Science.gov

Sample records for advanced animal habitat

  1. Development of an Advanced Animal Habitat for Spaceflight

    NASA Technical Reports Server (NTRS)

    Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.

    1994-01-01

    It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.

  2. Development of an Advanced Animal Habitat for Spaceflight

    NASA Technical Reports Server (NTRS)

    Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.

    1994-01-01

    It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.

  3. Animal habitats for space experiments.

    PubMed

    Fukui, Keiji; Shimazu, Toru

    2004-11-01

    There has been little opportunity for flight experiments using small animals, due to delay of construction of the International Space Station. Therefore, proposals using small animals have been unfortunately excepted from International Space Life Sciences Experiment application opportunity since 2001. Moreover, NASA has changed their development plan of animal habitats for space experiments according to changes of the U.S. space policy and the outlook is not so bright. However, international researchers have been strongly requesting the opportunity for space experiments using small animals. It will be also important for Japanese researchers to make a request for the opportunity. At the same time, researchers have to make an advance in ground based studies toward space experiments and to respond future application opportunities immediately. In this symposium, we explain the AEM (Animal Enclosure Module), the RAHF (Research Animal Holding Facility), and the AAH (Advanced Animal Habitat). It will be helpful for investigators to have wide knowledge of what space experiment is technically possible. In addition, the sample share program will be introduced into our communities. The program will provide many researchers with the organs and tissues from space-flown animals. We will explain the technical aspect of sample share program.

  4. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  5. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  6. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  7. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The unit is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  8. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. The base of the APH is being prepared for engineering development tests to see how the science will integrate with the various systems of the plant habitat. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  9. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. Oscar Monje, a scientist on the Engineering Services Contract, prepares the base of the APH for engineering development tests to see how the science will integrate with the various systems of the plant habitat. The APH will have about 180 sensors and fourt times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  10. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  11. Advanced Plant Habitat (APH)

    NASA Image and Video Library

    2017-03-16

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) with its first initial grow test in the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The taller plants pictured are dwarf wheat and the smaller plants are Arabidopsis. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  12. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    Arabidopsis thaliana plants are seen inside the growth chamber of the Advanced Plant Habitat (APH) Flight Unit No. 1 prior to harvest of half the plants. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in NASA Kennedy Space Center's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  13. Ecological animal control by habitat management

    NASA Astrophysics Data System (ADS)

    Means, D. B.; Komarek, E. V.

    1983-01-01

    The article introduces the subject for this issue of Environmental Management—traditional and alternative means of agricultural pest management based on environmental manipulations The issue is the proceedings of the eighth Tall Timbers Research Station conference on ecological animal control by habitat management.

  14. Strategies for monitoring terrestrial animals and habitats

    Treesearch

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  15. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    John "JC" Carver, a payload integration engineer with NASA Kennedy Space Center's Test and Operations Support Contract, uses a FluorPen to measure the chlorophyll fluorescence of Arabidopsis thaliana plants inside the growth chamber of the Advanced Plant Habitat (APH) Flight Unit No. 1. Half the plants were then harvested. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in Kennedy's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  16. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    John "JC" Carver, a payload integration engineer with NASA Kennedy Space Center's Test and Operations Support Contract, harvests half the Arabidopsis thaliana plants inside the growth chamber of the Advanced Plant Habitat (APH) Flight Unit No. 1. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in Kennedy's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  17. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    John "JC" Carver, a payload integration engineer with NASA Kennedy Space Center's Test and Operations Support Contract, opens the door to the growth chamber of the Advanced Plant Habitat (APH) Flight Unit No. 1 for a test harvest of half of the Arabidopsis thaliana plants growing within. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in Kennedy's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  18. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    John "JC" Carver, a payload integration engineer with NASA Kennedy Space Center's Test and Operations Support Contract, places Arabidopsis thaliana plants harvested from the Advanced Plant Habitat (APH) Flight Unit No. 1 into a Mini ColdBag that quickly freezes the plants. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in Kennedy's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  19. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    John "JC" Carver, a payload integration engineer with NASA Kennedy Space Center's Test and Operations Support Contract, places Arabidopsis thaliana plants harvested from the Advanced Plant Habitat (APH) Flight Unit No. 1 into an Ultra-low Freezer chilled to -150 degrees Celsius. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in Kennedy's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  20. OA-7 Advanced Plant Habitat

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite is packed down in the base and coverings are secured to seal the base. The Apogee wheat seeds are then inserted into the carrier. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  1. Habitat availability and animal community characteristics

    SciTech Connect

    Seagle, S.W.; Shugart, H.H.; West, D.C.

    1984-12-01

    The microhabitat utilization and niche characteristics of Peromyscus leucopus, Ochrotomys nuttalli, and Blarina brevicauda were examined within a pine plantation on the Oak Ridge National Environmental Research Park (NERP) in East Tennessee. Although general microhabitat utilization was the same, niche parameters (such as niche breadth) for each species varied between two study grids, apparently in response to differing understory density. Specialization is thus proposed to be a function of local microhabitat structure. Removal of the generalist species, P. leucopus, from one grid while maintaining the other as a control elicited a significant microhabitat shift and increase in niche breadth by O. nuttalli. B. brevicauda displayed a slight but nonsignificant microhabitat shift and increased niche breadth. These results are a counter example to the hypothesis that generalist species are poor competitors. Spatial microhabitat heterogeneity created by plant secondary succession and extrinsic disturbances such as tree blow-down is suggested to allow coexistence of these species by altering competitive abilities or microhabitat selection at a small spatial scale. Since interspecific competition affects small mammal niche characteristics, two hypotheses to explain the relative abundances of coexisting animal species are examined. Analysis of the small mammal fauna of the Oak Ridge NERP indicates that habitat availability, not niche breadth, is a good predictor of abundance. This result is discussed in the context of habitat dynamics and the evolutionary history of the species. 103 references, 10 figures, 10 tables.

  2. Advances in Animal Cognition.

    PubMed

    Vonk, Jennifer

    2016-11-30

    This editorial endorses a diverse approach to the study of animal cognition and emphasizes the theoretical and applied gains that can be made by embracing this approach. This diversity emerges from cross-talk among scientists trained in a variety of backgrounds and theoretical approaches, who study a variety of topics with a range of species. By shifting from an anthropocentric focus on humans and our closest living relatives, and the historic reliance on the lab rat or pigeon, modern students of animal cognition have uncovered many fascinating facets of cognition in species ranging from insects to carnivores. Diversity in both topic and species of study will allow researchers to better understand the complex evolutionary forces giving rise to widely shared and unique cognitive processes. Furthermore, this increased understanding will translate into more effective strategies for managing wild and captive populations of nonhuman species.

  3. Advances in Animal Cognition

    PubMed Central

    Vonk, Jennifer

    2016-01-01

    This editorial endorses a diverse approach to the study of animal cognition and emphasizes the theoretical and applied gains that can be made by embracing this approach. This diversity emerges from cross-talk among scientists trained in a variety of backgrounds and theoretical approaches, who study a variety of topics with a range of species. By shifting from an anthropocentric focus on humans and our closest living relatives, and the historic reliance on the lab rat or pigeon, modern students of animal cognition have uncovered many fascinating facets of cognition in species ranging from insects to carnivores. Diversity in both topic and species of study will allow researchers to better understand the complex evolutionary forces giving rise to widely shared and unique cognitive processes. Furthermore, this increased understanding will translate into more effective strategies for managing wild and captive populations of nonhuman species. PMID:27916874

  4. Teaching animal habitat selection using wildlife tracking equipment

    USGS Publications Warehouse

    Laskowski, Jessica; Gillespie, Caitlyn; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  5. Habitats: Making Homes for Animals and Plants.

    ERIC Educational Resources Information Center

    Hickman, Pamela M.

    This book of activities is designed to supplement a child's outdoor experiences and to encourage children to take a closer look at nature by creating temporary mini-habitats at home or in school. An introduction explains to students the concept of habitat and the responsibilities of keeping a mini-habitat. The remainder of the book contains…

  6. Habitats: Making Homes for Animals and Plants.

    ERIC Educational Resources Information Center

    Hickman, Pamela M.

    This book of activities is designed to supplement a child's outdoor experiences and to encourage children to take a closer look at nature by creating temporary mini-habitats at home or in school. An introduction explains to students the concept of habitat and the responsibilities of keeping a mini-habitat. The remainder of the book contains…

  7. Teaching Animal Habitat Selection Using Wildlife Tracking Equipment

    ERIC Educational Resources Information Center

    Laskowski, Jessica; Gillespie, Caitlyn; Corral, Lucia; Oden, Amy; Fricke, Kent; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce.…

  8. Teaching Animal Habitat Selection Using Wildlife Tracking Equipment

    ERIC Educational Resources Information Center

    Laskowski, Jessica; Gillespie, Caitlyn; Corral, Lucia; Oden, Amy; Fricke, Kent; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce.…

  9. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  10. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists are preparing the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite has been packed down in the base and coverings are being secured to seal the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  11. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  12. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepared the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  13. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  14. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  15. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  16. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a scientist inserts Apogee wheat seeds into the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  17. Temporal segmentation of animal trajectories informed by habitat use

    USGS Publications Warehouse

    van Toor, Marielle L.; Newman, Scott H.; Takekawa, John Y.; Wegmann, Martin; Safi, Kamran

    2016-01-01

    Most animals live in seasonal environments and experience very different conditions throughout the year. Behavioral strategies like migration, hibernation, and a life cycle adapted to the local seasonality help to cope with fluctuations in environmental conditions. Thus, how an individual utilizes the environment depends both on the current availability of habitat and the behavioral prerequisites of the individual at that time. While the increasing availability and richness of animal movement data has facilitated the development of algorithms that classify behavior by movement geometry, changes in the environmental correlates of animal movement have so far not been exploited for a behavioral annotation. Here, we suggest a method that uses these changes in individual–environment associations to divide animal location data into segments of higher ecological coherence, which we term niche segmentation. We use time series of random forest models to evaluate the transferability of habitat use over time to cluster observational data accordingly. We show that our method is able to identify relevant changes in habitat use corresponding to both changes in the availability of habitat and how it was used using simulated data, and apply our method to a tracking data set of common teal (Anas crecca). The niche segmentation proved to be robust, and segmented habitat suitability outperformed models neglecting the temporal dynamics of habitat use. Overall, we show that it is possible to classify animal trajectories based on changes of habitat use similar to geometric segmentation algorithms. We conclude that such an environmentally informed classification of animal trajectories can provide new insights into an individuals' behavior and enables us to make sensible predictions of how suitable areas might be connected by movement in space and time.

  18. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  19. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check components of the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  20. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the control panel on hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  1. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  2. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, LED plant growth lights are being checked out on the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  3. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environment Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  4. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  5. Using the Science Process Skills to Investigate Animals and Animal Habitats

    NASA Astrophysics Data System (ADS)

    Braithwaite, Saisha

    This study explored how a STEM (science, technology, engineering, and math) engineer design challenge allowed students to analyze the characteristics of animals and animal habitats. This study was conducted in a kindergarten class within an urban school district. The class has 25 students while the study focuses on six students. The group consists of three boys and three girls. In this study, the students used the science process skills to observe, classify, infer, and make predictions about animals and habitats. In the engineer design, students created an established habitat and built their own animal that can survive in that habitat. The study analyzed how students used process skills to engage with the habitats and animals. The students successfully used the science process skills in this study. The results showed that students gained more content knowledge when they used multiple process skills within a lesson. The study shows that developing lessons using the science process skills improves students' ability to demonstrate their knowledge of animals and their habitats.

  6. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  7. SEARCH: Spatially Explicit Animal Response to Composition of Habitat

    PubMed Central

    Pauli, Benjamin P.; McCann, Nicholas P.; Zollner, Patrick A.; Cummings, Robert; Gilbert, Jonathan H.; Gustafson, Eric J.

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of

  8. 101 Things You Can Do to Help Save Animals and Animal Habitats.

    ERIC Educational Resources Information Center

    Clearing, 1988

    1988-01-01

    The improper disposal of toxic or non-biodegradable wastes contributes to the problems of pollution, habitat destruction, and animal extinction. This list suggests ways that individuals can reduce their contribution to these problems in the home, yard, car, business, on vacation, and when shopping. (CW)

  9. Modeling animal habitats based on cover types: a critical review.

    PubMed

    Schlossberg, Scott; King, David I

    2009-04-01

    The simplest type of model describing animal habitats is a "cover-type model," in which a species is assumed to be present in certain vegetation types and absent in others. Ecologists and managers use these models to predict animal distributions for gap analysis and conservation planning. Critics, however, have suggested that the models are overly simplistic and inaccurate. We reviewed the use of cover-type models including assessing their error rates, diagnosing the problems with these models, and determining how they should best be used by managers. To determine models' accuracy rates, we conducted a meta-analysis of 35 studies in which cover-type models were tested against data on animal occurrences. Models had a mean accuracy rate of 0.71 +/- 0.18 (SD). Rates of commission error averaged 0.20 +/- 0.16, and omission errors averaged 0.09 +/- 0.11. A review of the effects of errors in conservation planning suggests that the observed error rates were high enough to call into question any management decisions based on these models. Reasons for the high error rates of cover-type models include the fallibility of expert opinion, the fact that the models oversimplify how animals actually use habitats, and the dynamic nature of animal populations. Given the high rate of errors in cover-type models, any conclusions based on them should be taken with extreme caution. We suggest that these models are best used as coarse filters to identify locations for further study in the field.

  10. Effect of habitat area and isolation on fragmented animal populations

    PubMed Central

    Prugh, Laura R.; Hodges, Karen E.; Sinclair, Anthony R. E.; Brashares, Justin S.

    2008-01-01

    Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented populations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as explanations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction. PMID:19073931

  11. Evidence of Weak Habitat Specialisation in Microscopic Animals

    PubMed Central

    Fontaneto, Diego; Westberg, Martin; Hortal, Joaquín

    2011-01-01

    Macroecology and biogeography of microscopic organisms (any living organism smaller than 2 mm) are quickly developing into fruitful research areas. Microscopic organisms also offer the potential for testing predictions and models derived from observations on larger organisms due to the feasibility of performing lab and mesocosm experiments. However, more empirical knowledge on the similarities and differences between micro- and macro-organisms is needed to ascertain how much of the results obtained from the former can be generalised to the latter. One potential misconception, based mostly on anedoctal evidence rather than explicit tests, is that microscopic organisms may have wider ecological tolerance and a lower degree of habitat specialisation than large organisms. Here we explicitly test this hypothesis within the framework of metacommunity theory, by studying host specificify in the assemblages of bdelloid rotifers (animals about 350 µm in body length) living in different species of lichens in Sweden. Using several regression-based and ANOVA analyses and controlling for both spatial structure and the kind of substrate the lichen grow over (bark vs rock), we found evidence of significant but weak species-specific associations between bdelloids and lichens, a wide overlap in species composition between lichens, and wide ecological tolerance for most bdelloid species. This confirms that microscopic organisms such as bdelloids have a lower degree of habitat specialisation than larger organisms, although this happens in a complex scenario of ecological processes, where source-sink dynamics and geographic distances seem to have no effect on species composition at the analysed scale. PMID:21887355

  12. Development of aquatic animal experiment facility, Aquatic Habitat (AQH)

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Kono, Y.; Sakimura, T.; Nishikawa, W.; Fujimoto, N.; Murakami, K.; Nakamura, T.

    We have been performing technical studies to develop aquatic animal experiment facility, Aquatic Habitat (AQH), for both of short-term experiments in the Space Shuttle middeck and long-term experiments in the Space Station including the Centrifuge Accommodation Module (CAM). The AQH will have the capabilities to accommodate three-generations of small freshwater fish (medaka and zebrafish) and egg through metamorphosis of amphibian (African clawed frog). For these purposes, the AQH will have the following brand-new capabilities that the previous facilities have never had; 90days experiment duration, automatic feeding according to specimen types and their developmental stages, separation of generations for fish, specimen sample collection in various developmental stages, air/water interface control for amphibian, continuous monitoring of specimen behavior even in dark condition, and so on. We have already performed preliminary breeding tests for medaka and zebrafish with a breeding system prototype. Their mating behavior was performed successfully in the small closed chamber and the hatched larvae grew and started spawning on the 45-47th day after hatching. These results demonstrated that three generational breeding of medaka and zebrafish within 90days would be possible based on this breeding system prototype. Also, we have developed almost of the above new mechanisms, that is, an automatic feeding system, an egg separation mechanism for fish, an air stabilizer to control air/water interface, and a continuous specimen monitoring system through light/dark cycle. Based on these results, we have manufactured a BBM of AQH water circulation system and performed biological compatibility tests as a next step. For African clawed frog breeding, some problems have been revealed through the preliminary tests with the breeding system prototype. Currently, we are performing the investigations to resolve the problems and preparing to proceed to the next step.

  13. Advanced techniques in echocardiography in small animals.

    PubMed

    Chetboul, Valérie

    2010-07-01

    Transthoracic echocardiography has become a major imaging tool for the diagnosis and management of canine and feline cardiovascular diseases. During the last decade, more recent advances in ultrasound technology with the introduction of newer imaging modalities, such as tissue Doppler imaging, strain and strain rate imaging, and 2-dimensional speckle tracking echocardiography, have provided new parameters to assess myocardial performance, including regional myocardial velocities and deformation, ventricular twist, and mechanical synchrony. An outline of these 4 recent ultrasound techniques, their impact on the understanding of right and left ventricular function in small animals, and their application in research and clinical settings are given in this article.

  14. ADVANCES IN ANIMAL WELFARE FOR FREE-LIVING ANIMALS.

    PubMed

    2016-04-01

    Over several decades, animal welfare has grown into its own free-standing field of scientific study, from its early beginnings in laboratory animal research to eventually include exhibited animals and farm animals. While it has always been present to some degree, consideration of animal welfare for free-ranging animals has lagged behind, developing as a field of study in the last 20 yr or so. Part of that increase was that animal welfare legislation was finally applied to studies being done on free-ranging animals. But it is the appreciation by the biologists and veterinarians working on wild animals, in which the quality of their results is largely controlled by the quality of the animals they use in their studies, which has resulted in increased attention to the well-being or welfare of the animals that they use. Other important influences driving the recognition of wildlife welfare have been changes in the public's expectations of how wild animals are dealt with, a shift in focus of wildlife professionals from managing animals that can be hunted or angled to include nongame species, the decrease in participation in hunting and fishing by members of the public, and the entry of large numbers of women into fish and wildlife agencies and departments and into veterinary medicine. Technical improvements have allowed the safe capture and handling of large or dangerous animals as immobilization drugs and equipment have been developed. The increasing use of sedating drugs allows for handling of animals with reduced stress and other impacts. A number of topics, such as toe-clipping, branding, defining which taxa can or cannot feel pain, catch-and-release fishing, and more, remain controversial within wildlife science. How we treat the wild animals that we deal with defines who we are as wildlife professionals, and animal welfare concerns and techniques for free-ranging animals will continue to develop and evolve.

  15. ANIMAL-HABITAT ASSOCIATIONS IN PACIFIC NORTHWEST ESTUARIES

    EPA Science Inventory

    The mission of the Pacific Coastal Ecology Branch (EPA, Newport, OR) is to determine the effects of habitat alteration by stressors on ecological resources in Pacific Northwest (PNW) estuaries. Research being conducted in support of this mission includes identifying critical hab...

  16. ANIMAL-HABITAT ASSOCIATIONS IN PACIFIC NORTHWEST ESTUARIES

    EPA Science Inventory

    The mission of the Pacific Coastal Ecology Branch (EPA, Newport, OR) is to determine the effects of habitat alteration by stressors on ecological resources in Pacific Northwest (PNW) estuaries. Research being conducted in support of this mission includes identifying critical hab...

  17. Spatially explicit animal response to composition of habitat

    Treesearch

    Benjamin P. Pauli; Nicholas P. McCann; Patrick A. Zollner; Robert Cummings; Jonathan H. Gilbert; Eric J. Gustafson

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-...

  18. On Safari: Animals and Their Habitats. Grades 2/3. Tapestries for Learning Series.

    ERIC Educational Resources Information Center

    McDonald, Heather

    This thematic unit involves 2nd and 3rd grade students in an in-depth study of wild animals and their habitats. The interdisciplinary unit connects knowledge related to art, language arts, applied mathematics, social studies, and science. Students think about different types of animals from around the world and consider how they are alike and…

  19. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal.

    PubMed

    Fontúrbel, Francisco E; Candia, Alina B; Malebrán, Javiera; Salazar, Daniela A; González-Browne, Catalina; Medel, Rodrigo

    2015-11-01

    Anthropogenic habitat disturbance is a strong biodiversity change driver that compromises not only the species persistence but also the ecological interactions in which they are involved. Even though seed dispersal is a key interaction involved in the recruitment of many tree species and in consequence critical for biodiversity maintenance, studies assessing the effect of different anthropogenic disturbance drivers on this interaction have not been performed under a meta-analytical framework. We assessed the way habitat fragmentation and degradation processes affect species diversity (abundance and species richness) and interaction rates (i.e., fruit removal and visitation rates) of different groups of seed-disperser species at a global scale. We obtained 163 case studies from 37 articles. Results indicate that habitat degradation had a negative effect on seed-disperser animal diversity, whereas habitat fragmentation had a negative effect on interaction rates. Birds and insects were more sensitive in terms of their diversity, whereas mammals showed a negative effect on interaction rates. Regarding habitat, both fragmentation and degradation had a negative effect on seed-disperser animal diversity only in temperate habitats, and negative effects on interaction rates in tropical and temperate habitats. Our results indicate that the impact of human disturbance on seed-disperser species and interactions is not homogeneous. On the contrary, the magnitude of effects seems to be dependent on the type of disturbance, taxonomic group under assessment, and geographical region where the human impact occurs. © 2015 John Wiley & Sons Ltd.

  20. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    SciTech Connect

    Wood, Marilyn A.

    1993-02-01

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  1. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  2. Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns

    USGS Publications Warehouse

    Jimenez-Alfaro, Borja; Chytry, Milan; Mucina, Ladislav; Grace, James B.; Rejmanek, Marcel

    2016-01-01

    Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate–energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant–animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate–energy and abiotic habitat heterogeneity.

  3. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns.

    PubMed

    Jiménez-Alfaro, Borja; Chytrý, Milan; Mucina, Ladislav; Grace, James B; Rejmánek, Marcel

    2016-03-01

    Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate-energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant-animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate-energy and abiotic habitat heterogeneity.

  4. Recent advances in small animal genetics.

    PubMed

    Bannasch, Danika L; Hughes, Angela M

    2006-05-01

    The whole genome sequence of the dog is complete, and partial sequencing of the cat genome is underway. Sequences allow the molecular basis for inherited diseases to be more easily determined, leading to development of DNA tests to verify carrier and affected states as well as potential gene therapy for the treatment of those diseases. To help veterinarians provide genetic services to their clients, the molecular genetic tests currently available are listed in this article. In addition, cloning of small animals is now available to clients on a commercial basis. Information about the cloning process and possible health issues in clones are discussed.

  5. Advancing animal welfare science: sharing knowledge, debating issues.

    PubMed

    Orritt, Rachel

    2016-07-23

    Established animal welfare scientists and others at the beginning of their career gathered in York last month to discuss recent advances in animal welfare science. Organised by the Universities Federation for Animal Welfare, the meeting aimed to provide a forum for sharing knowledge and practice, discussion and debate. Rachel Orritt, a PhD researcher at the University of Lincoln, reports on proceedings. British Veterinary Association.

  6. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  7. [Effects of forest ownership regime on landscape pattern and animal habitat: a review].

    PubMed

    Li, Yue-Hui; Wu, Wen; Li, Na-Na; Bu, Ren-Cang; Hu, Yuan-Man

    2013-07-01

    In some European and North American countries where forestry is highly developed, both public and private forest ownership regimes have being existed for a long time. Currently, the researches about both the dynamics of forest landscape and habitat pattern and the relationship between habitat pattern and biological conservation in multi-ownership forest landscape are increasingly becoming important. This paper reviewed the effects of multi-ownership regime on forest landscape pattern and animal habitat and emphasized on the ecological consequences of forest parcelization and land divestiture, including the provision of diverse habitats and fragmentation of the existing large-area habitat. This paper also summarized two ways (changing the ownership pattern and integrating the multi-ownership management by cross boundary coordination) for handling the conflicts between small-scaled multi-ownership management and biological conservation at large scale in forestry-developed countries and analyzed the reasons that those countries prefer to adopt the latter one. Furthermore, the methodological limitations in simulating ownership pattern were pointed out. Finally, the present status, challenges and opportunities in the above-mentioned research issues in China were discussed, and the suggestions for further researches were provided.

  8. Advanced systems data for mapping Emperor Penguin habitats in Antarctica

    USGS Publications Warehouse

    Sanchez, Richard D.; Kooyman, Gerald L.

    2004-01-01

    Commercial orbital sensor systems combined with other resource data from the U.S. Geological Survey National Civil Applications Program (NCAP) may offer an effective way of mapping Emperor penguin habitats and their response to regional climate change in Antarctica. This project examined these resources to determine their applicability for mapping Emperor penguin habitats to support the National Science Foundation. This work is especially significant to investigate satellite-based imaging as an alternative to intrusive in-the-field enumeration of Emperor penguins and the potential of applying these procedures to support The National Map (TNP).

  9. Invasive exotic shrub modifies a classic animal-habitat relationship and alters patterns of vertebrate seed predation.

    PubMed

    Guiden, Peter W; Orrock, John L

    2017-02-01

    Recent evidence suggests that invasive exotic plants can provide novel habitats that alter animal behavior. However, it remains unclear whether classic animal-habitat associations that influence the spatial distribution of plant-animal interactions, such as small mammal use of downed woody debris, persist in invaded habitats. We removed an invasive exotic shrub (buckthorn, Rhamnus cathartica) from 7 of 15 plots in Wisconsin. In each plot, we deployed 200 tagged Quercus rubra seeds in November 2014. After five months, tags were recovered to track spatial patterns of small mammal seed predation. Most recovered tags were associated with consumed seeds (95%); live-trapping, ancillary camera-trapping, and previous behavioral studies suggest that white-footed mice (Peromyscus leucopus) were responsible for most seed predation. In habitats without R. cathartica, most seed predation occurred near woody debris. In habitats with R. cathartica, small mammals rarely consumed seeds near woody debris, and seed predation occurred farther from the plot center and was less spatially clustered. Our results illustrate that invasive exotic shrubs can disrupt an otherwise common animal-habitat relationship. Failing to account for changes in habitat use may diminish our ability to predict animal distributions and outcomes of species interactions in novel habitats created by invasive exotic plants. © 2016 by the Ecological Society of America.

  10. Habitat typing versus advanced vegetation classification in western forests

    Treesearch

    Tony Kusbach; John Shaw; James Long; Helga Van Miegroet

    2012-01-01

    Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...

  11. [Research advances in animal models of intervertebral disc degeneration].

    PubMed

    Zhang, Wenli; Liu, Hao; Li, Tanzhu

    2007-11-01

    To review the research advances in animal models of human disc degeneration. The relative articles in recent years were extensively reviewed. Studies both at home and abroad were analyzed and classified. The advantages and disadvantages of each method were compared. Studies were classified as either experimentally induced models or spontaneous models. The induced models were subdivided as mechanical (alteration of forces on the normal disc), structural (injury or chemical alteration) and genetically induced models. Spontaneous models included those animals that naturally developed degenerative disc disease. Animal model of intervertebral disc degeneration is an important path for revealing the pathogenesis of human disc degeneration, and play an important role in testing novel interventions. With recent advances in the relevance of animal models and humans, it has a great prospect in study of human disc degeneration.

  12. Natural habitats matter: Determinants of spatial pattern in the composition of animal assemblages of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Divíšek, Jan; Zelený, David; Culek, Martin; Št'astný, Karel

    2014-08-01

    Studies that explore species-environment relationships at a broad scale are usually limited by the availability of sufficient habitat description, which is often too coarse to differentiate natural habitat patches. Therefore, it is not well understood how the distribution of natural habitats affects broad-scale patterns in the distribution of animal species. In this study, we evaluate the role of field-mapped natural habitats, land-cover types derived from remote sensing and climate on the composition of assemblages of five distinct animal groups, namely non-volant mammals, birds, reptiles, amphibians and butterflies native to the Czech Republic. First, we used variation partitioning based on redundancy analysis to evaluate the extent to which the environmental variables and their spatial structure might underlie the observed spatial patterns in the composition of animal assemblages. Second, we partitioned variations explained by climate, natural habitats and land-cover to compare their relative importance. Finally, we tested the independent effects of each variable in order to evaluate the significance of their contributions to the environmental model. Our results showed that spatial patterns in the composition of assemblages of almost all the considered animal groups may be ascribed mostly to variations in the environment. Although the shared effects of climatic variables, natural habitats and land-cover types explained the largest proportion of variation in each animal group, the variation explained purely by natural habitats was always higher than the variation explained purely by climate or land-cover. We conclude that most spatial variation in the composition of assemblages of almost all animal groups probably arises from biological processes operating within a spatially structured environment and suggest that natural habitats are important to explain observed patterns because they often perform better than habitat descriptions based on remote sensing. This

  13. Adding structure to land cover - using fractional cover to study animal habitat use.

    PubMed

    Bevanda, Mirjana; Horning, Ned; Reineking, Bjoern; Heurich, Marco; Wegmann, Martin; Mueller, Joerg

    2014-01-01

    Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis. We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio-temporal scales. We analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump-shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges. The application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer.

  14. Psychosocial Accommodation to Group Confinement in the Advanced Base Habitat

    DTIC Science & Technology

    1988-06-01

    identify by block number) FIELD GROUP SUB-GROUP CONFINED ENVIRONMENTS STRESS( PSYCHOLOGY ) "FERSONNEL TEST AND EVALUATION PSYCHOLOGICAL TESTS CONFLICT...during the tests provided an opportunity to assess the psychological effects of the Habitat. Three tests were conducted with four crew members each...IRITY CLASSIFICATION OF TwiS PAGE All other editions are obsolete ’S ,...’LASSIFIED 18. CONFINEMENT( PSYCHOLOGY ), LONG RANCE(TIME), BEHAVIORAL SCIENCE

  15. Teaching habitat and animal classification to fourth graders using an engineering-design model

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail

    2014-05-01

    Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGOTM engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose: The driving questions for our work are: (1) What is the impact of an engineering-design-based curricular module on students' understanding of habitat and animal classification? (2) What are students' misconceptions regarding animal classification and habitat? Sample: The study was conducted in an inner-city K-8 school in the northeastern region of the United States. There were two fourth grade classrooms in the school. The first classroom included seven girls and nine boys, whereas the other classroom included eight girls and eight boys. All fourth grade students participated in the study. Design and methods: In answering the research questions mixed-method approaches are used. Data collection methods included pre- and post-tests, pre- and post-interviews, student journals, and classroom observations. Identical pre- and post-tests were administered to measure students' understanding of animals. They included four multiple-choice and six open-ended questions. Identical pre- and post-interviews were administered to explore students' in-depth understanding of animals. Results: Our results show that students significantly increased their performance after instruction on both the multiple-choice questions (t = -3.586, p = .001) and the open-ended questions (t = -5.04, p = .000). They performed better on the post interviews as well. Also, it is found that design-based instruction helped students comprehend core concepts of a life science subject, animals. Conclusions: Based on these results, the main argument of the study is that engineering design is a useful framework for teaching not only physical science-related subjects, but

  16. [The influence of habitat on the occurrence of parasites in game animals].

    PubMed

    Kotrlý, A; Kotrlá, B

    1980-05-01

    We studied the incidence of parasites of game animals under conditions of the individual habitats occupied by game animals. Our investigations were made both in the open field and in game reserves for several game species, and also in biotopes where game animals come into contact with domestic ruminants. We detected 72 nematode species in a total of 8 species of game animals. The results show that, the composition of the helminth fauna is influenced by conditions of the external environment, i. e., by the number of specimens, the extent of the biotope, contact with other animal species, the incidence of intermediate host, and by climatic and hydrological conditions. The contact between various host species, and their parasites has to last for a prolonged period, because it requires a certain length of time before the newly introduced host becomes a member of the original biocoenosis and adapts himself to such a degree that his parasites can infect other host species and he can receive their parasites (e. g., Fascioloides magna, Ashworthius sidemi).

  17. Habitat loss and the structure of plant-animal mutualistic networks.

    PubMed

    Fortuna, Miguel A; Bascompte, Jordi

    2006-03-01

    Recent papers have described the structure of plant-animal mutualistic networks. However, no study has yet explored the dynamical implications of network structure for the persistence of such mutualistic communities. Here, we develop a patch-model of a whole plant-animal community and explore its persistence. To assess the role of network structure, we build three versions of the model. In the first version, we use the exact network of interactions of two real mutualistic communities. In the other versions, we randomize the observed network of interactions using two different null models. We show that the community response to habitat loss is affected by network structure. Real communities start to decay sooner than random communities, but persist for higher destruction levels. There is a destruction threshold at which the community collapses. Our model is the first attempt to describe the dynamics of whole mutualistic metacommunities interacting in realistic ways.

  18. Recent advances in animal model experimentation in autism research.

    PubMed

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  19. Advancements in Evidence-Based Analgesia in Exotic Animals.

    PubMed

    Balko, Julie A; Chinnadurai, Sathya K

    2017-09-01

    The importance of appropriate recognition, assessment, and treatment of pain in all veterinary species, including exotic animals, cannot be overstated. Although the assessment of pain perception in nondomestic species is still in its infancy, this does not preclude appropriate analgesic management in these species. Although analgesic drug selection is often based on data extrapolated from similar species, as the pharmacokinetics and pharmacodynamics of many drugs can vary greatly between species, an evidence-based approach to analgesic therapy should be used whenever possible. This article provides an overview of recent advances in evidence-based analgesic management in companion exotic animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat

    PubMed Central

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A.; Kölzsch, Andrea; Prins, Herbert H. T.; de Boer, W. Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  1. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    PubMed

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A; Kölzsch, Andrea; Prins, Herbert H T; de Boer, W Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  2. The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction.

    PubMed

    Brudvig, Lars A; Damschen, Ellen I; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2015-10-01

    Despite broad recognition that habitat loss represents the greatest threat to the world's biodiyersity, a mechanistic understanding of how habitat loss and associated fragmentation affect ecological systems has proven remarkably challenging. The challenge stems from the multiple interdependent ways that landscapes change following fragmentation and the ensuing complex impacts on populations and communities of interacting species. We confronted these challenges by evaluating how fragmentation affects individual plants through interactions with animals, across five herbaceous species native to longleaf pine savannas. We created a replicated landscape experiment that provides controlled tests of three major fragmentation effects (patch isolation, patch shape [i.e., edge-to-area ratio], and distance to edge), established experimental founder populations of the five species to control for spatial distributions and densities of individual plants, and employed structural equation modeling to evaluate the effects of fragmentation on plant reproductive output and the degree to which these impacts are mediated through altered herbivory, pollination, or pre-dispersal seed predation. Across species, the most consistent response to fragmentation was a reduction in herbivory. Herbivory, however, had little impact.on plant reproductive output, and thus we found little evidence for any resulting benefit to plants in fragments. In contrast, fragmentation rarely impacted pollination or pre-dispersal seed predation, but both of these interactions had strong and consistent impacts on plant reproductive output. As a result, our models robustly predicted plant reproductive output (r2 = 0.52-0.70), yet due to the weak effects of fragmentation on pollination and pre-dispersal seed predation, coupled with the weak effect of herbivory on plant reproduction, the effects of fragmentation on reproductive output were generally small in magnitude and inconsistent. This work provides mechanistic

  3. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    for microgravity animal habitats.

  4. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    for microgravity animal habitats.

  5. Advancing addiction treatment: what can we learn from animal studies?

    PubMed

    Wu, Peter H; Schulz, Kalynn M

    2012-01-01

    Substance addiction is a maladaptive behavior characterized by compulsive and uncontrolled self-administration of a substance (drug). Years of research indicate that addictive behavior is the result of complex interactions between the drug, the user, and the environment in which the drug is used; therefore, addiction cannot simply be attributed to the neurobiological actions of a drug. However, despite the obvious complexity of addictive behavior, animal models have both advanced understanding of addiction and contributed importantly to the development of medications to treat this disease. We briefly review recent animal models used to study drug addiction and the contribution of data generated by these animal models for the clinical treatment of addictive disorders.

  6. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    PubMed

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. NASA's Advanced Exploration Systems Mars Transit Habitat Refinement Point of Departure Design

    NASA Technical Reports Server (NTRS)

    Simon, Matthew; Latorella, Kara; Martin, John; Cerro, Jeff; Lepsch, Roger; Jefferies, Sharon; Goodliff, Kandyce; McCleskey, Carey; Smitherman, David; Stromgren, Chel

    2017-01-01

    This paper describes the recently developed point of departure design for a long duration, reusable Mars Transit Habitat, which was established during a 2016 NASA habitat design refinement activity supporting the definition of NASA's Evolvable Mars Campaign. As part of its development of sustainable human Mars mission concepts achievable in the 2030s, the Evolvable Mars Campaign has identified desired durations and mass/dimensional limits for long duration Mars habitat designs to enable the currently assumed solar electric and chemical transportation architectures. The Advanced Exploration Systems Mars Transit Habitat Refinement Activity brought together habitat subsystem design expertise from across NASA to develop an increased fidelity, consensus design for a transit habitat within these constraints. The resulting design and data (including a mass equipment list) contained in this paper are intended to help teams across the agency and potential commercial, academic, or international partners understand: 1) the current architecture/habitat guidelines and assumptions, 2) performance targets of such a habitat (particularly in mass, volume, and power), 3) the driving technology/capability developments and architectural solutions which are necessary for achieving these targets, and 4) mass reduction opportunities and research/design needs to inform the development of future research and proposals. Data presented includes: an overview of the habitat refinement activity including motivation and process when informative; full documentation of the baseline design guidelines and assumptions; detailed mass and volume breakdowns; a moderately detailed concept of operations; a preliminary interior layout design with rationale; a list of the required capabilities necessary to enable the desired mass; and identification of any worthwhile trades/analyses which could inform future habitat design efforts. As a whole, the data in the paper show that a transit habitat meeting the 43

  8. A spatial model to estimate habitat fragmentation and its consequences on long-term persistence of animal populations.

    PubMed

    Aurambout, J P; Endress, A G; Deal, B M

    2005-10-01

    The increasing use of the landscape by humans has led to important diminutions of natural surfaces. The remaining patches of wild habitat are small and isolated from each other among a matrix of inhospitable land-uses. This habitat fragmentation, by disabling population movements and stopping their spread to new habitats, is a major threat to the survival of numerous plant and animal species. We developed a general model, adaptable for specific species, capable of identifying suitable habitat patches within fragmented landscapes and investigating the capacity of populations to move between these patches. This approach combines GIS analysis of a landscape, with spatial dynamic modeling. Suitable habitat is identified using a threshold area to perimeter ratio. Potential movement pathways of species between habitat patches are modeled using a cellular automaton. Habitat connectivity is estimated by overlaying habitat patches with movement pathways. The maximum potential population is calculated within and between connected habitat patches and potential risk of inbreeding within meta-populations is considered. The model was tested on a sample map and applied to scenario maps of predicted land-use change in the Peoria Tri-county region (IL). It (1) showed area of natural area alone was insufficient to estimate the consequences on animal populations; (2) underscored the necessity to use approaches investigating the effect of land-use change spatially through the landscape and the importance of considering species-specific life history characteristics; and (3) highlighted the model's potential utility as an indicator of species likelihood to be affected negatively by land-use scenarios and therefore requiring detailed investigation.

  9. Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.

    2016-01-01

    Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post

  10. Modeling Heat-Transfer in Animal Habitats in the Shuttle Orbiter Middeck

    NASA Technical Reports Server (NTRS)

    Eodice, Michael T.; Sun, Sid (Technical Monitor)

    2000-01-01

    A mathematical model has been developed to evaluate the heat transfer characteristics of an Animal Enclosure Module (AEM) in the microgravity environment. The AEM is a spaceflight habitat that provides life support for up to six rodents in the Space Shuttle Middeck. Currently, temperatures within the AEM are recorded in real time using a solid state data recorder; however, the data are only available for analysis post-flight. This temperature information is useful for characterizing the thermal environment of the AEM for researchers, but is unavailable during flight operations. Because animal health in microgravity is directly linked to the thermal environment, the ability to predict internal AEM temperatures is extremely useful to life science researchers. NASA flight crews typically carry hand-held temperature measurement devices which allow them to provide ground researchers with near real time readings of AEM inlet temperature; however, higher priority operations limit the frequency at which these measurements can be made and subsequently downlinked. The mathematical model developed allows users to predict internal cage volume temperatures based on knowledge of the ambient air temperature entering the AEM air intake ports. Additionally, an average convective heat transfer coefficient for the AEM has been determined to provide engineers with the requisite information to facilitate future design improvements and product upgrades. The model has been validated using empirical data from a series of three Space Shuttle missions.

  11. Advances in endoscopic surgery for small animal reproduction.

    PubMed

    Katic, N; Dupré, G

    2016-09-01

    Although endoscopic surgery entered its "golden era" in the mid-1980s, it is still advancing at a tremendous pace. Novel surgical techniques and devices are continuously developed and applied, and new indications (and/or contraindications) for the use of endoscopic surgery are routinely reported in the literature and subjected to systematic assessments. Although endoscopic surgery (laparoscopy in particular) has already become established as the gold standard in human medicine, it has yet to be proven as a viable alternative to open surgery in the field of veterinary medicine. The advantages of minimally invasive surgery include better intra-operative visualization, reduced postoperative pain, reduced scar formation and increased postoperative mobility. Therefore, it is reasonable to expect that the application of this will continue to expand. Small animal reproduction, a field within the broad discipline of veterinary medicine, has already recognized and begun to reap the benefits of endoscopic surgery. Herein, we retrospectively review the most recent successful novel applications of endoscopic surgery in the small animal reproduction system to provide small animal reproductive surgeons with important knowledge to help improve their own veterinarian medical practice.

  12. Developmental status of Aquatic Animal Experiment Facility, Aquatic Habitat (AQH), for International Space Station.

    PubMed

    Sakimura, Toru; Uchida, Satoko; Kono, Yasushi; Ochiai, Toshimasa; Fujimoto, Nobuyoshi

    2003-10-01

    Mitsubishi Heavy Industries (MHI) and Japan Aerospace Exploration Agency (JAXA) have been studying Aquatic Animal Experiment Facility, Aquatic Habitat (AQH), for International Space Station (ISS). The AQH will have the capabilities to accommodate small freshwater fish and amphibian for maximum 90 days on orbit. Three-generations of small freshwater fish (medaka and zebrafish), and egg through metamorphosis of amphibian (African clawed toad) could be experimented by AQH. Various experimental functions such as automatic feeding, air-water interface, day/night cycle, video observation, and specimen sampling mechanism will be also equipped in AQH. The water circulation system was improved from the past aquatic facilities for Space Shuttle experiments under the consideration of the long life-time, and a brand-new specimen chamber was developed to equip the above various experimental functions. Currently the prototype model of water circulation system and specimen chambers have been manufactured and biological compatibility tests are being conducted with medaka. The current developmental status of AQH is summarized.

  13. Research advances on animal genetics in China in 2015.

    PubMed

    Bo, Zhang; Xiaofang, Chen; Xun, Huang; Xiao, Yang

    2016-06-20

    -wide genetic basis of the species-specific physiological and pathological characteristics as well as their adaptation to environmental conditions. In this review, we make a first attempt to summarize the research advances on animal genetics in China in 2015, with an emphasis on the achievements led by Chinese scientists and carried out in Chinese institutions. We will briefly discuss the significance of their research and contributions of Chinese scientists in animal genetics.

  14. Advances in genome studies in plants and animals.

    PubMed

    Appels, R; Nystrom-Persson, J; Keeble-Gagnere, G

    2014-03-01

    The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.

  15. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    PubMed

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  16. Overview of the advances in environmental chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    There is an increasing environmental concern over animal manure due to the volumes produced in modern intensified animal production. However, animal manure is traditionally regarded as a valuable resource of plant nutrients. Although research on environmental impacts of animal manure and associated...

  17. Advanced X-Ray Timing Array (AXTAR) Animation

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thompson, Kevin S.

    2011-01-01

    The animation depicts NASA's concept for a next-generation Advanced X-ray Timing Mission. The models and their textures doe not necessarily represent the final iteration. Delivery specifications include launch with Taurus II or Falcon 9, mass of 2650 kg, with a circular low earth orbit at approximately 600 km. The inclination depends on the launch vehicle and spacecraft mass. AXTAR's prime instrument will probe the physics of neutron stars and black holes through X-ray timing and spectral measurements. The primary instrument will be the Large Area Timing Array (LATA). The Sky Monitor Clusters configuration consists of 27 Sky Monitor cameras th at are grouped in five clusters. This configuration will achieve approximately 85 percent all sky coverage. Spacecraft components include a science bus to house the LATA of supermodules; a spacecraft bus to house components such as propulsion tanks, avionics, and reaction wheels; solar arrays configured from space-qualified GaAs 3-junction cells; star trackers for attitude knowledge; a propulsion system of four pods, each containing one 100 lbf and two 5 lbf engines; a launch vehicle adaptor; and a radiation shield.

  18. The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology.

    PubMed

    Wilmers, Christopher C; Nickel, Barry; Bryce, Caleb M; Smith, Justine A; Wheat, Rachel E; Yovovich, Veronica

    2015-07-01

    Great leaps forward in scientific understanding are often spurred by innovations in technology. The explosion of miniature sensors that are driving the boom in consumer electronics, such as smart phones, gaming platforms, and wearable fitness devices, are now becoming available to ecologists for remotely monitoring the activities of wild animals. While half a century ago researchers were attaching balloons to the backs of seals to measure their movement, today ecologists have access to an arsenal of sensors that can continuously measure most aspects of an animal's state (e.g., location, behavior, caloric expenditure, interactions with other animals) and external environment (e.g., temperature, salinity, depth). This technology is advancing our ability to study animal ecology by allowing researchers to (1) answer questions about the physiology, behavior, and ecology of wild animals in situ that would have previously been limited to tests on model organisms in highly controlled settings, (2) study cryptic or wide-ranging animals that have previously evaded investigation, and (3) develop and test entirely new theories. Here we explore how ecologists are using these tools to answer new questions about the physiological performance, energetics, foraging, migration, habitat selection, and sociality of wild animals, as well as collect data on the environments in which they live.

  19. Modification of animal habitat by large plants: mechanisms by which seagrasses influence clam growth.

    PubMed

    Irlandi, E A; Peterson, C H

    1991-09-01

    suspension feeders in this system. Two data sets demonstrated that the effects of biological disturbance agents cannot be ignored. An outdoor laboratory experiment showed that even in the absence of physical contact between predator and prey the presence of a whelk reduces the amount of time spent feeding byMercenaria. This result suggests that sand flats, where predation rates are higher, may be sites of lower clam growth than seagrass beds because of greater consumer interference with clam feeding. Furthermore, clam siphons are proportionately larger inside seagrass than on sand flats, implying that siphon nipping may not be as intense inside seagrass. This process, too, would reduce net growth of sand-flat clams. Finally, no explicit test was conducted of the hypothesis that enhanced sediment transport in the absence of flow baffling and root binding by seagrass inhibits net growth of clams on high-energy sand flats. Nevertheless, this is a reasonable explanation for the pattern of enhanced growth of seagrass clams, and could serve to explain the otherwise unexplained pattern of lower clam growth at the edge of the seagrass bed that experiences the faster flood-tidal current velocities. Each broad process, changing fluid dynamics, altering consumer access, and varying sediment stability, represents a mechanism whereby habitat structure, provided by the dominant plant, has an important indirect influence on the functional value of the habitat for resident animals.

  20. Diversity and activity patterns of sympatric animals among four types of forest habitat in Guanyinshan Nature Reserve in the Qinling Mountains, China.

    PubMed

    Liu, Xuehua; Wu, Pengfeng; Shao, Xiaoming; Songer, Melissa; Cai, Qiong; He, Xiangbo; Zhu, Yun

    2017-07-01

    Environmental heterogeneity contributes to various habitats and may influence the diversity and activity patterns of wildlife among habitats. We used camera traps to assess wildlife habitat use in Guanyinshan Nature Reserve from 2009 to 2012. We focused on four types of habitat including open areas with gentle slope (<15°) (Type1), low elevation areas (about 1500-1700 m) with high bamboo coverage (Type2), high elevation areas (about 2100-2300 m) with high canopy coverage (Type3), and wildlife migration passages (Type4). We analyzed the differences in species richness, relative abundance index (RAI), species diversity, and animals' activity pattern among habitats. Total six species were analyzed on activity pattern, which are Takin (Budorcas taxicolor), tufted deer (Elaphodus cephalophus), Himalayan goral (Naemorhedus goral), wild boar (Sus scrofa), golden pheasant (Chrysolophus pictus), and porcupine (Hystrix hodgsoni). The results are (1) that there were significant differences in richness and RAIt among habitats; (2) Type4 habitat had the highest richness and RAIt while Type2 had the highest species diversity; giant pandas were found in these two habitats; (3) there were significant differences in species' activity during daytime and nighttime; and (4) differences appeared in habitat preference of the most abundant species. Takin and tufted deer preferred Type1, Himalayan goral preferred Type2, and golden pheasant preferred Type3. Type4 habitat was used by most animals. All these revealed that habitat heterogeneity plays an important role in species diversity and the importance for conservation.

  1. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  2. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  3. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences.

    PubMed

    Söllinger, Andrea; Schwab, Clarissa; Weinmaier, Thomas; Loy, Alexander; Tveit, Alexander T; Schleper, Christa; Urich, Tim

    2016-01-01

    Methanogenic Thermoplasmata of the novel order Methanomassiliicoccales were recently discovered in human and animal gastro-intestinal tracts (GITs). However, their distribution in other methanogenic environments has not been addressed systematically. Here, we surveyed Methanomassiliicoccales presence in wetland soils, a globally important source of methane emissions to the atmosphere, and in the GITs of different animals by PCR targeting their 16S rRNA and methyl:coenzyme M reductase (α-subunit) genes. We detected Methanomassiliicoccales in all 16 peat soils investigated, indicating their wide distribution in these habitats. Additionally, we detected their genes in various animal faeces. Methanomassiliicoccales were subdivided in two broad phylogenetic clades designated 'environmental' and 'GIT' clades based on differential, although non-exclusive, habitat preferences of their members. A well-supported cluster within the environmental clade comprised more than 80% of all wetland 16S rRNA gene sequences. Metagenome assembly from bovine rumen fluid enrichments resulted in two almost complete genomes of both Methanomassiliicoccales clades. Comparative genomics revealed that members of the environmental clade contain larger genomes and a higher number of genes encoding anti-oxidative enzymes than animal GIT clade representatives. This study highlights the wide distribution of Methanomassiliicoccales in wetlands, which suggests that they contribute to methane emissions from these climate-relevant ecosystems.

  4. [Cooperative relations between non-cropped habitats and soil animals in suburban farmland Landscape: A case in Shenbei New District in Shenyang, China].

    PubMed

    Bian, Zhen-xing; Yu, Zhen-rong; Wang, Qiu-bing; Li, Jin-hong

    2015-12-01

    Non-cropped habitat in farm landscape plays a significant role in biodiversity, the functions of arable land and crop yields. This study focused on Shenbei New District in Shenyang City of Liaoning Province in Northeast China, which was a typical area with contradiction between biodiversity conservation and the high demand of agricultural production in the process of urbanization. Information entropy model, hand-picking and Baermann method were used for survey and identification of arthropods and nematodes in soils in urban suburban (US), urban fringe area (UFA) and rural area ( RA). The cooperative relations between the number of soil animals and types, structure as well as the total amount of non-cropped habitat were investigated in these three types of areas using linear regression. Our results showed that the area of single patch in non-cropped habitat was smaller than one hectare in Shenbei New District, and the types and the proportion of non-cropped habitat patches were increasing along with the increase of their distance to the urban center. But the proportion of non-cropped habitats areas appeared under an inverted U-type change. The proportion of non-cropped habitat patches was from 8.6% to 27.8%. The individual number of soil animals showed the U-type trend, while their species number changed irregularly. The individual number of soil animals increased with the increase of the proportion of non-cropped habitat patches in RA and US. There was no obvious correlation between the individual number of soil animal and the proportion of non-cropped habitat patches in UFA. The individual number of soil animals decreased with the increase of the proportion of non-cropped habitats areas. There was no cooperative relation in the proportion of non-cropped habitats and the number of soil animal species.

  5. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  6. The effects of disturbance and succession on wildlife habitat and animal communities [Chapter 11

    Treesearch

    Kevin S. McKelvey

    2015-01-01

    This chapter discusses the study of disturbance and succession as they relate to wildlife. As such, the discussion is confined to those disturbance processes that change the physical attributes of habitat, leading to a postdisturbance trajectory. However, even with this narrowing of the scope of disturbances discussed, there remain formidable obstacles prior to any...

  7. Recent advances in the development of new transgenic animal technology.

    PubMed

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  8. Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video.

    PubMed

    McGregor, Hugh; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2015-01-01

    One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation.

  9. Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video

    PubMed Central

    McGregor, Hugh; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2015-01-01

    One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation. PMID:26288224

  10. Advances in proteomics for animal and food sciences

    USDA-ARS?s Scientific Manuscript database

    Animal production and health (APH) are important sectors to the world economy, representing a large proportion of the budget of all member states in the EU and in other continents. APH are highly competitive sectors with a strong emphasis on innovation and, albeit country to country variations, on s...

  11. Recent advances in animal models of systemic sclerosis.

    PubMed

    Asano, Yoshihide

    2016-01-01

    Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by the three cardinal pathological features, comprising aberrant immune activation, vasculopathy and tissue fibrosis, with unknown etiology. Although many inducible and genetic animal models mimicking the selected aspects of SSc have been well documented, the lack of models encompassing the full clinical manifestations hindered the development and preclinical testing of therapies against this disease. Under this situation, three new genetic animal models have recently been established, such as Fra2 transgenic mice, urokinase-type plasminogen activator receptor deficient mice and Klf5(+/-) ;Fli1(+/-) mice, all of which recapitulate the pathological cascade of SSc. The former two murine models demonstrate endothelial cell apoptosis and capillary loss followed by tissue fibrosis, whereas the immune systems show no remarkable abnormality. Klf5(+/-) ;Fli1(+/-) mice develop immune activation, vasculopathy and tissue fibrosis in this sequence, eventually resulting in the development of dermal fibrosis, interstitial lung disease and pulmonary vascular involvement resembling those of SSc. Because Krueppel-like factor (KLF)5 and Friend leukemia integration 1 transcription factor (Fli1) are the transcription factors epigenetically suppressed in SSc dermal fibroblasts, the reproduction of SSc manifestations in Klf5(+/-) ;Fli1(+/-) mice supports the canonical idea that environmental influences play a central role in the development of SSc in genetically predisposed individuals. These new animal models offer important clues for the better understanding of the underlying molecular mechanisms of SSc pathology and the identification of potential molecular targets for the treatment of this incurable disease. © 2016 Japanese Dermatological Association.

  12. Climate change, animal species, and habitats: Adaptation and issues (Chapter 5)

    Treesearch

    Deborah M. Finch; D. Max Smith; Olivia LeDee; Jean-Luc E. Cartron; Mark A. Rumble

    2012-01-01

    Because the rate of anthropogenic climate change exceeds the adaptive capacity of many animal and plant species, the scientific community anticipates negative consequences for ecosystems. Changes in climate have expanded, contracted, or shifted the climate niches of many species, often resulting in shifting geographic ranges. In the Great Basin, for example, projected...

  13. Animal Homes and Habitats. A Fall Activity Packet for Third Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on animal populations and…

  14. Teaching Habitat and Animal Classification to Fourth Graders Using an Engineering-Design Model

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2014-01-01

    Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGO[TM] engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose:…

  15. Teaching Habitat and Animal Classification to Fourth Graders Using an Engineering-Design Model

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2014-01-01

    Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGO[TM] engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose:…

  16. Recent advances in the automatic collection of animal behavior and physiology

    USDA-ARS?s Scientific Manuscript database

    The true assessment of an animal's state of being depends on the collection of refined, repeatable data, free from influence of the collection method or observer bias. The last few years have seen significant technical advances in automatic data collection pertaining to the animal and its environmen...

  17. Ticks collected from wild and domestic animals and natural habitats in the Republic of Korea.

    PubMed

    Kim, Baek-Jun; Kim, Hyewon; Won, Sohyun; Kim, Heung-Chul; Chong, Sung-Tae; Klein, Terry A; Kim, Ki-Gyoung; Seo, Hong-Yul; Chae, Joon-Seok

    2014-06-01

    Ticks were collected from 35 animals from 5 provinces and 3 metropolitan cities during 2012. Ticks also were collected by tick drag from 4 sites in Gyeonggi-do (2) and Jeollabuk-do (2) Provinces. A total of 612 ticks belonging to 6 species and 3 genera were collected from mammals and a bird (n=573) and by tick drag (n=39). Haemaphyalis longicornis (n=434) was the most commonly collected tick, followed by H. flava (158), Ixodes nipponensis (11), Amblyomma testudinarium (7), H. japonica (1), and H. formosensis (1). H. longicornis and H. flava were collected from all animal hosts examined. For animal hosts (n>1), the highest Tick Index (TI) was observed for domestic dogs (29.6), followed by Siberian roe deer (17.4), water deer (14.4), and raccoon dogs (1.3). A total of 402 H. longicornis (adults 86, 21.4%; nymphs 160, 39.8%; larvae 156, 38.9%) were collected from wild and domestic animals. A total of 158 H. flava (n=158) were collected from wild and domestic animals and 1 ring-necked pheasant, with a higher proportion of adults (103, 65.2%), while nymphs and larvae only accounted for 12.7% (20) and 22.2% (35), respectively. Only 7 A. testudinarium were collected from the wild boar (6 adults) and Eurasian badger (1 nymph), while only 5 I. nipponensis were collected from the water deer (4 adults) and a raccoon dog (1 adult). One adult female H. formosensis was first collected from vegetation by tick drag from Mara Island, Seogwipo-si, Jeju-do Province.

  18. Teaching Advanced Life Sciences in an Animal Context: Agricultural Science Teacher Voices

    ERIC Educational Resources Information Center

    Balschweid, Mark; Huerta, Alexandria

    2008-01-01

    The purpose of this qualitative study was to determine agricultural science teacher comfort with a new high school Advanced Life Science: Animal course and determine their perceptions of student impact. The advanced science course is eligible for college credit. The teachers revealed they felt confident of their science background in preparation…

  19. Animal board invited review: advances in proteomics for animal and food sciences.

    PubMed

    Almeida, A M; Bassols, A; Bendixen, E; Bhide, M; Ceciliani, F; Cristobal, S; Eckersall, P D; Hollung, K; Lisacek, F; Mazzucchelli, G; McLaughlin, M; Miller, I; Nally, J E; Plowman, J; Renaut, J; Rodrigues, P; Roncada, P; Staric, J; Turk, R

    2015-01-01

    Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps

  20. Recent advances in the management of autoimmune myocarditis: insights from animal studies.

    PubMed

    Tajiri, Kazuko; Yasutomi, Yasuhiro; Aonuma, Kazutaka

    2016-01-01

    A growing body of evidence has been accumulating to demonstrate that human myocarditis and dilated cardiomyopathy involve a complex interaction with autoimmunity triggered by cardiotropic microbial infections. Animal experiments have provided direct evidence that infections with a particular microbe can incite autoimmune myocarditis, and this autoimmune response can be mimicked by immunization with the cardiac autoantigen, α- myosin. Animal models greatly advanced our understanding of the molecular mechanisms of myocarditis, and various novel therapeutic strategies have been reported during the last two decades. In this review we present animal models of autoimmune myocarditis and describe the outlook of possible drug targets by showing the latest findings from animal studies.

  1. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies.

    PubMed

    Flockhart, D T Tyler; Pichancourt, Jean-Baptiste; Norris, D Ryan; Martin, Tara G

    2015-01-01

    Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (<1000 individuals) >5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and

  2. Characterizing ontogenetic habitat shifts in marine fishes: advancing nascent methods for marine spatial management.

    PubMed

    Galaiduk, Ronen; Radford, Ben T; Saunders, Benjamin J; Newman, Stephen J; Harvey, Euan S

    2017-09-01

    Niche requirements and habitat resource partitioning by conspecific fishes of different sizes are significant knowledge gaps in the species distribution modelling domain. Management actions and operations are typically concentrated on static habitats, or specific areas of interest, without considering movement patterns of species associated with ontogenetic shifts in habitat usage. Generalized additive models were used to model the body-length-habitat relationships of six fish species. These models were used to identify subsets of environmental parameters that drive and explain the continuous length-habitat relationships for each of the study species, which vary in their degree of ecological and/or commercial importance. Continuous predictive maps of the length distributions for each of the six study species across approximately 200 km(2) of the study area were created from these models. The spatial patterns in habitat partitioning by individuals of different body lengths for all six study species provide strong evidence for ontogenetic shifts. This highlights the importance of considering ontogenetic processes for marine spatial management. Importantly, predictive hotspot maps were created that identify potential areas that accumulate individuals of similar life stages of multiple species (e.g., multispecies nursery areas). In circumstances where limited resources are available for monitoring and management of fish resources, predictive modelling is a valuable tool for studying previously overlooked processes such as ontogenetic habitat shifts. Predictive modelling provides crucial information that elucidates spatial patterns in community composition across mosaics of benthic habitats. This novel technique can contribute to the spatial management of coastal fish and fisheries by identifying areas that are important for different life history stages of multiple fish species. © 2017 by the Ecological Society of America.

  3. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Image and Video Library

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  4. A lifesaving model: teaching advanced procedures on shelter animals in a tertiary care facility.

    PubMed

    Spindel, Miranda E; MacPhail, Catriona M; Hackett, Timothy B; Egger, Erick L; Palmer, Ross H; Mama, Khursheed R; Lee, David E; Wilkerson, Nicole; Lappin, Michael R

    2008-01-01

    It is estimated that there are over 5 million homeless animals in the United States. While the veterinary profession continues to evolve in advanced specialty disciplines, animal shelters in every community lack resources for basic care. Concurrently, veterinary students, interns, and residents have less opportunity for practical primary and secondary veterinary care experiences in tertiary-care institutions that focus on specialty training. The two main goals of this project were (1) to provide practical medical and animal-welfare experiences to veterinary students, interns, and residents, under faculty supervision, and (2) to care for animals with medical problems beyond a typical shelter's technical capabilities and budget. Over a two-year period, 22 animals from one humane society were treated at Colorado State University Veterinary Medical Center. Initial funding for medical expenses was provided by PetSmart Charities. All 22 animals were successfully treated and subsequently adopted. The results suggest that collaboration between a tertiary-care facility and a humane shelter can be used successfully to teach advanced procedures and to save homeless animals. The project demonstrated that linking a veterinary teaching hospital's resources to a humane shelter's needs did not financially affect either institution. It is hoped that such a program might be used as a model and be perpetuated in other communities.

  5. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  6. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  7. Validation of a randomization procedure to assess animal habitat preferences: microhabitat use of tiger sharks in a seagrass ecosystem.

    PubMed

    Heithaus, Michael R; Hamilton, Ian M; Wirsing, Aaron J; Dill, Lawrence M

    2006-05-01

    1. Tiger sharks Galeocerdo cuvier are important predators in a variety of nearshore communities, including the seagrass ecosystem of Shark Bay, Western Australia. Because tiger sharks are known to influence spatial distributions of multiple prey species, it is important to understand how they use habitats at a variety of spatial scales. We used a combination of catch rates and acoustic tracking to determine tiger shark microhabitat use in Shark Bay. 2. Comparing habitat-use data from tracking against the null hypothesis of no habitat preference is hindered in Shark Bay, as elsewhere, by the difficulty of defining expected habitat use given random movement. We used randomization procedures to generate expected habitat use in the absence of habitat preference and expected habitat use differences among groups (e.g. males and females). We tested the performance of these protocols using simulated data sets with known habitat preferences. 3. The technique correctly classified sets of simulated tracks as displaying a preference or not and was a conservative test for differences in habitat preferences between subgroups of tracks (e.g. males vs. females). 4. Sharks preferred shallow habitats over deep ones, and preferred shallow edge microhabitats over shallow interior ones. The use of shallow edges likely increases encounter rates with potential prey and may have profound consequences for the dynamics of Shark Bay's seagrass ecosystem through indirect effects transmitted by grazers that are common prey of tiger sharks. 5. Females showed a greater tendency to use shallow edge microhabitats than did males; this pattern was not detected by traditional analysis techniques. 6. The randomization procedures presented here are applicable to many field studies that use tracking by allowing researchers both to determine overall habitat preferences and to identify differences in habitat use between groups within their sample.

  8. Principles of wildlife habitat management

    Treesearch

    Ernie P. Wiggers

    1989-01-01

    Simply stated, habitat is where an animal lives and must include all the resources an animal needs to survive and reproduce. An animal's habitat has to provide five essential factors: food, cover, water, space, and interspersion. Habitat management is identifying which factors are scarce enough to limit populations, and then improving the habitat to remove the...

  9. Recent advances in bio-logging science: Technologies and methods for understanding animal behaviour and physiology and their environments

    NASA Astrophysics Data System (ADS)

    Evans, K.; Lea, M.-A.; Patterson, T. A.

    2013-04-01

    The deployment of an ever-evolving array of animal-borne telemetry and data logging devices is rapidly increasing our understanding of the movement, behaviour and physiology of a variety species and the complex, and often highly dynamic, environments they use and respond to. The rapid rate at which new technologies, improvements to current technologies and new analytical techniques are being developed has meant that movements, behaviour and physiological processes are being quantified at finer spatial and temporal scales than ever before. The Fourth International Symposium on Bio-logging Science, held on 14-18 March in Hobart, Australia, brought together scientists across multiple disciplines to discuss the latest innovations in technology, applications and analytical techniques in bio-logging science, building on research presented at three previous conferences. Here we present an update on the state of bio-logging research and provide some views on the future of this field of research. Papers were grouped into five theme areas: (i) Southern Ocean ecosystems; (ii) fishery and biodiversity management applications; (iii) from individuals to populations—inferences of population dynamics from individuals; (iv) conservation biology and (v) habitat modelling. Papers reflected wider uptake of newer technologies, with a greater proportion of studies utilising accelerometry and incorporating advances in statistical modelling of behaviour and habitats, especially via state space modelling methods. Environmental data collected by tags at increasing accuracies are now having wider application beyond the bio-logging community, providing important oceanographic data from regions difficult to sample using traditional methodologies. Partnerships between multiple organisations are also now enabling regional assessments of species movements, behaviour and physiology at population scales and will continue to be important for applying bio-logging technologies to species

  10. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression.

    PubMed

    McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew

    2017-01-01

    Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  11. Short animation movies as advance organizers in physics teaching: a preliminary study

    NASA Astrophysics Data System (ADS)

    Koscianski, André; João Ribeiro, Rafael; Carvalho Rutz da Silva, Sani

    2012-11-01

    Background : Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose : The study aimed to determine guidelines for the construction of an instructional short animation movie, with the role of an advance organizer. A film was created in order to evaluate the effectiveness of the approach, making part of a physics lesson and concerning the subject 'moment of a force'. Sample : The study took place in a Brazilian school in the city of Arapoti, in the south region of the country. Thirty-eight students participated, having an average age of 16 and following the third year of high school. Design and methods : Criteria drawn from a literature review directed the construction of the movie and the lesson. Data were collected using pre- and post-tests; registers of oral comments were also done during the class. The post-test included open-ended questions, allowing students to write remarks concerning the lesson and the animation. Conclusions : The article describes steps and guidelines to orient the process of designing an animation movie with the role of advance organizer. Data indicated that the movie facilitated the construction of links between pre-existent knowledge and the new information presented in the lesson. The proposed methodology can be considered a valid framework to derive similar approaches.

  12. Panel 4: Recent advances in otitis media in molecular biology, biochemistry, genetics, and animal models.

    PubMed

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F; Bakaletz, Lauren O; Brown, Steve D; Cheeseman, Michael T; Juhn, Steven K; Jung, Timothy T K; Lim, David J; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J Christopher

    2013-04-01

    Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications.

  13. Incorporating in situ habitat patchiness in site selection models reveals that site fidelity is not always a consequence of animal choice.

    PubMed

    Martinez, Aline S; Queiroz, Eduardo V; Bryson, Mitch; Byrne, Maria; Coleman, Ross A

    2017-03-25

    1.Understanding site fidelity is important in animal ecology, but evidence is lacking that this behaviour is due to an animal choosing a specific location. To discern site selection behaviour it is necessary to consider the spatial distribution of habitats that animals can occupy within a landscape. Tracking animals and defining clear habitat boundaries, however, is often difficult. 2.We use in situ habitat distribution data and animal movement simulations to investigate behavioural choice in site fidelity patterns. We resolved the difficulty of gathering data by working with intertidal rock pool systems, which are of manageable size and where boundaries are easy to define. Movements of the intertidal starfish Parvulastra exigua were quantified to test the hypotheses that (1) this species displays fidelity to a particular rock pool and that (2) rock pool fidelity is due to site selection behaviour. Observed patterns of individuals (n=10 starfish) returning to a previously occupied rock pool (n = 5 pools per location) were tested against an expected null distribution generated through simulations of random movements within their natural patchy environment. 3. Starfish exhibited site selection behaviour at only one location even though site fidelity was high (av. 7.4 starfish out of 10 found in test pools) in 2 of the 3 locations. The random chance of a starfish returning to a pool increased 67% for each metre further a rock pool was from the original pool, and 120% for each square metre increase in surface area of an original pool. The decision of returning to an original rock pool was influenced by food availability. When microalgal cover was > 60%, there was a ~ 50% chance of animals staying faithful to that pool. 4. Our results show the importance to consider spatial distribution of habitats in understanding patterns of animal movement associated with animal choices and site fidelity. Returning to a particular place does not necessarily mean that an

  14. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  15. The robustness of a network of ecological networks to habitat loss.

    PubMed

    Evans, Darren M; Pocock, Michael J O; Memmott, Jane

    2013-07-01

    There have been considerable advances in our understanding of the tolerance of species interaction networks to sequential extinctions of plants and animals. However, communities of species exist in a mosaic of habitats, and the vulnerability of habitats to anthropogenic change varies. Here, we model the cascading effects of habitat loss, driven by plant extinctions, on the robustness of multiple animal groups. Our network is constructed from empirical observations of 11 animal groups in 12 habitats on farmland. We simulated sequential habitat removal scenarios: randomly; according to prior information; and with a genetic algorithm to identify best- and worst-case permutations of habitat loss. We identified two semi-natural habitats (waste ground and hedgerows together comprising < 5% of the total area of the farm) as disproportionately important to the integrity of the overall network. Our approach provides a new tool for network ecologists and for directing the management and restoration of multiple-habitat sites.

  16. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.

    PubMed

    Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

    2009-06-01

    Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.

  17. Technological advances that enhance teaching using animals, and the application of the Three Rs.

    PubMed

    Davies, Alexander S

    2004-06-01

    The inventions that have progressively contributed to education have never offered opportunities as vast as in the digital era, even though this is still scarcely 25 years old. In this time, digital handling of data led first to text processing, then to bitmap and vector graphics, and now, to digital sound and movies. As these advanced, the storage methods became larger, faster, easier and cheaper. The advancement of technology has been so rapid that the standard of most teaching aids now available is well below what can currently be achieved. We are confronted with an unprecedented opportunity for applying the principles of reduction, refinement and replacement of animals in education. Not only are the visual teaching aids improved by digitising, but all aspects of their development, including the ease, higher speed, and low cost of creation, editing, copying, distribution and access, are improved, as well. Several examples will be given, including access to interactive panoramic movies, animated sequences to explain difficult concepts, on-line tutorials and image databases using digital photography, radiography and other diagnostic methods, as well as the production of desktop movies. The speed of technical advance brings its own problems, but the challenges and possibilities for developing viable alternatives to the use of animals in teaching are vast.

  18. Current Animal Models of Postoperative Spine Infection and Potential Future Advances.

    PubMed

    Stavrakis, A I; Loftin, A H; Lord, E L; Hu, Y; Manegold, J E; Dworsky, E M; Scaduto, A A; Bernthal, N M

    2015-01-01

    Implant related infection following spine surgery is a devastating complication for patients and can potentially lead to significant neurological compromise, disability, morbidity, and even mortality. This paper provides an overview of the existing animal models of postoperative spine infection and highlights the strengths and weaknesses of each model. In addition, there is discussion regarding potential modifications to these animal models to better evaluate preventative and treatment strategies for this challenging complication. Current models are effective in simulating surgical procedures but fail to evaluate infection longitudinally using multiple techniques. Potential future modifications to these models include using advanced imaging technologies to evaluate infection, use of bioluminescent bacterial species, and testing of novel treatment strategies against multiple bacterial strains. There is potential to establish a postoperative spine infection model using smaller animals, such as mice, as these would be a more cost-effective screening tool for potential therapeutic interventions.

  19. Consciousness in humans and non-human animals: recent advances and future directions

    PubMed Central

    Boly, Melanie; Seth, Anil K.; Wilke, Melanie; Ingmundson, Paul; Baars, Bernard; Laureys, Steven; Edelman, David B.; Tsuchiya, Naotsugu

    2013-01-01

    This joint article reflects the authors' personal views regarding noteworthy advances in the neuroscience of consciousness in the last 10 years, and suggests what we feel may be promising future directions. It is based on a small conference at the Samoset Resort in Rockport, Maine, USA, in July of 2012, organized by the Mind Science Foundation of San Antonio, Texas. Here, we summarize recent advances in our understanding of subjectivity in humans and other animals, including empirical, applied, technical, and conceptual insights. These include the evidence for the importance of fronto-parietal connectivity and of “top-down” processes, both of which enable information to travel across distant cortical areas effectively, as well as numerous dissociations between consciousness and cognitive functions, such as attention, in humans. In addition, we describe the development of mental imagery paradigms, which made it possible to identify covert awareness in non-responsive subjects. Non-human animal consciousness research has also witnessed substantial advances on the specific role of cortical areas and higher order thalamus for consciousness, thanks to important technological enhancements. In addition, much progress has been made in the understanding of non-vertebrate cognition relevant to possible conscious states. Finally, major advances have been made in theories of consciousness, and also in their comparison with the available evidence. Along with reviewing these findings, each author suggests future avenues for research in their field of investigation. PMID:24198791

  20. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design Appendices G, H, I, J : Final Report.

    SciTech Connect

    Wood, Marilyn A.; Manley, Tim

    1993-10-01

    This research project was initiated in January 1989. Field work was completed by late summer. The purpose of this project was to identify reasons for the decline of the grouse population and determine the feasibility of maintaining grouse on the Tobacco Plains. Specific objectives of the project were: (1) To determine the existing and historic availability of sharp-tailed grouse habitat. (2) To document current and past grouse populations. (3) To determine the success or failure of past augmentation efforts. (4) To develop a list of potential sites to be included in a protection plan.

  1. The Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine Mammal Habitat

    NASA Astrophysics Data System (ADS)

    Stern, H. L.; Laidre, K. L.

    2013-12-01

    The Arctic is widely recognized as the front line of climate change. Arctic air temperature is rising at twice the global average rate, and the sea-ice cover is shrinking and thinning, with total disappearance of summer sea ice projected to occur in a matter of decades. Arctic marine mammals such as polar bears, seals, walruses, belugas, narwhals, and bowhead whales depend on the sea-ice cover as an integral part of their existence. While the downward trend in sea-ice extent in a given month is an often-used metric for quantifying physical changes in the ice cover, it is not the most relevant measure for characterizing changes in the sea-ice habitat of marine mammals. Species that depend on sea ice are behaviorally tied to the annual retreat of sea ice in the spring and advance in the fall. Changes in the timing of the spring retreat and the fall advance are more relevant to Arctic marine species than changes in the areal sea-ice coverage in a particular month of the year. Many ecologically important regions of the Arctic are essentially ice-covered in winter and ice-free in summer, and will probably remain so for a long time into the future. But the dates of sea-ice retreat in spring and advance in fall are key indicators of climate change for ice-dependent marine mammals. We use daily sea-ice concentration data derived from satellite passive microwave sensors to calculate the dates of sea-ice retreat in spring and advance in fall in 12 regions of the Arctic for each year from 1979 through 2013. The regions include the peripheral seas around the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, Kara, Barents), the Canadian Arctic Archipelago, and the marginal seas (Okhotsk, Bering, East Greenland, Baffin Bay, Hudson Bay). We find that in 11 of the 12 regions (all except the Bering Sea), sea ice is retreating earlier in spring and advancing later in fall. Rates of spring retreat range from -5 to -8 days/decade, and rates of fall advance range from +5 to +9

  2. Recent advancement in biosensors technology for animal and livestock health management.

    PubMed

    Neethirajan, Suresh; Tuteja, Satish K; Huang, Sheng-Tung; Kelton, David

    2017-12-15

    The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    PubMed Central

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  4. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  5. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  6. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert

    USGS Publications Warehouse

    Sappington, J.M.; Longshore, K.M.; Thompson, D.B.

    2007-01-01

    Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.

  7. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  8. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.

    PubMed

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  9. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    SciTech Connect

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  10. Advanced Evaporators for Lunar Lander and Lunar Habitat Thermal Control Applications

    NASA Astrophysics Data System (ADS)

    Semenic, Tadej

    2010-01-01

    Six 20.3 cm×20.3 cm (8 in×8 in) evaporators for Lunar Lander and Lunar Habitat thermal control applications were designed, fabricated and tested in a vapor compression loop at heat loads in the range of 3-6 kW. The evaporator heated area was 826 cm2 and their total mass ranged from 1.0 kg to 3.2 kg depending on the design. The primary objective of the study was to investigate different evaporator designs and identify and characterize the evaporator design with the lowest temperature, most uniform temperature, smallest mass, and lowest pressure drop. The results obtained using serpentine evaporators showed excellent temperature uniformity (+/-3° C) across the evaporator surface at these relatively high heat loads. The temperature lift from the evaporator surface to the average condenser coolant temperature was also measured and ranged from 30 to 50° C depending on the heat load. The Coefficient of Performance (COP), defined as the ratio of the heat load to the compressor work at 6 kW, was 1.9. The best evaporator out of six evaporators tested transferred heat at one half of the thermal resistance of the baseline evaporator, while maintaining the same system COP.

  11. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare

    PubMed Central

    Asher, Lucy; Collins, Lisa M.; Ortiz-Pelaez, Angel; Drewe, Julian A.; Nicol, Christine J.; Pfeiffer, Dirk U.

    2009-01-01

    While the incorporation of mathematical and engineering methods has greatly advanced in other areas of the life sciences, they have been under-utilized in the field of animal welfare. Exceptions are beginning to emerge and share a common motivation to quantify ‘hidden’ aspects in the structure of the behaviour of an individual, or group of animals. Such analyses have the potential to quantify behavioural markers of pain and stress and quantify abnormal behaviour objectively. This review seeks to explore the scope of such analytical methods as behavioural indicators of welfare. We outline four classes of analyses that can be used to quantify aspects of behavioural organization. The underlying principles, possible applications and limitations are described for: fractal analysis, temporal methods, social network analysis, and agent-based modelling and simulation. We hope to encourage further application of analyses of behavioural organization by highlighting potential applications in the assessment of animal welfare, and increasing awareness of the scope for the development of new mathematical methods in this area. PMID:19740922

  12. Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm.

    PubMed

    Sénémaud, Jean; Caligiuri, Giuseppina; Etienne, Harry; Delbosc, Sandrine; Michel, Jean-Baptiste; Coscas, Raphaël

    2017-03-01

    Human abdominal aortic aneurysm (AAA) pathophysiology is not yet completely understood. In conductance arteries, the insoluble extracellular matrix, synthesized by vascular smooth muscle cells, assumes the function of withstanding the intraluminal arterial blood pressure. Progressive loss of this function through extracellular matrix proteolysis is a main feature of AAAs. As most patients are now treated via endovascular approaches, surgical AAA specimens have become rare. Animal models provide valuable complementary insights into AAA pathophysiology. Current experimental AAA models involve induction of intraluminal dilation (nondissecting AAAs) or a contained intramural rupture (dissecting models). Although the ideal model should reproduce the histological characteristics and natural history of the human disease, none of the currently available animal models perfectly do so. Experimental models try to represent the main pathophysiological determinants of AAAs: genetic or acquired defects in extracellular matrix, loss of vascular smooth muscle cells, and innate or adaptive immune response. Nevertheless, most models are characterized by aneurysmal stabilization and healing after a few weeks because of cessation of the initial stimulus. Recent studies have focused on ways to optimize existing models to allow continuous aneurysmal growth. This review aims to discuss the relevance and recent advances of current animal AAA models. An online visual overview is available for this article. © 2017 American Heart Association, Inc.

  13. Animal Detectives

    ERIC Educational Resources Information Center

    Mulvey, Bridget; Warnock, Carly

    2015-01-01

    During a two-week inquiry-based 5E learning cycle unit, children made observations and inferences to guide their explorations of animal traits and habitats (Bybee 2014). The children became "animal detectives" by studying a live-feed webcam and digital images of wolves in their natural habitat, reading books and online sources about…

  14. Animal Detectives

    ERIC Educational Resources Information Center

    Mulvey, Bridget; Warnock, Carly

    2015-01-01

    During a two-week inquiry-based 5E learning cycle unit, children made observations and inferences to guide their explorations of animal traits and habitats (Bybee 2014). The children became "animal detectives" by studying a live-feed webcam and digital images of wolves in their natural habitat, reading books and online sources about…

  15. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements.

    PubMed

    Forin-Wiart, Marie-Amélie; Hubert, Pauline; Sirguey, Pascal; Poulle, Marie-Lazarine

    2015-01-01

    Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies.

  16. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements

    PubMed Central

    Forin-Wiart, Marie-Amélie; Hubert, Pauline; Sirguey, Pascal; Poulle, Marie-Lazarine

    2015-01-01

    Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies. PMID:26086958

  17. Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2012-03-01

    The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.

  18. Advances in Diagnosis and Treatment of Fetal Alcohol Spectrum Disorders: From Animal Models to Human Studies.

    PubMed

    Murawski, Nathen J; Moore, Eileen M; Thomas, Jennifer D; Riley, Edward P

    2015-01-01

    Prenatal alcohol exposure can cause a number of physical, behavioral, cognitive, and neural impairments, collectively known as fetal alcohol spectrum disorders (FASD). This article examines basic research that has been or could be translated into practical applications for the diagnosis or treatment of FASD. Diagnosing FASD continues to be a challenge, but advances are being made at both basic science and clinical levels. These include identification of biomarkers, recognition of subtle facial characteristics of exposure, and examination of the relation between face, brain, and behavior. Basic research also is pointing toward potential new interventions for FASD involving pharmacotherapies, nutritional therapies, and exercise interventions. Although researchers have assessed the majority of these treatments in animal models of FASD, a limited number of recent clinical studies exist. An assessment of this literature suggests that targeted interventions can improve some impairments resulting from developmental alcohol exposure. However, combining interventions may prove more efficacious. Ultimately, advances in basic and clinical sciences may translate to clinical care, improving both diagnosis and treatment.

  19. Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat

    PubMed Central

    Pyšková, Klára; Storch, David; Horáček, Ivan; Kauzál, Ondřej; Pyšek, Petr

    2016-01-01

    Abstract A golden jackal (Canis aureus) individual was recorded ~40 km east of Prague in the Czech Republic. It is the first record of a living golden jackal in the country; up to now several individuals have been recorded but all of them were either shot dead or killed by a vehicle. The observed animal was documented by camera traps set up for research of carnivore diversity in different habitats in the study area. It was first photographed on 19 June 2015, and in total there were 57 records made by 12 traps until 24 March 2016 when the animal was still present in the area. Forty-nine of the 57 records were made in a shrubby grassland over an area of ~100 ha, 39% of sightings were during the day and 61% in the night. There were two distinct peaks in the circadian activity of the animal, from 4 to 10 a.m., and from 6 p.m. to midnight. We also review the verified records of the golden jackal in the Czech Republic, some of which were only published in local hunting magazines. However, the observation reported in this paper represents the first evidence of a long-term occurrence in Europe of the same golden jackal individual, that persisted for at least nine months and over winter, northwest of Hungarian-Austrian border where the population has been known to reproduce. PMID:28138295

  20. Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator.

    PubMed

    Bestley, Sophie; Jonsen, Ian D; Hindell, Mark A; Guinet, Christophe; Charrassin, Jean-Benoît

    2013-01-07

    A fundamental goal in animal ecology is to quantify how environmental (and other) factors influence individual movement, as this is key to understanding responsiveness of populations to future change. However, quantitative interpretation of individual-based telemetry data is hampered by the complexity of, and error within, these multi-dimensional data. Here, we present an integrative hierarchical Bayesian state-space modelling approach where, for the first time, the mechanistic process model for the movement state of animals directly incorporates both environmental and other behavioural information, and observation and process model parameters are estimated within a single model. When applied to a migratory marine predator, the southern elephant seal (Mirounga leonina), we find the switch from directed to resident movement state was associated with colder water temperatures, relatively short dive bottom time and rapid descent rates. The approach presented here can have widespread utility for quantifying movement-behaviour (diving or other)-environment relationships across species and systems.

  1. Using Animal-Borne Cameras to Quantify Prey Field, Habitat Characteristics and Foraging Success in a Marine Top Predator

    DTIC Science & Technology

    2012-09-30

    of time on sea floor (%) Sand 89 Gravel/sand 3 Rock 2 Shell/sand 2 Unknown 4 On all substrate types, sponges were the predominant...features along the sea floor to be calculated. As well as the Crittercam, a small VHF transmitter and a FastLoc GPS® data logger will also be...attached to the animal to assist in relocating it at the colony for recapture and for recording at- sea movements, respectively. In total, all devices

  2. In vivo micronucleus test in the assessment of cytogenotoxicity of landfill leachates in three animal models from various ecological habitats.

    PubMed

    Alimba, Chibuisi G; Bakare, Adekunle A

    2016-03-01

    The in vivo micronucleus (MN) test, a standard test for the genotoxicity screening of xenobiotics, was used to evaluate the cytotoxic and genotoxic activities of landfill leachates in Clarias gariepinus, Coturnix coturnix japonica and Rattus norvegicus. These organisms were exposed to various sub-lethal concentrations (1-50%) of Olusosun and Aba Eku landfill leachates. At post exposure, peripheral erythrocytes from catfish and quail, and bone marrow cells of quail and rat were subjected to MN analysis following standard protocols. The leachates induced significant increase in MN formation and total nuclear abnormalities (NAs) in the peripheral erythrocytes of catfish and quail. NAs occurred in the order; BN > BL > LB > NT in the catfish and BN > BudN > TLN > TN in quail. There was significant increase in MN formation in the bone marrow cells of quail, and micronucleated polychromatic erythrocytes and micronucleated normochromatic erythrocytes formation in the bone marrow of rats. The concentration dependent significant (p < 0.05) decrease in the PCE/NCE ratio in the bone marrow of the leachate treated rats suggest alterations in the bone marrow cell proliferation, leading to the suppression of immature erythrocytes (PCE). MN induction showed positive corrections with leachate concentrations in the test organisms; and it increased with exposure duration in the catfish. Indiscriminate disposal of solid waste generates leachates containing multiple xenobiotics that are capable of increasing genomic instability among vertebrates inhabiting various ecological habitats.

  3. Advances in Neuroprotective Ingredients of Medicinal Herbs by Using Cellular and Animal Models of Parkinson's Disease

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Kang, Seong Mook; Song, Soo-Yeol; Lee, Kippeum; Choi, Dong-Kug

    2013-01-01

    Parkinson's disease (PD) is a multifactorial disorder, which is neuropathologically identified by age-dependent neurodegeneration of dopaminergic neurons in the substantia nigra. Development of symptomatic treatments has been partly successful for PD research, but there remain a number of inadequacies in therapeutic strategies for the disease. The pathogenesis of PD remains intricate, and the present anti-PD treatments appears to be clinically insufficient. Comprehensive research on discovery of novel drug candidates has demonstrated that natural products, such as medicinal herbs, plant extracts, and their secondary metabolites, have great potential as therapeutics with neuroprotective activity in PD. Recent preclinical studies suggest that a number of herbal medicines and their bioactive ingredients can be developed into optimum pharmaceuticals for treating PD. In many countries, traditional herbal medicines are used to prevent or treat neurodegenerative disorders, and some have been developed as nutraceuticals or functional foods. Here we focus on recent advances of the evidence-linked neuroprotective activity of bioactive ingredients of herbal origin in cellular and animal models of PD research. PMID:24073012

  4. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening

    PubMed Central

    Galanzha, Ekaterina I; Tuchin, Valery V; Zharov, Vladimir P

    2007-01-01

    Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed. PMID:17226898

  5. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  6. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  7. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  8. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  9. The role of habitat-selection in restricting invasive blue mussel advancement to protect native populations in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Mittal, N.; Saarman, N. P.; Pogson, G.

    2013-12-01

    Introduced species contribute to decline of biodiversity and ecosystem services. Introduced species threaten native species by increasing competition for space and resources, changing their habitat, and disrupting species interactions. Protecting native species is crucial to preserving ecosystem services (i.e. medicinal, agricultural, ecological, and cultural benefits) for future generations. In marine communities, the number of invasive species is dramatically increasing every year, further magnifying the negative impact on native species. This research determines if habitat-specific selection can protect native species from their invasive relatives, and could allow targeted habitat restoration for native species to maintain high levels of biodiversity. Blue mussels provide an ideal system for studying the impact of an invasive species (Mytilus galloprovincialis) on native mussels (M. trossulus), because M. galloprovincialis is marked as one of the world's 100 worst invasive species. Hybridization between M. galloprovincialis and M. trossulus occurs wherever their distributions overlap (i.e. Japan, Puget Sound, and central California). In central California, hybrids form in a broad variety of habitats ever since M. galloprovincialis was introduced about 100 years ago. The current level of threat posed to native mussels in central California is unknown. When population growth rate of an invasive species is higher than the native within a hybrid zone, the invader's genes become more prominent in the hybrids than the native species' genes. This uneven mix of genes and decrease of pure native mussels threatens to drive M. trossulus to extinction. Therefore, it is important to research which environment fosters highest success of pure native species. We conducted a field experiment in San Francisco Bay where mussels were reared in different habitats. We then collected samples and extracted DNA from each treatment, and genotyped them by a next-generation sequencing

  10. Advances in comparative physiology from high-speed imaging of animal and fluid motion.

    PubMed

    Lauder, George V; Madden, Peter G A

    2008-01-01

    Since the time of Muybridge and Marey in the last half of the nineteenth century, studies of animal movement have relied on some form of high-speed or stop-action imaging to permit analysis of appendage and body motion. In the past ten years, the advent of megapixel-resolution high-speed digital imaging with maximal framing rates of 250 to 100,000 images per second has allowed new views of musculoskeletal function in comparative physiology that now extend to imaging flow around moving animals and the calculation of fluid forces produced by animals moving in fluids. In particular, the technique of digital particle image velocimetry (DPIV) has revolutionized our ability to understand how moving animals generate fluid forces and propel themselves through air and water. DPIV algorithms generate a matrix of velocity vectors through the use of image cross-correlation, which can then be used to calculate the force exerted on the fluid as well as locomotor work and power. DPIV algorithms can also be applied to images of moving animals to calculate the velocity of different regions of the moving animal, providing a much more detailed picture of animal motion than can traditional digitizing methods. Although three-dimensional measurement of animal motion is now routine, in the near future model-based kinematic reconstructions and volumetric analyses of animal-generated fluid flow patterns will provide the next step in imaging animal biomechanics and physiology.

  11. Mars habitat

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The College of Engineering & Architecture at Prairie View A&M University has been participating in the NASA/USRA Advanced Design Program since 1986. The interdisciplinary nature of the program allowed the involvement of students and faculty throughout the College of Engineering & Architecture for the last five years. The research goal for the 1990-1991 year is to design a human habitat on Mars that can be used as a permanent base for 20 crew members. The research is being conducted by undergraduate students from the Department of Architecture.

  12. Development of 3D multimedia with advanced computer animation tools for outreach activities related to Meteor Science and Meteoritics

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Documentaries related to Astronomy and Planetary Sciences are a common and very attractive way to promote the interest of the public in these areas. These educational tools can get benefit from new advanced computer animation software and 3D technologies, as these allow making these documentaries even more attractive. However, special care must be taken in order to guarantee that the information contained in them is serious and objective. In this sense, an additional value is given when the footage is produced by the own researchers. With this aim, a new documentary produced and directed by Prof. Madiedo has been developed. The documentary, which has been entirely developed by means of advanced computer animation tools, is dedicated to several aspects of Meteor Science and Meteoritics. The main features of this outreach and education initiative are exposed here.

  13. Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation

    PubMed Central

    Van Dyck, Hans

    2012-01-01

    There is a growing recognition for the significance of evolutionary thinking in ecology and conservation biology. However, ecology and conservation studies often work with species-specific, fixed traits that ignore intraspecific variation. The way the habitat of a species is considered is an example of typological thinking biased by human perception. Structural habitat units (e.g., land cover types) as perceived by humans may not represent functional habitat units for other organisms. Human activity may also interfere with the environmental information used by organisms. Therefore, the Umwelt-concept from ethology needs to be integrated in the way we think about habitat and habitat selection. It states that different organisms live in different perceptual worlds dealing with specific subsamples of the environment as a result of their evolutionary and developmental history. The resource-based habitat concept is a functional habitat model based on resource distributions (consumables and conditions) and individual movements. This behavioural approach takes into account aspects that relate to the perceptual world of organisms. This approach may offer new opportunities for conservation and may help avoid failures with habitat restoration. Perceptual ability may be subject to adaptive change, but it may also constrain organisms from showing adaptive behaviours in rapidly changing environments. PMID:25568037

  14. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances.

    PubMed

    Lau, Jennie Ka Ching; Zhang, Xiang; Yu, Jun

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non-alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD-induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  15. Using animation as an information tool to advance health research literacy among minority participants.

    PubMed

    George, Sheba; Moran, Erin; Duran, Nelida; Jenders, Robert A

    2013-01-01

    Lack of adequate consumer health information about clinical research contributes to health disparities among low health literate minority multicultural populations and requires appropriate methods for making information accessible. Enhancing understanding of health research can enable such minority multicultural consumers to make informed, active decisions about their own health and research participation. This qualitative study examines the effectiveness and acceptability of an animated video to enhance what we call health research literacy among minority multicultural populations. A team analyzed the transcripts of 58 focus groups of African Americans, Latinos, Native Hawaiians, and Filipinos in Los Angeles/Hawaii. Participants were accepting of animation and the video's cultural appropriateness. Communicating information about health research via animation improved participants' ability to identify personal information-gaps, engage in meaningful community-level dialogue, and ask questions about health research.

  16. Using Animation as an Information Tool to Advance Health Research Literacy among Minority Participants

    PubMed Central

    George, Sheba; Moran, Erin; Duran, Nelida; Jenders, Robert A

    2013-01-01

    Lack of adequate consumer health information about clinical research contributes to health disparities among low health literate minority multicultural populations and requires appropriate methods for making information accessible. Enhancing understanding of health research can enable such minority multicultural consumers to make informed, active decisions about their own health and research participation. This qualitative study examines the effectiveness and acceptability of an animated video to enhance what we call health research literacy among minority multicultural populations. A team analyzed the transcripts of 58 focus groups of African Americans, Latinos, Native Hawaiians, and Filipinos in Los Angeles/Hawaii. Participants were accepting of animation and the video’s cultural appropriateness. Communicating information about health research via animation improved participants’ ability to identify personal information-gaps, engage in meaningful community-level dialogue, and ask questions about health research. PMID:24551351

  17. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review.

    PubMed

    Dhama, Kuldeep; Karthik, Kumaragurubaran; Tiwari, Ruchi; Shabbir, Muhammad Zubair; Barbuddhe, Sukhadeo; Malik, Satya Veer Singh; Singh, Raj Kumar

    2015-01-01

    Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.

  18. Advances in biological nitrogen treatment of animal wastewater: Nitrification and anammox

    USDA-ARS?s Scientific Manuscript database

    Biological nitrogen removal (BNR) is regarded as the most efficient and economically feasible method available for removal of nitrogen from municipal wastewaters. Its use for economical treatment of animal wastewaters required development of new technologies and systems adapted to the higher-strengt...

  19. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus.

    PubMed

    Pasek, Raymond C; Gannon, Maureen

    2013-12-01

    The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.

  20. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus

    PubMed Central

    Pasek, Raymond C.

    2013-01-01

    The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures. PMID:24085033

  1. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed

    SciTech Connect

    Dorne, Jean Lou; Vandenbroeck, Marc; Mennes, Wim; Knutsen, Helle K.; Vernazza, Francesco; Edler, Lutz; Benford, Diane

    2013-08-01

    Melamine can be present at low levels in food and feed mostly from its legal use as a food contact material in laminates and plastics, as a trace contaminant in nitrogen supplements used in animal feeds, and as a metabolite of the pesticide cyromazine. The mechanism of toxicity of melamine involves dose-dependent formation of crystals with either endogenous uric acid or a structural analogue of melamine, cyanuric acid, in renal tubules resulting in potential acute kidney failure. Co-exposure to melamine and cyanuric acid in livestock, fish, pets and laboratory animals shows higher toxicity compared with melamine or cyanuric acid alone. Evidence for crystal formation between melamine and other structural analogs i.e. ammelide and ammeline is limited. Illegal pet food adulterations with melamine and cyanuric acid and adulteration of milk with melamine resulted in melamine–cyanuric acid crystals, kidney damage and deaths of cats and dogs and melamine–uric acid stones, hospitalisation and deaths of children in China respectively. Following these incidents, the tolerable daily intake for melamine was re-evaluated by the U.S. Food and Drug Administration, the World Health Organisation, and the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA). This review provides an overview of toxicology, the adulteration incidents and risk assessments for melamine and its structural analogues. Particular focus is given to the recent EFSA risk assessment addressing impacts on animal and human health of background levels of melamine and structural analogues in animal feed. Recent research and future directions are discussed. - Highlights: ► Melamine in food and feed. ► Forms crystals in kidney with uric acid or cyanuric acid. ► Toxicity higher with cyanuric acid. ► Recent EFSA risk assessment. ► Animal and human health.

  2. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  3. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  4. Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2013-03-01

    Advances in our understanding of genome structure provide consistent evidence for the existence of a core genome representing species classically defined by phenotype, as well as conditionally dispensable components of the genome that shows extensive variation between individuals of a given species. Generally, conservation of phenotypic features between species reflects conserved features of the genome; however, this is evidently not necessarily always the case as demonstrated by the analysis of the tunicate chordate Oikopleura dioica. In both plants and animals, the methylation activity of DNA and histones continues to present new variables for modifying (eventually) the phenotype of an organism and provides for structural variation that builds on the point mutations, rearrangements, indels, and amplification of retrotransposable elements traditionally considered. The translation of the advances in the structure/function analysis of the genome to industry is facilitated through the capture of research outputs in "toolboxes" that remain accessible in the public domain.

  5. [Advances in the research of an animal model of wound due to Mycobacterium tuberculosis infection].

    PubMed

    Chen, Ling; Jia, Chiyu

    2015-12-01

    Tuberculosis ranks as the second deadly infectious disease worldwide. The incidence of tuberculosis is high in China. Refractory wound caused by Mycobacterium tuberculosis infection ranks high in misdiagnosis, and it is accompanied by a protracted course, and its pathogenic mechanism is still not so clear. In order to study its pathogenic mechanism, it is necessary to reproduce an appropriate animal model. Up to now the study of the refractory wound caused by Mycobacterium tuberculosis infection is just beginning, and there is still no unimpeachable model for study. This review describes two models which may reproduce a wound similar to the wound caused by Mycobacterium tuberculosis infection, so that they could be used to study the pathogenesis and characteristics of a tuberculosis wound in an animal.

  6. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials

    PubMed Central

    Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-01-01

    It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752

  7. Recent advances in leishmaniosis in pet animals: epidemiology, diagnostics and anti-vectorial prophylaxis.

    PubMed

    Gramiccia, M

    2011-09-08

    The leishmanioses are diseases caused by protozoa of the genus Leishmania, parasites infecting numerous mammal species, including humans, and transmitted by the bite of phlebotomine sand flies. They are a large group of diseases ranging over inter-tropical zones of America and Africa, and extend into temperate regions of Latin America, Europe and Asia. Pet animals are found infected with different Leishmania species but Leishmania infantum is the most widespread being dogs the main reservoir of zoonotic visceral leishmaniosis (ZVL). Dogs are very susceptible to this parasite and may suffer from a complex syndrome, canine leishmaniosis (CanL), one of the major zoonoses globally causing severe fatal disease in this animal. Infections in cats and horses have also been reported in areas where CanL is diagnosed. In Europe dogs and cats are common companion animals and their health is of great concern, therefore management of leishmaniosis in pets generally follows that of human ZVL. The recent spread of Leishmania infections in non-endemic territories has been monitored by means of canine surveys, which represent a suitable approach because of the dog's role as a sentinel host. New tools have been developed for the surveillance and control of ZVL. A number of insecticide-based preparations have been specifically registered for dog protection against sand fly bites, with elevated efficacy for both individual and mass protection. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. An animal location-based habitat suitability model for bighorn sheep and wild horses in Bighorn Canyon National Recreation Area and the Pryor Mountain Wild Horse Range, Montana, and Wyoming

    USGS Publications Warehouse

    Wockner, Gary; Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    The purpose of this habitat suitability model is to provide a tool that will help managers and researchers better manage bighorn sheep and wild horses in the Bighorn Canyon National Recreation Area (BICA) and Pryor Mountain Wild Horse Range (PMWHR). A concern in the management of the Pryor Mountain wild horse population is whether or not the wild horses compete with bighorn sheep for available forage or available space. Two studies have been conducted that have shown no obvious, convincing competition between the two species. A study of diets and habitat-use of both species revealed substantial diet overlap only during some seasons, but there were considerable spatial and habitat separations between wild horses and bighorns during all seasons (Kissell and others, 1996). This empirical data was then used in a modeling exercise that predicted that neither the current (about 160 horses at the time of the analysis) nor larger numbers of wild horses on the area (e.g., about 200 horses) would result in reduced numbers or condition of bighorn sheep (Coughenour 1999). But competition is a very complex biological process to document. Bighorns might have already been spatially avoiding wild horses when these studies were conducted. A second concern for managers is that earlier studies suggest both species are not using many areas of the range that appear to be suitable (Gudorf and others, 1996; Kissell and others, 1996). A primary goal for the management of both species is to increase their numbers for purposes of genetic conservation and viability. The bighorn sheep population declined during the mid-1990’s from a peak of about 211 animals to ~ 100 animals at present. Absolute minimum goals for genetic viability in the bighorn sheep herd (genetic effective population size of N >50) suggest at least 150 animals should be present, while studies of persistence suggest populations of 250+ are e more likely to recover rapidly and persist should the population experience an

  9. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  10. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus.

    PubMed

    Jackwood, Daral J

    2017-07-01

    Numerous reviews have been published on infectious bursal disease (IBD) and infectious bursal disease virus (IBDV). Many high quality vaccines are commercially available for the control of IBD that, when used correctly, provide solid protection against infection and disease caused by IBDV. Viruses are not static however; they continue to evolve and vaccines need to keep pace with them. The evolution of IBDV has resulted in very virulent strains and new antigenic types of the virus. This review will discuss some of the limitations associated with existing vaccines, potential solutions to these problems and advances in new vaccines for the control of IBD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model.

    PubMed

    Oestereich, Lisa; Lüdtke, Anja; Wurr, Stephanie; Rieger, Toni; Muñoz-Fontela, César; Günther, Stephan

    2014-05-01

    Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Sjögren syndrome: advances in the pathogenesis from animal models.

    PubMed

    Chiorini, J A; Cihakova, D; Ouellette, C E; Caturegli, P

    2009-01-01

    Sjögren syndrome is an autoimmune disease characterized by hyposecretion of the lacrimal and salivary glands, resulting in dryness of the eyes and mouth. Individuals may experience primary Sjögren syndrome or a secondary form accompanying another rheumatic autoimmune disease, such as rheumatoid arthritis or systemic lupus erythematosus. The pathogenic mechanisms of Sjögren syndrome remain largely unknown, in part a consequence of the heterogeneity of the disease. Animal models have shed light on the connections between specific pathways and symptoms, but an ideal system is wanting. Improved disease models will enable a better understanding of Sjögren syndrome, including how immune tolerance is lost and potential therapeutic interventions. Most importantly, an optimal model will enable detection of disease biomarkers, since injury to the salivary glands may precede lymphocytic infiltration. This review aims to characterize available mice models of Sjögren syndrome, including advantages and disadvantages, from the researcher's perspective.

  13. A new medical research model: ethically and responsibly advancing health for humans and animals.

    PubMed

    Olson, Patricia N; Ganzert, Robin R

    2015-01-01

    With the increasing use of genomics, computational analytics, emerging technologies, and personalized medicine, the possibility of a new research model is emerging. Using the clues from thousands of species living on our planet, scientists from many disciplines (medicine, veterinary medicine, wildlife) must collaborate, prioritize, and strategize on how to address causes of health and disease. Such clues should guide disease prevention, as well as the development of innovative, efficacious, and gentler therapies. Geographic and language barriers must be broken down, and scientists--even within a single academic, corporate, or government research site--must be vigilant in seeking the help of nonmedical disciplines of colleagues from whence answers might come. The public will become more interested in and demanding of such a model, desiring that all family members (humans and animals) have an opportunity for a long and healthy life. Above all, such activities will be humanely conducted with outcomes having the greatest chance for success.

  14. [Research advances in animal toxicology of polybrominated diphenyl ethers and expectations on their ecotoxicology].

    PubMed

    Xu, Zhi-qiang; Zhou, Qi-xing; Zhang, Que; Zhu, Ling-yan

    2007-05-01

    As a kind of flame retardants, polybrominated diphenyl ethers (PBDEs) have been widely applied in industrial products and house wears, and detected in soil, sediments, air, and living organisms. PBDEs are proved to be harmful to mammals, birds, and fish. Great concern has been aroused because of their wide spreading, stable structure, and uncertain risk to human health. Based on the foreign toxicological researches and findings, this paper summarized the accumulation and elimination of PBDEs in organisms, their effects on the hepatic enzyme activities, thyroid gland, nerve and immune system, and reproduction and development of animals, and potential risk to human health. The problems in PBDEs toxicological research were analyzed, and future directions in this field were discussed.

  15. Sjögren syndrome: Advances in the pathogenesis from animal models

    PubMed Central

    Chiorini, J.A.; Cihakova, D.; Ouellette, C.E.; Caturegli, P.

    2012-01-01

    Sjögren syndrome is an autoimmune disease characterized by hyposecretion of the lacrimal and salivary glands, resulting in dryness of the eyes and mouth. Individuals may experience primary Sjögren syndrome or a secondary form accompanying another rheumatic autoimmune disease, such as rheumatoid arthritis or systemic lupus erythematosus. The pathogenic mechanisms of Sjögren syndrome remain largely unknown, in part a consequence of the heterogeneity of the disease. Animal models have shed light on the connections between specific pathways and symptoms, but an ideal system is wanting. Improved disease models will enable a better understanding of Sjögren syndrome, including how immune tolerance is lost and potential therapeutic interventions. Most importantly, an optimal model will enable detection of disease biomarkers, since injury to the salivary glands may precede lymphocytic infiltration. This review aims to characterize available mice models of Sjögren syndrome, including advantages and disadvantages, from the researcher’s perspective. PMID:19800762

  16. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    PubMed Central

    Lin, Jenny B.; Phillips, Evan H.; Riggins, Ti’Air E.; Sangha, Gurneet S.; Chakraborty, Sreyashi; Lee, Janice Y.; Lycke, Roy J.; Hernandez, Clarissa L.; Soepriatna, Arvin H.; Thorne, Bradford R. H.; Yrineo, Alexa A.; Goergen, Craig J.

    2015-01-01

    Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic. PMID:25993289

  17. Influence of the Qinghai-Tibetan railway on the habitat selection of wild animals, using satellite data and satellite-based ARGOS system data

    NASA Astrophysics Data System (ADS)

    Buhe, Aosier

    The Qinghai-Tibet Railway (QTR) was in trial operation since 1 July 2006, is the world's highest-elevation railway and the longest highland railway, extending over 1956 km from Xining (Qinghai's capital in northwestern China) to Lhasa, the capital city of the Tibet Autonomous Region. This QTR railway was crosses five nature reserves along the route Hoh Xil (COCOX- ILI), Qinghai Sanjiangyuan, Chang Tang, Lin-chou Pengbo, and La-lu, and Hoh xil nature reserve is the important breeding sites of Tibetan Antelope (Pantholops hodgsoni). In order to clearly the habitat use and habitat selection of the Tibetan Antelope was divided in the north and south by the QTR railway, we planned the capture of ten Tibetan Antelopes and attach a satellite-based ARGOS system platform transmitter terminal (PTT) to the Tibetan Antelopes. And we succeeded in the capture of two Tibetan Antelopes for the first time in the world in 2007a summer and attached an ARGOS PTT. In this study, we estimate RASTER model of habitat change, using satellite-based ARGOS PTT tracking analyst data and satellite (Terra/MODIS, Terra/ASTER, ALOS and SPOT/vegetation instrument data) land cover change data, order to clearly the spatial and temporal characteristics of wide area habitat selection of Tibetan Antelope.

  18. Water quality improvements of wastewater from confined animal feeding operations after advanced treatment.

    PubMed

    Vanotti, Matias B; Szogi, Ariel A

    2008-01-01

    Current trends of animal production concentration and new regulations promote the need for environmentally safe alternatives to land application of liquid manure. These technologies must be able to substantially remove nutrients, heavy metals, and emissions of ammonia and odors and disinfect the effluent. A new treatment system was tested full-scale in a 4360-swine farm in North Carolina to demonstrate environmentally superior technology (EST) that could replace traditional anaerobic lagoon treatment. The system combined liquid-solids separation with nitrogen and phosphorus removal processes. Water quality was monitored at three sites: (i) the treatment plant as the raw manure liquid was depurated in the various processes, (ii) the converted lagoon as it was being cleaned up with the treated effluent, and (iii) an adjacent traditional anaerobic lagoon. The treatment plant removed 98% of total suspended solids (TSS), 76% of total solids (TS), 100% of 5-d biochemical oxygen demand (BOD(5)), 98% of total Kjeldahl nitrogen (TKN) and NH(4)-N, 95% of total phosphorus (TP), 99% of Zn, and 99% of Cu. The quality of the liquid in the converted lagoon improved rapidly as cleaner effluent from the plant replaced anaerobic lagoon liquid. The converted lagoon liquid became aerobic (dissolved oxygen, 6.95 mg L(-1); Eh, 342 mv) with the following mean reductions in the second year of the conversion: 73% of TSS, 40% of TS, 77% of BOD(5), 85% of TKN, 92% of NH(4)-N, 38% of TP, 37% of Zn, and 39% of Cu. These findings overall showed that EST can have significant positive impacts on the environment and on the livestock industries.

  19. Wildlife habitat fragmentation.

    Treesearch

    John. Lehmkuhl

    2005-01-01

    A primary issue in forest wildlife management is habitat fragmentation and its effects on viability, which is the "bottom line" for plant and animal species of conservation concern. Population viability is the likelihood that a population will be able to maintain itself (remain viable) over a long period of time-usually 100 years or more. Though it is true...

  20. REVIEW: Can habitat selection predict abundance?

    PubMed

    Boyce, Mark S; Johnson, Chris J; Merrill, Evelyn H; Nielsen, Scott E; Solberg, Erling J; van Moorter, Bram

    2016-01-01

    Habitats have substantial influence on the distribution and abundance of animals. Animals' selective movement yields their habitat use. Animals generally are more abundant in habitats that are selected most strongly. Models of habitat selection can be used to distribute animals on the landscape or their distribution can be modelled based on data of habitat use, occupancy, intensity of use or counts of animals. When the population is at carrying capacity or in an ideal-free distribution, habitat selection and related metrics of habitat use can be used to estimate abundance. If the population is not at equilibrium, models have the flexibility to incorporate density into models of habitat selection; but abundance might be influenced by factors influencing fitness that are not directly related to habitat thereby compromising the use of habitat-based models for predicting population size. Scale and domain of the sampling frame, both in time and space, are crucial considerations limiting application of these models. Ultimately, identifying reliable models for predicting abundance from habitat data requires an understanding of the mechanisms underlying population regulation and limitation. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  1. [Animal dermatophytosis. Recent advances].

    PubMed

    Cabañes, F J

    2000-03-01

    The proportion of positive samples in relation to the number of samples examined from cases of dog and cat dermatophytosis varies considerably from one investigation to another. In dogs, it ranges between 4% and 10% and few studies show higher prevalences. On the other hand, the percentages of positive cultures cited in the reviewed literature from dogs with or without suspected dermatophytosis are quite similar. In dogs with suspected lesions of dermatophytosis, with few exceptions, Microsporum canis is the most common species isolated. Trichophyton mentagrophytes and Microsporum gypseum are less frequently isolated. In cats the prevalence of dermatophytes is usually higher than in dogs, and it is usually higher than 20%. However the frequency of positive findings is higher in cats with suspected dermatophytosis than in cats without visible lesions, with the exception of asymptomatic infected cats and transient carrier cats. Cats are accepted as the principal reservoir for M. canis. Griseofulvin is the drug of choice in canine and feline dermatophytosis.

  2. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    PubMed Central

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  3. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science.

    PubMed

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-03-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.

  4. Developing landscape-scaled habitat selection functions for forest wildlife from Landsat data: Judging black bear habitat quality in Louisiana

    NASA Astrophysics Data System (ADS)

    Wagner, Robert Owen

    2003-10-01

    Understanding habitat needs of animal populations is critical for their effective management. In recent years, technological advances have increased the range of methods available to examine habitat selection patterns. However, available habitat data are often either limited to small geographic areas or are of coarse resolution, resulting in a gap in data to model habitat selection at landscape scales. I explored a method of processing Landsat data, the at-satellite reflectance tasseled cap, to address this data gap using black bears in south central Louisiana as a case study. As I showed, this case was particularly instructive because these bears occupy two very different habitat matrices. I examined the information content of resource measures derived from tasseled caps and determined that they contain substantially more information than is represented in coarse habitat maps such as available from the USGS GAP program. Additionally, this process could be applied over large areas and time frames, during different times of the year, and across sensors to produce consistent results that avoid the need to categorize land cover/habitats. I used logistic regression and the information theoretic approach to examine: the spatial scale at which habitat measures were derived, model complexity, and the relative value of groups of derived habitat measures. I grouped derived habitat measures to examine the information content in: images captured in two seasons, measures based on mean and standard deviation filters, and combinations of tasseled cap functions. My work suggests that researchers should consider multiple summary statistics derived over a range of scales, use multi-temporal data, and use all three tasseled cap functions to derive habitat measures. I calculated resource selection functions (RSF) for black bears in south central Louisiana and examined model calibration and discrimination. Mahalanobis distance has been proposed as an alternative to RSF because it does

  5. Movement is the glue connecting home ranges and habitat selection.

    PubMed

    Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel

    2016-01-01

    selection). Our findings show how patterns of geographic and environmental space use correspond to the two sides of a coin, linked by movement responses of individuals to environmental heterogeneity. By demonstrating the potential to assess the consequences of altering RT or TtoR (e.g. through human disturbance or climatic changes) on home range size and habitat selection, our work sets the basis for new theoretical and methodological advances in movement ecology. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. Greetings from the Animal Kingdom.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1990-01-01

    Described is a classification activity that uses holiday greeting cards. Identification of animals, their characteristics, natural habitat, eating patterns, and geography are some of the suggested ways in which to classify the animals. (KR)

  7. Greetings from the Animal Kingdom.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1990-01-01

    Described is a classification activity that uses holiday greeting cards. Identification of animals, their characteristics, natural habitat, eating patterns, and geography are some of the suggested ways in which to classify the animals. (KR)

  8. Habitat Design Optimization and Analysis

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.

    2006-01-01

    Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.

  9. IFPA Meeting 2012 Workshop Report I: comparative placentation and animal models, advanced techniques in placental histopathology, human pluripotent stem cells as a model for trophoblast differentiation.

    PubMed

    Ackerman, W E; Carter, A M; De Mestre, A M; Golos, T G; Jeschke, U; Kusakabe, K; Laurent, L C; Parast, M M; Roberts, R M; Robinson, J M; Rutherford, J; Soma, H; Takizawa, T; Ui-Tei, K; Lash, G E

    2013-03-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2012 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of models and technical issues involved in placenta research: 1) comparative placentation and animal models; 2) advanced techniques in placental histopathology; 3) human pluripotent stem cells as a model for trophoblast differentiation.

  10. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    NASA Astrophysics Data System (ADS)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  11. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  12. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  13. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  14. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  15. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  16. [Ethics as a scientific basis for animal protection - on the advancement and amendment of the Codex Veterinarius].

    PubMed

    Kuhlmann, Ingrid; Luy, Joerg

    2005-01-01

    Seven years ago, the veterinary association for animal protection (Tieraerztliche Vereinigung fuer Tierschutz e.V., TVT) in Germany first published an orientation guide on the ethics of animal protection aimed at the entire veterinary profession: the "Codex Veterinarius - ethical guiding principles on veterinary action for the good and the protection of animals". The dilemmas of the veterinary profession have not changed since then, but as the principle that "nothing can be so good that it cannot be improved" also applies to the Codex, the two authors have attempted to optimise the few weak spots of the Codex. Joerg Luy sees the task of the Codex in surpassing the animal protection law in two respects: on the one hand regarding moral aspects that cannot be regulated (e.g. respect for the "intrinsic value" of the animal, which is greater than its "utilitarian value") and on the other hand in cases where the law does not live up to its own goals (e.g. regarding the inconsistent regulation on causing "longer term or repeated grave pain or suffering").

  17. Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products.

    PubMed

    Cavagnaro, Joy; Silva Lima, Beatriz

    2015-07-15

    The utility of animal models of disease for assessing the safety of novel therapeutic modalities has become an increasingly important topic of discussion as research and development efforts focus on improving the predictive value of animal studies to support accelerated clinical development. Medicines are approved for marketing based upon a determination that their benefits outweigh foreseeable risks in specific indications, specific populations, and at specific dosages and regimens. No medicine is 100% safe. A medicine is less safe if the actual risks are greater than the predicted risks. The purpose of preclinical safety assessment is to understand the potential risks to aid clinical decision-making. Ideally preclinical studies should identify potential adverse effects and design clinical studies that will minimize their occurrence. Most regulatory documents delineate the utilization of conventional "normal" animal species to evaluate the safety risk of new medicines (i.e., new chemical entities and new biological entities). Animal models of human disease are commonly utilized to gain insight into the pathogenesis of disease and to evaluate efficacy but less frequently utilized in preclinical safety assessment. An understanding of the limitations of the animal disease models together with a better understanding of the disease and how toxicity may be impacted by the disease condition should allow for a better prediction of risk in the intended patient population. Importantly, regulatory authorities are becoming more willing to accept and even recommend data from experimental animal disease models that combine efficacy and safety to support clinical development. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Can settlement in natal-like habitat explain maladaptive habitat selection?

    PubMed Central

    Piper, Walter H.; Palmer, Michael W.; Banfield, Nathan; Meyer, Michael W.

    2013-01-01

    The study of habitat selection has long been influenced by the ideal free model, which maintains that young adults settle in habitat according to its inherent quality and the density of conspecifics within it. The model has gained support in recent years from the finding that conspecifics produce cues inadvertently that help prebreeders locate good habitat. Yet abundant evidence shows that animals often fail to occupy habitats that ecologists have identified as those of highest quality, leading to the conclusion that young animals settle on breeding spaces by means not widely understood. Here, we report that a phenomenon virtually unknown in nature, natal habitat preference induction (NHPI), is a strong predictor of territory settlement in both male and female common loons (Gavia immer). NHPI causes young animals to settle on natal-like breeding spaces, but not necessarily those that maximize reproductive success. If widespread, NHPI might explain apparently maladaptive habitat settlement. PMID:23804619

  19. Of mice and men: how animal models advance our understanding of T-cell function in RA.

    PubMed

    Kobezda, Tamás; Ghassemi-Nejad, Sheida; Mikecz, Katalin; Glant, Tibor T; Szekanecz, Zoltán

    2014-03-01

    The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T-helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion therapy essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.

  20. Dispersing brush mice prefer habitat like home

    PubMed Central

    Mabry, Karen E; Stamps, Judy A

    2007-01-01

    During natal dispersal, young animals leave their natal area and search for a new area to live. In species in which individuals inhabit different types of habitat, experience with a natal habitat may increase the probability that a disperser will select the same type of habitat post-dispersal (natal habitat preference induction or NHPI). Despite considerable interest in the ecological and the evolutionary implications of NHPI, we lack empirical evidence that it occurs in nature. Here we show that dispersing brush mice (Peromyscus boylii) are more likely to search and settle within their natal habitat type than expected based on habitat availability. These results document the occurrence of NHPI in nature and highlight the relevance of experience-generated habitat preferences for ecological and evolutionary processes. PMID:18077253

  1. Deep Space Habitat Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  2. Evaluating habitat selection with radio-telemetry triangulation error

    USGS Publications Warehouse

    Samuel, M.D.; Kenow, K.P.

    1992-01-01

    Radio-telemetry triangulation errors result in the mislocation of animals and misclassification of habitat use. We present analytical methods that provide improved estimates of habitat use when misclassification probabilities can be determined. When misclassification probabilities cannot be determined, we use random subsamples from the error distribution of an estimated animal location to improve habitat use estimates. We conducted Monte Carlo simulations to evaluate the effects of this subsampling method, triangulation error, number of animal locations, habitat availability, and habitat complexity on bias and variation in habitat use estimates. Results for the subsampling method are illustrated using habitat selection by redhead ducks (Aythya americana ). We recommend the subsampling method with a minimum of 50 random points to reduce problems associated with habitat misclassification.

  3. Evaluating habitat selection with radio-telemetry triangulation error

    USGS Publications Warehouse

    Samuel, M.D.; Kenow, K.P.

    1992-01-01

    Radio-telemetry triangulation errors result in the mislocation of animals and misclassification of habitat use. We present analytical methods that provide improved estimates of habitat use when misclassification probabilities can be determined. When misclassification probabilities cannot be determined, we use random subsamples from the error distribution of an estimated animal location to improve habitat use estimates. We conducted Monte Carlo simulations to evaluate the effects of this subsampling method, triangulation error, number of animal locations, habitat availability, and habitat complexity on bias and variation in habitat use estimates. Results for the subsampling method are illustrated using habitat selection by redhead ducks (Aythya americana). We recommend the subsampling method with a minimum of 50 random points to reduce problems associated with habitat misclassification.

  4. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  5. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin - A comprehensive review.

    PubMed

    Gaudin, Valérie

    2017-04-15

    Antibiotic residues may be found in food of animal origin, since veterinary drugs are used for preventive and curative purposes to treat animals. The control of veterinary drug residues in food is necessary to ensure consumer safety. Screening methods are the first step in the control of antibiotic residues in food of animal origin. Conventional screening methods are based on different technologies, microbiological methods, immunological methods or physico-chemical methods (e.g. thin-layer chromatography, HPLC, LC-MS/MS). Screening methods should be simple, quick, inexpensive and specific, with low detection limits and high sample throughput. Biosensors can meet some of these requirements. Therefore, the development of biosensors for the screening of antibiotic residues has been increasing since the 1980s. The present review provides extensive and up-to-date findings on biosensors for the screening of antibiotic residues in food products of animal origin. Biosensors are constituted of a bioreceptor and a transducer. In the detection of antibiotic residues, even though antibodies were the first bioreceptors to be used, new kinds of bioreceptors are being developed more and more (enzymes, aptamers, MIPs); their advantages and drawbacks are discussed in this review. The different categories of transducers (electrochemical, mass-based biosensors, optical and thermal) and their potential applications for the screening of antibiotic residues in food are presented. Moreover, the advantages and drawbacks of the different types of transducers are discussed. Lastly, outlook and the future development of biosensors for the control of antibiotic residues in food are highlighted. Copyright © 2016. Published by Elsevier B.V.

  6. Advances in preclinical therapeutics development using small animal imaging and molecular analyses: the gastrointestinal stromal tumors model.

    PubMed

    Pantaleo, M A; Landuzzi, L; Nicoletti, G; Nanni, C; Boschi, S; Piazzi, G; Santini, D; Di Battista, M; Castellucci, P; Lodi, F; Fanti, S; Lollini, P-L; Biasco, G

    2009-09-01

    The large use of target therapies in the treatment of gastrointestinal stromal tumors (GISTs) highlighted the urgency to integrate new molecular imaging technologies, to develop new criteria for tumor response evaluation and to reach a more comprehensive definition of the molecular target. These aspects, which come from clinical experiences, are not considered enough in preclinical research studies which aim to evaluate the efficacy of new drugs or new combination of drugs with molecular target. We developed a xenograft animal model GIST882 using nude mice. We evaluated both the molecular and functional characterization of the tumor mass. The mutational analysis of KIT receptor of the GIST882 cell lines and tumor mass showed a mutation on exon 13 that was still present after in vivo cell growth. The glucose metabolism and cell proliferation was evaluated with a small animal PET using both FDG and FLT. The experimental development of new therapies for GIST treatment requires sophisticated animal models in order to represent the tumor molecular heterogeneity already demonstrated in the clinical setting and in order to evaluate the efficacy of the treatment also considering the inhibition of tumor metabolism, and not only considering the change in size of tumors. This approach of cancer research on GISTs is crucial and essential for innovative perspectives that could cross over to other types of cancer.

  7. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity.

    PubMed

    Chapman, M G; Blockley, D J

    2009-09-01

    Urbanization replaces natural shorelines with built infrastructure, seriously impacting species living on these "new" shores. Understanding the ecology of developed shorelines and reducing the consequences of urban development to fauna and flora cannot advance by simply documenting changes to diversity. It needs a robust experimental programme to develop ways in which biodiversity can be sustained in urbanized environments. There have, however, been few such experiments despite wholesale changes to shorelines in urbanized areas. Seawalls--the most extensive artificial infrastructure--are generally featureless, vertical habitats that support reduced levels of local biodiversity. Here, a mimic of an important habitat on natural rocky shores (rock-pools) was experimentally added to a seawall and its impact on diversity assessed. The mimics created shaded vertical substratum and pools that retained water during low tide. These novel habitats increased diversity of foliose algae and sessile and mobile animals, especially higher on the shore. Many species that are generally confined to lowshore levels, expanded their distribution over a greater tidal range. In fact, there were more species in the constructed pools than in natural pools of similar size on nearby shores. There was less effect on the abundances of mobile animals, which may be due to the limited time available for recruitment, or because these structures did not provide appropriate habitat. With increasing anthropogenic intrusion into natural areas and concomitant loss of species, it is essential to learn how to build urban infrastructure that can maintain or enhance biodiversity while meeting societal and engineering criteria. Success requires melding engineering skills and ecological understanding. This paper demonstrates one cost-effective way of addressing this important issue for urban infrastructure affecting nearshore habitats.

  8. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  9. Habitat patterns in a small mammal community

    SciTech Connect

    Kitchings, J.T.; Levy, D.J.

    1981-11-01

    Microhabitat relationships between four sympatric small mammal species (Peromyscus leucopus, Ochrotomys nuttalli, Blarina brevicauda, and Tamias striatus) were examined to determine if their discriminant analysis of small mammal habitat represented a unique habitat utilization pattern for a specific small mammal community. The authors concluded that habitat is only one of many dimensions to be considered when studying the interactions of sympatric species. Reproductive strategy, activity patterns, and other factors make up the n-dimensional hyperspace of an animal's niche. Thus differences in habitat usage alone cannot be used to determine niche overlap and competition between species. (JMT)

  10. NASA SCI Files - The Case of The Zany Animal Antics

    NASA Image and Video Library

    This video covers the animal kingdom, how animals are classified, their basic needs, the food chain, reproduction and why animals migrate. Also learn about animal populations and habitats, endanger...

  11. Bile Flow Phantom Model and Animal Bile Duct Dilation Model for Evaluating Biliary Plastic Stents with Advanced Hydrophilic Coating.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Won Seop; Lee, Don Haeng; Ko, Kwang Hyun; Hong, Sung Pyo; Hahm, Ki Baik

    2016-07-15

    The efforts to improve biliary plastic stents (PSs) for decreasing biofilm formation and overcome short patency time have been continued. The aim of this study is to evaluate the effect of advanced hydrophilic coating for patency and biodurability of PS. Using an in vitro bile flow phantom model, we compared patency between prototype PS with hydrophilic coating (PS+HC) and prototype PS without hydrophilic coating (PS-HC). We performed an analysis of the degree of luminal narrowing by microscopic examination. Using an in vivo swine bile duct dilation model made by endoscopic papillary closure and stent insertion, we evaluated biodurability of hydrophilic coating. In the phantom model, PS+HC showed less biofilm formation and luminal narrowing than PS-HC at 8 weeks (p<0.05). A total of 31 stents were inserted into the dilated bile duct of seven swine models, and 24 stents were successfully retrieved 8 weeks later. There was no statistical difference of stent patency between the polyethylene PS+HC and the polyurethane PS+HC. The biodurability of hydrophilic coating was sustained up to 8 weeks, when assessing the coating layer by scanning electron microscopy examination. Advanced hydrophilic coating technology may extend the patency of PS compared to uncoated PS.

  12. Bile Flow Phantom Model and Animal Bile Duct Dilation Model for Evaluating Biliary Plastic Stents with Advanced Hydrophilic Coating

    PubMed Central

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Won Seop; Lee, Don Haeng; Ko, Kwang Hyun; Hong, Sung Pyo; Hahm, Ki Baik

    2016-01-01

    Background/Aims The efforts to improve biliary plastic stents (PSs) for decreasing biofilm formation and overcome short patency time have been continued. The aim of this study is to evaluate the effect of advanced hydrophilic coating for patency and biodurability of PS. Methods Using an in vitro bile flow phantom model, we compared patency between prototype PS with hydrophilic coating (PS+HC) and prototype PS without hydrophilic coating (PS−HC). We performed an analysis of the degree of luminal narrowing by microscopic examination. Using an in vivo swine bile duct dilation model made by endoscopic papillary closure and stent insertion, we evaluated biodurability of hydrophilic coating. Results In the phantom model, PS+HC showed less biofilm formation and luminal narrowing than PS−HC at 8 weeks (p<0.05). A total of 31 stents were inserted into the dilated bile duct of seven swine models, and 24 stents were successfully retrieved 8 weeks later. There was no statistical difference of stent patency between the polyethylene PS+HC and the polyurethane PS+HC. The biodurability of hydrophilic coating was sustained up to 8 weeks, when assessing the coating layer by scanning electron microscopy examination. Conclusions Advanced hydrophilic coating technology may extend the patency of PS compared to uncoated PS. PMID:27021507

  13. Lidar: shedding new light on habitat characterization and modeling.

    Treesearch

    Kerri T. Vierling; Lee A. Vierling; William A. Gould; Sebastian Martinuzzi; Rick M. Clawges

    2008-01-01

    Ecologists need data on animal–habitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that...

  14. Animals Alive! An Ecological Guide to Animal Activities.

    ERIC Educational Resources Information Center

    Holley, Dennis

    Animals Alive! is designed to help teachers develop an inquiry-oriented program for studying the animal kingdom in which, whenever possible, live animals are collected locally, studied, observed, and then released completely unharmed back into their natural habitats. By careful selection and modification of the chapter questions, activities, and…

  15. Animals Alive! An Ecological Guide to Animal Activities.

    ERIC Educational Resources Information Center

    Holley, Dennis

    Animals Alive! is designed to help teachers develop an inquiry-oriented program for studying the animal kingdom in which, whenever possible, live animals are collected locally, studied, observed, and then released completely unharmed back into their natural habitats. By careful selection and modification of the chapter questions, activities, and…

  16. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    NASA Astrophysics Data System (ADS)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  17. Biodiversity in urban habitat patches.

    PubMed

    Angold, P G; Sadler, J P; Hill, M O; Pullin, A; Rushton, S; Austin, K; Small, E; Wood, B; Wadsworth, R; Sanderson, R; Thompson, K

    2006-05-01

    We examined the biodiversity of urban habitats in Birmingham (England) using a combination of field surveys of plants and carabid beetles, genetic studies of four species of butterflies, modelling the anthropochorous nature of the floral communities and spatially explicit modelling of selected mammal species. The aim of the project was to: (i) understand the ecological characteristics of the biota of cities model, (ii) examine the effects of habitat fragment size and connectivity upon the ecological diversity and individual species distributions, (iii) predict biodiversity in cities, and (iv) analyse the extent to which the flora and fauna utilise the 'urban greenways' both as wildlife corridors and as habitats in their own right. The results suggest that cities provide habitats for rich and diverse range of plants and animals, which occur sometimes in unlikely recombinant communities. The studies on carabids and butterflies illustrated the relative importance of habitat quality on individual sites as opposed to site location within the conurbation. This suggests that dispersal for most of our urban species is not a limiting factor in population persistence, although elements of the woodland carabid fauna did appear to have some geographical structuring. Theoretical models suggested that dormice and water voles may depend on linear habitats for dispersal. The models also indicated that other groups, such as small and medium sized mammals, may use corridors, although field-based research did not provide any evidence to suggest that plants or invertebrates use urban greenways for dispersal. This finding indicates the importance of identifying a target species or group of species for urban greenways intended as dispersal routeways rather than as habitat in their own right. Their importance for most groups is rather that greenways provide a chain of different habitats permeating the urban environment. We suggest that planners can have a positive impact on urban

  18. Anthropogenic areas as incidental substitutes for original habitat.

    PubMed

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  19. Habitats of North American sea ducks.

    USGS Publications Warehouse

    Derksen, Dirk V.; Petersen, Margaret R.; Savard, Jean-Pierre L.

    2015-01-01

    Breeding, molting, fall and spring staging, and wintering habitats of the sea duck tribe Mergini are described based on geographic locations and distribution in North America, geomorphology, vegetation and soil types, and fresh water and marine characteristics. The dynamics of habitats are discussed in light of natural and anthropogenic events that shape areas important to sea ducks. Strategies for sea duck habitat management are outlined and recommendations for international collaboration to preserve key terrestrial and aquatic habitats are advanced. We follow the definition of habitat advanced by Odum (1971), which is the place or space where an organism lives. Weller (1999) emphasized that habitats for waterbirds required presence of sufficient resources (i.e., food, water, cover, space) for maintenance during a portion of their annual cycle. Habitats exploited by North American sea ducks are diverse, widespread across the continent and adjacent marine waters and until recently, most were only superficially known. Even following a 15-year-long effort through the Sea Duck Joint Venture and U.S. and Canadian Endangered/Threatened Species programs to fund research focused on sea duck habitats there are still important gaps in our understanding of key elements required by some species during various life stages. Importantly, many significant habitats, especially staging and wintering sites, have been and continue to be destroyed or altered, largely as a result of anthropogenic effects. Our goal here is to develop a comprehensive summary of marine, freshwater, and terrestrial habitats and their characteristics by considering sea duck species with similar needs as groups (e.g., eiders) within the tribe Mergini. Additionally, this chapter will examine threats and changes to sea duck habitats from human-caused and natural events. Finally, we will evaluate conservation and management programs underway or available for maintenance and enhancement of habitats critical for

  20. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    PubMed

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  1. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  2. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats.

    PubMed

    Gleason, Frank H; Scholz, Bettina; Jephcott, Thomas G; van Ogtrop, Floris F; Henderson, Linda; Lilje, Osu; Kittelmann, Sandra; Macarthur, Deborah J

    2017-03-01

    The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.

  3. Habitat selection and the perceptual trap.

    PubMed

    Patten, Michael A; Kelly, Jeffrey F

    2010-12-01

    The concept of "ecological traps" was introduced over three decades ago. An ecological trap occurs when, by various mechanisms, low-quality (yielding low fitness) habitat is more attractive than good habitat, thus coaxing individuals to settle there despite a resultant loss of fitness. Empirical work on such traps has increased dramatically in the past decade, but the converse-avoidance of high-quality habitat because it is less attractive, what we term a "perceptual trap" has remained largely unexplored. Even so, depending on conditions (growth rate, strength of habitat preference, and mortality rate), such perceptual traps can be more limiting than ecological traps to population persistence. An example from field experiments with the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) lends empirical support to the concept, and several other potential examples suggest that these traps are perhaps more prevalent than has been appreciated. Because demographic Allee effects are expected to prevent a population from growing sufficiently in a habitat that is avoided, a perceptual trap may persist even though fitness is high. Unlike an ecological trap, which may be negated by increasing habitat quality, biologists will be hard pressed to negate a perceptual trap, which will require determining which cues an animal uses to select high-quality habitat and then devising a means of enhancing those cues so that an animal is lured into the habitat.

  4. Habitat Use and Selection by Giant Pandas.

    PubMed

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  5. Habitat Use and Selection by Giant Pandas

    PubMed Central

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  6. Evaluating elk habitat interactions with GPS collars

    Treesearch

    Mark A. Rumble; Lakhdar Benkobi; Fredrick Lindzey; R. Scott Gamo

    2001-01-01

    Global positioning systems (GPS) are likely to revolutionize animal telemetry studies. GPS collars allow biologists to collect systematically scheduled data when VHF telemetry data is difficult or impossible to collect. Past studies have shown that the success of GPS telemetry is greater when animals are standing, or in open habitats. To make effective use of GPS...

  7. Saving Wild Species through Habitat Protection.

    ERIC Educational Resources Information Center

    Bohlen, Janet

    1980-01-01

    Describes the conservation approach adopted by World Wildlife Fund which focuses on habitat protection to save wild plant and animal species. Priority attention to tropical forests is explained. Examples are given of techniques (e.g., radiotelemetry and aerial survey) for studying ecological behavior patterns of specific animals. (CS)

  8. Saving Wild Species through Habitat Protection.

    ERIC Educational Resources Information Center

    Bohlen, Janet

    1980-01-01

    Describes the conservation approach adopted by World Wildlife Fund which focuses on habitat protection to save wild plant and animal species. Priority attention to tropical forests is explained. Examples are given of techniques (e.g., radiotelemetry and aerial survey) for studying ecological behavior patterns of specific animals. (CS)

  9. Occupancy in continuous habitat

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.

    2012-01-01

    The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.

  10. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Treesearch

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  11. Analysis of radiotracking data using digitized habitat maps

    USGS Publications Warehouse

    Gilmer, D.S.; Miller, S.E.; Cowardin, L.M.

    1973-01-01

    A method is described that provides a rapid and accurate analysis of habitat used by radio-equipped animals. The digitizer (basically an X-Y plotter in reverse) converts maps into digital form by describing each habitat unit as a polygon that closely approximates the actual shape of the unit. The coordinates of each polygon are then stored on magnetic tape. Habitat classification data and other information are coded and combined with the proper polygon coordinates. This results in one file containing all habitat data. A computer program with inputs of tracking data and habitat data provides a listing of the habitat used by the animals studied. Analysis of habitat used by radio-equipped ducks is demonstrated using this method.

  12. DNA Advanced Glycation End Products (DNA-AGEs) Are Elevated in Urine and Tissue in an Animal Model of Type 2 Diabetes.

    PubMed

    Jaramillo, Richard; Shuck, Sarah C; Chan, Yin S; Liu, Xueli; Bates, Steven E; Lim, Punnajit P; Tamae, Daniel; Lacoste, Sandrine; O'Connor, Timothy R; Termini, John

    2017-02-20

    More precise identification and treatment monitoring of prediabetic/diabetic individuals will require additional biomarkers to complement existing diagnostic tests. Candidates include hyperglycemia-induced adducts such as advanced glycation end products (AGEs) of proteins, lipids, and DNA. The potential for DNA-AGEs as diabetic biomarkers was examined in a longitudinal study using the Lepr(db/db) animal model of metabolic syndrome. The DNA-AGE, N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) was quantified by mass spectrometry using isotope dilution from the urine and tissue of hyperglycemic and normoglycemic mice. Hyperglycemic mice (fasting plasma glucose, FPG, ≥ 200 mg/dL) displayed a higher median urinary CEdG value (238.4 ± 112.8 pmol/24 h) than normoglycemic mice (16.1 ± 11.8 pmol/24 h). Logistic regression analysis revealed urinary CEdG to be an independent predictor of hyperglycemia. Urinary CEdG was positively correlated with FPG in hyperglycemic animals and with HbA1c for all mice. Average tissue-derived CEdG was also higher in hyperglycemic mice (18.4 CEdG/10(6) dG) than normoglycemic mice (4.4 CEdG/10(6) dG). Urinary CEdG was significantly elevated in Lepr(db/db) mice relative to Lepr(wt/wt), and tissue CEdG values increased in the order Lepr(wt/wt) < Lepr(wt/db) < Lepr(db/db). These data suggest that urinary CEdG measurement may provide a noninvasive quantitative index of glycemic status and augment existing biomarkers for the diagnosis and monitoring of diabetes.

  13. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).

    PubMed

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  14. Animals Alive! An Ecological Guide to Animal Activities. Revised Edition.

    ERIC Educational Resources Information Center

    Holley, Dennis

    This guide is designed to help teachers develop an inquiry-oriented program for studying the animal kingdom in which live animals are collected locally, studied, observed, and then released completely unharmed back into their natural habitats. This book addresses such concerns of life science teachers as the environmental soundness of methods and…

  15. Animals Alive! An Ecological Guide to Animal Activities. Revised Edition.

    ERIC Educational Resources Information Center

    Holley, Dennis

    This guide is designed to help teachers develop an inquiry-oriented program for studying the animal kingdom in which live animals are collected locally, studied, observed, and then released completely unharmed back into their natural habitats. This book addresses such concerns of life science teachers as the environmental soundness of methods and…

  16. Western habitats - Session summary

    USGS Publications Warehouse

    Titus, K.; Fuller, M.R.; Pendleton, Beth Giron

    1989-01-01

    Determining the status of all habitats in the nine western states considered in this symposium is a difficult task. The authors of habitat status papers commented that the diversity of habitat classification systems limited their ability to relate habitat status to raptors. Differences of scale, objectives and survey design have hindered integration of habitat classification methods used by land managers with the habitat relationships understood by wildlife biologists, but examples now exist for successful integration of these methods. We suggest that land managers and wildlife biologists use common survey and classification schemes so that data can be combined and that results will be applicable over broader areas.

  17. Animal Testing

    NASA Astrophysics Data System (ADS)

    Moretto, Johnny; Chauffert, Bruno; Bouyer, Florence

    The development of a new anticancer drug is a long, complex and multistep process which is supervised by regulatory authorities from the different countries all around the world [1]. Application of a new drug for admission to the market is supported by preclinical and clinical data, both including the determination of pharmacodynamics, toxicity, antitumour activity, therapeutic index, etc. As preclinical studies are associated with high cost, optimization of animal experiments is crucial for the overall development of a new anticancer agent. Moreover, in vivo efficacy studies remain a determinant panel for advancement of agents to human trials and thus, require cautious design and interpretation from experimental and ethical point of views.

  18. Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery.

    PubMed

    Estrada-Peña, A

    1998-11-01

    Geostatistics (cokriging) was used to model the cross-correlated information between satellite-derived vegetation and climate variables and the distribution of the tick Ixodes scapularis (Say) in the Nearctic. Output was used to map the habitat suitability for I. scapularis on a continental scale. A data base of the localities where I. scapularis was collected in the United States and Canada was developed from a total of 346 published and geocoded records. This data base was cross-correlated with satellite pictures from the advanced very high resolution radiometer sensor obtained from 1984 to 1994 on the Nearctic at 10-d intervals, with a resolution of 8 km per pixel. Eight climate and vegetation variables were tabulated from this imagery. A cokriging system was generated to exploit satellite-derived data and to estimate the distribution of I. scapularis. Results obtained using 2 vegetation (standard NDVI) and 4 temperature variables closely agreed with actual records of the tick, with a sensitivity of 0.97 and a specificity of 0.89, with 6 and 4% of false-positive and false-negative sites, respectively. Such statistical analysis can be used to guide field work toward the correct interpretation of the distribution limits of I. scapularis and can also be used to make predictions about the impact of global change on tick range.

  19. Habitat Is Where It's At. A Coloring Book about Wildlife Habitat.

    ERIC Educational Resources Information Center

    Hernbrode, Bob

    This coloring book provides illustrations of 18 animals in their habitats. Animals presented include: beavers; bears; bats; housecats; elephants; moose; tigers; geese; chimpanzees; rabbits; butterflies; giraffes; fish; kangaroos; gnus; bugs and bees; and humans. Two additional illustrations are provided which show that the sun and air are part of…

  20. Habitat Is Where It's At. A Coloring Book about Wildlife Habitat.

    ERIC Educational Resources Information Center

    Hernbrode, Bob

    This coloring book provides illustrations of 18 animals in their habitats. Animals presented include: beavers; bears; bats; housecats; elephants; moose; tigers; geese; chimpanzees; rabbits; butterflies; giraffes; fish; kangaroos; gnus; bugs and bees; and humans. Two additional illustrations are provided which show that the sun and air are part of…

  1. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  2. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  3. Plausible Martian Habitats

    NASA Image and Video Library

    2009-10-13

    Unfrozen brine in cryopegs and fracture networks provides habitats for the survival and growth of organisms both within and under frozen rocky materials on Earth and, by analogy, could provide habitats on Mars.

  4. ESTUARINE HABITAT RESTORATION

    SciTech Connect

    Thom, Ronald M.; Borde, Amy B.

    2015-09-01

    Restoring estuarine habitats generally means repairing damages caused by humans and natural forces. Because of the extensive human occupation, development, and use of coastal areas for centuries, the extensive estuarine habitats have been either destroyed or significantly impaired.

  5. Indicators: Physical Habitat Complexity

    EPA Pesticide Factsheets

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  6. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  7. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  8. Urban Areas. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses the city as an ecosystem, changing urban habitats, urban wildlife habitats, values of wildlife, habitat management, and…

  9. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  10. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  11. Loss and modification of habitat

    USGS Publications Warehouse

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    water balance (Thorson and Svihla 1943; Brattstrom 1963; Tracy 1976). Hence, individuals require and seek specific microhabitats that maintain their preferred body temperature while at the same time reducing water loss or allowing individuals to re-hydrate. Amphibians also possess relatively few physical attributes that protect them from predators. Although they may avoid predators behaviourally or deter them by skin toxins, amphibians lack defensive shells or hardened cuticles, do not have protective teeth or claws, and most are insufficiently fast to escape predators. Hence, they are relatively dependent on sites that conceal or protect them from predation. Most amphibians also differ significantly from other vertebrates in possessing a complex two-phase life cycle: the pre-metamorphic larval (tadpole) stage and the post-metamorphic juvenile and adult stage (Wilbur 1980, 1984). Most amphibian species have two distinct econes (Heatwole 1989), each with different habitat requirements, the larvae being aquatic and the post-metamorphic animals more terrestrial. The habitats required by the two phases can differ greatly, but both are essential to the survival of a species. However, amphibian diversity is great and exceptions to this general pattern exist. For example, some species have direct development without going through a larval stage and are fully terrestrial, whereas the larvae of other species can reach sexual maturity without going through metamorphosis (i.e., neoteny) and are fully aquatic.

  12. [Animal experimentation, animal welfare and scientific research].

    PubMed

    Tal, H

    2013-10-01

    Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.

  13. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  14. AGATE animation - business theme

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Business jet 5 of 6. Advanced General Aviation Technology Experiment (AGATE). 'Smart airport' technologies are expected to be available in 5-10 years for both recreational and business transportation. Image from AGATE 'business jet' video animation.

  15. AGATE animation - business theme

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Business jet 1 of 6. This composite image symbolizes how Advanced General Aviation Transports Experiment (AGATE) technology will contribute to a Small Aircraft Transportation System (SATS) early in the 21st century. Image from AGATE 'business' video animation.

  16. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  17. Riverine habitat dynamics

    USGS Publications Warehouse

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  18. Does learning or instinct shape habitat selection?

    PubMed

    Nielsen, Scott E; Shafer, Aaron B A; Boyce, Mark S; Stenhouse, Gordon B

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  19. Animal communication.

    PubMed

    Kaplan, Gisela

    2014-11-01

    Animal communication is first and foremost about signal transmission and aims to understand how communication occurs. It is a field that has contributed to and been inspired by other fields, from information technology to neuroscience, in finding ever better methods to eavesdrop on the actual 'message' that forms the basis of communication. Much of this review deals with vocal communication as an example of the questions that research on communication has tried to answer and it provides an historical overview of the theoretical arguments proposed. Topics covered include signal transmission in different environments and different species, referential signaling, and intentionality. The contention is that animal communication may reveal significant thought processes that enable some individuals in a small number of species so far investigated to anticipate what conspecifics might do, although some researchers think of such behavior as adaptive or worth dismissing as anthropomorphizing. The review further points out that some species are more likely than others to develop more complex communication patterns. It is a matter of asking how animals categorize their world and which concepts require cognitive processes and which are adaptive. The review concludes with questions of life history, social learning, and decision making, all criteria that have remained relatively unexplored in communication research. Long-lived, cooperative social animals have so far offered especially exciting prospects for investigation. There are ample opportunities and now very advanced technologies as well to tap further into expressions of memory of signals, be they vocal or expressed in other modalities. WIREs Cogn Sci 2014, 5:661-677. doi: 10.1002/wcs.1321 For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  20. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  1. Quantile regression reveals hidden bias and uncertainty in habitat models

    Treesearch

    Brian S. Cade; Barry R. Noon; Curtis H. Flather

    2005-01-01

    We simulated the effects of missing information on statistical distributions of animal response that covaried with measured predictors of habitat to evaluate the utility and performance of quantile regression for providing more useful intervals of uncertainty in habitat relationships. These procedures were evaulated for conditions in which heterogeneity and hidden bias...

  2. Tests of a theory for diel activity and habitat selection

    Treesearch

    Steven F. Railsback; Bret C. Harvey; John W. Hayse; Kirk E. Lagory

    2005-01-01

    For many animals, selecting whether to forage during day or night is a critical fitness problem: at night, predation risks are lower but feeding is less efficient. Habitat selection is a closely related problem: the best location for nocturnal foraging could be too risky during daytime, and habitat that is safe and profitable in daytime may be unprofitable at night. We...

  3. Setting priorities for conserving and rehabilitating Detroit River habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Hartig, John H.

    2003-01-01

    This chapter discusses habitat for wild animals and plants in the Detroit River. Such habitat has been defined as places in the river where physical, chemical, and biological factors, including soil and water quality sustain all life stages of fish and wildlife, including their reproduction.

  4. A review of approaches for classifying benthic habitats and evaluating habitat quality.

    PubMed

    Diaz, Robert J; Solan, Martin; Valente, Raymond M

    2004-11-01

    We have assessed the current state of knowledge relative to methods used in assessing sub-tidal benthic habitat quality and the classification of benthic habitats. While our main focus is on marine habitat, we extensively draw on knowledge gained in freshwater systems where benthic assessment procedures are at an advanced stage of maturity. We found a broad range of sophistication/complication in terms of the methods applied in assessing and mapping benthic habitats. The simplest index or metric involved some assessment of species richness, while the most complicated required utilizing multi-variate analysis. The simplest mapping attempts equated physical substrate with benthic habitat while the most sophisticated relied on extensive environmental preference and groundtruth data for species of concern. The leading edge of methods for benthic habitat mapping involves combining the advances in optical and acoustic methods that allow for routine classifying and mapping of the seafloor with biological and habitat data for species of concern. The objective of this melding of dispirit methods is to produce benthic habitat maps with broad system wide coverage and sound biological underpinning. It is clear that the disparity in information density between the physical and biological sides of the equation currently hinder applicability and acceptability of benthic habitat mapping efforts. In addition to the lack of basic information on the biological and environmental tolerances of targeted species, the proliferation of metrics for characterizing and assessing biological conditions further clouds the usefulness of any broad scale mapping attempt. The problem of data density mismatch between physical and biological methods will likely not be solved until acoustic methods can routinely resolve the elusive biological components that make a physical substrate a habitat.

  5. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  6. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  7. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  8. Arc Habitat Suitability Index computer software

    Treesearch

    Thomas M. Juntti; Mark A. Rumble

    2006-01-01

    This user manual describes the Arc Habitat Suitability Index (ArcHSI), which is a geographical information system (GIS) model that estimates the ability of an area to meet the food and cover requirements of an animal species. The components and parameters of the model occur in tables and can be easily edited or otherwise modified. ArcHSI runs on personal computers with...

  9. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  10. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Treesearch

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  11. Haploid animal cells.

    PubMed

    Wutz, Anton

    2014-04-01

    Haploid genetics holds great promise for understanding genome evolution and function. Much of the work on haploid genetics has previously been limited to microbes, but possibilities now extend to animal species, including mammals. Whereas haploid animals were described decades ago, only very recent advances in culture techniques have facilitated haploid embryonic stem cell derivation in mammals. This article examines the potential use of haploid cells and puts haploid animal cells into a historical and biological context. Application of haploid cells in genetic screening holds promise for advancing the genetic exploration of mammalian genomes.

  12. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS)

    NASA Astrophysics Data System (ADS)

    Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco

    2016-12-01

    The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain—caves and deep rock cracks—and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat—i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.

  13. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  14. 77 FR 73739 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Lost River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    .... Geological Survey (USGS) in 2001 were either shortnose suckers or Klamath largescale suckers. Our Response... ecology and habitat requirements, and technological advancements in mapping made available since preparing...

  15. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  16. The Birds and the Beasts Were There: Animals in Their Natural Habitats. (A Multimedia Bibliography Revised). Library Media for Grades 4-6, Library Media for Grades 9-11.

    ERIC Educational Resources Information Center

    Sullivan, Marjorie; Strader, Helen

    This compilation lists 247 print and non-print materials dealing with animal life, nature, and ecology and is designed to assist teachers and school librarians in selecting media suitable for pupils in grades 4 through 6 and 9 through 12. A few of the materials date back to 1951, but the majority are of more recent issue. The collection for…

  17. Implications of aquatic animal health for human health.

    PubMed Central

    Dawe, C J

    1990-01-01

    Human health and aquatic animal health are organically related at three distinct interfaces. Aquatic animals serve as important contributors to the nutritional protein, lipid, and vitamin requirements of humans; as carriers and transmitters of many infectious and parasitic diseases to which humans are susceptible; and as indicators of toxic and carcinogenic substances that they can convey, in some part, from aquatic environments to man and other terrestrial animals. Transcending these relationships, but less visible and definable to many, is the role that aquatic animals play in the sustenance of our integrated planetary ecosystem. Up to the present, this ecosystem has been compatible with mankind's occupation of a niche within it at high but ultimately limited population levels. In the past century we have become clearly aware that human activities, particularly over-harvesting of aquatic animals together with chemical degradation of their habitats, can quite rapidly lead to perturbances that drastically shift aquatic ecosystems toward conditions of low productivity and impaired function as one of earth's vital organs. The negative values of aquatic animals as disease vectors are far outweighed by their positive values as nutritional sources and as sustainers of a relatively stable equilibrium in the global ecosystem. In the immediate future we can expect to see increased and improved monitoring of aquatic habitats to determine the extent to which aquatic animals cycle anthropogenic toxic and carcinogenic chemicals back to human consumers. In the long term, methods are particularly needed to assess the effects of these pollutants on reproductive success in aquatic communities and in human communities as well. As inputs of habitat-degrading substances change in quality and quantity, it becomes increasingly urgent to evaluate the consequences in advance, not in retrospect. A new, more realistic and comprehensive philosophy regarding aquatic environmental

  18. Assessing Habitat Suitability at Multiple Scales: A Landscape-Level Approach

    Treesearch

    Kurt H. Riitters; R.V. O' Neill; K.B. Jones

    1997-01-01

    The distribution and abundance of many plants and animals are influenced by the spatial arrangement of suitable habitats across landscapes. We derived habitat maps from a digital land cover map of the ~178,000 km2 Chesapeake Bay Watershed by using a spatial filtering algorithm. The regional amounts and patterns of habitats were different for...

  19. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success

    Treesearch

    James E. Garabedian; Christopher E. Moorman; M. Nils Peterson; John C. Kilgo

    2014-01-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides...

  20. Amazing Animals

    ERIC Educational Resources Information Center

    Al-Kuwari, Najat Saad

    2007-01-01

    "Animals" is a three-part lesson plan for young learners with a zoo animal theme. The first lesson is full of activities to describe animals, with Simon Says, guessing games, and learning stations. The second lesson is about desert animals, but other types of animals could be chosen depending on student interest. This lesson teaches…

  1. Wildlife Habitat Evaluation Handbook.

    ERIC Educational Resources Information Center

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  2. Wildlife habitat considerations

    Treesearch

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  3. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  4. Lunar/Mars Surface Habitat Mockups Project

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Daues, Katherine R.

    2005-01-01

    Surface habitats play a centric role with respect to integration of the crew operations and supporting surface systems for external operations on the moon and Mars. Up to now the only planetary surface habitat NASA has ever developed is the 2-person, 3-day duration Lunar Module from the 1960 s-era Apollo Program. Today s National Vision for Space Exploration pushes far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making habitat design decisions Experience has shown that using mockups very early in a project s life cycle is extremely beneficial, providing data that influences requirements for human design, volumetrics, functionality, systems hardware and operations. Evaluating and comparing a variety of habitat configurations will provide NASA with a cost-effective basis for trades to support lunar and Martian habitat design selection. This paper describes the NASA project that recently has been created to undertake the development and evaluation of a series of planetary surface habitat mockups. This project is in direct response to the Advanced Space Platforms and Systems (ASPS) Element Program s request for novel systems approaches for robust and reconfigurable habitation systems.

  5. Lunar/Mars Surface Habitat Mockups Project

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Daues, Katherine R.

    2005-01-01

    Surface habitats play a centric role with respect to integration of the crew operations and supporting surface systems for external operations on the moon and Mars. Up to now the only planetary surface habitat NASA has ever developed is the 2-person, 3-day duration Lunar Module from the 1960 s-era Apollo Program. Today s National Vision for Space Exploration pushes far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making habitat design decisions Experience has shown that using mockups very early in a project s life cycle is extremely beneficial, providing data that influences requirements for human design, volumetrics, functionality, systems hardware and operations. Evaluating and comparing a variety of habitat configurations will provide NASA with a cost-effective basis for trades to support lunar and Martian habitat design selection. This paper describes the NASA project that recently has been created to undertake the development and evaluation of a series of planetary surface habitat mockups. This project is in direct response to the Advanced Space Platforms and Systems (ASPS) Element Program s request for novel systems approaches for robust and reconfigurable habitation systems.

  6. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  7. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  8. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation

  9. Portable Habitat for Antarctic Scientific Research (PHASR)

    NASA Technical Reports Server (NTRS)

    Griswold, Samantha S.

    1992-01-01

    The Portable Habitat for Antarctic Scientific Research, PHASR, is designed as a versatile, general purpose habitat system that addresses the problem of functional space and environmental soundness in a partially fabric-covered shelter. PHASR is used for remote field site applications that can be quickly deployed. PHASR will also provide four scientists with a comfortable and efficient use of interior space. PHASR is a NASA/USRA Advanced Design Program project conducted at the University of Houston College of Architecture, Sasadawa International Center for Space Architecture (SICSA). This report is prepared for NASA/USRA.

  10. Using GIS to analyze animal movements in the marine environment

    USGS Publications Warehouse

    Hooge, Philip N.; Eichenlaub, William M.; Solomon, Elizabeth K.; Kruse, Gordon H.; Bez, Nicolas; Booth, Anthony; Dorn, Martin W.; Hills, Susan; Lipcius, Romuald N.; Pelletier, Dominique; Roy, Claude; Smith, Stephen J.; Witherell, David B.

    2001-01-01

    Advanced methods for analyzing animal movements have been little used in the aquatic research environment compared to the terrestrial. In addition, despite obvious advantages of integrating geographic information systems (GIS) with spatial studies of animal movement behavior, movement analysis tools have not been integrated into GIS for either aquatic or terrestrial environments. We therefore developed software that integrates one of the most commonly used GIS programs (ArcView®) with a large collection of animal movement analysis tools. This application, the Animal Movement Analyst Extension (AMAE), can be loaded as an extension to ArcView® under multiple operating system platforms (PC, Unix, and Mac OS). It contains more than 50 functions, including parametric and nonparametric home range analyses, random walk models, habitat analyses, point and circular statistics, tests of complete spatial randomness, tests for autocorrelation and sample size, point and line manipulation tools, and animation tools. This paper describes the use of these functions in analyzing animal location data; some limited examples are drawn from a sonic-tracking study of Pacific halibut (Hippoglossus stenolepis) in Glacier Bay, Alaska. The extension is available on the Internet at www.absc.usgs.gov/glba/gistools/index.htm.

  11. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  12. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  13. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat

  14. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    PubMed

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  15. Habitat Selection and Risk of Predation: Re-colonization by Lynx had Limited Impact on Habitat Selection by Roe Deer

    PubMed Central

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx – the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations. PMID:24069419

  16. [Animal experimentation in Israel].

    PubMed

    Epstein, Yoram; Leshem, Micah

    2002-04-01

    In 1994 the Israeli parliament (Knesset) amended the Cruelty to Animals Act to regulate the use of experimental animals. Accordingly, animal experiments can only be carried out for the purposes of promoting health and medical science, reducing suffering, advancing scientific research, testing or production of materials and products (excluding cosmetics and cleaning products) and education. Animal experiments are only permitted if alternative methods are not possible. The National Board for Animal Experimentation was established to implement the law. Its members are drawn from government ministries, representatives of doctors, veterinarians, and industry organizations, animal rights groups, and academia. In order to carry out an animal experiment, the institution, researchers involved, and the specific experiment, all require approval by the Board. To date the Board has approved some 35 institutions, about half are public institutions (universities, hospitals and colleges) and the rest industrial firms in biotechnology and pharmaceutics. In 2000, 250,000 animals were used in research, 85% were rodents, 11% fowls, 1,000 other farm animals, 350 dogs and cats, and 39 monkeys. Academic institutions used 74% of the animals and industry the remainder. We also present summarized data on the use of animals in research in other countries.

  17. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  18. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  19. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data

    PubMed Central

    Frair, Jacqueline L.; Fieberg, John; Hebblewhite, Mark; Cagnacci, Francesca; DeCesare, Nicholas J.; Pedrotti, Luca

    2010-01-01

    Global positioning system (GPS) technologies collect unprecedented volumes of animal location data, providing ever greater insight into animal behaviour. Despite a certain degree of inherent imprecision and bias in GPS locations, little synthesis regarding the predominant causes of these errors, their implications for ecological analysis or solutions exists. Terrestrial deployments report 37 per cent or less non-random data loss and location precision 30 m or less on average, with canopy closure having the predominant effect, and animal behaviour interacting with local habitat conditions to affect errors in unpredictable ways. Home-range estimates appear generally robust to contemporary levels of location imprecision and bias, whereas movement paths and inferences of habitat selection may readily become misleading. There is a critical need for greater understanding of the additive or compounding effects of location imprecision, fix-rate bias, and, in the case of resource selection, map error on ecological insights. Technological advances will help, but at present analysts have a suite of ad hoc statistical corrections and modelling approaches available—tools that vary greatly in analytical complexity and utility. The success of these solutions depends critically on understanding the error-inducing mechanisms, and the biggest gap in our current understanding involves species-specific behavioural effects on GPS performance. PMID:20566496

  20. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data.

    PubMed

    Frair, Jacqueline L; Fieberg, John; Hebblewhite, Mark; Cagnacci, Francesca; DeCesare, Nicholas J; Pedrotti, Luca

    2010-07-27

    Global positioning system (GPS) technologies collect unprecedented volumes of animal location data, providing ever greater insight into animal behaviour. Despite a certain degree of inherent imprecision and bias in GPS locations, little synthesis regarding the predominant causes of these errors, their implications for ecological analysis or solutions exists. Terrestrial deployments report 37 per cent or less non-random data loss and location precision 30 m or less on average, with canopy closure having the predominant effect, and animal behaviour interacting with local habitat conditions to affect errors in unpredictable ways. Home-range estimates appear generally robust to contemporary levels of location imprecision and bias, whereas movement paths and inferences of habitat selection may readily become misleading. There is a critical need for greater understanding of the additive or compounding effects of location imprecision, fix-rate bias, and, in the case of resource selection, map error on ecological insights. Technological advances will help, but at present analysts have a suite of ad hoc statistical corrections and modelling approaches available-tools that vary greatly in analytical complexity and utility. The success of these solutions depends critically on understanding the error-inducing mechanisms, and the biggest gap in our current understanding involves species-specific behavioural effects on GPS performance.

  1. Habitat fragmentation and reproductive success: a structural equation modelling approach.

    PubMed

    Le Tortorec, Eric; Helle, Samuli; Käyhkö, Niina; Suorsa, Petri; Huhta, Esa; Hakkarainen, Harri

    2013-09-01

    of habitat amount vs. habitat configuration in landscape ecology that may have bearing on biological conclusions. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  2. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  3. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    USGS Publications Warehouse

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  4. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  5. Landscape habitat suitability index software

    Treesearch

    William D. Dijak; Chadwick D. Rittenhouse; Michael A. Larson; Frank R. III Thompson; Joshua J. Millspaugh

    2007-01-01

    Habitat suitability index (HSI) models are traditionally used to evaluate habitat quality for wildlife at a local scale. Rarely have such models incorporated spatial relationships of habitat components. We introduce Landscape HSImodels, a new Microsoft Windowst (Microsoft, Redmond, WA)-based program that incorporates local habitat as well as landscape-scale attributes...

  6. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments.

    PubMed

    Joyce, Peter I; Fratta, Pietro; Fisher, Elizabeth M C; Acevedo-Arozena, Abraham

    2011-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.

  7. Habitat Suitability Index Models: Fallfish

    USGS Publications Warehouse

    Trial, Joan G.; Wade, Charles S.; Stanley, Jon G.; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for fallfish (Semotilis corporalis), a freshwater species. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater, marine and estuarine areas of the continental United States. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of Fallfish habitat.

  8. Distribution, habitat and adaptability of the genus Tapirus.

    PubMed

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies.

  9. Determinants of habitat selection by hatchling Australian freshwater crocodiles.

    PubMed

    Somaweera, Ruchira; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (<12-month-old) freshwater crocodiles (Crocodylus johnstoni) are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk.

  10. Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    PubMed Central

    Somaweera, Ruchira; Webb, Jonathan K.; Shine, Richard

    2011-01-01

    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (<12-month-old) freshwater crocodiles (Crocodylus johnstoni) are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk. PMID:22163308

  11. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  12. Habitat Suitability Index Models: Bullfrog

    USGS Publications Warehouse

    Graves, Brent M.; Anderson, Stanley H.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the bullfrog (Rana catesbeiana). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Habitat Suitability Index Models: Bobcat

    USGS Publications Warehouse

    Boyle, Katherine A.; Fendley, Timothy T.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the bobcat (Felis rufus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  14. Habitat Suitability Index Models: Pronghorn

    USGS Publications Warehouse

    Allen, Arthur W.; Cook, John G.; Armbruster, Michael J.

    1984-01-01

    This is one of a series of publications that provide information on the habitat requirements of selected fish and wildlife species. Literature describing the relationship between habitat variables related to life requisites and habitat suitability for the pronghorn (Antilocapra americana) are synthesized. These data are subsequently used to develop Habitat Suitability Index (HSI) models. The HSI models are designed to provide information that can be used in impact assessment and habitat management.

  15. Habitat Suitability Index Models: Osprey

    USGS Publications Warehouse

    Vana-Miller, Sandra L.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the osprey (Pandion haliaetus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  16. Farm Animals

    MedlinePlus

    ... the Back of a Horse Chickens in the City Diseases Cat-Scratch Disease E. coli Infection Ringworm ... animals when even when they appear healthy and clean. Although it usually doesn’t make farm animals ...

  17. Animal Bites

    MedlinePlus

    Wild animals usually avoid people. They might attack, however, if they feel threatened, are sick, or are protecting their ... or territory. Attacks by pets are more common. Animal bites rarely are life-threatening, but if they ...

  18. Animal Bites

    MedlinePlus

    ... surrounding the bite. Bites from wild animals, especially bats but also skunks, raccoons, coyotes, and foxes, are much more dangerous than those from tame, immunized (against rabies) dogs and cats. The health of the animal ...

  19. The influence of spatial scale and habitat arrangement on diel patterns of habitat use by two lowland river fishes.

    PubMed

    Crook, D A; Robertson, A I; King, A J; Humphries, P

    2001-12-01

    There is growing awareness that patterns of habitat use by animals cannot be isolated from issues of scale. Recently, techniques have been devised which allow empirical testing of hypotheses related to the effects of spatial scale on habitat use. We used spatially explicit statistical procedures to examine the roles of scale and habitat arrangement in determining fish distribution patterns in a reach of an Australian lowland river. Native golden perch and introduced common carp were tracked day and night using radiotelemetry over a 10 day period and their distributions compared with mapped habitat variables. Golden perch were significantly associated with depth, current velocity, substratum and cover at larger scales of analysis both day and night, and at smaller scales during the day. At night, however, associations between golden perch and habitat variables were generally much weaker at small scales. Common carp were generally not significantly associated with habitat variables at larger scales of analysis, whereas at smaller scales they were associated with depth, current velocity, substrate and cover. Associations were generally stronger during the day than at night. Our study emphasises the need to consider scale-dependence in studies of fish-habitat associations. Management and restoration of fish habitat in lowland rivers should be based on an understanding of habitat use at scales relevant for the fish rather than at scales arbitrarily defined by humans.

  20. Whole animal imaging.

    PubMed

    Sandhu, Gurpreet Singh; Solorio, Luis; Broome, Ann-Marie; Salem, Nicolas; Kolthammer, Jeff; Shah, Tejas; Flask, Chris; Duerk, Jeffrey L

    2010-01-01

    Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research.

  1. Whole animal imaging

    PubMed Central

    Sandhu, Gurpreet Singh; Solorio, Luis; Broome, Ann-Marie; Salem, Nicolas; Kolthammer, Jeff; Shah, Tejas; Flask, Chris; Duerk, Jeffrey L.

    2015-01-01

    Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research. PMID:20836038

  2. Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals.

    PubMed

    Otsuka, Jinya; Sugaya, Nobuyoshi

    2003-06-21

    The ribosomal RNAs (rRNAs) of animal mitochondria, especially those of arthropod mitochondria, have a higher content of G:U and U:G base pairs in their stem regions than the nuclear rRNAs. Thus, the theoretical formulation of base pair changes is extended to incorporate the faster base pair changes A:U<-->G:U<-->G:C and U:A<-->U:G<-->C:G into the previous formulation of the slower base pair changes between A:U, G:C, C:G and U:A. The relative base pair change probability containing the faster and slower base pair changes is theoretically derived to estimate the divergence time of rRNAs under the influence of selection for these base pairs. Using the cartilaginous fish-teleost fish divergence and the crustacean-insect divergence as calibration points, the present method successfully predicts the divergence times of the main branches of animals: Deuterostomia and Protostomia diverged 9.2 x 10(8) years ago, the divergence of Echinodermata, Hemichordata and Cephalochordata succeedingly occurred during the period from 8 x 10(8) to 6 x 10(8) years ago, while Arthropoda, Annelida and Mollusca diverged almost concomitantly about 7 x 10(8) years ago. The dating for the divergence of Platyhelminthes and Cnidaria is traced back to 1.2 x 10(9) years ago. This result is consistent with the fossil records in the Stirling Range Formation of southwestern Australia, the Ediacara and Avalon faunas and the Cambrian Burgess Shale. Thus, the present method may be useful for estimating the divergence times of animals ranging from 10(8) to 10(9) years ago, resolving the difficult problems, e.g. deviation from rate constancy and large sampling variances, in the usual methods of treating apparent change rates between individual bases and/or base pairs.

  3. Enhancements of the "eHabitat

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  4. From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy.

    PubMed

    Barth, Rolf F

    2015-12-01

    In this report five examples have been selected to illustrate how studies in experimental animals have lead directly to clinical implementation. These include (1) the use of BSH as a boron delivery agent for BNCT of patients with brain tumors, and more specifically gliomas; (2) the use of BPA as a delivery agent for BNCT for patients with melanomas and (3) its subsequent use for BNCT of patients with gliomas; (4) optimization of the delivery of BPA in patients with gliomas; and finally (5) the combination of BSH and BPA with BNCT alone or together with X-irradiation to treat patients with gliomas.

  5. Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem.

    PubMed

    Iversen, Marianne; Fauchald, Per; Langeland, Knut; Ims, Rolf A; Yoccoz, Nigel G; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality.

  6. Phenology and Cover of Plant Growth Forms Predict Herbivore Habitat Selection in a High Latitude Ecosystem

    PubMed Central

    Fauchald, Per; Langeland, Knut; Ims, Rolf A.; Yoccoz, Nigel G.; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality. PMID:24972188

  7. Variation in habitat use by juvenile Acadian redfish, Sebastes fasciatus

    USGS Publications Warehouse

    Auster, P.J.; Lindholm, J.; Valentine, P.C.

    2003-01-01

    A basic paradigm in behavioral ecology is that organisms expand their distribution as preferred sites become saturated with individuals that reduce the availability of resources (e.g., shelter, prey) on a per capita basis. Previous fish community studies at Stellwagen Bank National Marine Sanctuary have shown that juvenile Acadian redfish Sebastes fasciatus (20 cm TL) also occurred in dense cerianthid habitats. Two explanations for these distributions can be advanced. The simplest is that redfish use both boulder and cerianthid habitats on an encounter basis, regardless of habitat saturation or predation pressure. Alternatively, boulder reefs serve as recruitment habitats and cerianthid habitats serve as a conduit for redfish moving away from saturated boulder reef sites, essentially serving as elements of a 'redfish pump'.

  8. World Association for the Advancement of Veterinary Parasitology (WAAVP): Guideline for the evaluation of drug efficacy against non-coccidial gastrointestinal protozoa in livestock and companion animals.

    PubMed

    Geurden, T; Olson, M E; O'Handley, R M; Schetters, T; Bowman, D; Vercruysse, J

    2014-08-29

    The current guideline was written to aid in the design, implementation and interpretation of studies for the assessment of drug efficacy against non-coccidial gastrointestinal protozoan parasites, with Giardia spp. as the leading example. The information provided in this guideline deals with aspects of how to conduct controlled studies using experimental infection models (dose determination and dose confirmation) and efficacy studies in commercial facilities (field effectiveness studies). Furthermore, the selection of suitable animals, housing, infection procedure, choice of diagnostic technique and data analysis are discussed. This guideline is intended to assist investigators in conducting specific studies, to provide specific information for registration authorities involved in the decision-making process, to assist in the approval and registration of new drugs and to facilitate the worldwide adoption of uniform procedures. The primary parameter for drug efficacy is the reduction in either parasite excretion or parasite counts and a minimum efficacy of 90% is required against non-coccidial gastrointestinal protozoa. A supporting efficacy parameter is a significant difference in the proportion of infected animals between treated and non-treated groups. Persistent efficacy is considered as an additional claim to therapeutic efficacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Habitat goes green

    SciTech Connect

    Kriescher, P.; Smith, M.

    1999-12-01

    A Denver family enjoys the financial and personal benefits of owning an affordable, energy-efficient home. On Earth Day, April 22, 1997, Habitat for Humanity of Metro Denver witnessed the realization of a dream. As Luis and Estella Valadez and their four children cut the ribbon on their 1,100 square foot (102 m{sup 2}) northwest Denver home, it signified the completion of the Denver Habitat affiliate's first ``Green'' home. Building this dream involved developing a plan to build affordable Habitat homes that also embodied a sense of stewardship of the Earth's environment. The affiliate also wanted to use this effort to achieve the additional goal of reducing the homeowner's utility and maintenance bills.

  10. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  11. Entry, Descent, Landing Animation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Entry, Descent, Landing animation

    This animation illustrates the path the Stardust return capsule will follow once it enters Earth's atmosphere.

  12. Detailed seafloor habitat mapping to enhance marine-resource management

    USGS Publications Warehouse

    Zawada, David G.; Hart, Kristen M.

    2010-01-01

    Pictures of the seafloor capture important information about the sediments, exposed geologic features, submerged aquatic vegetation, and animals found in a given habitat. With the emergence of marine protected areas (MPAs) as a favored tactic for preserving coral reef resources, knowledge of essential habitat components is paramount to designing effective management strategies. Surprisingly, detailed information on seafloor habitat components is not available in many areas that are being considered for MPA designation or that are already designated as MPAs. A task of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is addressing this issue.

  13. Terrrestrialization of isolated habitats

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Agata; Harasymczuk, Matt; Foing, Bernard

    2017-04-01

    One of the most prominent issue for habitability of the solar system and beyond is to adjust a habitat for human life. Since the human life adapted to terrestrial environment during millions of years of evolution, terrestrialization of the base should be a natural trend strictly applied in habitat design. We discuss basic concerns about introducing biomimetic backup safety solutions such modularity, circularity, autonomy and plasticity into life support systems. Particularly we describe critical life processes such briefing, drinking, eating, homeostatic regulation, activity and sleep, in relation to symbiosis and competition with other species living together. Finally, we analyze ecological tolerance and transformation factors, which seem to be crucial in future habitability projects.

  14. Adaptive breeding habitat selection: Is it for the birds?

    USGS Publications Warehouse

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  15. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat: Tucson

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.

    2002-01-01

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial

  16. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat

    NASA Astrophysics Data System (ADS)

    Wallace, Cynthia S. A.

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created. Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition. Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population. Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial

  17. Recent advances using FcRn overexpression in transgenic animals to overcome impediments of standard antibody technologies to improve the generation of specific antibodies

    PubMed Central

    Cervenak, Judit; Erdei, Anna; Goldsby, Richard A; Butler, John E

    2011-01-01

    This review illustrates the salutary effects of neonatal Fc receptor (FcRn) overexpression in significantly improving humoral immune responses in the generation of antibodies for immunotherapy and diagnostics. These include: (1) improved IgG protection; (2) augmented antigen-specific humoral immune response with larger numbers of antigen specific B cells, thus offering a wider spectrum of clones; (3) generation of antibodies against weakly immunogenic antigens; (4) significant improvements in the number and substantial developments in the diversity of hybridomas. FcRn transgenesis thus confers a number of practical benefits, including faster antibody production, higher antibody yields and improved generation of hybridomas for monoclonal antibody production. Notably, these efficiencies in polyclonal antibody production were also demonstrated in FcRn transgenic rabbits. Overall, FcRn transgenic animals yield more antibodies and provide a route to the generation of antibodies against antigens of low immunogenicity that are difficult to obtain using currently available methods. PMID:22048692

  18. Habitat Suitability Index Models: Beaver

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences of the beaver (Castor canadensis) are described in this publication, which is one of a series of Habitat Suitability Index (HSI) models. Habitat use information is presented in a synthesis of the literature on the species-habitat requirements of the beaver, followed by the development of the HSI model. The model is designed to provide information for use in impact assessment and habitat management activities, and should be used in conjunction with habitat evaluation procedures previously developed by the Fish and Wildlife Service. This revised model updates the original publication dated September 1982.

  19. Habitat Suitability Information: Blacknose dace

    USGS Publications Warehouse

    Trial, Joan G.; Stanley, Jon G.; Batcheller, Mary; Gebhart, Gary; Maughan, O. Eugene; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for Blacknose dace, a freshwater species. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater, marine, and estuarine areas of the continental United States. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of Blacknose dace.

  20. Habitat Suitability Index Models: Marten

    USGS Publications Warehouse

    Allen, Arthur W.

    1982-01-01

    Habitat preferences and species characteristics of the pine marten (Martes americana) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the species-habitat requirements of the pine marten. Habitat use information is presented in a review of the literature, followed by the development of a HSI model. The model is presented in three formats: graphic, word and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are then synthesized into a model which is designed to provide information for use in impact assessment and habitat management activities.

  1. Habitat Suitability Index Models: Veery

    USGS Publications Warehouse

    Sousa, Patrick J.

    1982-01-01

    Habitat preferences and species characteristics of the veery (Catharus fuscesens) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available scientific data on the habitat requirements of the veery. Habitat use information is presented in a review of the literature, followed by the development of an HSI model. The model is presented in three formats: graphic; word; and mathematical. Suitability index graphs quantify the species-habitat relationship. These data are synthesized into a model designed to provide information for use in impact assessment and habitat management.

  2. Architectural considerations for lunar long duration habitat

    NASA Astrophysics Data System (ADS)

    Bahrami, Payam

    The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.

  3. Habitat types on the Hanford Site: Wildlife and plant species of concern

    SciTech Connect

    Downs, J.L.; Rickard, W.H.; Brandt, C.A.

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  4. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    EPA Pesticide Factsheets

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  5. Terrestrial movements and habitat use of gopher frogs in longleaf pine forests: a comparative study of juveniles and adults

    Treesearch

    Elizabeth A. Roznik; Steve A. Johnson; Cathryn H. Greenberg; George W. Tanner

    2009-01-01

    Many animals exhibit changes in patterns of movement and habitat use as they age, and understanding such ontogenetic shifts is important for ensuring that habitat management is appropriate for all life stages. We used radiotelemetry to study movements and habitat use of juvenile and adult gopher frogs (Rana capito) as they migrated from the same ponds following...

  6. Conservation physiology of animal migration.

    PubMed

    Lennox, Robert J; Chapman, Jacqueline M; Souliere, Christopher M; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D; Cooke, Steven J

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  7. Conservation physiology of animal migration

    PubMed Central

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  8. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  9. Saproxylic Hemiptera Habitat Associations

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  10. Landscape habitats [Chapter 2

    Treesearch

    C. L. Simmons

    1994-01-01

    This landscape habitat description is based on a ground reconnaissance of the Lost Lake, West Glacier Lake, and East Glacier Lake portions of GLEES conducted during 10 days in July-September 1986 and on subsequent photo interpretation of 1:6000 scale color-infrared photographs. A ground check was conducted in July-August 1987. The classification used is a physiognomic...

  11. MEDLI Animation

    NASA Image and Video Library

    Animation of MEDLI, the Mars Science Laboratory Entry, Descent, and Landing Instrument, which contains multiple sophisticated temperature sensors to measure atmospheric conditions and performance o...

  12. Earth is a Marine Habitat. Habitat Conservation Program.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This brochure is intended to educate the public about the need to conserve and preserve the earth's environment (man's habitat). It contains an introduction to the ocean world and threats to coastal habitat. Photos and narrative revolve around the theme "Earth is a Marine Habitat." Sections include: "The Web of…

  13. Chapter 5. Using Habitat Models for Habitat Mapping and Monitoring

    Treesearch

    Samuel A. Cushman; Timothy J. Mersmann; Gretchen G. Moisen; Kevin S. McKelvey; Christina D. Vojta

    2013-01-01

    This chapter provides guidance for applying existing habitat models to map and monitor wildlife habitat. Chapter 2 addresses the use of conceptual models to create a solid foundation for selecting habitat attributes to monitor and to translate these attributes into quantifiable and reportable monitoring measures. Most wildlife species, however, require a complex suite...

  14. Room to Live: the sizing of Lunar and Martian Habitats

    NASA Technical Reports Server (NTRS)

    McGregor, Walter L.

    2006-01-01

    In order for man to return to space or extra terrestrial bodies for long duration missions it is important that adequate habitat volume be defined early to avoid costly delays and redesign. To properly define a habitat volume two major factors need to be considered. The first factor is the free or open space. This is the space that allows the crew room to move about the habitat. This space will vary based on crew size and length of the mission. The second major factor is the stowage space required for equipment and supplies. This includes both fixed volumes and consumables. Fixed volumes include items such as tools, communication equipment, Advanced Life Support (ALS) equipment, and support equipment. Consumables include items like filters, food, water and oxygen. This space is also dependent on crew size and mission length. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. Once these key factors are defined trades must be run to optimize the overall volume of a habitat. This includes trades of disposable vs. reusable for items such as clothing, dishes, and water. Another factor to consider is the availability of in situ resources to aid in the construction of the habitat structure as well as re-supply of consumable items. A review of past missions into alien environments, such as deep sea habitats as well as space based habitats will be used to validate the assumption made in this paper. The result is a habitat sizing tool to provide a first order estimate of habitat volumes for extended mission to the surface of the moon and Mars.

  15. Identifying regions vulnerable to habitat degradation under future irrigation scenarios

    NASA Astrophysics Data System (ADS)

    Terrado, Marta; Sabater, Sergi; Acuña, Vicenç

    2016-11-01

    The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.

  16. Sensor-based animal tracking

    NASA Astrophysics Data System (ADS)

    Hunter, Andrew

    The advent of Global Positioning System (GPS) technologies has provided wildlife researchers with new insights into the movement and habitat utilization patterns of wildlife species by being able to provide vast quantities of detailed location data. However, current wildlife tracking techniques have numerous limitations, as GPS locations can be biased to an unknown extent because animals move through habitats that are often denied GPS signals. This can result in some habitat types being under sampled or not sampled at all. Additionally, researchers using GPS tracking systems cannot understand what behaviour an animal is exhibiting at each GPS position without either relying on extensive field data or statistical techniques that may infer behaviour. Overall these issues, and others, limit the knowledge that can be derived from the data currently being collected by GPS collars alone. To address these limitations, a dead reckoning solution (called the NavAid) has been developed to augment GPS tracking collars, which enables both the acquisition of continuous movement trajectories for animals under study, and the collection of digital images on a user-defined schedule along travel routes. Analysis of an animal's velocity allows one to identify different types of movement behaviours that can be associated with foraging, searching for food, and locomotion between patches. In addition, the ability to capture continuous paths allows researchers to identify habitat that is important to a species, and habitat that is not---something that is not possible when relying solely on GPS. This new system weighs approximately 220 g and can be deployed on most conventional collar systems for a wide range of species. This thesis presents the research and development of this new system over the past four years, along with preliminary findings from field work carried out on grizzly bears (Ursus arctos) in the foothills of the Canadian Rocky Mountains. Analysis of tracking data suggests

  17. Physics for Animation Artists

    NASA Astrophysics Data System (ADS)

    Chai, David; Garcia, Alejandro L.

    2011-11-01

    Animation has become enormously popular in feature films, television, and video games. Art departments and film schools at universities as well as animation programs at high schools have expanded in recent years to meet the growing demands for animation artists. Professional animators identify the technological facet as the most rapidly advancing (and now indispensable) component of their industry. Art students are keenly aware of these trends and understand that their future careers require them to have a broader exposure to science than in the past. Unfortunately, at present there is little overlap between art and science in the typical high school or college curriculum. This article describes our experience in bridging this gap at San Jose State University, with the hope that readers will find ideas that can be used in their own schools.

  18. Animal tool-use.

    PubMed

    Seed, Amanda; Byrne, Richard

    2010-12-07

    The sight of an animal making and using a tool captivates scientists and laymen alike, perhaps because it forces us to question some of our ideas about human uniqueness. Does the animal know how the tool works? Did it anticipate the need for the tool and make it in advance? To some, this fascination with tools seems arbitrary and anthropocentric; after all, animals engage in many other complex activities, like nest building, and we know that complex behaviour need not be cognitively demanding. But tool-using behaviour can also provide a powerful window into the minds of living animals, and help us to learn what capacities we share with them - and what might have changed to allow for the incontrovertibly unique levels of technology shown by modern humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. NORTHWOODS Wildlife Habitat Data Base

    Treesearch

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  20. Habitat Suitability Index Models: Bluegill

    USGS Publications Warehouse

    Stuber, Robert J.; Gebhart, Glen; Maughan, O. Eugene

    1982-01-01

    A literature review encompassing habitat and species characteristics of the bluegill (Lepomis macrochirus) is followed by a discussion of the relationship of habitat variables and life requisites of this species. These data re then incorporated into Habitat Suitability Index models for the bluegill. This is one in a series of publications describing habitat requirements of selected fish and wildlife species. Numerous literature sources have been consulted in an effort to consolidate scientific data on species habitat relationships. These data have subsequently been synthesized into Habitat Suitability Index (HSI) models. the models are based on suitability indices formulated for variables found to affect the life cycle and survival of the species. The models are designed to be modified to evaluate specific habitat alterations using the HSI model building techniques presented in the U.S. Fish and Wildlife Service's Habitat Evaluation Procedures.

  1. The importance of ambient sound level to characterise anuran habitat.

    PubMed

    Goutte, Sandra; Dubois, Alain; Legendre, Frédéric

    2013-01-01

    Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals' interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL) is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate), SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example) and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns.

  2. The Importance of Ambient Sound Level to Characterise Anuran Habitat

    PubMed Central

    Goutte, Sandra; Dubois, Alain; Legendre, Frédéric

    2013-01-01

    Habitat characterisation is a pivotal step of any animal ecology study. The choice of variables used to describe habitats is crucial and need to be relevant to the ecology and behaviour of the species, in order to reflect biologically meaningful distribution patterns. In many species, acoustic communication is critical to individuals’ interactions, and it is expected that ambient acoustic conditions impact their local distribution. Yet, classic animal ecology rarely integrates an acoustic dimension in habitat descriptions. Here we show that ambient sound pressure level (SPL) is a strong predictor of calling site selection in acoustically active frog species. In comparison to six other habitat-related variables (i.e. air and water temperature, depth, width and slope of the stream, substrate), SPL had the most important explanatory power in microhabitat selection for the 34 sampled species. Ambient noise was particularly useful in differentiating two stream-associated guilds: torrents and calmer streams dwelling species. Guild definitions were strongly supported by SPL, whereas slope, which is commonly used in stream-associated habitat, had a weak explanatory power. Moreover, slope measures are non-standardized across studies and are difficult to assess at small scale. We argue that including an acoustic descriptor will improve habitat-species analyses for many acoustically active taxa. SPL integrates habitat topology and temporal information (such as weather and hour of the day, for example) and is a simple and precise measure. We suggest that habitat description in animal ecology should include an acoustic measure such as noise level because it may explain previously misunderstood distribution patterns. PMID:24205070

  3. Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals

    PubMed Central

    Kanakia, Shruti; Toussaint, Jimmy; Hoang, Dung Minh; Mullick Chowdhury, Sayan; Lee, Stephen; Shroyer, Kenneth R.; Moore, William; Wadghiri, Youssef Z.; Sitharaman, Balaji

    2015-01-01

    Current clinical Gd3+-based T1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe. PMID:26625867

  4. Animal Allies.

    ERIC Educational Resources Information Center

    Peterson, Brenda

    1999-01-01

    Discusses young teenagers' adoption of animal personas in their creative writing classes, and the way these classroom activities follow Montessori principles. Considers both the role of imagination in the animal identification and the psychological and pedagogical significance of the underlying development of unconscious kinship with Earth and its…

  5. Kindergarten Animation

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    2012-01-01

    Animation is one of the last lessons that come to mind when thinking of kindergarten art. The necessary understanding of sequencing, attention to small, often detailed drawings, and the use of technology all seem more suitable to upper elementary. With today's emphasis on condensing and integrating curriculum, consider developing animation lessons…

  6. Enceladus Animation

    NASA Image and Video Library

    2005-08-31

    This frame from an animation shows the Cassini spacecraft approaching Saturn's icy moon Enceladus. It shows the highest resolution images obtained of the moon's surface. This is followed by a depiction of Saturn's magnetic field, which interacts with Enceladus' atmosphere and presumed plume coming from the south pole. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA03554

  7. Kindergarten Animation

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    2012-01-01

    Animation is one of the last lessons that come to mind when thinking of kindergarten art. The necessary understanding of sequencing, attention to small, often detailed drawings, and the use of technology all seem more suitable to upper elementary. With today's emphasis on condensing and integrating curriculum, consider developing animation lessons…

  8. Excelsior Animals.

    ERIC Educational Resources Information Center

    Steinkamp, Mary J.

    2001-01-01

    Describes an art project where students used excelsior, shredded wood used for packing, to create animals. Explains that excelsior can be found at furniture and grocery stores. Discusses in detail the process of making the animals and includes learning objectives. (CMK)

  9. Applications of GIS, Advanced Sensors and Habitat Modeling in Support of Desert Tortoise Line Distance, Sampling and Translocation Studies Related to the Proposed Expansion of the Ft. Irwin NTC

    DTIC Science & Technology

    2008-09-25

    in Madagascar, Biological Conservation. 124, Issue 4: 451 - 461. Li, N. (2007) Smart Knowledge Capture for Developing Adaptive Management Systems...deserts, TIR, HIVE and LCTA. Search tool (advanced searching and filtering capabilities) Framework to support hierarchical map navigation

  10. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  11. Collapsing animals

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Orlandini, E.; Tesi, M. C.

    1999-03-01

    Lattice animals with fugacities conjugate to the number of indepedent cycles, or to the number of nearest neighbour contacts, go through a collapse transition at a 0305-4470/32/9/007/img5-point at a critical value of the fugacity. We examine the phase diagram of a model which includes both a cycle and a contact fugacity with Monte Carlo methods. Using an underlying cut-and-paste Metropolis algorithm for lattice animals, we implement in the first instance a multiple Markov chain simulation of collapsing animals to estimate the location of the collapse transitions and the values of the crossover exponents associated with these. Secondly, we use umbrella sampling to sample animals over a rectangle in the phase diagram to examine the structure of the phase diagram of these animals.

  12. Dietary consumption of meat, fat, animal products and advanced glycation end-products and the risk of barrett’s esophagus

    PubMed Central

    Jiao, Li; Kramer, Jennifer R.; Chen, Liang; Rugge, Massimo; Parente, Paola; Verstovsek, Gordana; Alsarraj, Abeer; El-Serag, Hashem B.

    2013-01-01

    Background Advanced glycation end-products (AGEs) are found in high quantity in high-fat foods and meat cooked at high temperature. AGEs have been shown to contribute to chronic inflammation and oxidative stress in humans. Aim To investigate the associations between consumption of meat, fat and AGEs, and risk of Barrett’s esophagus (BE). Methods We conducted a case-control study using data from the patients who were scheduled for elective esophagogastroduodenoscopy (EGD) and from a random sample of patients who were identified at primary care clinics. Daily consumption of meat, fat and Nε-(carboxymethyl) lysine (CML), a major type of AGEs, was derived from the food frequency questionnaire (FFQ). Multivariate logistic regression models were used to estimate the odds ratio (OR) and its 95% confidence interval (CI) for BE. Results A total of 151 cases with BE and 777 controls without BE completed the FFQ. The multivariate OR (95% CI) for BE was 1.91 (1.07–3.38) for total meat, 1.80 (1.02–3.16) for saturated fat, and 1.63 (0.96–2.76) for CML-AGE, when the highest tertile of intake was compared with the lowest. The association for total meat was attenuated to 1.61 (0.82–3.16), and that for saturated fat to 1.54 (0.81–2.94) after adjusting for CML-AGE. Conclusions Higher consumption of total meat, saturated fat or possibly CML-AGE was associated with an increased risk of BE. CML-AGE may partly explain the association between total meat and saturated fat consumption and risk of BE. PMID:23957669

  13. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    USGS Publications Warehouse

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  14. Precision animal breeding.

    PubMed

    Flint, A P F; Woolliams, J A

    2008-02-12

    We accept that we are responsible for the quality of life of animals in our care. We accept that the activities of man affect all the living things with which we share this planet. But we are slow to realize that as a result we have a duty of care for all living things. That duty extends to the breeding of animals for which we are responsible. When animals are bred by man for a purpose, the aim should be to meet certain goals: to improve the precision with which breeding outcomes can be predicted; to avoid the introduction and advance of characteristics deleterious to well-being; and to manage genetic resources and diversity between and within populations as set out in the Convention on Biological Diversity. These goals are summed up in the phrase precision animal breeding. They should apply whether animals are bred as sources of usable products or services for medical or scientific research, for aesthetic or cultural considerations, or as pets. Modern molecular and quantitative genetics and advances in reproductive physiology provide the tools with which these goals can be met.

  15. Animal experimentation.

    PubMed

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  16. Habitats of Life

    NASA Astrophysics Data System (ADS)

    Dirk, Schulze-Makuch; Irwin, Louis N.

    There are four principal habitats in which life may exist - the surface of a planetary body, its subsurface, its atmosphere and space. From our own experience we know that life does exist on the surface of a planet, in its subsurface, and transiently at least in the atmosphere. Where it is present, it exists in a surprising diversity and in a variety of microhabitats, from deep caverns (Hose et al. 2000, Melim et al. 2001) to hydrothermal fluids and hot springs of various chemistries (Jannasch 1995, Rzonca and Schulze-Makuch 2002), to the frozen deserts of Antarctica (Friedmann 1982, Sun and Friedmann 1999). In this chapter we will elaborate on the principal habitats, the constraints they impose on life, and the possibilities they provide.

  17. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  18. Frugivore-Mediated Selection in A Habitat Transformation Scenario.

    PubMed

    Fontúrbel, Francisco E; Medel, Rodrigo

    2017-03-28

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver.

  19. Integral habitat transport system

    NASA Technical Reports Server (NTRS)

    Elliott, Bill; Frazer, Scott; Higgs, Joey; Huff, Jason; Milam, Tigree

    1994-01-01

    In the 1993 Fall quarter, the ME 4182 design class was sponsored to study various scenarios that needed to be studied for Martian travel. The class was sponsored by NASA and there were several different design projects. The design that group three chose was an integral transport system for a Martian habitat. An integral transport system means the design had to be one that was attached to the habitat. There were several criteria that the design had to meet. Group three performed an in depth study of the Martian environment and looked at several different design ideas. The concept group three developed involved the use of kinematic linkages and the use of Martian gravity to move the habitat. The various design concepts, the criteria matrices and all other aspects that helped group three develop their design can be found in their 1993 ME 4182 design report. Now it is Winter quarter 1994 and group three is faced with another problem. The problem is building a working prototype of their Fall design. The limitations this quarter were the parts. The group had to make the prototype work with existing manufactured parts or make the parts themselves in a machine shop. The prototype was scaled down roughly about twelve times smaller than the original design. The following report describes the actions taken by group three to build a working model.

  20. Enhanced External Counterpulsation Treatment May Intervene The Advanced Atherosclerotic Plaque Progression by Inducing The Variations of Mechanical Factors: A 3D FSI Study Based on in vivo Animal Experiment.

    PubMed

    Du, Jianhang; Wang, Liang

    2015-12-01

    Growing evidences suggest that long-term enhanced external counter-pulsation (EECP) treatment can inhibit the initiation of atherosclerotic lesion by improving the hemodynamic environment in aortas. However, whether this kind procedure will intervene the progression of advanced atherosclerotic plaque remains elusive and causes great concern in its clinical application presently. In the current paper, a pilot study combining animal experiment and numerical simulation was conducted to investigate the acute mechanical stress variations during EECP intervention, and then to assess the possible chronic effects. An experimentally induced hypercholesterolemic porcine model was developed and the basic hemodynamic measurement was performed in vivo before and during EECP treatment. Meanwhile, A 3D fluid-structure interaction (FSI) model of blood vessel with symmetric local stenosis was developed for the numerical calculation of some important mechanical factors. The results show that EECP augmented 12.21% of the plaque wall stress (PWS), 57.72% of the time average wall shear stress (AWSS) and 43.67% of the non-dimensional wall shear stress gradient (WSSGnd) at throat site of the stenosis. We suggest that long-term EECP treatment may intervene the advanced plaque progression by inducing the significant variations of some important mechanical factors, but its proper effects will need a further research combined follow-up observation in clinic.

  1. Defining the scale of habitat availability for models of habitat selection.

    PubMed

    Paton, Robert Stephen; Matthiopoulos, Jason

    2016-05-01

    Statistical models of habitat preference and species distribution (e.g., Resource Selection Functions and Maximum Entropy approaches) perform a quantitative comparison of the use of space with the availability of all habitats in an animal's environment. However, not all of space is accessible all of the time to all individuals, so availability is in fact determined by limitations in animal perception and mobility. Therefore, measuring habitat availability at biologically relevant scales is essential for understanding preference, but herein lies a trade-off: Models fitted at large spatial scales, will tend to average across the responses of different individuals that happen to be in regions with contrasting habitat compositions. We suggest that such models may fail to capture local extremes (hotspots and coldspots) in animal usage and call this potential problem, homogenization. In contrast, models fitted at smaller scales will vary stochastically depending on the particular habitat composition of their narrow spatial neighborhood, and hence fail to describe responses when predicting for different sampling instances. This is the now well-documented issue of non-transferability of habitat models. We illustrate this tradeoff, using a range of simulated experiments, incorporating variations in environmental gradients, richness and fragmentation. We propose diagnostics for detecting the two issues of homogenization and non-transferability and show that these scale-related symptoms are likely to be more pronounced in highly fragmented or steeply graded landscapes. Further, we address these problems by treating the neighborhood of each cell in the landscape grid as an individual sampling instance (with its own neighborhood), hence allowing coefficients to respond to the local expectations of environmental variables according to a Generalized Functional Response (GFR). Under simulation this approach is consistently better at estimating robust (i.e., transferable) habitat

  2. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges

    PubMed Central

    Cagnacci, Francesca; Boitani, Luigi; Powell, Roger A.; Boyce, Mark S.

    2010-01-01

    Global positioning system (GPS) telemetry technology allows us to monitor and to map the details of animal movement, securing vast quantities of such data even for highly cryptic organisms. We envision an exciting synergy between animal ecology and GPS-based radiotelemetry, as for other examples of new technologies stimulating rapid conceptual advances, where research opportunities have been paralleled by technical and analytical challenges. Animal positions provide the elemental unit of movement paths and show where individuals interact with the ecosystems around them. We discuss how knowing where animals go can help scientists in their search for a mechanistic understanding of key concepts of animal ecology, including resource use, home range and dispersal, and population dynamics. It is probable that in the not-so-distant future, intense sampling of movements coupled with detailed information on habitat features at a variety of scales will allow us to represent an animal's cognitive map of its environment, and the intimate relationship between behaviour and fitness. An extended use of these data over long periods of time and over large spatial scales can provide robust inferences for complex, multi-factorial phenomena, such as meta-analyses of the effects of climate change on animal behaviour and distribution. PMID:20566493

  3. Toward a national animal telemetry network for aquatic observations in the United States

    USGS Publications Warehouse

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  4. Habitat Suitability Index Models: Wood duck

    USGS Publications Warehouse

    Sousa, Patrick J.; Farmer, Adrian H.

    1983-01-01

    A review and synthesis of existing information were used to develop models for breeding and wintering habitats for the wood duck (Aix sponsa). The models are scaled to produce indices of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat). Habitat suitability indices are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  5. Recent advances in plant-herbivore interactions

    PubMed Central

    Burkepile, Deron E.; Parker, John D.

    2017-01-01

    Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by

  6. Recent advances in plant-herbivore interactions.

    PubMed

    Burkepile, Deron E; Parker, John D

    2017-01-01

    Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by

  7. Home range and movements of American alligators (Alligator mississippiensis) in an estuary habitat

    USGS Publications Warehouse

    Fujisaki, Ikuko; Hart, Kristen M.; Mazzotti, Frank J.; Cherkiss, Michael S.; Sartain-Iverson, Autumn R.; Jeffery, Brian M.; Beauchamp, Jeffrey S.; Denton, Mathew J.

    2014-01-01

    This study reveals consistent use of estuary habitat by American alligators. The alligators showed variations in their movement pattern and seasonal habitat, with movement attributable to environmental factors. Although satellite-derived locations were more dispersed compared to locations collected using VHF radio-tags, data collected from VHF tracking omitted some habitat used for a short period of time, indicating the effectiveness of satellite telemetry to continuously track animals for ecosystem-scale studies.

  8. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use

    DTIC Science & Technology

    2011-09-30

    Biological, and Acoustic Signals on Marine Mammal Habitat Use Jennifer L. Miksis-Olds Applied Research Laboratory The Pennsylvania State University PO...signals impact marine mammal prey and resulting marine mammal habitat use. This is especially critical in areas like the Bering Sea where global climate...animal presence and habitat use. Objective 1: What effect do changing sea ice dynamics have on zooplankton populations? a) How does zooplankton

  9. Wild Animals.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This annotated subject guide to Web sites and other resources focuses on wild animals. Includes Web sites, CD-ROMs and software, videos, books, audios, magazines, and professional resources, as well as a class activity. (LRW)

  10. Suzaku Animation

    NASA Image and Video Library

    This animation depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satel...

  11. Pulsar Animation

    NASA Image and Video Library

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  12. Test of a modified habitat suitability model for bighorn sheep

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Singer, F.J.; Gudorf, M.A.

    2000-01-01

    Translocation of bighorn sheep (Ovis canadensis) is time, labor, and cost intensive and, therefore, high levels of success are desirable. We tested a widely used habitat suitability model against translocation success and then modified it to include additional factors which improved its usefulness in predicting appropriate translocation sites. The modified Smith habitat suitability model for bighorn sheep was 64% accurate in predicting success or failure of 32 translocations of bighorn sheep into the Rocky Mountains, Colorado Plateau desert, and prairie-badlands of six states. We had sheep location data for 13 populations, and the modified habitat model predicted the areas used by bighorn sheep with greater than 905 accuracy in eight populations, greater than 55% accuracy in four populations, and less than 55% accuracy in one population. Translocations were more successful when sheep were placed into discrete habitat patches containing a high proportion of lambing period habitat (>10% of suitable habitat, p = 0.05), where animals had a migratory tendency (p = 0.02), no contact with domestic sheep (p = 0.02), or greater distance to domestic sheep (>23 km, p = 0.02). Rate of population growth was best predicted by area of lambing period habitat, potential area of winter range, and distance to domestic sheep. We retested the model using these refined criteria and the refined model then predicted success or failure of these 32 translocated populations with 82% accuracy.

  13. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    PubMed Central

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  14. Masticophis flagellum selects florida scrub habitat at multiple spatial scales

    USGS Publications Warehouse

    Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.

    2009-01-01

    The use of space by individual animals strongly influences the spatial extent, abundance, and growth rates of their populations. We analyzed the spatial ecology and habitat selection of Masticophis flagellum (the coachwhip) at three different scales to determine which habitats are most important to this species. Home ranges and mean daily displacements of M. flagellum in Florida were large compared to individuals in other populations of this species. Home ranges contained a greater proportion of Florida scrub habitat than did the study site as a whole, and individuals selected Florida scrub habitat within their home ranges. For both selection of the home range within the study site and selection of habitats within the home range, mesic cutthroat and hydric swamp habitats were avoided. Standardized selection ratios of Florida scrub patches were positively correlated with lizard abundance. Several non-mutually exclusive mechanisms, including foraging success (prey abundance, prey vulnerability, and foraging efficiency), abundance of refugia, and thermoregulatory opportunity may underlie the selection of Florida scrub by M. flagellum. Historic rarity and anthropogenic loss and fragmentation of Florida scrub habitat, coupled with the long-distance movements, large home ranges, and selection of Florida scrub by M. flagellum, indicate that large contiguous tracts of land containing Florida scrub will be essential for the persistence of M. flagellum in central Florida. ?? 2009 by The Herpetologists' League, Inc.

  15. AGATE animation - business theme

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Business jet 6 of 6. Advanced General Aviation Technology Experiment (AGATE). The General Aviation Propulsion Program (GAP). AGATE and GAP are providing industry partners with technologies leading to a Small Aircraft Transportation System (SATS) in the early 21st century. These investments support the national general aviation 'roadmap' goal to 'enable doorstep-to-destination travel at four times highway speeds to virtually all of the nation's suburban, rural and remote communities.' Image from AGATE 'business jet' video animation.

  16. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  17. Habitat Management to Suppress Pest Populations: Progress and Prospects.

    PubMed

    Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng

    2017-01-31

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

  18. Animal Bioacoustics

    NASA Astrophysics Data System (ADS)

    Fletcher, Neville H.

    Animals rely upon their acoustic and vibrational senses and abilities to detect the presence of both predators and prey and to communicate with members of the same species. This chapter surveys the physical bases of these abilities and their evolutionary optimization in insects, birds, and other land animals, and in a variety of aquatic animals other than cetaceans, which are treated in Chap. 20. While there are many individual variations, and some animals devote an immense fraction of their time and energy to acoustic communication, there are also many common features in their sound production and in the detection of sounds and vibrations. Excellent treatments of these matters from a biological viewpoint are given in several notable books [19.1,2] and collections of papers [19.3,4,5,6,7,8], together with other more specialized books to be mentioned in the following sections, but treatments from an acoustical viewpoint [19.9] are rare. The main difference between these two approaches is that biological books tend to concentrate on anatomical and physiological details and on behavioral outcomes, while acoustical books use simplified anatomical models and quantitative analysis to model vocalization frequency scaling in animals hearing sound production animal animal biological biological bioacoustics whole-system behavior. This latter is the approach to be adopted here.

  19. Animal learning.

    PubMed

    Castro, Leyre; Wasserman, Edward A

    2010-01-01

    Pavlov and Thorndike pioneered the experimental study of animal learning and provided psychologists with powerful tools to unveil its underlying mechanisms. Today's research developments and theoretical analyses owe much to the pioneering work of these early investigators. Nevertheless, in the evolution of our knowledge about animal learning, some initial conceptions have been challenged and revised. We first review the original experimental procedures and findings of Pavlov and Thorndike. Next, we discuss critical research and consequent controversies which have greatly shaped animal learning theory. For example, although contiguity seemed to be the only condition that is necessary for learning, we now know that it is not sufficient; the conditioned stimulus (CS) also has to provide information about the occurrence of the unconditioned stimulus (US). Also, animals appear to learn different things about the same stimuli when circumstances vary. For instance, when faced with situations in which the meaning of a CS changes, as in the case of acquisition and later extinction, animals seem to preserve the original knowledge (CS-US) in addition to learning about the new conditions (CS-noUS). Finally, we discuss how parallels among Pavlovian conditioning, operant conditioning, and human causal judgment suggest that causal knowledge may lie at the root of both human and animal learning. All of these empirical findings and theoretical developments prove that animal learning is more complex and intricate than was once imagined. Copyright © 2009 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2009 John Wiley & Sons, Ltd.

  20. Estimated home ranges can misrepresent habitat relationships on patchy landscapes

    USGS Publications Warehouse

    Mitchell, M.S.; Powell, R.A.

    2008-01-01

    Home ranges of animals are generally structured by the selective use of resource-bearing patches that comprise habitat. Based on this concept, home ranges of animals estimated from location data are commonly used to infer habitat relationships. Because home ranges estimated from animal locations are largely continuous in space, the resource-bearing patches selected by an animal from a fragmented distribution of patches would be difficult to discern; unselected patches included in the home range estimate would bias an understanding of important habitat relationships. To evaluate potential for this bias, we generated simulated home ranges based on optimal selection of resource-bearing patches across a series of simulated resource distributions that varied in the spatial continuity of resources. For simulated home ranges where selected patches were spatially disjunct, we included interstitial, unselected cells most likely to be traveled by an animal moving among selected patches. We compared characteristics of the simulated home ranges with and without interstitial patches to evaluate how insights derived from field estimates can differ from actual characteristics of home ranges, depending on patchiness of landscapes. Our results showed that contiguous home range estimates could lead to misleading insights on the quality, size, resource content, and efficiency of home ranges, proportional to the spatial discontinuity of resource-bearing patches. We conclude the potential bias of including unselected, largely irrelevant patches in the field estimates of home ranges of animals can be high, particularly for home range estimators that assume uniform use of space within home range boundaries. Thus, inferences about the habitat relationships that ultimately define an animal's home range can be misleading where animals occupy landscapes with patchily distributed resources.

  1. Black bear abundance, habitat use, and food habits in the Sierra San Luis, Sonora, Mexico

    Treesearch

    Rodrigo Sierra Corona; Ivan A. Sayago Vazquez; M. del Carmen Silva Hurtado; Carlos A. Lopez Gonzalez

    2005-01-01

    We studied black bears to determine habitat use, food habits, and abundance between April 2002 and November 2003 in the Sierra San Luis, Sonora. We utilized transects to determine spoor presence, camera traps for abundance, and scat analysis. During 2002, bears fed principally on plant material, and for 2003 on animal matter, namely livestock. Habitat use differed...

  2. Differential habitat use or intraguild interactions: What structures a carnivore community?

    Treesearch

    Matthew E. Gompper; Damon B. Lesmeister; Justina C. Ray; Jay R. Malcolm; Roland Kays; Aaron W. Reed

    2016-01-01

    Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of...

  3. Illumination and the perception of remote habitat patches by whit footed mice

    Treesearch

    Patrick A. Zollner; Steven L. Lima

    1999-01-01

    Perceptual range, or the distance at which habitat 'patches' can be perceived, constrains an animal's informational window on a given landscape. If such constraints are great, they may limit successful dispersal between distant habitat patches. On dark nights, nocturnal white-footed mice, Peromyscus leucopus, have surprisingly limited...

  4. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Treesearch

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  5. Animal ethics in SIRS research.

    PubMed

    Dahiya, Punam; Ogden, Bryan E

    2010-01-01

    It is well recognized that animals play a vital role and are indispensable to scientific and medical research. Over the years, a number of non-animal procedures have been developed. However, despite all the advances in science, as yet, no system has been evolved which can completely replace a living system to conduct basic research. There is still a need to test food, drugs, medical devices, treatment regimes etc. on some animals before they can be tested and used (if found suitable) in human beings. Even the most sophisticated technology models have failed to mimic completely the complex cellular interactions occurring in a living system. The search for a complete alternative to animal research is still on and in the mean time we can all help play our part by conducting animal research in a humane and responsible fashion. This chapter discusses the ethical issues in animal research highlighting the need to use animals conscientiously.

  6. Simulated effects of habitat loss and fragmentation on a solitary, mustellid predator

    SciTech Connect

    Jager, Yetta; Carr, Eric A; Efroymson, Rebecca Ann

    2005-01-01

    Brine spills associated with petroleum extraction can reduce the amount of suitable habitat and increase habitat fragmentation for many terrestrial animals. We conducted a simulation study to quantify the effects of habitat loss and fragmentation on a solitary mammal predator. To provide focus, we adopted biological attributes of the American badger (Taxidea taxus) and environmental attributes of the Tallgrass Prairie Preserve in Oklahoma. We simulated badger activities on landscapes with different degrees of habitat loss and fragmentation using a spatially explicit and individual-based population model. Both habitat loss and fragmentation increased the incidence of habitat-related mortality and decreased the proportion of eligible females that mated, which decreased final population sizes and the likelihood of persistence. Parameter exploration suggested that steep, threshold-like, responses to habitat loss occurred when animals included high-risk habitat in their territories. Badger populations showed a steeper decline with increasing habitat loss on landscapes fragmented by spills than on less fragmented landscapes. Habitat fragmentation made it difficult for badgers to form high-quality territories, and exposed individuals to higher risk while seeking to establish a territory. Our simulations also suggest that an inability to find mates (an Allee effect) becomes increasingly important for landscapes that support a sparse distribution of territories. Thus, the presence of unmated females with territories may foreshadow population decline in solitary species that do not normally tolerate marginal adults.

  7. Habitat relationships of amphibians and reptiles in California oak woodlands

    Treesearch

    William M. Block; Michael L. Morrison

    1998-01-01

    We used pitfall traps and time-constrained searches to sample amphibians and reptiles and to describe their habitats in oak woodlands at three areas in California. We captured 766 individuals representing 15 species during pitfall trapping and 333 animals representing 15 species during the time-constrained searches. A total of 19 species were sampled. Across all study...

  8. Sagebrush in western North America: habitats and species in jeopardy.

    Treesearch

    Jonathan. Thompson

    2007-01-01

    Sagebrush habitats are declining rapidly across western North America, with over 350 associated plant and animal species at risk of local or regional extirpation. The sagebrush ecosystem is one of the largest in the United States, and it is vulnerable to a litany of threats. Chief among them is invasion of cheatgrass into the understory, followed by high-severity fires...

  9. 9 CFR 2.31 - Institutional Animal Care and Use Committee (IACUC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... science and medicine, who has direct or delegated program responsibility for activities involving animals... animals in their natural habitat need not be included in such inspection; (3) Prepare reports of its...

  10. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  11. Animal Identification

    PubMed Central

    Macpherson, J. W.; Penner, P.

    1967-01-01

    A number of branding tools of various metals and various sizes in combination with several wetting agents were cooled with liquid nitrogen and applied for different lengths of time to calves and mature cattle. White hair appeared in the shape of the brand on the animals in place of dark hair when the application was properly carried out. Best results can be obtained by using metal irons at least 25 millimeters thick and 14 millimeters wide with xylol as a wetting agent for ten seconds in young or thin skinned animals and up to twenty seconds in mature or thick skinned animals. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 5. PMID:4229181

  12. Animal models in gerontology research.

    PubMed

    Nadon, Nancy L

    2007-01-01

    Animal models have paved the way for the vast majority of advances in biomedical research. Studies on aged animals are essential for understanding the processes inherent in normal aging and the progression of age-related diseases. Animal models are used to identify physiological changes with age, to identify the genetic basis of normal aging and age-associated disease and degeneration, and to test potential therapeutic interventions. This chapter will focus on rodent models and will summarize important considerations for the use of animals in aging research in general and in modeling geriatric epilepsy.

  13. Context-dependent movement behavior of woodland salamanders (Plethodon) in two habitat types.

    PubMed

    Connette, Grant M; Semlitsch, Raymond D

    2013-12-01

    Animal movement is critical to the maintenance of functional connectivity at the landscape scale and can play a key role in population persistence and metapopulation dynamics. The permeability of habitat to animal movement may vary as a result of either differential mortality, physical resistance, or simply the behavioral responses of organisms to perceived habitat quality. Understanding how and when animal movement behavior varies among habitat types is critical for identifying barriers to dispersal and predicting species distributions in relation to landscape features. We conducted an experimental translocation study and compared the movement success and behavioral strategies of plethodontid salamanders in both forest and open-canopy habitat. We found that individuals in closed-canopy forest oriented more strongly towards their home ranges and moved significantly farther on their release night. In spite of the clear differences in movement paths, the ultimate movement success of homing salamanders did not appear to vary with habitat type. Our study contributes to a growing body of literature suggesting the importance of recognizing the context dependence of animal movement behavior. Because the movement rates of displaced salamanders were significantly reduced in open-canopy, dispersal rates of plethodontid salamanders in open-canopy habitat are likely lower than in control forest. Further mechanistic studies focusing on habitat-specific movement behavior and survival costs will be valuable for effectively identifying and mitigating barriers to animal movement.

  14. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  15. Diversity and Community Composition of Vertebrates in Desert River Habitats.

    PubMed

    Free, C L; Baxter, G S; Dickman, C R; Lisle, A; Leung, L K-P

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning.

  16. Vacant habitats in the Universe.

    PubMed

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Resonant population cycles in temporally fluctuating habitats.

    PubMed

    Costantino, R F; Cushing, J M; Dennis, B; Desharnais, R A; Henson, S M

    1998-03-01

    Experiments with the flour beetle Tribolium have revealed that animal numbers were larger in cultures grown in a periodically fluctuating volume of medium than in cultures grown in a constant volume of the same average size. In this paper we derive and analyze a discrete stage-structured mathematical model that explains this phenomenon as a kind of resonance effect. Habitat volume is incorporated into the model by the assumption that all rates of cannibalism (larvae on eggs, adults on eggs and pupae) are inversely proportional to the volume of the culture medium. We tested this modeling assumption by conducting and statistically analyzing laboratory experiments. For parameter estimates derived from experimental data, our model indeed predicts, under certain circumstances, a larger (cycle-average) total population abundance when the habitat volume periodically fluctuates than when the habitat volume is held constant at the average volume. The model also correctly predicts certain phase relationships and transient dynamics observed in data. The analyses involve a thorough integration of mathematics, statistical methods, biological details and experimental data.

  18. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  19. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  20. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  1. Curriculum Animation

    ERIC Educational Resources Information Center

    Gose, Michael D.

    2004-01-01

    Twenty-five teachers with reputations for artistry in curriculum planning were interviewed about their "curriculum animation" plans or how they ensured their curriculum was brought to life. Their statements indicated that much of their planning is informal and intuitive, and that the criteria they use for their curriculum includes: (1) it is…

  2. Animal impacts

    Treesearch

    Norbert V. DeByle

    1985-01-01

    The aspen ecosystem is rich in number and species of animals, especially in comparison to associated coniferous forest types. This natural species diversity and richness has been both increased and influenced by the introduction of domestic livestock. The high value of the aspen type as a forage resource for livestock and as forage and cover for wildlife makes the...

  3. Animal Science.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2001-01-01

    Presents a set of hands-on, outdoor science experiments designed to teach elementary school students about animal adaptation. The experiments focus on: how color camouflage affects an insect population; how spiderlings find a home; and how chameleons camouflage themselves by changing color. (SM)

  4. Animal Bioacoustics

    NASA Astrophysics Data System (ADS)

    Fletcher, Neville

    Animals rely upon their acoustic and vibrational senses and abilities to detect the presence of both predators and prey and to communicate with members of the same species. This chapter surveys the physical bases of these abilities and their evolutionary optimization in insects, birds, and other land animals, and in a variety of aquatic animals other than cetaceans, which are treated in Chap. 20. While there are many individual variations, and some animals devote an immense fraction of their time and energy to acoustic communication, there are also many common features in their sound production and in the detection of sounds and vibrations. Excellent treatments of these matters from a biological viewpoint are given in several notable books [19.1,2] and collections of papers [19.3,4,5,6,7,8], together with other more specialized books to be mentioned in the following sections, but treatments from an acoustical viewpoint [19.9] are rare. The main difference between these two approaches is that biological books tend to concentrate on anatomical and physiological details and on behavioral outcomes, while acoustical books use simplified anatomical models and quantitative analysis to model whole-system behavior. This latter is the approach to be adopted here.

  5. Animal Science.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2001-01-01

    Presents a set of hands-on, outdoor science experiments designed to teach elementary school students about animal adaptation. The experiments focus on: how color camouflage affects an insect population; how spiderlings find a home; and how chameleons camouflage themselves by changing color. (SM)

  6. Phytochemistry predicts habitat selection by an avian herbivore at multiple spatial scales.

    PubMed

    Frye, Graham G; Connelly, John W; Musil, David D; Forbey, Jennifer S

    2013-02-01

    Animal habitat selection is a process that functions at multiple, hierarchically. structured spatial scales. Thus multi-scale analyses should be the basis for inferences about factors driving the habitat selection process. Vertebrate herbivores forage selectively on the basis of phytochemistry, but few studies have investigated the influence of selective foraging (i.e., fine-scale habitat selection) on habitat selection at larger scales. We tested the hypothesis that phytochemistry is integral to the habitat selection process for vertebrate herbivores. We predicted that habitats selected at three spatial scales would be characterized by higher nutrient concentrations and lower concentrations of plant secondary metabolites (PSMs) than unused habitats. We used the Greater Sage-Grouse (Centrocercus urophasianus), an avian herbivore with a seasonally specialized diet of sagebrush, to test our hypothesis. Sage-Grouse selected a habitat type (black sagebrush, Artemisia nova) with lower PSM concentrations than the alternative (Wyoming big sagebrush, A. tridentata wyomingensis). Within black sagebrush habitat, Sage-Grouse selected patches and individual plants within those patches that were higher in nutrient concentrations and lower in PSM concentrations than those not used. Our results provide the first evidence for multi-scale habitat selection by an avian herbivore on the basis of phytochemistry, and they suggest that phytochemistry may be a fundamental driver of habitat selection for vertebrate herbivores.

  7. Food choice behaviour may promote habitat specificity in mixed populations of clonal and sexual Potamopyrgus antipodarum.

    PubMed

    Negovetic; Jokela

    2000-10-01

    Genetic polymorphism along an environmental gradient may be maintained if disruptive selection on habitat-specific traits leads to a correlated response in traits that reduce gene flow between habitats. We studied a short-distance cline in a population of freshwater snails Potamopyrgus antipodarum in which sexual and clonal snails coexist. Sexuals and clones show a life history cline by depth: snails reproduce at a smaller size in shallower habitats. Clones are also structured genetically across habitats and seem not to mix, even though habitats are within the dispersal distance of the snails and the opportunity for gene flow via migration must be considerable. Because habitat preference may promote divergence in both clones and sexuals along the depth gradient, we investigated whether snails show habitat-specific food choice behaviour that could reduce migration. We tested the food choice behaviour of the snails by exposing them simultaneously to food from their home and adjacent habitats. Both juvenile and adult snails from the shallow shore bank and a mid-water macrophyte habitat preferentially grazed on the vegetation of their original habitats. We suggest that the observed genetic and life history cline may be maintained by food choice behaviour that may promote a partial barrier to gene flow between the habitats. Copyright 2000 The Association for the Study of Animal Behaviour.

  8. The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data

    USGS Publications Warehouse

    Dodge, Somayeh; Bohrer, Gil; Weinzierl, Rolf P.; Davidson, Sarah C.; Kays, Roland; Douglas, David C.; Cruz, Sebastian; Han, J.; Brandes, David; Wikelski, Martin

    2013-01-01

    The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques.

  9. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  10. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  11. Commercialization of animal biotechnology.

    PubMed

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B

    2003-01-01

    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. Copyright 2002 Elsevier Science Inc.

  12. Two-dimensional habitat modeling in the Yellowstone/Upper Missouri River system

    USGS Publications Warehouse

    Waddle, T. J.; Bovee, K.D.; Bowen, Z.H.

    1997-01-01

    This study is being conducted to provide the aquatic biology component of a decision support system being developed by the U.S. Bureau of Reclamation. In an attempt to capture the habitat needs of Great Plains fish communities we are looking beyond previous habitat modeling methods. Traditional habitat modeling approaches have relied on one-dimensional hydraulic models and lumped compositional habitat metrics to describe aquatic habitat. A broader range of habitat descriptors is available when both composition and configuration of habitats is considered. Habitat metrics that consider both composition and configuration can be adapted from terrestrial biology. These metrics are most conveniently accessed with spatially explicit descriptors of the physical variables driving habitat composition. Two-dimensional hydrodynamic models have advanced to the point that they may provide the spatially explicit description of physical parameters needed to address this problem. This paper reports progress to date on applying two-dimensional hydraulic and habitat models on the Yellowstone and Missouri Rivers and uses examples from the Yellowstone River to illustrate the configurational metrics as a new tool for assessing riverine habitats.

  13. Domesticated Animal Biobanking: Land of Opportunity

    PubMed Central

    Groeneveld, Linn F.; Hveem, Kristian; Kantanen, Juha; Lohi, Hannes; Stroemstedt, Lina; Berg, Peer

    2016-01-01

    In the past decade, biobanking has fuelled great scientific advances in the human medical sector. Well-established domesticated animal biobanks and integrated networks likewise harbour immense potential for great scientific advances with broad societal impacts, which are currently not being fully realised. Political and scientific leaders as well as journals and ethics committees should help to ensure that we are well equipped to meet future demands in livestock production, animal models, and veterinary care of companion animals. PMID:27467395

  14. Terrestrial habitat mapping of the Oak Ridge Reservation: 1996 Summary

    SciTech Connect

    Washington-Allen, R.A.; Ashwood, T.L.

    1996-09-01

    The US DOE is in the process of remediating historical contamination on the Oak Ridge Reservation (ORR). Two key components are ecological risk assessment and monitoring. In 1994 a strategy was developed and a specific program was initiated to implement the strategy for the terrestrial biota of the entire ORR. This document details results of the first task: development of a habitat map and habitat models for key species of interest. During the last 50 years ORR has been a relatively protected island of plant and animal habitats in a region of rapidly expanding urbanization. A preliminary biodiversity assessment of the ORR by the Nature Conservancy in 1995 noted 272 occurrences of significant plant and animal species and communities. Field surveys of threatened and endangered species show that the ORR contains 20 rare plant species, 4 of which are on the state list of endangered species. The rest are either on the state list of threatened species or listed as being of special concern. The ORR provides habitat for some 60 reptilian and amphibian species; more than 120 species of terrestrial birds; 32 species of waterfowl, wading birds, and shorebirds; and about 40 mammalian species. The ORR is both a refuge for rare species and a reservoir of recruitment for surrounding environments and wildlife management areas. Cedar barrens, river bluffs, and wetlands have been identified as the habitat for most rare vascular plant species on the ORR.

  15. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  16. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  17. Lighting Automation Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  18. Lighting Automation - Flying an Earthlike Habitat

    NASA Technical Reports Server (NTRS)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  19. How many wolves (Canis lupus) fit into Germany? The role of assumptions in predictive rule-based habitat models for habitat generalists.

    PubMed

    Fechter, Dominik; Storch, Ilse

    2014-01-01

    Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique.

  20. How Many Wolves (Canis lupus) Fit into Germany? The Role of Assumptions in Predictive Rule-Based Habitat Models for Habitat Generalists

    PubMed Central

    Fechter, Dominik; Storch, Ilse

    2014-01-01

    Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique. PMID:25029506

  1. [Dangerous animals].

    PubMed

    Hasle, Gunnar

    2002-06-30

    As travellers seek ever more exotic destinations they are more likely to encounter dangerous animals. Compared to risks such as AIDS, traffic accidents and malaria, the risk is not so great; many travellers are, however, concerned about this and those who give pre-travel vaccines and advice should know something about it. This article is mainly based on medical and zoological textbooks. Venomous stings and bites may be prevented by adequate clothing and by keeping safe distance to the animals. Listening to those who live in the area is of course important. Travellers should not carry antisera with them, but antisera should be available at local hospitals. It should be borne in mind that plant eaters cause just as many deaths as large predators. In some cases it is necessary to carry a sufficiently powerful firearm.

  2. Animal leptospirosis.

    PubMed

    Ellis, William A

    2015-01-01

    Leptospirosis is a global disease of animals, which can have a major economic impact on livestock industries and is an important zoonosis. The current knowledge base is heavily biased towards the developed agricultural economies. The disease situation in the developing economies presents a major challenge as humans and animals frequently live in close association. The severity of disease varies with the infecting serovar and the affected species, but there are many common aspects across the species; for example, the acute phase of infection is mostly sub-clinical and the greatest economic losses arise from chronic infection causing reproductive wastage. The principles of, and tests for, diagnosis, treatment, control and surveillance are applicable across the species.

  3. Sonoran pronghorn habitat use on landscapes disturbed by military activities

    USGS Publications Warehouse

    Krausman, P.R.; Harris, L.K.; Haas, S.K.; Koenen, Kiana K. G.; Devers, P.; Bunting, D.; Barb, M.

    2005-01-01

    The Sonoran pronghorn (Antilocapra americana sonoriensis) population in the United States declined to ???33 animals in January 2003. Low population numbers and unstable recruitment are concerns for biologists managing this subspecies. We examined habitat use by pronghorn from 1999 to 2002 on a portion of the Barry M. Goldwater Range (BMGR) used for military exercises. We overlaid locations of pronghorn (n= 1,203) on 377 1-km2 blocks within the North (NTAC) and South Tactical Ranges (STAC), BMGR; we classified vegetation associations and disturbance status (e.g., airfields, targets, roads) for each block. Locations of pronghorn were distributed in proportion to vegetation associations on NTAC and STAC. Sightings of pronghorns were biased toward disturbed blocks, with 73% of locations of pronghorn occurring in proximity to mock airfields, high-explosive hills (e.g., targets for live high-explosive bombs and rockets), other targets, and roads. Disturbed landscapes on the BMGR may attract Sonoran pronghorn by creating favorable forage. Habitat manipulations simulating the effects of military disturbances on the landscape (e.g., improved forage) may improve remaining Sonoran pronghorn habitat. Antilocapra americana sonoriensis, Barry M. Goldwater Air Force Range, disturbed habitat, habitat availability, habitat use, military activity, Sonoran pronghorn.

  4. Dynamic habitat models: using telemetry data to project fisheries bycatch.

    PubMed

    Zydelis, Ramūnas; Lewison, Rebecca L; Shaffer, Scott A; Moore, Jeffrey E; Boustany, Andre M; Roberts, Jason J; Sims, Michelle; Dunn, Daniel C; Best, Benjamin D; Tremblay, Yann; Kappes, Michelle A; Halpin, Patrick N; Costa, Daniel P; Crowder, Larry B

    2011-11-07

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.

  5. Dynamic habitat models: using telemetry data to project fisheries bycatch

    PubMed Central

    Žydelis, Ramūnas; Lewison, Rebecca L.; Shaffer, Scott A.; Moore, Jeffrey E.; Boustany, Andre M.; Roberts, Jason J.; Sims, Michelle; Dunn, Daniel C.; Best, Benjamin D.; Tremblay, Yann; Kappes, Michelle A.; Halpin, Patrick N.; Costa, Daniel P.; Crowder, Larry B.

    2011-01-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  6. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals.

    PubMed

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; King, Sarah R B; Di Marco, Moreno; Rondinini, Carlo; Boitani, Luigi

    2017-07-18

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world's terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world's terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation.

  7. Habitats and Natural Areas--Some Applications of the 1995-96 Forest Survey of Arkansas on the Conservation of Biodiversity in Arkansas

    Treesearch

    Douglas Zollner

    2001-01-01

    The conservation status and trend of rare species groups should be better in landscapes with more forest cover due to the presence of quantitatively more habitat, and in the case of aquatic species,qualitatively better habitat. Arkansas provides habitat for 97 species of plants and animals considered critically imperiled globally or imperiled globally.T hese 97 species...

  8. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter…

  9. Forest habitat types of Montana

    Treesearch

    Robert D. Pfister; Bernard L. Kovalchik; Stephen F. Arno; Richard C. Presby

    1977-01-01

    A land-classification system based upon potential natural vegetation is presented for the forests of Montana. It is based on an intensive 4-year study and reconnaissance sampling of about 1,500 stands. A hierarchical classification of forest sites was developed using the habitat type concept. A total of 9 climax series, 64 habitat types, and 37 additional phases of...

  10. Habitat modeling for biodiversity conservation.

    Treesearch

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  11. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter…

  12. Food technology in space habitats

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  13. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  14. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  15. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement.

    PubMed

    Strandburg-Peshkin, Ariana; Farine, Damien R; Crofoot, Margaret C; Couzin, Iain D

    2017-01-31

    For group-living animals traveling through heterogeneous landscapes, collective movement can be influenced by both habitat structure and social interactions. Yet research in collective behavior has largely neglected habitat influences on movement. Here we integrate simultaneous, high-resolution, tracking of wild baboons within a troop with a 3-dimensional reconstruction of their habitat to identify key drivers of baboon movement. A previously unexplored social influence - baboons' preference for locations that other troop members have recently traversed - is the most important predictor of individual movement decisions. Habitat is shown to influence movement over multiple spatial scales, from long-range attraction and repulsion from the troop's sleeping site, to relatively local influences including road-following and a short-range avoidance of dense vegetation. Scaling to the collective level reveals a clear association between habitat features and the emergent structure of the group, highlighting the importance of habitat heterogeneity in shaping group coordination.

  16. How forest marsupials are affected by habitat degradation and fragmentation? A meta-analysis.

    PubMed

    Fontúrbel, Francisco E; Candia, Alina B; Salazar, Daniela A; Malebrán, Javiera; González-Browne, Catalina; Botto-Mahan, Carezza

    2014-07-01

    Habitat fragmentation and degradation are important biodiversity change drivers worldwide. Their effects have been described for many animal groups, but little is known about marsupials. We conducted a meta-analysis aiming to evaluate the actual effects of habitat fragmentation and degradation on forest marsupials. From a literature survey, we obtained 85 case studies reporting disturbance comparisons. We found a negative overall effect, as well as a negative effect for habitat fragmentation, but not for habitat degradation. Marsupials from Oceania were negatively affected by habitat disturbance, whereas there was no effect for those from South America. Arboreal marsupials were negatively affected, whereas terrestrial marsupials did not. Species from the families Dasyuridae (Antechinus spp.) and Microbiotheriidae (Dromiciops gliroides) showed to be sensitive to habitat disturbance.

  17. Freshwater Marsh. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview describes how the freshwater marsh is an important natural resource for plant, animal, and human populations and how the destruction of marshes causes…

  18. Animal models of erectile dysfunction.

    PubMed

    Kapoor, Mandeep Singh; Khan, Samsroz Ahmad; Gupta, Sanjay Kumar; Choudhary, Rajesh; Bodakhe, Surendra H

    2015-01-01

    Erectile dysfunction (ED) is a prevalent male sexual dysfunction with profound adverse effects on the physical and the psychosocial health of men and, subsequently, on their partners. The expanded use of various types of rodent models has produced some advances in the study of ED, and neurophysiological studies using various animal models have provided important insights into human sexual dysfunction. At present, animal models play a key role in exploring and screening novel drugs designed to treat ED.

  19. The laboratory animal veterinarian: more than just a mouse doctor.

    PubMed

    Alvarado, Cynthia G; Dixon, Lonny M

    2013-01-01

    Use of animals in research is strictly regulated by federal laws that define how the animals can be humanely housed, studied, and sold. Veterinary care for these animals is also required. Laboratory animal veterinarians serve as a unique bridge between the humane use of laboratory animals and the advancement of scientific and medical knowledge.

  20. Foraging behaviour of the root vole Microtus oeconomus in fragmented habitats.

    PubMed

    Hovland, Nina; Andreassen, Harry P; Ims, Rolf A

    1999-11-01

    The effect of habitat fragmentation on spatial foraging behaviour in the root vole Microtus oeconomus was investigated in seven experimental populations. Four of the populations were established in large, continuous blocks (30 × 95 m) of meadow habitat (treatment plots), whereas the three remaining populations had six small rectangular habitat fragments (30 × 7.5 m) with variable inter-fragment distances (control plots). Both the small habitat fragments and the large continuous habitat were embedded in a non-habitat matrix area which was regularly mowed. Half-way through the study period, the continuous habitat in treatment plots was destroyed by mowing to give a configuration identical to the control plots. Dyed bait placed at the edges and in the interior of habitat fragments as well as in the matrix area was used to reveal differential use of these areas for foraging. Animals in the small-fragment plots fed more than expected along the edges, while edges were used according to availability in the large blocks of continuous habitat. In the fragmented plots, the frequency of foraging in the matrix decreased with increasing distance to the fragment border and with increasing inter-fragment distances. Furthermore, the frequency of use of more than one habitat fragment in individual foraging ranges decreased with increasing inter-fragment distances. Reproductively inactive animals of both sexes fed more often along habitat edges than reproductively active animals. Reproductively active females fed exclusively in one habitat fragment, whereas inactive animals and especially reproductively active males frequently included more than one fragment in their foraging ranges. The only effect of habitat destruction was less foraging in the matrix habitat in the post-destruction treatment plots compared to the permanently fragmented control plots. This was probably an effect of different matrix quality. Root voles in these experimental populations forage in edge

  1. Animal Drug Safety FAQs

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Frequently Asked Questions Animal Drug Safety Frequently Asked Questions Share Tweet Linkedin ...

  2. Habitat Suitability Index Models: Baird's sparrow

    USGS Publications Warehouse

    Sousa, Patrick J.; McDonal, W. Neil

    1983-01-01

    A review and synthesis of existing information were used to develop a habitat model for Baird's sparrow. The model is scaled to produce an index of suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for Baird's sparrow habitat in the Northern Great Plains. Habitat suitability indices are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  3. Habitat Suitability Index Models: Downy woodpecker

    USGS Publications Warehouse

    Schroeder, Richard L.

    1983-01-01

    A review and synthesis of existing information was used to develop a habitat model for the downy woodpecker (Picoides eubescens). The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat) for areas of the continental United States. Habitat suitability indexes are designed for use with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  4. Habitat Suitability Index Models: Pileated woodpecker

    USGS Publications Warehouse

    Schroeder, Richard L.

    1983-01-01

    A review and synthesis of existing information was used to develop a habitat model for the pileated woodpecker (Dryocopus pileatus). The model is scaled to produce an index of habitat suitability between 0 (unsuitable habitat) and 1 (optimally suitable habitat) for areas of the continental United States. Habitat suitability indexes are designed for use.with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  5. Habitat Suitability Index Models: Longnose dace

    USGS Publications Warehouse

    Edwards, Elizabeth A.; Li, Hiram; Schreck, Carl B.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for longnose dace (Rhinichthys cataractae), a freshwater fish. The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for freshwater, marine and estuarine areas of the continental United States. Habitat suitability indexes (HSI's) are designed for use with the habitat evaluation procedures developed by the U.S. Fish and Wildlife Service.

  6. Animal papillomaviruses.

    PubMed

    Rector, Annabel; Van Ranst, Marc

    2013-10-01

    We provide an overview of the host range, taxonomic classification and genomic diversity of animal papillomaviruses. The complete genomes of 112 non-human papillomavirus types, recovered from 54 different host species, are currently available in GenBank. The recent characterizations of reptilian papillomaviruses extend the host range of the Papillomaviridae to include all amniotes. Although the genetically diverse papillomaviruses have a highly conserved genomic lay-out, deviations from this prototypic genome organization are observed in several animal papillomaviruses, and only the core ORFs E1, E2, L2 and L1 are present in all characterized papillomavirus genomes. The discovery of papilloma-polyoma hybrids BPCV1 and BPCV2, containing a papillomaviral late region but an early region encoding typical polyomaviral nonstructural proteins, and the detection of recombination breakpoints between the early and late coding regions of cetacean papillomaviruses, could indicate that early and late gene cassettes of papillomaviruses are relatively independent entities that can be interchanged by recombination. © 2013 Elsevier Inc. All rights reserved.

  7. AGATE animation - business theme

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Business jet 4 of 6. Advanced General Aviation Technology Experiment (AGATE). The AGATE program is complimented by a NASA Lewis-led program to develop safe, smooth, quiet and affordable propulsion systems for future four-to-six-seat general aviation airplanes. The General Aviation Propulsion (GAP) program is developing diesel prop and jet engines to be flight demonstrated at the year 2000 EAA AirVenture Air Show & Convention in Oshkosh, Wisc. Commericially produced engines based on these demonstrator engines and their manufacturing technologies will soon follow. Image from AGATE 'business jet' video animation.

  8. Types of habitat in the Universe

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2014-04-01

    From a biological point of view, all environments in the Universe can be categorized into one of three types: uninhabitable, uninhabited habitat or inhabited habitat. This paper describes and defines different habitat types in the Universe with a special focus on environments not usually encountered on the Earth, but which might be common on other planetary bodies. They include uninhabited habitats, subtypes of which are sterile habitats and organic-free habitats. Examples of the different types of environments are provided with reference to the Eyjafjallajökull, Iceland. These habitat types are used to identify testable hypotheses on the abundance of different habitats and the distribution of life in the Universe.

  9. Habitat Suitability Index Models: Yellow perch

    USGS Publications Warehouse

    Krieger, Douglas A.; Terrell, James W.; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for yellow perch (Perca flavescens). The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for riverine, lacustrine, and palustrine habitat in the 48 contiguous United States. Habitat Suitability Indexes (HSI's) are designed for use with the Habitat Evaluation Procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of yellow perch habitat.

  10. Animal migration and infectious disease risk.

    PubMed

    Altizer, Sonia; Bartel, Rebecca; Han, Barbara A

    2011-01-21

    Animal migrations are often spectacular, and migratory species harbor zoonotic pathogens of importance to humans. Animal migrations are expected to enhance the global spread of pathogens and facilitate cross-species transmission. This does happen, but new research has also shown that migration allows hosts to escape from infected habitats, reduces disease levels when infected animals do not migrate successfully, and may lead to the evolution of less-virulent pathogens. Migratory demands can also reduce immune function, with consequences for host susceptibility and mortality. Studies of pathogen dynamics in migratory species and how these will respond to global change are urgently needed to predict future disease risks for wildlife and humans alike.

  11. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  12. Lied Animal Shelter Animal campus Renewable Energy Demonstration Project

    SciTech Connect

    Randy Spitzmesser, AIA

    2005-11-22

    The Animal Shelter campus plan includes a new adoption center coupled with a dog adoption park, a wellness/veterinary technician education center, a show arena, and an addition to the existing shelter that will accommodate all animal control and sheltering for the Las Vegas Valley. The new facility will provide a sophisticated and innovative presentation of the animals to be adopted in an attempt to improve the public's perception of shelter animals. Additionally, the Regional Animal Campus will be a ''green building'', embodying a design intent on balancing environmental responsiveness, resource efficiency and cultural and community sensitivity. Designing an energy-efficient building helps reduce pollution from burning fossil fuels, reduce disturbance of natural habitats for the harvesting of resources and minimizes global warming. The project will be a leader in the use of renewable energy by relying on photovoltaic panels, wind turbines, and solar collectors to produce a portion of the project's energy needs The building will operate more efficiently in comparison to a typical shelter through the use of monitoring and specialized cooling/heating equipment. Windows bringing in natural daylight will reduce the center's demand for electricity.

  13. Space habitat contamination model

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1990-01-01

    When one considers the missions that are involved in Space Exploration Initiative (SEI), a continuous Lunar Base at which astronauts will perform scientific experiments as well as being the center for Lunar resource exploitation, a human visit to the surface of Mars, and, later, the development of a Mars base, one recognizes that we have entered a new realm of space exploration activity. During the SEI era, human beings who are involved in such missions will be away from Earth for extended periods of time, even for years. For example, the classical Hohmann transfer round trip mission to Mars would involve a flight of 31 months, including the stay time in the vicinity of Mars. Of course, other Mars trips such as the Venus Fly-By mission (22 months) and the Mars Sprint mission (15 months) pose much less taxing problems, but still problems which put human space presence in a domain where human survival has not yet been tested and thoroughly understood. Humans have never before been placed into an isolated, low-gravity, hermetically sealed, contaminant-prone environment for periods well in excess of one year and then been expected to function normally upon return to Earth. This presentation develops a systems model to help analyze the space habitat containment growth problem and to indicate the thresholds of astronaut risk, astronaut operational impairment, and methods of risk mitigation. The model inputs were discussed with toxicology experts at the University of Colorado Health Services Center and the University of Rochester.

  14. Shifting Paradigms: A New Look at Animals in Classrooms.

    ERIC Educational Resources Information Center

    Huddart, Stephen; Naherniak, Craig

    1996-01-01

    Cites the benefits of having students care for an animal in the classroom; offers strategies for teaching students the proper care and treatment of animals; and provides guidelines for choosing the right classroom pet and instructions for building a small habitat. Describes a teacher's experience in using a classroom pet to help students learn…

  15. Animal research on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.; Arno, R. D.; Corbin, S. D.

    1987-01-01

    The need for in-depth, long- and short-term animal experimentation in space to qualify man for long-duration space missions, and to study the effects of the absence and presence of Earth's gravity and of heavy particle radiation on the development and functioning of vertebrates is described. The major facilities required for these investigations and to be installed on the Space Station are: modular habitats for holding rodents and small primates in full bioisolation; a habitat holding facility; 1.8 and 4.0 m dia centrifuges; a multipurpose workbench; and a cage cleaner/disposal system. The design concepts, functions, and characteristics of these facilities are described.

  16. Animal research on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.; Arno, R. D.; Corbin, S. D.

    1987-01-01

    The need for in-depth, long- and short-term animal experimentation in space to qualify man for long-duration space missions, and to study the effects of the absence and presence of Earth's gravity and of heavy particle radiation on the development and functioning of vertebrates is described. The major facilities required for these investigations and to be installed on the Space Station are: modular habitats for holding rodents and small primates in full bioisolation; a habitat holding facility; 1.8 and 4.0 m dia centrifuges; a multipurpose workbench; and a cage cleaner/disposal system. The design concepts, functions, and characteristics of these facilities are described.

  17. Research ethics in animal models.

    PubMed

    Miziara, Ivan Dieb; Magalhães, Ana Tereza de Matos; Santos, Maruska d'Aparecida; Gomes, Erika Ferreira; Oliveira, Reinaldo Ayer de

    2012-04-01

    The use of animals in scientific experiments has been described since the fifth century BC. A number of scientific advances in health are attributed to animal models. The issue of the moral status of animals has always been debated. This article aims to review and to present a historical summary of the current laws, to guide researchers who wish to use animal models in otolaryngology research. Research on the medline database. For many years there were no laws ruling the use of animals in scientific experimentation in Brazil. Standards set by national and international organizations were followed. Recently, Law No. 11.794/08 established procedures for the scientific use of animals. Studies in otolaryngology have used the larynxes of rabbits, pigs, dogs, guinea pigs (Cavia porcellus), and mice. There were also studies comparing rabbits, rats, and dogs, rhinoplasty on rabbits, and inner ear studies on rats and guinea pigs (albino). The researchers involved in scientific work with animals should know the principles of Law 11.794/08 and investigate what animals are appropriate for each area of study in their models. Otolaryngologists, especially those dedicated to research, need to be mindful of the ethical rules regarding the use of animals in their studies.

  18. [Ethical issue in animal experimentation].

    PubMed

    Parodi, André-Laurent

    2009-11-01

    In the 1970s, under pressure from certain sections of society and thanks to initiatives by several scientific research teams, committees charged with improving the conditions of laboratory animals started to be created, first in the United States and subsequently in Europe. This led to the development of an ethical approach to animal experimentation, taking into account new scientific advances. In addition to the legislation designed to provide a legal framework for animal experimentation and to avoid abuses, this ethical approach, based on the concept that animals are sentient beings, encourages greater respect of laboratory animals and the implementation of measures designed to reduce their suffering. Now, all animal experiments must first receive ethical approval--from in-house committees in the private sector and from regional committees for public institutions. Very recently, under the impetus of the French ministries of research and agriculture, the National committee for ethical animal experimentation published a national ethical charter on animal experimentation, setting the basis for responsible use of animals for scientific research and providing guidelines for the composition and functioning of ethics committees. Inspired by the scientific community itself this ethical standardization should help to assuage--but not eliminate--the reticence and hostility expressed by several sections of society.

  19. Home ranges, habitat and body mass: simple correlates of home range size in ungulates

    PubMed Central

    Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik

    2016-01-01

    The spatial scale of animal space use, e.g. measured as individual home range size, is a key trait with important implications for ecological and evolutionary processes as well as management and conservation of populations and ecosystems. Explaining variation in home range size has therefore received great attention in ecological research. However, few studies have examined multiple hypotheses simultaneously, which is important provided the complex interactions between life history, social system and behaviour. Here, we review previous studies on home range size in ungulates, supplementing with a meta-analysis, to assess how differences in habitat use and species characteristics affect the relationship between body mass and home range size. Habitat type was the main factor explaining interspecific differences in home range size after accounting for species body mass and group size. Species using open habitats had larger home ranges for a given body mass than species using closed habitats, whereas species in open habitats showed a much weaker allometric relationship compared with species living in closed habitats. We found no support for relationships between home range size and species diet or mating system, or any sexual differences. These patterns suggest that the spatial scale of animal movement mainly is a combined effect of body mass, group size and the landscape structure. Accordingly, landscape management must acknowledge the influence of spatial distribution of habitat types on animal behaviour to ensure natural processes affecting demography and viability of ungulate populations. PMID:28003441

  20. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird.

    PubMed Central

    Norris, D. Ryan; Marra, Peter P.; Kyser, T. Kurt; Sherry, Thomas W.; Ratcliffe, Laurene M.

    2004-01-01

    Identifying the factors that control population dynamics in migratory animals has been constrained by our inability to track individuals throughout the annual cycle. Using stable carbon isotopes, we show that the reproductive success of a long-distance migratory bird is influenced by the quality of habitat located thousands of kilometres away on tropical wintering grounds. For male American redstarts (Setophaga ruticilla), winter habitat quality influenced arrival date on the breeding grounds, which in turn affected key variables associated with reproduction, including the number of young fledged. Based on a winter-habitat model, females occupying high-quality winter habitat were predicted to produce more than two additional young and to fledge offspring up to a month earlier compared with females wintering in poor-quality habitat. Differences of this magnitude are highly important considering redstarts are single brooded, lay clutches of only three to five eggs and spend only two-and-a-half months on the breeding grounds. Results from this study indicate the importance of understanding how periods of the annual cycle interact for migratory animals. Continued loss of tropical wintering habitat could have negative effects on migratory populations in the following breeding season, minimizing density-dependent effects on the breeding grounds and leading to further population declines. If conservation efforts are to be successful, strategies must incorporate measures to protect all the habitats used during the entire annual cycle of migratory animals. PMID:15002772