that uses only inexpensive, store-bought materials. The reaction of sodium bicarbonate (baking soda) with aqueous acetic acid (vinegar), under the constraint of the challenge to completely fill a sealable plastic bag with the…

  16. Integrated homeland security system with passive thermal imaging and advanced video analytics

    NASA Astrophysics Data System (ADS)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.

  17. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  18. Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances

    SciTech Connect

    Garrett, Bruce C.; Dixon, David A.; Camaioni, Donald M.; Chipman, Daniel M.; Johnson, Mark A.; Jonah, Charles D.; Kimmel, Greg A.; Miller, John H.; Rescigno, Tom; Rossky, Peter J.; Xantheas, Sotiris S.; Colson, Steve D.; Laufer, Allan H.; Ray, Douglas; Barbara, Paul F.; Bartels, David M.; Bowen, Kit H.; Becker, Kurt H.; Bradforth, Stephen E.; Carmichael, Ian; Coe, James V.; Corrales, L. Rene; Cowin, James P.; Dupuis, Michel; Eisenthal, Kenneth B.; Franz, James A.; Gutowski, Maciej S.; Jordon, Kenneth D.; Kay, Bruce D.; La Verne, Jay A.; Lymar, Sergei V.; Madey, Theodore E.; Mccurdy, C. W.; Meisel, Dan; Mukamel, Shaul; Nilsson, Anders R.; Orlando, Thomas M.; Petrik, Nikolay G.; Pimblott, Simon M.; Rustad, James R.; Schenter, Gregory K.; Singer, Sherwin J.; Tokmakoff, Andrei; Wang, Lai-Sheng; Wittig, Curt; Zwier, Timothy S.

    2005-01-12

    An understanding of electron-initiated processes in aqueous systems and the subsequent radical chemistry these processes induce is significant in such diverse fields as waste remediation and environmental cleanup, radiation processing, nuclear reactors, and medical diagnosis and therapy. We review the state of the art in the physical chemistry and chemical physics of electron-initiated processes in aqueous systems and raise critical research issues and fundamental questions that remain unanswered.

  19. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    PubMed

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry. PMID:22526656

  20. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    PubMed

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.

  1. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    Oceans are the general emitter of dimethyl sulphide (DMS), the major natural sulphur source (Andreae, 1990), and cover approximately 70 % of earth's surface. The main DMS oxidation products are SO2, H2SO4 and methyl sulfonic acid (MSA). Hence, DMS is very important for formation of non-sea salt sulphate (nss SO42-) aerosols and secondary particulate matter and thus global climate. Despite many previous model studies, there are still important knowledge gaps, especially in aqueous phase DMS chemistry, of its atmospheric fate (Barnes et al., 2006). Therefore, a comprehensive multiphase DMS chemistry mechanism, the CAPRAM DMS module 1.0 (DM1.0), has been developed. The DM1.0 includes 103 gas phase reactions, 5 phase transfers and 54 aqueous phase reactions. It was coupled with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0α (Rickard et al., 2015; Bräuer et al., 2016) and the extended CAPRAM halogen module 2.1 (HM2.1, Bräuer et al., 2013) for investigation of multiphase DMS oxidation in the marine boundary layer. Then, a pristine ocean scenario was simulated using the air parcel model SPACCIM (Wolke et al., 2005) including 8 non-permanent cloud passages - 4 at noon and 4 at midnight. This allows the investigation of the influence of deliquesced particles and clouds on multiphase DMS chemistry during both daytime and nighttime conditions as well as under cloud formation and evaporation. To test the influence of various subsystems on multiphase DMS chemistry different sensitivity runs were performed. Investigations of multiphase chemistry of DMS and its important oxidation products were done using concentration-time profiles and detailed time-resolved reaction flux analyses. The model studies revealed the importance of aqueous phase chemistry for DMS and its oxidation products. Overall about 7.0% of DMS is effectively oxidised by O3 in the aqueous phase of clouds. The simulations revealed the importance of halogen and aqueous phase chemistry for DMS and its

  2. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    Oceans are the general emitter of dimethyl sulphide (DMS), the major natural sulphur source (Andreae, 1990), and cover approximately 70 % of earth's surface. The main DMS oxidation products are SO2, H2SO4 and methyl sulfonic acid (MSA). Hence, DMS is very important for formation of non-sea salt sulphate (nss SO42-) aerosols and secondary particulate matter and thus global climate. Despite many previous model studies, there are still important knowledge gaps, especially in aqueous phase DMS chemistry, of its atmospheric fate (Barnes et al., 2006). Therefore, a comprehensive multiphase DMS chemistry mechanism, the CAPRAM DMS module 1.0 (DM1.0), has been developed. The DM1.0 includes 103 gas phase reactions, 5 phase transfers and 54 aqueous phase reactions. It was coupled with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0α (Rickard et al., 2015; Bräuer et al., 2016) and the extended CAPRAM halogen module 2.1 (HM2.1, Bräuer et al., 2013) for investigation of multiphase DMS oxidation in the marine boundary layer. Then, a pristine ocean scenario was simulated using the air parcel model SPACCIM (Wolke et al., 2005) including 8 non-permanent cloud passages - 4 at noon and 4 at midnight. This allows the investigation of the influence of deliquesced particles and clouds on multiphase DMS chemistry during both daytime and nighttime conditions as well as under cloud formation and evaporation. To test the influence of various subsystems on multiphase DMS chemistry different sensitivity runs were performed. Investigations of multiphase chemistry of DMS and its important oxidation products were done using concentration-time profiles and detailed time-resolved reaction flux analyses. The model studies revealed the importance of aqueous phase chemistry for DMS and its oxidation products. Overall about 7.0% of DMS is effectively oxidised by O3 in the aqueous phase of clouds. The simulations revealed the importance of halogen and aqueous phase chemistry for DMS and its

  3. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    SciTech Connect

    Cousseau, P.; Engelstad, R.; Henderson, D.L.

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing.

  4. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products

    PubMed Central

    Rovina, Kobun; Siddiquee, Shafiquzzaman; Shaarani, Sharifudin M.

    2016-01-01

    Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R′ = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods. PMID:27303385

  5. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products.

    PubMed

    Rovina, Kobun; Siddiquee, Shafiquzzaman; Shaarani, Sharifudin M

    2016-01-01

    Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R' = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods. PMID:27303385

  6. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  7. Exploring Interactive and Dynamic Simulations Using a Computer Algebra System in an Advanced Placement Chemistry Course

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2014-01-01

    The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…

  8. Advanced Chemistry for Operators. Training Module 1.321.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with inorganic and general organic chemistry as applied to water and wastewater treatment. Included are objectives, instructor guides, and student handouts. The module contains material related to chemical reactions in water solutions,…

  9. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  10. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  11. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  12. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers. PMID:25860255

  13. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  14. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  15. Analytical procedures for estimating structural response to acoustic fields generated by advanced launch systems, phase 2

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.

    1994-01-01

    This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.

  16. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  17. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  18. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  19. Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics.

    PubMed

    Kudyba, Stephan; Gregorio, Thomas

    2010-12-01

    Managing patients' length of stay is a critical task for healthcare organizations. In order to better manage the processes impacting this performance metric, providers can leverage data resources describing the network of activities that impact a patient's stay with analytic methods. Interdependencies between departmental activities exist within the patient treatment process, where inefficiency in one element of the patient care network of activities can adversely affect process outcomes.This work utilizes the method of neural networks to analyze data describing inpatient cases that incorporate radiology process variables to determine their effect on patient length of stay excesses for a major NJ based healthcare provider. The results indicate that inefficiencies at the radiology level can adversely extend a patient's length of stay beyond initial estimations. Proactive analysis of networks of activities in the patient treatment process can enhance organizational efficiencies of healthcare providers by enabling decision makers to better optimize resource allocations to increase throughput of activities.

  20. Highlights on the recent advances in gold chemistry--a photophysical perspective.

    PubMed

    Yam, Vivian Wing-Wah; Cheng, Eddie Chung-Chin

    2008-09-01

    The presence of inter- and/or intra-molecular aurophilic interactions among the closed-shell gold(I) centres in various systems has been studied from various aspects, including synthetic, spectroscopic and theoretical approaches. The employment of different ligands can impose a significant influence on these factors and give rise to new complexes with interesting structural and photophysical properties. In this tutorial review, a number of recent examples are selected to illustrate the fascinating properties and chemistry, as well as versatility of gold(I) in these aspects and their potential applications to newcomers in this field. An emerging class of luminescent gold(III) complexes is also described.

  1. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-11-21

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  2. Leveraging Smart Meter Data through Advanced Analytics: Applications to Building Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Jalori, Saurabh

    The poor energy efficiency of buildings is a major barrier to alleviating the energy dilemma. Historically, monthly utility billing data was widely available and analytical methods for identifying building energy efficiency improvements, performing building Monitoring and Verification (M&V) and continuous commissioning (CCx) were based on them. Although robust, these methods were not sensitive enough to detect a number of common causes for increased energy use. In recent years, prevalence of short-term building energy consumption data, also known as Energy Interval Data (EID), made available through the Smart Meters, along with data mining techniques presents the potential of knowledge discovery inherent in this data. This allows more sophisticated analytical tools to be developed resulting in greater sensitivities due to higher prediction accuracies; leading to deep energy savings and highly efficient building system operations. The research explores enhancements to Inverse Statistical Modeling techniques due to the availability of EID. Inverse statistical modeling is the process of identification of prediction model structure and estimates of model parameters. The methodology is based on several common statistical and data mining techniques: cluster analysis for day typing, outlier detection and removal, and generation of building scheduling. Inverse methods are simpler to develop and require fewer inputs for model identification. They can model changes in energy consumption based on changes in climatic variables and up to a certain extent, occupancy. This makes them easy-to-use and appealing to building managers for evaluating any general retrofits, building condition monitoring, continuous commissioning and short-term load forecasting (STLF). After evaluating several model structures, an elegant model form was derived which can be used to model daily energy consumption; which can be extended to model energy consumption for any specific hour by adding corrective

  3. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    NASA Astrophysics Data System (ADS)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  4. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  5. Advanced qualification of pharmaceutical excipient suppliers by multiple analytics and multivariate analysis combined.

    PubMed

    Hertrampf, A; Müller, H; Menezes, J C; Herdling, T

    2015-11-10

    Pharmaceutical excipients have different functions within a drug formulation, consequently they can influence the manufacturability and/or performance of medicinal products. Therefore, critical to quality attributes should be kept constant. Sometimes it may be necessary to qualify a second supplier, but its product will not be completely equal to the first supplier product. To minimize risks of not detecting small non-similarities between suppliers and to detect lot-to-lot variability for each supplier, multivariate data analysis (MVA) can be used as a more powerful alternative to classical quality control that uses one-parameter-at-a-time monitoring. Such approach is capable of supporting the requirements of a new guideline by the European Parliament and Council (2015/C-95/02) demanding appropriate quality control strategies for excipients based on their criticality and supplier risks in ensuring quality, safety and function. This study compares calcium hydrogen phosphate from two suppliers. It can be assumed that both suppliers use different manufacturing processes. Therefore, possible chemical and physical differences were investigated by using Raman spectroscopy, laser diffraction and X-ray powder diffraction. Afterwards MVA was used to extract relevant information from each analytical technique. Both CaHPO4 could be discriminated by their supplier. The gained knowledge allowed to specify an enhanced strategy for second supplier qualification.

  6. Advanced organic analysis and analytical methods development: FY 1995 progress report. Waste Tank Organic Safety Program

    SciTech Connect

    Wahl, K.L.; Campbell, J.A.; Clauss, S.A.

    1995-09-01

    This report describes the work performed during FY 1995 by Pacific Northwest Laboratory in developing and optimizing analysis techniques for identifying organics present in Hanford waste tanks. The main focus was to provide a means for rapidly obtaining the most useful information concerning the organics present in tank waste, with minimal sample handling and with minimal waste generation. One major focus has been to optimize analytical methods for organic speciation. Select methods, such as atmospheric pressure chemical ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry, were developed to increase the speciation capabilities, while minimizing sample handling. A capillary electrophoresis method was developed to improve separation capabilities while minimizing additional waste generation. In addition, considerable emphasis has been placed on developing a rapid screening tool, based on Raman and infrared spectroscopy, for determining organic functional group content when complete organic speciation is not required. This capability would allow for a cost-effective means to screen the waste tanks to identify tanks that require more specialized and complete organic speciation to determine tank safety.

  7. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications.

    PubMed

    Oh, Ju-Hwan; Park, Do Hyun; Joo, Jang Ho; Lee, Jae-Seung

    2015-11-01

    The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve "smart" nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.

  8. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health.

  9. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article. PMID:24365338

  10. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article.

  11. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics.

    PubMed

    Szpunar, Joanna

    2005-04-01

    The recent developments in analytical techniques capable of providing information on the identity and quantity of heteroatom-containing biomolecules are critically discussed. Particular attention is paid to the emerging areas of bioinorganic analysis including: (i) a comprehensive analysis of the entirety of metal and metalloid species within a cell or tissue type (metallomics), (ii) the study of the part of the metallome involving the protein ligands (metalloproteomics), and (iii) the use of a heteroelement, naturally present in a protein or introduced in a tag added by means of derivatisation, for the spotting and quantification of proteins (heteroatom-tagged proteomics). Inductively coupled plasma mass spectrometry (ICP MS), used as detector in chromatography and electrophoresis, and supported by electrospray and MALDI MS, appears as the linchpin analytical technique for these emerging areas. This review focuses on the recent advances in ICP MS in biological speciation analysis including sensitive detection of non-metals, especially of sulfur and phosphorus, couplings to capillary and nanoflow HPLC and capillary electrophoresis, laser ablation ICP MS detection of proteins in gel electrophoresis, and isotope dilution quantification of biomolecules. The paper can be considered as a followup of a previous review by the author on a similar topic (J. Szpunar, Analyst, 2000, 125, 963).

  12. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities.

  13. Spectroscopic Studies on Physicochemical Natures of Ion Exchangers and Highly Functional Polymers and Their Application to Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kazuhisa

    The absorption spectra or NMR spectra of chemical species adsorbed on ion exchangers and highly functional polymers such as crosslinked dextran could be directly measured by the corresponding solution methods. Spectrophotometric measurements of a target species in the solid phase have been extended to solid phase spectrometry (SPS), based on the direct measurement of light-absorption by the solid phase, which has adsorbed the target analyte. SPS has employed two different procedures; i.e., batch and flow methods. The Lambert-Beer law could be applicable to the solid particle layer system. The sensitivity was proportional to the volume ratio of the solid and sample solution, giving more than 100 times the sensitivity obtainable with the combination of a 0.1 cm3 solid and a 10-100 cm3 sample for the batch method. An online measurement of the light attenuation by the adsorbed species in the flow-through cell made it possible to both significantly reduce the sample solution volume and to simplify the respective procedures for the derivatization of the analyte and packing the solid particles into the cell. Because the cross-linked dextran and similar glucopyranoside-based gels have polyol moieties in their gel matrix, they could be used as oxo acid-selective adsorbents without introducing any special functional groups. Especially, in the case of boric acid, 11B NMR spectroscopy was one of the best tools for elucidating the nature of the interaction between boric acid/borate and polyols. Its combination with other methods enabled basic understanding of the chemical reactions. Reaction paths for 1:1 complexation are in general divided into two groups, i.e., neutral polyols that directly react with tetrahedral borate, and acidic polyols that react with trigonal boric acid in a 1:1 complexation. Both of the reactions produce tetrahedral anionic complexes, followed by a condensation reaction between the 1:1 monochelate complex and the undissociated diols to yield the 1

  14. An analytical framework for determining life cycle cost implications of the advanced launch system

    NASA Astrophysics Data System (ADS)

    Stockman, William K.

    1988-12-01

    The product of this research effort was a simplified cost analysis tool that can be used to determine life cycle costs for the Advanced Launch System. The major objective was to develop a tool that would allow quick analysis of proposals and provide data input in a timely fashion. This effort produced a core program that can be used to determine life cycle costs as a function of system components, production infrastructures, reliability assumptions and flexible mission models. The life cycle cost model can operate in either a deterministic or stochastic mode depending on user inputs. An additional effort modeled the production infrastructure using a network flow system. This system modeled the flow of the basic vehicle components from initial production through final launch. The analysis tool uses a commercially available spreadsheet package available for most personal computers. The analyst using this program operates in a user-friendly environment that simplifies data input and problem formulation. The user has a wide variety of output formats and graphics options that simplify report generation.

  15. Development and application of analytical techniques to chemistry of donor solvent liquefaction. Quarterly progress report, June 1979-December 1979

    SciTech Connect

    Squires, A.M.; Dorn, H.C.; Taylor, L.T.; Dillard, J.G.; Rony, P.R.

    1980-03-01

    It is clear from the limited results in this report that flow LC-NMR is a viable approach for rapid analysis of complex mixtures encountered in petroleum, shale, and coal products. Some of the initial results and implications of this feasibility study are summarized below: (1) The time savings gained by the flow LC-NMR approach is enormous when compared with normal chromatographic procedures of fraction collection solvent evaporation and preparation for spectroscopic examination. (2) The present results indicate limits of detection which require semi-preparative chromatographic loads. State-of-the-art NMR instrumentation should extend this approach to truly analytical columns for HNMR. We are continuing this development at the present time. (3) The flow LC-NMR approach has been extended to /sup 19/F NMR. This complements the fluorine tagging work which is also a major part of the present contract. An additional advantage is the wider scope of chromatographic solvents which can be utilized. (4) Although the present study focused on relatively nonpolar solvent systems, this approach can be extended to more polar solents which would allow ready examination of more polar constituents in coal products. (5) The flow LC-NMR approach is compatible with the other on-line LC detection techniques being developed at VPI (e.g., FT-IR, ICP, etc.).

  16. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation.

    PubMed

    Jones-Lepp, T L; Stevens, Rick

    2007-02-01

    Modern sanitary practices result in large volumes of human waste, as well as domestic and industrial sewage, being collected and treated at common collection points, wastewater treatment plants (WWTPs). In recognition of the growing use of sewage sludge as fertilizers and soil amendments, and the scarcity of current data regarding the chemical constituents in sewage sludge, the US National Research Council (NRC) in 2002 produced a report on sewage sludge. Among the NRC's recommendations was the need for investigating the occurrence of pharmaceuticals and personal care products (PPCPs) in sewage sludge. PPCPs are a diverse array of non-regulated contaminants that had not been studied in previous sewage sludge surveys but which are likely to be present. The focus of this paper will be to review the current analytical methodologies available for investigating whether pharmaceuticals are present in WWTP-produced sewage sludge, to summarize current regulatory practices regarding sewage sludge, and to report on the presence of pharmaceuticals in sewage sludge. PMID:17131110

  17. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications

    SciTech Connect

    Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. )

    1990-04-01

    This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

  18. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    PubMed

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices.

  19. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    PubMed

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices. PMID:21669284

  20. An overview of silica in biology: its chemistry and recent technological advances.

    PubMed

    Perry, Carole C

    2009-01-01

    Biomineralisation is widespread in the biological world and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single cell organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon and under conditions of around neutral pH and low temperature, ca. 4-40 degrees C. Formation of the mineral may occur intra- or extra-cellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, understanding of which could lead to the design of new materials for biomedical, optical and other applications. This Chapter briefly describes the occurrence of silica in biology including known roles for the mineral phase, the chemistry of the material, the associated biomolecules and some recent applications of this knowledge in materials chemistry.The terminology which is used in this and other contributions within this volume is as follows: Si: the chemical symbol for the element and the generic term used when the nature of the specific silicon compound is not known. Si(OH) ( 4 ): orthosilicic acid, the fundamental building block used in the formation of silicas. SiO ( 2 ) x nH ( 2 ) O or SiO ( 2-x ) (OH) ( 2x ) x 2H ( 2 ) O: amorphous, hydrated, polymerised material. Oligomerisation: the formation of dimers and small oligomers from orthosilicic acid by removal of water. For example, 2Si(OH)(4) <--> (HO)(3)Si-O-Si(OH)(3) + H(2)O Polymerisation: the mutual condensation of silicic acid to give molecularly coherent units of increasing size. Organosilicon compound: must contain silicon covalently bonded to carbon within a

  1. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  2. High resolution analytical electron microscopy reveals cell culture media induced changes to the chemistry of silver nanowires

    PubMed Central

    Chen, Shu; Theodorou, Ioannis G.; Goode, Angela E.; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.

    2014-01-01

    There is a growing concern about the potential adverse effects on human health upon exposure to engineered silver nanomaterials (particles, wires and plates). However, the majority of studies testing the toxicity of silver nanomaterials have examined nominally ‘as-synthesized’ materials without considering the fate of the materials in biologically relevant fluids. Here, in-house silver nanowires (AgNWs) were prepared by a modified polyol process and were incubated in three cell culture media (DMEM, RPMI-1640 and DCCM-1) to examine the impact of AgNW-medium interactions on the physicochemical properties of the AgNWs. High-resolution analytical transmission electron microscopy revealed that Ag2S crystals form on the surface of AgNWs within 1 hour of incubation in DCCM-1. In contrast, the incubation of AgNWs in RPMI-1640 or DMEM did not lead to sulfidation. When the DCCM-1 cell culture medium was separated into its small molecule solutes and salts and protein components, the AgNWs were found to sulfidize in the fraction containing small molecule solutes and salts, but not in the fraction containing the protein component of the media. Further investigation showed the AgNWs did not readily sulfidize in the presence of isolated sulfur containing amino acids or proteins, such as cysteine or bovine serum albumin (BSA). The results demonstrate that the AgNWs can be transformed by the media before and during the incubation with cells and therefore the effects of cell culture media must be considered in the analysis of toxicity assays. Appropriate media and material controls must be in place to allow accurate predictions about the toxicity, and ultimately, the health risk of this commercially relevant class of nanomaterial. PMID:24160871

  3. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  4. A role for analytical chemistry in advancing our understanding of the occurrence, fate, and effects of Corexit Oil Dispersants

    USGS Publications Warehouse

    Place, Ben; Anderson, Brian; Mekebri, Abdou; Furlong, Edward T.; Gray, James L.; Tjeerdema, Ron; Field, Jennifer

    2010-01-01

    On April 24, 2010, the sinking of the Deepwater Horizon oil rig resulted in the release of oil into the Gulf of Mexico. As of July 19, 2010, the federal government's Deepwater Horizon Incident Joint Information Center estimates the cumulative range of oil released is 3,067,000 to 5,258,000 barrels, with a relief well to be completed in early August. By comparison, the Exxon Valdez oil spill released a total of 260,000 barrels of crude oil into the environment. As of June 9, BP has used over 1 million gallons of Corexit oil dispersants to solubilize oil and help prevent the development of a surface oil slick. Oil dispersants are mixtures containing solvents and surfactants that can exhibit toxicity toward aquatic life and may enhance the toxicity of components of weathered crude oil. Detailed knowledge of the composition of both Corexit formulations and other dispersants applied in the Gulf will facilitate comprehensive monitoring programs for determining the occurrence, fate, and biological effects of the dispersant chemicals. The lack of information on the potential impacts of oil dispersants has caught industry, federal, and state officials off guard. Until compositions of Corexit 9500 and 9527 were released by the U.S. Environmental Protection Agency online, the only information available consisted of Material Safety Data Sheets (MSDS), patent documentation, and a National Research Council report on oil dispersants. Several trade and common names are used for the components of the Corexits. For example, Tween 80 and Tween 85 are oligomeric mixtures.

  5. Developments in the analytical chemistry of arsenic to support teaching and learning through research in environmental topics

    NASA Astrophysics Data System (ADS)

    Ampiah-Bonney, Richmond Jerry

    Two manifolds were designed to determine phosphate concentrations. The linear range for the 2-channel manifold was 0 to 30 mg L-1, and that for the 3-channel manifold was 0 to 400 mg L-1. Optimized conditions for the determination of arsenic with molybdenum-blue method were 0.5% w/v ascorbic acid, 0.4 M sulfuric acid in the molybdate solution and 80°C reaction temperature. A method for determination of arsenic using pervaporation flow injection hydride generation with visible spectrophotometry was developed. The method was sensitive for low arsenic concentrations (≤ 10 mug L-1), with sensitivity decreasing as arsenic concentration increased. There was no heating required, and the pervaporation membrane transferred only arsine. The analytical performance of two arsenic test kits was assessed. The Alpha Environmental kit cannot be recommended for arsenic measurement in water. The Hach kit was reliable for measuring arsenic concentrations greater than 70 mug L-1. A modified reaction tube was constructed that allowed NaBH4 solution to be delivered into the reaction mixture to replace zinc powder in the Hach kit, with no loss of gases. A more quantitative way of measuring arsenic using the Hach kit was developed by measuring the B-value of the color of jpeg images of test strips taken by a desktop scanner. Leersia oryzoides grown in soil amended with 110 mg kg-1arsenic extracted up to 305 mug g-1 and 272 mug g-1 arsenic into its shoots and roots respectively, giving a shoot:root quotient (SRQ) of 1.12 and phytoextraction coefficients (PEC) up to 1.3 in greenhouse experiments. Five supervised arsenic-related projects were reported. All except one of these reports fell short of the standards acceptable for a publishable manuscript. Factors such as high expectations, competitive entrance requirements and good motivation were responsible for the publishable report. For the remaining reports, problems with working in a team, relatively low expectations and lack of

  6. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.

    PubMed

    Lhermitte, Charles R; Bartlett, Bart M

    2016-06-21

    Photoelectrochemical (PEC) cells are an ongoing area of exploration that provide a means of converting solar energy into a storable chemical form (molecular bonds). In particular, using PEC cells to drive the water splitting reaction to obtain H2 could provide a clean and sustainable route to convert solar energy into chemical fuels. Since the discovery of catalytic water splitting on TiO2 photoelectrodes by Fujishima and Honda, significant efforts have been directed toward developing high efficiency metal oxides to use as photocatalysts for this reaction. Improving the efficiency of PEC cells requires developing chemically stable, and highly catalytic anodes for the oxygen-evolution reaction (OER). This water oxidation half reaction requires four protons and four electrons coupling in two bond making steps to form O2, which limits the rate. Our group has accelerated efforts in CuWO4 as a candidate for PEC OER chemistry. Its small band gap of 2.3 eV allows for using visible light to drive OER, and the reaction proceeds with a high degree of chemoselectivity, even in the presence of more kinetically accessible anions such as chloride, which is common to seawater. Furthermore, CuWO4 is a chemically robust material when subjected to the highly oxidizing conditions of PEC OER. The next steps for accelerating research using this (and other), ternary phase oxides, is to move beyond reporting the basic PEC measurements to understanding fundamental chemical reaction mechanisms operative during OER on semiconductor surfaces. In this Account, we outline the process for PEC OER on CuWO4 thin films with emphasis on the chemistry of this reaction, the reaction rate and selectivity (determined by controlled-potential coulometry and oxygen-detection experiments). We discuss key challenges with CuWO4 such as slow kinetics and the presence of an OER-mediating mid-gap state, probed by electrochemical impedance spectroscopy. We propose that this mid-gap state imparts the observed

  7. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.

    PubMed

    Lhermitte, Charles R; Bartlett, Bart M

    2016-06-21

    Photoelectrochemical (PEC) cells are an ongoing area of exploration that provide a means of converting solar energy into a storable chemical form (molecular bonds). In particular, using PEC cells to drive the water splitting reaction to obtain H2 could provide a clean and sustainable route to convert solar energy into chemical fuels. Since the discovery of catalytic water splitting on TiO2 photoelectrodes by Fujishima and Honda, significant efforts have been directed toward developing high efficiency metal oxides to use as photocatalysts for this reaction. Improving the efficiency of PEC cells requires developing chemically stable, and highly catalytic anodes for the oxygen-evolution reaction (OER). This water oxidation half reaction requires four protons and four electrons coupling in two bond making steps to form O2, which limits the rate. Our group has accelerated efforts in CuWO4 as a candidate for PEC OER chemistry. Its small band gap of 2.3 eV allows for using visible light to drive OER, and the reaction proceeds with a high degree of chemoselectivity, even in the presence of more kinetically accessible anions such as chloride, which is common to seawater. Furthermore, CuWO4 is a chemically robust material when subjected to the highly oxidizing conditions of PEC OER. The next steps for accelerating research using this (and other), ternary phase oxides, is to move beyond reporting the basic PEC measurements to understanding fundamental chemical reaction mechanisms operative during OER on semiconductor surfaces. In this Account, we outline the process for PEC OER on CuWO4 thin films with emphasis on the chemistry of this reaction, the reaction rate and selectivity (determined by controlled-potential coulometry and oxygen-detection experiments). We discuss key challenges with CuWO4 such as slow kinetics and the presence of an OER-mediating mid-gap state, probed by electrochemical impedance spectroscopy. We propose that this mid-gap state imparts the observed

  8. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry.

    PubMed

    Limbeck, Andreas; Galler, Patrick; Bonta, Maximilian; Bauer, Gerald; Nischkauer, Winfried; Vanhaecke, Frank

    2015-09-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS for quantification of trace elements in environmental, biological, and medical samples. The fundamental problems of LA-ICP-MS, such as sample-dependent ablation behavior and elemental fractionation, can be even more pronounced in environmental and life science applications as a result of the large variety of sample types and conditions. Besides variations in composition, the range of available sample states is highly diverse, including powders (e.g., soil samples, fly ash), hard tissues (e.g., bones, teeth), soft tissues (e.g., plants, tissue thin-cuts), or liquid samples (e.g., whole blood). Within this article, quantification approaches that have been proposed in the past are critically discussed and compared regarding the results obtained in the applications described. Although a large variety of sample types is discussed within this article, the quantification approaches used are similar for many analytical questions and have only been adapted to the specific questions. Nevertheless, none of them has proven to be a universally applicable method.

  9. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  10. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments. PMID:11077165

  11. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  12. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.

    PubMed

    Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F

    2014-11-21

    Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed. PMID:24993100

  13. African American Advanced Placement chemistry students and their developing study habits: A phenomenologically-based interpretive study

    NASA Astrophysics Data System (ADS)

    Rasmussen, Natalie D.

    The academic achievement gap between African American and White students has gained much attention in recent years. Much has been written about the causes of and reasons for this problem ranging from the vestigial effects of slavery to poor parenting. Much less has been written or understood about its solution. While it is impossible for educators to change the pasts of their African American students, it is possible to effect change for the few minutes in which they are in direct contact with them each day. If African American science students are taught effective study skills and habits, then perhaps they might have the tools to close the achievement gap themselves. The participants in this phenomenologically based interpretive study were five African American Advanced Placement Chemistry students from an inner-city high school. Three in-depth interviews were conducted with each of the participants during the beginning, middle and end of a semester. The purpose of the interviews was to locate the students in terms of their thought processes, experiences and perceived barriers concerning the nature and practice of effective study and retention of chemistry content. The interviews were recorded and transcribed. The texts were then analyzed for common themes. Five common themes emerged from the interviews. These were: (1) Homework vs. Study: a distinction between homework---which students knew how to approach; and study---which they did not. (2) Student Effort: their changing perception of adequate and effective study practices while in a rigorous course. (3) Teacher Rigor: they perceived high expectations and challenging work as a sign of respect from their teachers. (4) Parental Involvement: students' admission that they desired more input from parents regarding their academic performance. (5) Racial Considerations: their need to disprove negative stereotypes and their personal observations regarding racial differences in studying. A discussion of the themes and

  14. Analytical Technology

    SciTech Connect

    Goheen, Steven C.

    2001-07-01

    Characterizing environmental samples has been exhaustively addressed in the literature for most analytes of environmental concern. One of the weak areas of environmental analytical chemistry is that of radionuclides and samples contaminated with radionuclides. The analysis of samples containing high levels of radionuclides can be far more complex than that of non-radioactive samples. This chapter addresses the analysis of samples with a wide range of radioactivity. The other areas of characterization examined in this chapter are the hazardous components of mixed waste, and special analytes often associated with radioactive materials. Characterizing mixed waste is often similar to characterizing waste components in non-radioactive materials. The largest differences are in associated safety precautions to minimize exposure to dangerous levels of radioactivity. One must attempt to keep radiological dose as low as reasonably achievable (ALARA). This chapter outlines recommended procedures to safely and accurately characterize regulated components of radioactive samples.

  15. Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement.

    PubMed

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna; Gernaey, Krist V

    2011-10-01

    The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.

  16. When Is a Molecule Three Dimensional? A Task-Specific Role for Imagistic Reasoning in Advanced Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike

    2011-01-01

    Imagistic reasoning appears to be a critical strategy for learning and problem solving in the sciences, particularly chemistry; however, little is known about how students use imagistic reasoning on genuine assessment tasks in chemistry. The present study employed a think-aloud protocol to explore when and how students use imagistic reasoning for…

  17. Development and Implementation of a Series of Laboratory Field Trips for Advanced High School Students to Connect Chemistry to Sustainability

    ERIC Educational Resources Information Center

    Aubrecht, Katherine B.; Padwa, Linda; Shen, Xiaoqi; Bazargan, Gloria

    2015-01-01

    We describe the content and organization of a series of day-long field trips to a university for high school students that connect chemistry content to issues of sustainability. The seven laboratory activities are in the areas of environmental degradation, energy production, and green chemistry. The laboratory procedures have been modified from…

  18. Leveraging data analytics, patterning simulations and metrology models to enhance CD metrology accuracy for advanced IC nodes

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Zhang, Yunlin; Kagalwala, Taher; Hu, Lin; Bailey, Todd

    2014-04-01

    Integrated Circuit (IC) technology is changing in multiple ways: 193i to EUV exposure, planar to non-planar device architecture, from single exposure lithography to multiple exposure and DSA patterning etc. Critical dimension (CD) control requirement is becoming stringent and more exhaustive: CD and process window are shrinking., three sigma CD control of < 2 nm is required in complex geometries, and metrology uncertainty of < 0.2 nm is required to achieve the target CD control for advanced IC nodes (e.g. 14 nm, 10 nm and 7 nm nodes). There are fundamental capability and accuracy limits in all the metrology techniques that are detrimental to the success of advanced IC nodes. Reference or physical CD metrology is provided by CD-AFM, and TEM while workhorse metrology is provided by CD-SEM, Scatterometry, Model Based Infrared Reflectrometry (MBIR). Precision alone is not sufficient moving forward. No single technique is sufficient to ensure the required accuracy of patterning. The accuracy of CD-AFM is ~1 nm and precision in TEM is poor due to limited statistics. CD-SEM, scatterometry and MBIR need to be calibrated by reference measurements for ensuring the accuracy of patterned CDs and patterning models. There is a dire need of measurement with < 0.5 nm accuracy and the industry currently does not have that capability with inline measurments. Being aware of the capability gaps for various metrology techniques, we have employed data processing techniques and predictive data analytics, along with patterning simulation and metrology models, and data integration techniques to selected applications demonstrating the potential solution and practicality of such an approach to enhance CD metrology accuracy. Data from multiple metrology techniques has been analyzed in multiple ways to extract information with associated uncertainties and integrated to extract the useful and more accurate CD and profile information of the structures. This paper presents the optimization of

  19. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry

    PubMed Central

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling. PMID:26903948

  20. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry.

    PubMed

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.

  1. EPA Green Chemistry Advances

    EPA Science Inventory

    As an invited speaker, Dr. Leazer will deliver a plenary lecture and participate in a panel discussion at the 2013 AIChE National Meeting in San Francisco, CA. AIChE has embraced sustainability and is looking for guidance and leadership in building their sustainability program. ...

  2. Wine chemistry and flavor: looking into the crystal glass.

    PubMed

    Ebeler, Susan E; Thorngate, John H

    2009-09-23

    Over the past century, advances in analytical chemistry have played a significant role in understanding wine chemistry and flavor. Whereas the focus in the 19th and early 20th centuries was on determining major components (ethanol, organic acids, sugars) and detecting fraud, more recently the emphasis has been on quantifying trace compounds including those that may be related to varietal flavors. In addition, over the past 15 years, applications of combined analytical and sensory techniques (e.g., gas chromatography-olfactometry) have improved the ability to relate chemical composition to sensory properties, whether identifying impact compounds or elucidating matrix effects. Many challenges remain, however. This paper discusses some of the recent research aimed at understanding how viticultural and enological practices influence grape and wine volatiles. In addition, the challenges in linking composition to sensory properties will also be reviewed. Finally, future advances in linking grape, yeast, and human genomics to wine chemistry and flavor will be briefly discussed. PMID:19719127

  3. Wine chemistry and flavor: looking into the crystal glass.

    PubMed

    Ebeler, Susan E; Thorngate, John H

    2009-09-23

    Over the past century, advances in analytical chemistry have played a significant role in understanding wine chemistry and flavor. Whereas the focus in the 19th and early 20th centuries was on determining major components (ethanol, organic acids, sugars) and detecting fraud, more recently the emphasis has been on quantifying trace compounds including those that may be related to varietal flavors. In addition, over the past 15 years, applications of combined analytical and sensory techniques (e.g., gas chromatography-olfactometry) have improved the ability to relate chemical composition to sensory properties, whether identifying impact compounds or elucidating matrix effects. Many challenges remain, however. This paper discusses some of the recent research aimed at understanding how viticultural and enological practices influence grape and wine volatiles. In addition, the challenges in linking composition to sensory properties will also be reviewed. Finally, future advances in linking grape, yeast, and human genomics to wine chemistry and flavor will be briefly discussed.

  4. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  5. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    PubMed Central

    Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  6. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    PubMed

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  7. Advanced Analytic Treatment and Efficient Computation of the Diffraction Integrals in the Extended Nijboer-Zernike Theory

    NASA Astrophysics Data System (ADS)

    van Haver, S.; Janssen, A. J. E. M.

    2013-07-01

    The computational methods for the diffraction integrals that occur in the Extended Nijboer-Zernike (ENZ-) approach to circular, aberrated, defocused optical systems are reviewed and updated. In the ENZ-approach, the Debye approximation of Rayleigh's integral for the through-focus, complex, point-spread function is evaluated in semi-analytic form. To this end, the generalized pupil function, comprising phase aberrations as well as amplitude non-uniformities, is assumed to be expanded into a series of Zernike circle polynomials, and the contribution of each of these Zernike terms to the diffraction integral is expressed in the form of a rapidly converging series (containing power functions and/or Bessel functions of various kinds). The procedure of expressing the through-focus point-spread function in terms of Zernike expansion coefficients of the pupil function can be reversed and has led to the ENZ-method of retrieval of pupil functions from measured through-focus (inte! nsity) point-spread functions. The review and update concern the computation for systems ranging from as basic as having low NA and small defocus parameter to high-NA systems, with vector fields and polarization, meant for imaging of extended objects into a multi-layered focal region. In the period 2002-2010, the evolution of the form of the diffraction integral (DI) was dictated by the agenda of the ENZ-team in which a next instance of the DI was handled by amending the computation scheme of the previous one. This has resulted into a variety of ad hoc measures, lack of transparency of the schemes, and sometimes prohibitively slow computer codes. It is the aim of the present paper to reconstruct the whole building of computation methods, using consistently more advanced mathematical tools. These tools are -explicit Zernike expansion of the focal factor in the DI, -Clebsch-Gordan coefficients for the omnipresent problem of linearizing products ofZernike circle polynomials, -recursions for Bessel

  8. Visual/verbal-analytic reasoning bias as a function of self-reported autistic-like traits: a study of typically developing individuals solving Raven's Advanced Progressive Matrices.

    PubMed

    Fugard, Andrew J B; Stewart, Mary E; Stenning, Keith

    2011-05-01

    People with autism spectrum condition (ASC) perform well on Raven's matrices, a test which loads highly on the general factor in intelligence. However, the mechanisms supporting enhanced performance on the test are poorly understood. Evidence is accumulating that milder variants of the ASC phenotype are present in typically developing individuals, and that those who are further along the autistic-like trait spectrum show similar patterns of abilities and impairments as people with clinically diagnosed ASC. We investigated whether self-reported autistic-like traits in a university student sample, assessed using the Autism-Spectrum Quotient (AQ; Baron-Cohen, Wheelwright, Skinner, et al., 2001), predict performance on Raven's Advanced Progressive Matrices. We found that reporting poorer social skills but better attention switching predicted a higher Advanced matrices score overall. DeShon, Chan, and Weissbein (1995) classified Advanced matrices items as requiring a visuospatial, or a verbal-analytic strategy. We hypothesised that higher AQ scores would predict better performance on visuospatial items than on verbal-analytic items. This prediction was confirmed. These results are consistent with the continuum view and can be explained by the enhanced perceptual functioning theory of performance peaks in ASC. The results also confirm a new prediction about Raven's Advanced Progressive Matrices performance in people with ASC. PMID:21325371

  9. Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.

    2001-11-01

    While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.

  10. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  11. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  12. Combined experimental and analytical study using cruciform specimen for testing advanced aeropropulsion materials under in-plane biaxial loading

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Krause, David

    2006-03-01

    A new in-house test capability has been developed at the NASA Glenn Research Center to conduct highly critical tests in support of major and significant components of the Stirling Radioisotope Generator (SRG). It is to aid the development of analytical life prediction methodology and to experimentally assist in verifying the flight-design component's life. Components within the SRG such as the heater head pressure vessel endure a very high temperature environment for a long period of time. Such conditions impose life-limiting failure by means of material creep, a slow gradual increase in strain which leads to an eventual failure of the pressure vessel. To properly evaluate the performance and assist in the design of this component, testing under multiaxial loading setting is essential, since the heater head is subjected to a biaxial state of stress. Thus, the current work undertakes conducting analytical studies under equibiaxial and non-equi-biaxial loadings situations at various temperatures emulating creep environment. These analytical activities will utilize the finite element method to analyze cruciform type specimens both, under linear elastic and creep conditions. And further to calibrate the in-plane biaxial-test system. The specimen finite element model is generated with MSC/Patran [1] and analytical calculations are conducted with MARC and ANSYS finite element codes [2-3]. Complementing these calculations will undertake conducting experimental tests. However, only results pertaining to the analytical studies are reported and their impact on estimating the life of the component is evaluated.

  13. Teaching Thermodynamics and Kinetics to Advanced General Chemistry Students and to Upper-Level Undergraduate Students Using PV Diagrams

    ERIC Educational Resources Information Center

    Iyengar, Srinivasan S.; deSouza, Romualdo T.

    2014-01-01

    We describe how complex concepts in macroscopic chemistry, namely, thermodynamics and kinetics, can be taught at considerable depth both at the first-year undergraduate as well as upper levels. We begin with a careful treatment of PV diagrams, and by pictorially integrating the appropriate area in a PV diagram, we introduce work. This starting…

  14. Synthesis and Characterization of Europium(III) and Terbium(III) Complexes: An Advanced Undergraduate Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Swavey, Shawn

    2010-01-01

    Undergraduate laboratories rarely involve lanthanide coordination chemistry. This is unfortunate in light of the ease with which many of these complexes are made and the interesting and instructive photophysical properties they entail. The forbidden nature of the 4f transitions associated with the lanthanides is overcome by incorporation of…

  15. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  16. Quantitative Analysis of Heavy Metals in Children's Toys and Jewelry: A Multi-Instrument, Multitechnique Exercise in Analytical Chemistry and Public Health

    ERIC Educational Resources Information Center

    Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C.

    2015-01-01

    For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…

  17. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    ERIC Educational Resources Information Center

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  18. Climate Analytics-As-a-Service (CAaas), Advanced Information Systems, and Services to Accelerate the Climate Sciences.

    NASA Astrophysics Data System (ADS)

    McInerney, M.; Schnase, J. L.; Duffy, D.; Tamkin, G.; Nadeau, D.; Strong, S.; Thompson, J. H.; Sinno, S.; Lazar, D.

    2014-12-01

    The climate sciences represent a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with big data that ultimately product societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. Within this framework, cloud computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics-as-a-service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the big data challenges in this domain. This poster will highlight specific examples of CAaaS using climate reanalysis data, high-performance cloud computing, map reduce, and the Climate Data Services API.

  19. Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry, and Environmental Health

    PubMed Central

    Wilson, Michael P.; Schwarzman, Megan R.

    2009-01-01

    Objective We describe fundamental weaknesses in U.S. chemicals policy, present principles of chemicals policy reform, and articulate interdisciplinary research questions that should be addressed. With global chemical production projected to double over the next 24 years, federal policies that shape the priorities of the U.S. chemical enterprise will be a cornerstone of sustainability. To date, these policies have largely failed to adequately protect public health or the environment or motivate investment in or scientific exploration of cleaner chemical technologies, known collectively as green chemistry. On this trajectory, the United States will face growing health, environmental, and economic problems related to chemical exposures and pollution. Conclusions Existing policies have produced a U.S. chemicals market in which the safety of chemicals for human health and the environment is undervalued relative to chemical function, price, and performance. This market barrier to green chemistry is primarily a consequence of weaknesses in the Toxic Substances Control Act. These weaknesses have produced a chemical data gap, because producers are not required to investigate and disclose sufficient information on chemicals’ hazard traits to government, businesses that use chemicals, or the public; a safety gap, because government lacks the legal tools it needs to efficiently identify, prioritize, and take action to mitigate the potential health and environmental effects of hazardous chemicals; and a technology gap, because industry and government have invested only marginally in green chemistry research, development, and education. Policy reforms that close the three gaps—creating transparency and accountability in the market—are crucial for improving public and environmental health and reducing the barriers to green chemistry. The European Union’s REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulation has opened an opportunity for

  20. UCSD Geothermal Chemical Modeling Project: DOE Advanced Brine Chemistry Program. [University of California at San Diego (UCSD)

    SciTech Connect

    Moeller, N.; Weare, J.H.

    1992-04-01

    DOE funding to the UCSD Chemical Modeling Group supports research to provide computer models which will reliably characterize the equilibrium chemistry of geothermal brines (solution, solid and gas phases) under variable thermodynamic conditions. With this technology, it will be possible to rapidly and inexpensively predict the chemical behavior of geothermal brines during various resource recovery stages; exploration, production, plant energy extraction and rejection as well as in ancillary programs such as mineral recovery. Our modeling technology is based on recent progress in the physical chemistry of concentrated aqueous solutions. The behavior of these fluids has not been predicted from first principle theories. However, because of the importance of concentrated brines to many industrial and natural processes, there have been numerous efforts to develop accurate phenomenological expressions for predicting the chemical behavior of these brines. One of the most successful of these efforts is that of Pitzer and coworkers. Incorporating the semiempirical equations of Pitzer, we have shown at UCSD that we can create highly accurate models of brine-solid-gas chemistry.

  1. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances

    PubMed Central

    Belton, David J.; Deschaume, Olivier; Perry, Carole C.

    2012-01-01

    Biomineral formation is widespread in Nature and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g., strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single cell organisms through to higher plants and primitive animals (sponges) is formed from an environment that is undersaturated with respect to silicon and under conditions of around neutral pH and low temperature ca. 4–40 °C. Formation of the mineral may occur intra- or extra-cellularly and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases the formation of the mineral phase is linked to cellular processes, understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution we describe the aqueous chemistry of silica, from uncondensed monomer through to colloidal particles and three dimensional structures, relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane as this and other silanes have been used to study the chemistry of silica formation using silicatein and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational by which the process of silica formation can be studied with emphasis on speciation. PMID:22333209

  2. Dissolved Silver in Marine Waters: Reviewing Three Decades of Advances in Analytical Techniques and Understanding its Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Ndungu, K.; Flegal, A. R., Jr.

    2015-12-01

    Although billions of dollars have been spent over the past half-century to reduce contamination of U.S. waters, quantifying parts-per-billion reductions in surface water concentration since has been relatively unsuccessful. The reasons for the failure in identifying the benefits of these remediative efforts include: (i) historic (pre-1980) problems in accurately sampling and analyzing trace element concentrations at parts-per-billion level, so that temporal reductions in trace metal contamination reflected improved sampling and analytical accuracy rather than real decreases in those concentrations; (ii) limited seasonal and long term research. Silver in its ionic form is more toxic to aquatic organisms than any other metal except Hg. Because Ag is not common naturally in the environment, its elevated presence in water, sediment or biological tissues is usually indicative of anthropogenic influences. However, there is very little published data on Ag levels in both water and sediment. The published studies include Ag levels in a few U.S. estuarine waters, including detailed and time series studies for the San Francisco Estuary system by the WIGS lab at UC Santa Cruz. In the open Ocean, Ag measurements are limited to a few studies in the North and South Pacific, The North and South Atlantic. However, as Gallon and Flegal recently noted, there is no available data on Ag concentrations from the Indian Ocean! Most of the dissolved Ag data from the Atlantic was made in WIGS lab at UC Santa Cruz Analytical determination of Ag in seawater has come a long way since Murozumi reported the first dissolved Ag measurements from the N. Pacific in 1981 using isotope dilution MS after solvent extraction. In this presentation I will review analytical developments for Ag determination in the last three decades. I will also highlight the missing data gaps and present new tentative data on dissolved Ag concentration and cycling in polar regions including the Antarctic (Amundsen Sea

  3. The effects of using screencasting as a multimedia pre-training tool to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students

    NASA Astrophysics Data System (ADS)

    Musallam, Ramsey

    Chemistry is a complex knowledge domain. Specifically, research notes that Chemical Equilibrium presents greater cognitive challenges than other topics in chemistry. Cognitive Load Theory describes the impact a subject, and the learning environment, have on working memory. Intrinsic load is the facet of Cognitive Load Theory that explains the complexity innate to complex subjects. The purpose of this study was to build on the limited research into intrinsic cognitive load, by examining the effects of using multimedia screencasts as a pre-training technique to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students. A convenience sample of 62 fourth-year high school students enrolled in an advanced chemistry course from a co-ed high school in urban San Francisco were given a chemical equilibrium concept pre-test. Upon conclusion of the pre-test, students were randomly assigned to two groups: pre-training and no pre-training. The pre-training group received a 10 minute and 52 second pre-training screencast that provided definitions, concepts and an overview of chemical equilibrium. After pre-training both group received the same 50-minute instructional lecture. After instruction, all students were given a chemical equilibrium concept post-test. Independent sample t-tests were conducted to examine differences in performance and intrinsic load. No significant differences in performance or intrinsic load, as measured by ratings of mental effort, were observed on the pre-test. Significant differences in performance, t(60)=3.70, p=.0005, and intrinsic load, t(60)=5.34, p=.0001, were observed on the post-test. A significant correlation between total performance scores and total mental effort ratings was also observed, r(60)=-0.44, p=.0003. Because no significant differences in prior knowledge were observed, it can be concluded that pre-training was successful at reducing intrinsic load. Moreover, a significant

  4. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances.

    PubMed

    Belton, David J; Deschaume, Olivier; Perry, Carole C

    2012-05-01

    Biomineral formation is widespread in nature, and occurs in bacteria, single-celled protists, plants, invertebrates, and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single-celled organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon, and under conditions of approximately neutral pH and relatively low temperatures of 4-40 °C compared to those used industrially. Formation of the mineral may occur intracellularly or extracellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, an understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution, we describe the aqueous chemistry of silica, from uncondensed monomers through to colloidal particles and 3D structures, that is relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane, as this and other silanes have been used to study the chemistry of silica formation using silicatein, and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational, by which the process of silica formation can be studied, with an emphasis on speciation.

  5. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances.

    PubMed

    Belton, David J; Deschaume, Olivier; Perry, Carole C

    2012-05-01

    Biomineral formation is widespread in nature, and occurs in bacteria, single-celled protists, plants, invertebrates, and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single-celled organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon, and under conditions of approximately neutral pH and relatively low temperatures of 4-40 °C compared to those used industrially. Formation of the mineral may occur intracellularly or extracellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, an understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution, we describe the aqueous chemistry of silica, from uncondensed monomers through to colloidal particles and 3D structures, that is relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane, as this and other silanes have been used to study the chemistry of silica formation using silicatein, and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational, by which the process of silica formation can be studied, with an emphasis on speciation. PMID:22333209

  6. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    ERIC Educational Resources Information Center

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  7. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    ERIC Educational Resources Information Center

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  8. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  9. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  10. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  11. Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory

    ERIC Educational Resources Information Center

    Thompson, Robert Q.

    2008-01-01

    An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…

  12. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry.

    PubMed

    Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir

    2015-04-01

    In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. PMID:25640119

  13. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry.

    PubMed

    Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir

    2015-04-01

    In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations.

  14. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  15. Process chemistry {ampersand} statistics quality assurance plan

    SciTech Connect

    Meznarich, H.K.

    1996-08-01

    This document provides quality assurance guidelines and quality control requirements for Process Chemistry and Statistics. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing process chemistry activities.

  16. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  17. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  18. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry.

    PubMed

    Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent

    2016-10-01

    A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of <7.0% (n=11). The linearity range of the free nitric acid measurement is excellent up to 2.77molL(-1) with a correlation coefficient (R(2)) of 0.995. The method is specific, presence of actinide ions up to 0.54molL(-1) does not interfere on the determination of free nitric acid. In addition to automation, the developed sequential injection analysis method greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight fold. These analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste. PMID:27474315

  19. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry.

    PubMed

    Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent

    2016-10-01

    A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of <7.0% (n=11). The linearity range of the free nitric acid measurement is excellent up to 2.77molL(-1) with a correlation coefficient (R(2)) of 0.995. The method is specific, presence of actinide ions up to 0.54molL(-1) does not interfere on the determination of free nitric acid. In addition to automation, the developed sequential injection analysis method greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight fold. These analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste.

  20. Analytical toxicology.

    PubMed

    Flanagan, R J; Widdop, B; Ramsey, J D; Loveland, M

    1988-09-01

    1. Major advances in analytical toxicology followed the introduction of spectroscopic and chromatographic techniques in the 1940s and early 1950s and thin layer chromatography remains important together with some spectrophotometric and other tests. However, gas- and high performance-liquid chromatography together with a variety of immunoassay techniques are now widely used. 2. The scope and complexity of forensic and clinical toxicology continues to increase, although the compounds for which emergency analyses are needed to guide therapy are few. Exclusion of the presence of hypnotic drugs can be important in suspected 'brain death' cases. 3. Screening for drugs of abuse has assumed greater importance not only for the management of the habituated patient, but also in 'pre-employment' and 'employment' screening. The detection of illicit drug administration in sport is also an area of increasing importance. 4. In industrial toxicology, the range of compounds for which blood or urine measurements (so called 'biological monitoring') can indicate the degree of exposure is increasing. The monitoring of environmental contaminants (lead, chlorinated pesticides) in biological samples has also proved valuable. 5. In the near future a consensus as to the units of measurement to be used is urgently required and more emphasis will be placed on interpretation, especially as regards possible behavioural effects of drugs or other poisons. Despite many advances in analytical techniques there remains a need for reliable, simple tests to detect poisons for use in smaller hospital and other laboratories.

  1. Advances in analytical methods and occurrence of organic UV-filters in the environment--A review.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2015-09-01

    UV-filters are a group of compounds designed mainly to protect skin against UVA and UVB radiation, but they are also included in plastics, furniture, etc., to protect products from light damage. Their massive use in sunscreens for skin protection has been increasing due to the awareness of the chronic and acute effects of UV radiation. Some organic UV-filters have raised significant concerns in the past few years for their continuous usage, persistent input and potential threat to ecological environment and human health. UV-filters end up in wastewater and because wastewater treatment plants are not efficient in removing them, lipophilic compounds tend to sorb onto sludge and hydrophilics end up in river water, contaminating the existing biota. To better understand the risk associated with UV-filters in the environment a thorough review regarding their physicochemical properties, toxicity and environmental degradation, analytical methods and their occurrence was conducted. Higher UV-filter concentrations were found in rivers, reaching 0.3mg/L for the most studied family, the benzophenone derivatives. Concentrations in the ng to μg/L range were also detected for the p-aminobenzoic acid, cinnamate, crylene and benzoyl methane derivatives in lake and sea water. Although at lower levels (few ng/L), UV-filters were also found in tap and groundwater. Swimming pool water is also a sink for UV-filters and its chlorine by-products, at the μg/L range, highlighting the benzophenone and benzimidazole derivatives. Soils and sediments are not frequently studied, but concentrations in the μg/L range have already been found especially for the benzophenone and crylene derivatives. Aquatic biota is frequently studied and UV-filters are found in the ng/g-dw range with higher values for fish and mussels. It has been concluded that more information regarding UV-filter degradation studies both in water and sediments is necessary and environmental occurrences should be monitored more

  2. Advances in analytical methods and occurrence of organic UV-filters in the environment--A review.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2015-09-01

    UV-filters are a group of compounds designed mainly to protect skin against UVA and UVB radiation, but they are also included in plastics, furniture, etc., to protect products from light damage. Their massive use in sunscreens for skin protection has been increasing due to the awareness of the chronic and acute effects of UV radiation. Some organic UV-filters have raised significant concerns in the past few years for their continuous usage, persistent input and potential threat to ecological environment and human health. UV-filters end up in wastewater and because wastewater treatment plants are not efficient in removing them, lipophilic compounds tend to sorb onto sludge and hydrophilics end up in river water, contaminating the existing biota. To better understand the risk associated with UV-filters in the environment a thorough review regarding their physicochemical properties, toxicity and environmental degradation, analytical methods and their occurrence was conducted. Higher UV-filter concentrations were found in rivers, reaching 0.3mg/L for the most studied family, the benzophenone derivatives. Concentrations in the ng to μg/L range were also detected for the p-aminobenzoic acid, cinnamate, crylene and benzoyl methane derivatives in lake and sea water. Although at lower levels (few ng/L), UV-filters were also found in tap and groundwater. Swimming pool water is also a sink for UV-filters and its chlorine by-products, at the μg/L range, highlighting the benzophenone and benzimidazole derivatives. Soils and sediments are not frequently studied, but concentrations in the μg/L range have already been found especially for the benzophenone and crylene derivatives. Aquatic biota is frequently studied and UV-filters are found in the ng/g-dw range with higher values for fish and mussels. It has been concluded that more information regarding UV-filter degradation studies both in water and sediments is necessary and environmental occurrences should be monitored more

  3. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  4. A Label-Free Porous Silicon Immunosensor for Broad Detection of Opiates in a Blind Clinical Study and Result Comparison to Commercial Analytical Chemistry Techniques

    PubMed Central

    Bonanno, Lisa M.; Kwong, Tai C.; DeLouise, Lisa A.

    2010-01-01

    In this work we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n=50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA®) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was < 9% both within-run and between-day at and above the cutoff limit of 300 ng ml−1. This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semi-quantitative demonstration of the technology’s successful clinical use. These results motivate future development of PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting. PMID:21062030

  5. Analytical applications of emulsions and microemulsions.

    PubMed

    Burguera, José Luis; Burguera, Marcela

    2012-07-15

    Dispersion systems like emulsions and microemulsions are able to solubilize both polar and non-polar substances due to the special arrangement of the oil and aqueous phases. The main advantages of using emulsions or microemulsions in analytical chemistry are that they do not require the previous destruction of the sample matrix or the use of organic solvents as diluents, and behave similarly to aqueous solutions, frequently allowing the use of aqueous standard solutions for calibration. However, it appears that there are many contradictory concepts and misunderstandings often related to terms definition when referring to such systems. The main aim of this review is to outline the differences between these two aggregates and to give an overview of the most recent advances on their analytical applications with emphasis on the potentiality of the on-line emulsification processes. PMID:22817921

  6. Development of advanced in situ techniques for chemistry monitoring and corrosion mitigation in SCWO environments. 1997 annual progress report

    SciTech Connect

    Meng, Z.; Zhou, X.Y.; Lvov, S.N.; Macdonald, D.D.

    1997-10-01

    'This report evaluates the first year''s results of the research on the development of advanced electrochemical sensors for use in high subcritical and supercritical aqueous environments. The work has emphasized the designing of an advanced reference electrode, and the development of high-temperature pH and redox sensors for characterizing the fundamental properties of supercritical aqueous solutions. Also, electrochemical noise sensors have been designed for characterizing metal/water interactions, including corrosion processes. A test loop has been designed and constructed to meet the expected operation conditions. The authors have also developed an approach to define a practical pH scale for use with supercritical aqueous systems and an operational electrochemical thermocell was tested for pH measurements in HCl + NaCl aqueous solutions. The potentials of the thermocell for several HCl(aq) solutions of different concentrations have been measured over wide ranges of temperature from 25 to 400 C and for flow rates from 0.1 to 1.5 cm min{sup -1} . The corresponding pH differences ({Delta}pH) for two HCl(aq) concentrations in 0.1 NaCl(aq) solution have been experimentally derived and thermodynamically analyzed. Their first experimental measurements, and subsequent theoretical analysis, clearly demonstrate the viability of pH measurements in high subcritical and supercritical aqueous solutions with a high accuracy of \\2610.02 to 0.05 units.'

  7. Residues in food and feed topic area at the 13th IUPAC International Congress of pesticide chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The organizers of two symposia in the “Residues in Food and Feed” topic area held at the 13th IUPAC International Congress of Pesticide Chemistry introduce the papers that were contributed to this special section in the Journal. The symposia were titled “Taking Advantage of Advanced Analytical Tool...

  8. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  9. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  10. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    PubMed

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.

  11. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    PubMed

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble. PMID:16615794

  12. Role of microemuslsions in advanced drug delivery.

    PubMed

    Sharma, Aman Kumar; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-06-01

    Microemulsions have gained significant attention from formulation scientists since the time they have been discovered, because of their excellent properties related to their stability, solubility, simplicity, and formulation aspects. The application of microemulsions is not limited to drug delivery via the oral, topical or ocular routes, but may also be seen in cosmetics, immunology, sensor devices, coating, textiles, analytical chemistry, and spermicide. Finally, the objective of this review is to discuss briefly the applications of microemulsions in advanced drug delivery. PMID:25711493

  13. Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996

    SciTech Connect

    Zilm, K.W.

    1996-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  14. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    SciTech Connect

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H.; Kim, K.

    1993-05-01

    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  15. Novel analytical approach to monitoring advanced glycosylation end products in human serum with on-line spectrophotometric and spectrofluorometric detection in a flow system.

    PubMed

    Wróbel, K; Wróbel, K; Garay-Sevilla, M E; Nava, L E; Malacara, J M

    1997-09-01

    We proposed a simple analytical procedure for measurement of serum advanced glycosylation end products (AGEs) based on simultaneous detection of low-molecular-mass peptides and AGEs with a flow system and two detectors connected on-line: spectrophotometric for peptides (lambda = 280 nm) and spectrofluorometric for AGEs (lambda ex = 247 nm, lambda em = 440 nm). Sample pretreatment was carried out in microcentrifuge tubes: Serum (20 microL) was deproteinized with trichloroacetic acid (480 microL, 0.15 mol/L) and lipids were extracted with chloroform (100 microL). Twenty microliters of the filtered aqueous layer was injected to the flow system and the relation between fluorescence and absorption signals was measured. A peptide-derived AGE calibrator was used for calibration. Within-day and between-day CVs were 6.7% and 9.1%, respectively, at an AGE concentration corresponding approximately to that in healthy individuals. Mean results (+/-SD) in 10 healthy individuals were 10.1% +/- 1.0%, in 21 patients with diabetes without complications 18.0% +/- 6.2%, in 25 patients with complications 24.1% +/- 15.4%, and in 12 diabetic patients in end-stage renal disease 92% +/- 30%. Comparison with an ELISA procedure (x, in arbitrary units/L) yields a regression equation y = 0.713x + 1.24 (Sy [symbol: see text] x = 6777, r = 0.8477, n = 41).

  16. Nanoelectrodes: Recent Advances and New Directions

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan T.; Zhang, Bo

    2012-07-01

    This article reviews recent work involving the development and application of nanoelectrodes in electrochemistry and related areas. We first discuss common analytical methods for characterizing the size, shape, and quality of nanoelectrodes, including electron microscopy, steady-state cyclic voltammetry, scanning electrochemical microscopy, and surface modification. We then emphasize recent developments in fabrication techniques that have led to structurally well-defined nanoelectrodes. We highlight recent advances in the application of nanoelectrodes in important analytical chemistry areas, such as single-molecule studies, single-nanoparticle electrochemistry, and measurements of neurotransmitters from single neuronal cells.

  17. Applications of Inorganic Chemistry in Biology: An Interdisciplinary Graduate Course

    NASA Astrophysics Data System (ADS)

    Farrell, Nicholas; Ross, Paul; Roat, Rosette M.

    1998-06-01

    Inorganic chemistry faculty at Virginia Commonwealth University (VCU) are offering an advanced, interdisciplinary, graduate course entitled "Applications of Inorganic Chemistry in Biology". The course utilizes examples from bioinorganic chemistry to introduce advanced topics in synthesis, structural analysis, and analytical methods that are practiced by inorganic chemists. Emphasis is placed on the structure and function of trace and ultratrace transition metals in biological systems and on the use of metals for medicinal purposes. Instrumental techniques such as electron paramagnetic resonance, Mössbauer spectroscopy, and X-ray crystallography are explained in the detail necessary to familiarize students with their use for analysis of bioinorganic systems and their models. Students have take-home examinations during the term and write a term paper describing a metalloprotein whose X-ray structure data is listed in Brookhaven protein data base. The paper follows the same course pattern of classroom discussion of a bioinorganic system, concentrating on the coordination geometry and nearest neighbor contacts of the metal-binding site in the protein, substrate binding site, and relevance to the metalloprotein or enzyme function, mechanism of action of the enzyme or protein, spectroscopic studies on the metal-binding site, and model studies for the protein's metal-binding site. The instructors conclude that their basic goals for the course - introduction to advanced inorganic chemistry topics using bioinorganic examples with emphasis on primary literature sources and computer-assisted displays - are being accomplished.

  18. Supplemental Instruction in Physical Chemistry I

    ERIC Educational Resources Information Center

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  19. ENVIRONMENTAL CHEMISTRY CAREERS IN GOVERNMENT AGENCIES

    EPA Science Inventory

    Careers in chemistry and chemistry related fields can be very rewarding and enriching. Being an environmental chemist for a government agency requires a broad background in the field of chemistry. A knowledge of the operation of several analytical and preparatory instruments is...

  20. Forensic Chemistry--A Symposium Collection.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)

  1. Automation and quality in analytical laboratories

    SciTech Connect

    Valcarcel, M.; Rios, A.

    1994-05-01

    After a brief introduction to the generic aspects of automation in analytical laboratories, the different approaches to quality in analytical chemistry are presented and discussed to establish the following different facets emerging from the combination of quality and automation: automated analytical control of quality of products and systems; quality control of automated chemical analysis; and improvement of capital (accuracy and representativeness), basic (sensitivity, precision, and selectivity), and complementary (rapidity, cost, and personnel factors) analytical features. Several examples are presented to demonstrate the importance of this marriage of convenience in present and future analytical chemistry. 7 refs., 4 figs.

  2. A phenomenological analysis of the essence of the science education experience as perceived by female high school physics and advanced chemistry students

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Michael

    The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.

  3. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  4. Spreadsheets in Advanced Physical Chemistry.

    ERIC Educational Resources Information Center

    Kari, Roy

    1990-01-01

    Described are several spreadsheet templates which use the functions of iteration and logical look-up which allow students to calculate and graph quantum mechanical functions and to simulate rotational and vibrational energy level and spectra. The templates are listed in the appendix. (KR)

  5. Recent advances in isoxazole chemistry

    NASA Astrophysics Data System (ADS)

    Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S.; Pakalnis, V. V.; Rostovskii, N. V.

    2015-04-01

    The preparation methods and reactions of isoxazoles are described and systematized on the basis of analysis of the literature published from 2005 to present. In the discussion of synthesis, major attention is focused on the most efficient approaches: condensation of hydroxylamine with 1,3-dielectrophiles and reactions of nitrile oxides with alkenes and alkynes. Five-membered ring opening reactions leading to acyclic functionalized or other heterocyclic compounds are considered. The transformations of isoxazole derivatives that occur without ring cleavage to form fused heterocyclic systems, as well as reactions that lead to the introduction of C-substituents into isoxazoles, are considered. Data on the biological activity of some isoxazole derivatives are reported. The bibliography includes 439 references.

  6. PNNL's 'PEGASUS' Advances Atmospheric Chemistry

    SciTech Connect

    Berkowitz, Carl M.; Eades, Robert A.

    2001-04-16

    Presented an overview of software design to maximize computational efficiency on a massively parallel computing system. Also gave highlights of scientific results from this code, focusing primarily on how we can distinguish between stratospheric ozone in remote atmospheres and ozone generated from NOx/VOC chemical mechanisms.

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes experiments, demonstrations, activities and ideas relating to various fields of chemistry to be used in chemistry courses of secondary schools. Three experiments concerning differential thermal analysis are among these notes presented. (HM)

  10. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  11. Colour Chemistry

    ERIC Educational Resources Information Center

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  12. Agricultural and food chemistry: 50 years of synergy between AGFD and JAFC.

    PubMed

    Seiber, James N; Kleinschmidt, Loreen A

    2009-09-23

    The Division of Agricultural and Food Chemistry (AGFD) and the American Chemical Society had the foresight to launch the Journal of Agricultural and Food Chemistry in 1953. JAFC, still closely connected with the Division, has grown to be the premier international journal in the field, providing an outlet for publishing original research articles, reviews, perspectives, and editorials, for agricultural and food chemists from many nations. JAFC has expanded coverage of current areas of intense interest, such as bioactive constituents of foods, biotechnology, and biobased products and biofuels, as well as continuing strong coverage of such mainstream categories as food chemistry/biochemistry, analytical methods, safety and toxicology, and agrochemistry. In 2008 alone, JAFC published over 1650 peer-reviewed manuscripts, several symposia (largely from AGFD symposia at ACS National Meetings), and a number of reviews. The synergy between AGFD and JAFC offers many benefits and exciting opportunities for advancing the science of agricultural and food chemistry for the future. PMID:19719123

  13. Agricultural and food chemistry: 50 years of synergy between AGFD and JAFC.

    PubMed

    Seiber, James N; Kleinschmidt, Loreen A

    2009-09-23

    The Division of Agricultural and Food Chemistry (AGFD) and the American Chemical Society had the foresight to launch the Journal of Agricultural and Food Chemistry in 1953. JAFC, still closely connected with the Division, has grown to be the premier international journal in the field, providing an outlet for publishing original research articles, reviews, perspectives, and editorials, for agricultural and food chemists from many nations. JAFC has expanded coverage of current areas of intense interest, such as bioactive constituents of foods, biotechnology, and biobased products and biofuels, as well as continuing strong coverage of such mainstream categories as food chemistry/biochemistry, analytical methods, safety and toxicology, and agrochemistry. In 2008 alone, JAFC published over 1650 peer-reviewed manuscripts, several symposia (largely from AGFD symposia at ACS National Meetings), and a number of reviews. The synergy between AGFD and JAFC offers many benefits and exciting opportunities for advancing the science of agricultural and food chemistry for the future.

  14. Analytical chemistry: Clamping down on cancer detection

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, Irina A.; Gorodetsky, Alon A.

    2015-07-01

    An electrochemical clamp assay that enables the rapid and sensitive detection of nucleic acids containing single base mutations has now been developed. It has been shown to differentiate between cancer patient samples featuring a specific mutation, and controls from healthy donors or other cancer patients, all directly in unprocessed serum.

  15. Quality assurance for environmental analytical chemistry: 1980

    SciTech Connect

    Gladney, E.S.; Goode, W.E.; Perrin, D.R.; Burns, C.E.

    1981-09-01

    The continuing quality assurance effort by the Environmental Surveillance Group is presented. Included are all standard materials now in use, their consensus or certified concentrations, quality control charts, and all quality assurance measurements made by H-8 during 1980.

  16. Analytical chemistry: Virulence caught green-handed

    NASA Astrophysics Data System (ADS)

    Sanchez, Laura M.; Dorrestein, Pieter C.

    2013-03-01

    Many of us eat mushrooms, but few of us have probably ever thought about -- let alone witnessed -- the epic battle of kingdoms that can occur between this delicacy and its bacterial pathogens. Now, imaging mass spectrometry has enabled the identification of a bacterium's potent antifungal weapon of choice.

  17. Analytical chemistry of aluminum salt cake

    SciTech Connect

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  19. The Chemistry of Health.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This booklet, geared toward an advanced high school or early college-level audience, describes how basic chemistry and biochemistry research can spur a better understanding of human health. It reveals how networks of chemical reactions keep our bodies running smoothly. Some of the tools and technologies used to explore these reactions are…

  20. Bringing chemistry to life

    PubMed Central

    Boyce, Michael; Bertozzi, Carolyn R

    2011-01-01

    Bioorthogonal chemistry allows a wide variety of biomolecules to be specifically labeled and probed in living cells and whole organisms. Here we discuss the history of bioorthogonal reactions and some of the most interesting and important advances in the field. PMID:21799498