Science.gov

Sample records for advanced applications including

  1. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  2. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  3. New advancements in 793 nm fiber-coupled modules for Th fiber laser pumping, including packages optimized for low SWaP applications

    NASA Astrophysics Data System (ADS)

    Ebert, Chris; Guiney, Tina; Irwin, David; Patterson, Steve

    2016-05-01

    Targeted at the 793nm absorption band, DILAS Diode Laser, Inc. offers a range of products specifically designed for Thulium fiber laser pumping, spanning from 12 W to <300W of pump power and coupled into fiber sizes starting at 105um and upwards. A variety of different diode architectures are utilized, ranging from single-emitters, conduction-cooled bars, and DILAS's T-bar structure extended to the 793nm range, resulting in a wide variety of power levels and packaging options to support different applications. As IRCM for airborne platforms is a major application for Tm fiber lasers, packages optimized for low SWaP will be presented, which utilize a combination of the T-bar structure and macrochannel coolers specifically designed for compact, lightweight applications. Examples and results of Tm fiber lasers pumped using DILAS diodes will also be presented and discussed.

  4. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  5. Recent progress and advances in iterative software (including parallel aspects)

    SciTech Connect

    Carey, G.; Young, D.M.; Kincaid, D.

    1994-12-31

    The purpose of the workshop is to provide a forum for discussion of the current state of iterative software packages. Of particular interest is software for large scale engineering and scientific applications, especially for distributed parallel systems. However, the authors will also review the state of software development for conventional architectures. This workshop will complement the other proposed workshops on iterative BLAS kernels and applications. The format for the workshop is as follows: To provide some structure, there will be brief presentations, each of less than five minutes duration and dealing with specific facets of the subject. These will be designed to focus the discussion and to stimulate an exchange with the participants. Issues to be covered include: The evolution of iterative packages, current state of the art, the parallel computing challenge, applications viewpoint, standards, and future directions and open problems.

  6. Advanced energy storage for space applications: A follow-up

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  7. Nanobiocatalyst advancements and bioprocessing applications

    PubMed Central

    Misson, Mailin; Zhang, Hu; Jin, Bo

    2015-01-01

    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation. PMID:25392397

  8. Advances in pleural disease management including updated procedural coding.

    PubMed

    Haas, Andrew R; Sterman, Daniel H

    2014-08-01

    Over 1.5 million pleural effusions occur in the United States every year as a consequence of a variety of inflammatory, infectious, and malignant conditions. Although rarely fatal in isolation, pleural effusions are often a marker of a serious underlying medical condition and contribute to significant patient morbidity, quality-of-life reduction, and mortality. Pleural effusion management centers on pleural fluid drainage to relieve symptoms and to investigate pleural fluid accumulation etiology. Many recent studies have demonstrated important advances in pleural disease management approaches for a variety of pleural fluid etiologies, including malignant pleural effusion, complicated parapneumonic effusion and empyema, and chest tube size. The last decade has seen greater implementation of real-time imaging assistance for pleural effusion management and increasing use of smaller bore percutaneous chest tubes. This article will briefly review recent pleural effusion management literature and update the latest changes in common procedural terminology billing codes as reflected in the changing landscape of imaging use and percutaneous approaches to pleural disease management.

  9. Advances and Applications for Geodesy

    NASA Astrophysics Data System (ADS)

    Calais, Eric; Schwartz, Susan; Arrowsmith, Ramon

    2010-07-01

    2010 UNAVCO Science Workshop; Boulder, Colorado, 8-11 March 2010; Geodesy's reach has expanded rapidly in recent years as EarthScope and international data sets have grown and new disciplinary applications have emerged. To explore advances in geodesy and its applications in geoscience research and education, approximately 170 scientists (representing 11 countries: Colombia, Denmark, Ecuador, France, Japan, Lebanon, Mexico, New Zealand, Russia, Spain, and the United States), including 15 students, gathered at the 2010 UNAVCO Science Workshop in Colorado. UNAVCO is a nonprofit membership-governed consortium that facilitates geoscience research and education using geodesy. Plenary sessions integrated discovery with broad impact and viewed geodesy through three lenses: (1) pixel-by-pixel geodetic imaging where various remote sensing methodologies are revealing fine-scale changes in the near-surface environment and the geologic processes responsible for them; (2) epoch-by-epoch deformation time series measured in seconds to millennia, which are uncovering ephemeral processes associated with the earthquake cycle and glacial and groundwater flow; and (3) emerging observational powers from advancing geodetic technologies. A fourth plenary session dealt with geodesy and water, a new strategic focus on the hydrosphere, cryosphere, and changing climate. Keynotes included a historical perspective by Bernard Minster (Scripps Institution of Oceanography) on space geodesy and its applications to geophysics, and a summary talk by Susan Eriksson (UNAVCO) on the successes of Research Experience in Solid Earth Science for Students (RESESS) and its 5-year follow-on with opportunities to mentor the next generation of geoscientists through cultivation of diversity.

  10. Advances in lidar applications

    NASA Astrophysics Data System (ADS)

    Lewandowski, Piotr Andrzej

    Quantitative laser remote sensing (lidar) measurements have always posed a challenge for the research community. The complexity of the data inversion and the instrumentation itself makes lidar results difficult to interpret. This dissertation presents a suite of 3 elastic lidar experiments. The goal of these studies was to quantitatively approach atmospheric physical phenomena such as rainfall (chapter 3), a distribution of concentration of particulates in Mexico City (chapter 4) and emission rates and emission factors from an agricultural facility in Iowa (chapter 5). The studies demonstrate that elastic lidar measurements are possible not only in a qualitative sense but also in a quantitative sense. The lidar study of rainfall was intended to provide rainfall data in small spatial and temporal scales (1.5m and 1s resolution). The two levels of lidar inversion algorithms allowed the calculation of rainfall rates in small scales. The problem of the distribution of particles over Mexico City required mobile lidar measurements. The elastic lidar data were successfully inverted to extinction coefficients which were then combined with aerosol size distribution. As a result, a spatial distribution of particulate concentration was created to illustrate the transport processes and intensity of Mexico City pollution. The measurements of particulate emission fluxes from a livestock facility involved a stationary scanning elastic lidar, in-situ aerosol size distribution measurements and wind measurements. The data from the 3 independent measurement platforms combined together resulted in emission rates and emission factors. The results from this experiment demonstrated that the new lidar approach is an adequate tool for measurement of aerosol emissions from livestock production facilities. The studies presented in the dissertation show quantitative lidar measurements in combination with other instruments measurements. This approach significantly extends the applications of

  11. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  12. Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  13. Advanced materials for space applications

    NASA Astrophysics Data System (ADS)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  14. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  15. Enzyme Mimics: Advances and Applications.

    PubMed

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. PMID:27062126

  16. 30 CFR 250.1007 - What to include in applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pipelines and Pipeline Rights-of-Way § 250.1007 What to include in applications. (a) Applications to install a lease term pipeline or for a pipeline right-of-way grant must be submitted in quadruplicate to the... pipeline. Each application must include the following: (1) Plat(s) drawn to a scale specified by...

  17. New Advanced Dielectric Materials for Accelerator Applications

    SciTech Connect

    Kanareykin, A.

    2010-11-04

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  18. New Advanced Dielectric Materials for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Kanareykin, A.

    2010-11-01

    We present our recent results on the development and experimental testing of advanced dielectric materials that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications. The materials discussed here include low loss microwave ceramics, quartz, Chemical Vapor Deposition diamonds and nonlinear Barium Strontium Titanate based ferroelectrics.

  19. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts were evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy materials are now under development.

  20. Advanced textile applications for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Shah, Bharat M.; Shukla, Jay G.

    1992-01-01

    Advanced composite primary structural concepts have been evaluated for low cost, damage tolerant structures. Development of advanced textile preforms for fuselage structural applications with resin transfer molding and powder epoxy material is now under development.

  1. 37 CFR 2.86 - Application may include multiple classes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... multiple classes. 2.86 Section 2.86 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK... include multiple classes. (a) In a single application, an applicant may apply to register the same mark for goods and/or services in multiple classes. The applicant must: (1) Specifically identify the...

  2. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  4. Towards advanced OCT clinical applications

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail; Panteleeva, Olga; Agrba, Pavel; Pasukhin, Mikhail; Sergeeva, Ekaterina; Plankina, Elena; Dudenkova, Varvara; Gubarkova, Ekaterina; Kiseleva, Elena; Gladkova, Natalia; Shakhova, Natalia; Vitkin, Alex

    2015-07-01

    In this paper we report on our recent achievement in application of conventional and cross-polarization OCT (CP OCT) modalities for in vivo clinical diagnostics in different medical areas including gynecology, dermatology, and stomatology. In gynecology, CP OCT was employed for diagnosing fallopian tubes and cervix; in dermatology OCT for monitoring of treatment of psoriasis, scleroderma and atopic dermatitis; and in stomatology for diagnosis of oral diseases. For all considered application, we propose and develop different image processing methods which enhance the diagnostic value of the technique. In particular, we use histogram analysis, Fourier analysis and neural networks, thus calculating different tissue characteristics as revealed by OCT's polarization evolution. These approaches enable improved OCT image quantification and increase its resultant diagnostic accuracy.

  5. Cloning pigs: advances and applications.

    PubMed

    Polejaeva, I A

    2001-01-01

    Although mouse embryonic stem cells have been used widely for over a decade as an important tool for introducing precise genetic modification into the genome, demonstrating the great value of this technology in a range of biomedical applications, similar technology does not exist for domestic animals. However, the development of somatic cell nuclear transfer has bypassed the need for embryonic stem cells from livestock. The production of offspring from differentiated cell nuclei provides information and opportunities in a number of areas including cellular differentiation, early development and ageing. However, the primary significance of cloning is probably in the opportunities that this technology brings to genetic manipulation. Potential applications of gene targeting in livestock species are described with particular emphasis on the generation of pigs that can be used for xenotransplantation, and the production of improved models for human physiology and disease. The development of techniques for somatic cell nuclear transfer in pigs and the challenges associated with this technology are also reviewed.

  6. Advanced Applications of RNA Sequencing and Challenges.

    PubMed

    Han, Yixing; Gao, Shouguo; Muegge, Kathrin; Zhang, Wei; Zhou, Bing

    2015-01-01

    Next-generation sequencing technologies have revolutionarily advanced sequence-based research with the advantages of high-throughput, high-sensitivity, and high-speed. RNA-seq is now being used widely for uncovering multiple facets of transcriptome to facilitate the biological applications. However, the large-scale data analyses associated with RNA-seq harbors challenges. In this study, we present a detailed overview of the applications of this technology and the challenges that need to be addressed, including data preprocessing, differential gene expression analysis, alternative splicing analysis, variants detection and allele-specific expression, pathway analysis, co-expression network analysis, and applications combining various experimental procedures beyond the achievements that have been made. Specifically, we discuss essential principles of computational methods that are required to meet the key challenges of the RNA-seq data analyses, development of various bioinformatics tools, challenges associated with the RNA-seq applications, and examples that represent the advances made so far in the characterization of the transcriptome.

  7. Advanced Applications of RNA Sequencing and Challenges

    PubMed Central

    Han, Yixing; Gao, Shouguo; Muegge, Kathrin; Zhang, Wei; Zhou, Bing

    2015-01-01

    Next-generation sequencing technologies have revolutionarily advanced sequence-based research with the advantages of high-throughput, high-sensitivity, and high-speed. RNA-seq is now being used widely for uncovering multiple facets of transcriptome to facilitate the biological applications. However, the large-scale data analyses associated with RNA-seq harbors challenges. In this study, we present a detailed overview of the applications of this technology and the challenges that need to be addressed, including data preprocessing, differential gene expression analysis, alternative splicing analysis, variants detection and allele-specific expression, pathway analysis, co-expression network analysis, and applications combining various experimental procedures beyond the achievements that have been made. Specifically, we discuss essential principles of computational methods that are required to meet the key challenges of the RNA-seq data analyses, development of various bioinformatics tools, challenges associated with the RNA-seq applications, and examples that represent the advances made so far in the characterization of the transcriptome. PMID:26609224

  8. Advanced Energetics for Aeronautical Applications. Volume II

    NASA Technical Reports Server (NTRS)

    Alexander, David S.

    2005-01-01

    NASA has identified water vapor emission into the upper atmosphere from commercial transport aircraft, particularly as it relates to the formation of persistent contrails, as a potential environmental problem. Since 1999, MSE has been working with NASA-LaRC to investigate the concept of a transport-size emissionless aircraft fueled with liquid hydrogen combined with other possible breakthrough technologies. The goal of the project is to significantly advance air transportation in the next decade and beyond. The power and propulsion (P/P) system currently being studied would be based on hydrogen fuel cells (HFCs) powering electric motors, which drive fans for propulsion. The liquid water reaction product is retained onboard the aircraft until a flight mission is completed. As of now, NASA-LaRC and MSE have identified P/P system components that, according to the high-level analysis conducted to date, are light enough to make the emissionless aircraft concept feasible. Calculated maximum aircraft ranges (within a maximum weight constraint) and other performance predictions are included in this report. This report also includes current information on advanced energy-related technologies, which are still being researched, as well as breakthrough physics concepts that may be applicable for advanced energetics and aerospace propulsion in the future.

  9. Advanced science and applications space platform

    NASA Technical Reports Server (NTRS)

    White, J.; Runge, F. C.

    1981-01-01

    Requirements for and descriptions of the mission equipment, subsystems, configuration, utilities, and interfaces for an Advanced Science and Applications Space Platform (ASASP) are developed using large space structure technology. Structural requirements and attitude control system concepts are emphasized. To support the development of ASASP requirements, a mission was described that would satisfy the requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. Platform subsystems are defined which support the payload requirements and a physical platform concept is developed. Structural system requirements which include utilities accommodation, interface requirements, and platform strength and stiffness requirements are developed. An attitude control system concept is also described. The resultant ASASP is analyzed and technological developments deemed necessary in the area of large space systems are recommended.

  10. 34 CFR 636.10 - What must an application include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What must an application include? 636.10 Section 636.10 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM How Does One Apply for an Award? §...

  11. 34 CFR 636.10 - What must an application include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What must an application include? 636.10 Section 636.10 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM How Does One Apply for an Award? §...

  12. 34 CFR 636.10 - What must an application include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What must an application include? 636.10 Section 636.10 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM How Does One Apply for an Award? §...

  13. 34 CFR 636.10 - What must an application include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What must an application include? 636.10 Section 636.10 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM How Does One Apply for an Award? §...

  14. 34 CFR 636.10 - What must an application include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What must an application include? 636.10 Section 636.10 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION URBAN COMMUNITY SERVICE PROGRAM How Does One Apply for an Award? §...

  15. 30 CFR 250.1007 - What to include in applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Right-of-way grant applications must include an identification of the operator of the pipeline. Each... responsibility transfers between a producing operator and a transporting operator. (3) General information as follows: (i) Description of cathodic protection system. If pipeline anodes are to be used, specify...

  16. 30 CFR 250.1007 - What to include in applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Right-of-way grant applications must include an identification of the operator of the pipeline. Each... responsibility transfers between a producing operator and a transporting operator. (3) General information as follows: (i) Description of cathodic protection system. If pipeline anodes are to be used, specify...

  17. 30 CFR 250.1007 - What to include in applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Right-of-way grant applications must include an identification of the operator of the pipeline. Each... responsibility transfers between a producing operator and a transporting operator. (3) General information as follows: (i) Description of cathodic protection system. If pipeline anodes are to be used, specify...

  18. HIAD Advancements and Extension of Mission Applications

    NASA Technical Reports Server (NTRS)

    Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.

    2016-01-01

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate

  19. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  20. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  1. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  2. Advanced Stirling conversion systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1987-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar Distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. The National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) is conducting free-piston Stirling activities which are directed toward a dynamic power source for space applications. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear. Generic free-piston technology is currently being developed by LeRC for DOE/ORNL for use with a residential heat pump under an Interagency Agreement. Since 1983, the SP-100 Program (DOD/NASA/DOE) is developing dynamic power sources for space. Although both applications (heat pump and space power) appear to be quite different, their requirements complement each other. A cooperative Interagency Agreement (IAA) was signed in 1985 with NASA Lewis to provide technical management for an Advanced Stirling Conversion System (ASCS) for SNLA. Conceptual design(s) using a free-piston Stirling (FPSE), and a heat pipe will be discussed. The ASCS will be designed using technology which can reasonably be expected to be available in the 1980's.

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  4. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  5. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  6. Application development environment for advanced digital workstations

    NASA Astrophysics Data System (ADS)

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.

    1998-06-01

    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  8. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  9. Polymers as advanced materials for desiccant applications

    SciTech Connect

    Czanderna, A.W.

    1990-12-01

    This research is concerned with solid materials used as desiccants for desiccant cooling systems (DCSs) that process water vapor in an atmosphere to produce cooling. Background information includes an introduction to DCSs and the role of the desiccant as a system component. The water vapor sorption performance criteria used for screening the modified polymers prepared include the water sorption capacity from 5% to 80% relative humidity (R.H.), isotherm shape, and rate of adsorption and desorption. Measurements are presented for the sorption performance of modified polymeric advanced desiccant materials with the quartz crystal microbalance. Isotherms of polystyrene sulfonic acid (PSSA) taken over a 5-month period show that the material has a dramatic loss in capacity and that the isotherm shape is time dependent. The adsorption and desorption kinetics for PSSA and all the ionic salts of it studied are easily fast enough for commercial DCS applications with a wheel rotation speed of 6 min per revolution. Future activities for the project are addressed, and a 5-year summary of the project is included as Appendix A. 34 refs., 20 figs., 3 tabs.

  10. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  11. Survey of Advanced Applications Over ACTS

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; McMasters, Paul

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) system provided a national testbed that enabled advanced applications to be tested and demonstrated over a live satellite link. Of the applications that used ACTS. some offered unique advantages over current methods, while others simply could not be accommodated by conventional systems. The initial technical and experiments results of the program were reported at the 1995 ACTS Results Conference. in Cleveland, Ohio. Since then, the Experiments Program has involved 45 new experiments comprising 30 application experiments and 15 technology related experiments that took advantage of the advanced technologies and unique capabilities offered by ACTS. The experiments are categorized and quantified to show the organizational mix of the experiments program and relative usage of the satellite. Since paper length guidelines preclude each experiment from being individually reported, the application experiments and significant demonstrations are surveyed to show the breadth of the activities that have been supported. Experiments in a similar application category are collectively discussed, such as. telemedicine. or networking and protocol evaluation. Where available. experiment conclusions and impact are presented and references of results and experiment information are provided. The quantity and diversity of the experiments program demonstrated a variety of service areas for the next generation of commercially available, advanced satellite communications.

  12. Advances in artificial olfaction: sensors and applications.

    PubMed

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. PMID:24767451

  13. Advances in artificial olfaction: sensors and applications.

    PubMed

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned.

  14. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  15. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  16. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  17. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    SciTech Connect

    Unal, Cetin; Williams, Brian; Mc Clure, Patrick; Nelson, Ralph A

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  18. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  19. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  20. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  1. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  2. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  3. Spectrally Tunable Sources for Advanced Radiometric Applications.

    PubMed

    Brown, S W; Rice, J P; Neira, J E; Johnson, B C; Jackson, J D

    2006-01-01

    A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiometric, photometric and colorimetric applications. In essence, the programmable spectral source is a radiometric platform for advanced instrument characterization and calibration that can also serve as a basis for algorithm testing and instrument comparison.

  4. Environmental Applications of Biosurfactants: Recent Advances

    PubMed Central

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  5. Communication services for advanced network applications.

    SciTech Connect

    Bresnahan, J.; Foster, I.; Insley, J.; Toonen, B.; Tuecke, S.

    1999-06-10

    Advanced network applications such as remote instrument control, collaborative environments, and remote I/O are distinguished by traditional applications such as videoconferencing by their need to create multiple, heterogeneous flows with different characteristics. For example, a single application may require remote I/O for raw datasets, shared controls for a collaborative analysis system, streaming video for image rendering data, and audio for collaboration. Furthermore, each flow can have different requirements in terms of reliability, network quality of service, security, etc. They argue that new approaches to communication services, protocols, and network architecture are required both to provide high-level abstractions for common flow types and to support user-level management of flow creation and quality. They describe experiences with the development of such applications and communication services.

  6. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  7. Zebrafish Caudal Fin Angiogenesis Assay—Advanced Quantitative Assessment Including 3-Way Correlative Microscopy

    PubMed Central

    Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin

    2016-01-01

    Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851

  8. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    SciTech Connect

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-06-01

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within.

  9. 34 CFR 645.21 - What assurances must an applicant include in an application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What assurances must an applicant include in an application? 645.21 Section 645.21 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION UPWARD BOUND PROGRAM How Does One Apply for An Award? § 645.21 What assurances...

  10. 34 CFR 645.21 - What assurances must an applicant include in an application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What assurances must an applicant include in an application? 645.21 Section 645.21 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION UPWARD BOUND PROGRAM How Does...

  11. Neoclassical Transport Including Impurities and the Bootstrap Current in Advanced Helical Systems

    SciTech Connect

    Nishimura, Shin; Sugama, Hideo

    2004-07-15

    A recently developed method to calculate the neoclassical viscosity, diffusion, and current coefficients in general nonsymmetric toroidal plasmas by using the direct solution of the linearized drift kinetic equation with the pitch-angle-scattering collision operator is applied to impurity transport problems and bootstrap current calculations in stellarators. In this new method based on the basic idea of the so-called moment approach, the collisional momentum conservation is taken into account, and thus, it is applicable to the heat and particle diffusivity in advanced stellarators with quasi symmetry, and also to plasma flows currents, and viscosities in general nonsymmetric multispecies plasmas. In this paper, the impurity flow and the bootstrap current observed in the neoclassical internal transport barrier operation in the Compact Helical System are compared with theoretical calculations. Another topic is the benchmark test of existing analytical expressions for the bootstrap currents by comparing with numerically obtained current coefficients. The geometric factor, which is required for the current calculation based on the moment method, given by our new method is compared with these formulas.

  12. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  13. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  14. Recent advances in carbon nanodots: synthesis, properties and biomedical applications

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Han, Kun; Tang, Yuguo; Wang, Bidou; Lin, Tao; Cheng, Wenbo

    2015-01-01

    Herein, a mini review is presented concerning the most recent research progress of carbon nanodots, which have emerged as one of the most attractive photoluminescent materials. Different synthetic methodologies to achieve advanced functions and better photoluminescence performances are summarized, which are mainly divided into two classes: top-down and bottom-up. The inspiring properties, including photoluminescence emission, chemiluminescence, electrochemical luminescence, peroxidase-like activity and toxicity, are discussed. Moreover, the biomedical applications in biosensing, bioimaging and drug delivery are reviewed.

  15. Advanced neuroblastoma: improved response rate using a multiagent regimen (OPEC) including sequential cisplatin and VM-26.

    PubMed

    Shafford, E A; Rogers, D W; Pritchard, J

    1984-07-01

    Forty-two children, all over one year of age, were given vincristine, cyclophosphamide, and sequentially timed cisplatin and VM-26 (OPEC) or OPEC and doxorubicin (OPEC-D) as initial treatment for newly diagnosed stage III or IV neuroblastoma. Good partial response was achieved in 31 patients (74%) overall and in 28 (78%) of 36 patients whose treatment adhered to the chemotherapy protocol, compared with a 65% response rate achieved in a previous series of children treated with pulsed cyclophosphamide and vincristine with or without doxorubicin. Only six patients, including two of the six children whose treatment did not adhere to protocol, failed to respond, but there were five early deaths from treatment-related complications. Tumor response to OPEC, which was the less toxic of the two regimens, was at least as good as tumor response to OPEC-D. Cisplatin-induced morbidity was clinically significant in only one patient and was avoided in others by careful monitoring of glomerular filtration rate and hearing. Other centers should test the efficacy of OPEC or equivalent regimens in the treatment of advanced neuroblastoma. PMID:6539811

  16. Advanced Sensors and Applications Study (ASAS)

    NASA Technical Reports Server (NTRS)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  17. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  18. 12 CFR 950.2 - Authorization and application for advances; obligation to repay advances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Authorization and application for advances; obligation to repay advances. 950.2 Section 950.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK ASSETS AND OFF-BALANCE SHEET ITEMS ADVANCES Advances to Members § 950.2...

  19. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Astrophysics Data System (ADS)

    Ardema, Mark D.

    1995-09-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  20. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  1. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  2. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  4. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  5. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  6. Advances in the manufacturing, types, and applications of biosensors

    NASA Astrophysics Data System (ADS)

    Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.

    2007-12-01

    In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.

  7. New data evaluation procedure including advanced background subtraction for radiography using the example of insect mandibles

    NASA Astrophysics Data System (ADS)

    Mangold, Stefan; van de Kamp, Thomas; Steininger, Ralph

    2016-05-01

    The usefulness of full field transmission spectroscopy is shown using the example of mandible of the stick insect Peruphasma schultei. An advanced data evaluation tool chain with an energy drift correction and highly reproducible automatic background correction is presented. The results show significant difference between the top and the bottom of the mandible of an adult stick insect.

  8. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  9. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  10. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. PMID:27400217

  11. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed.

  12. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments...

  13. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments...

  14. 30 CFR 203.63 - Does my application have to include all leases in the field?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Expansion Projects § 203.63 Does my application have to include all leases in the field? (a) For... project or an expansion project, your application does not have to include all leases in the field....

  15. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema

    Tijana Rajh

    2016-07-12

    Dr. Rajh will present a general talk on nanotechnology – an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  16. Recent advances in the development and application of nanoelectrodes.

    PubMed

    Fan, Yunshan; Han, Chu; Zhang, Bo

    2016-10-01

    Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles. PMID:27510555

  17. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  18. Applications and Advances in Electronic-Nose Technologies

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690

  19. Feature-based tolerancing for advanced manufacturing applications

    SciTech Connect

    Brown, C.W.; Kirk, W.J. III; Simons, W.R.; Ward, R.C.; Brooks, S.L.

    1994-11-01

    A primary requirement for the successful deployment of advanced manufacturing applications is the need for a complete and accessible definition of the product. This product definition must not only provide an unambiguous description of a product`s nominal shape but must also contain complete tolerance specification and general property attributes. Likewise, the product definition`s geometry, topology, tolerance data, and modeler manipulative routines must be fully accessible through a robust application programmer interface. This paper describes a tolerancing capability using features that complements a geometric solid model with a representation of conventional and geometric tolerances and non-shape property attributes. This capability guarantees a complete and unambiguous definition of tolerances for manufacturing applications. An object-oriented analysis and design of the feature-based tolerance domain was performed. The design represents and relates tolerance features, tolerances, and datum reference frames. The design also incorporates operations that verify correctness and check for the completeness of the overall tolerance definition. The checking algorithm is based upon the notion of satisfying all of a feature`s toleranceable aspects. Benefits from the feature-based tolerance modeler include: advancing complete product definition initiatives, incorporating tolerances in product data exchange, and supplying computer-integrated manufacturing applications with tolerance information.

  20. Advancing Risk Assessment through the Application of Systems Toxicology.

    PubMed

    Sauer, John Michael; Kleensang, André; Peitsch, Manuel C; Hayes, A Wallace

    2016-01-01

    Risk assessment is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. Mechanistic approaches to risk assessment have been generally referred to as systems toxicology. Systems toxicology makes use of advanced analytical and computational tools to integrate classical toxicology and quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Three presentations including two case studies involving both in vitro and in vivo approaches described the current state of systems toxicology and the potential for its future application in chemical risk assessment. PMID:26977253

  1. Advancing Risk Assessment through the Application of Systems Toxicology

    PubMed Central

    Sauer, John Michael; Kleensang, André; Peitsch, Manuel C.; Hayes, A. Wallace

    2016-01-01

    Risk assessment is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. Mechanistic approaches to risk assessment have been generally referred to as systems toxicology. Systems toxicology makes use of advanced analytical and computational tools to integrate classical toxicology and quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Three presentations including two case studies involving both in vitro and in vivo approaches described the current state of systems toxicology and the potential for its future application in chemical risk assessment. PMID:26977253

  2. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Safonov, V.; Zykova, A.; Smolik, J.; Rogovska, R.; Donkov, N.; Goltsev, A.; Dubrava, T.; Rassokha, I.; Georgieva, V.

    2012-03-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  3. Applications of advanced diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Welch, W. Hudson; Morris, James E.; Feldman, Michael R.

    1993-01-01

    Digital Optics Corporation is a UNC-Charlotte spin-off company, established to transfer technology developed at UNC-Charlotte for the design and manufacture Computer Generated Holograms (CGH's) and to market products based on CGH technology. DOC acquired core technologies from UNC-Charlotte including: (1) a CGH encoding process that can provide holograms with extremely high diffraction efficiency; (2) a low cost, high precision CGH manufacturing process; and (3) extensive holographic and refractive element design capabilities for design and evaluation of complex optical systems. These technologies have been used to design and/or manufacture optical components for a variety of applications including: (1) generation of Spot arrays; (2) fiber optic coupling elements; (3) optical interconnects between VLSI chips within and between multichip modules; and (4) imaging systems for head-mounted displays (HMD's).

  4. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  5. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  6. 78 FR 40508 - Advanced Energy Industries, Inc., Including On-Site Leased Workers From Mid Oregon Personnel and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Employment and Training Administration Advanced Energy Industries, Inc., Including On-Site Leased Workers... Are Reported Through PV Powered, Currently Known as AE Solar Energy, Inc., Bend, Oregon; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade...

  7. 77 FR 4368 - Advanced Energy Industries, Inc., Including On-Site Leased Workers From Mid Oregon Personnel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... energy inverters. The notice was published in the Federal Register on December 13, 2011(76 FR 77556). At... Employment and Training Administration Advanced Energy Industries, Inc., Including On-Site Leased Workers... Through PV Powered, Currently Known as AE Solar Energy, Inc. Bend, OR; Amended Certification...

  8. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  9. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  10. 43 CFR 3273.15 - What must I include in my site license application?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... site license application must include: (a) A description of the boundaries of the land applied for, as... range, or by approved protraction surveys, if applicable; (b) The affected acreage; (c) The filing...

  11. 34 CFR 607.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... arrangement. (2) The application must include the names of each participating institution, the role of each... comprehensive development plan at a lower cost. (4) The name of the applicant for the group that is...

  12. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  13. Plan for advanced microelectronics processing technology application

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  14. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  15. [Development of advanced educational programs, including research programs, for undergraduate students in National Universities: the facts in 2010].

    PubMed

    Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa

    2012-01-01

    This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.

  16. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  17. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  18. Advanced Developments in Cyclic Polymers: Synthesis, Applications, and Perspectives

    PubMed Central

    Zhu, Yinghuai; Hosmane, Narayan S

    2015-01-01

    Due to the topological effect, cyclic polymers demonstrate different and unique physical and biological properties in comparison with linear counterparts having the same molecular-weight range. With advanced synthetic and analytic technologies, cyclic polymers with different topologies, e.g. multicyclic polymers, have been reported and well characterized. For example, various cyclic DNA and related structures, such as cyclic duplexes, have been prepared conveniently by click chemistry. These types of DNA have increased resistance to enzymatic degradation and have high thermodynamic stability, and thus, have potential therapeutic applications. In addition, cyclic polymers have also been used to prepare organic–inorganic hybrids for applications in catalysis, e.g. catalyst supports. Due to developments in synthetic technology, highly pure cyclic polymers could now be produced in large scale. Therefore, we anticipate discovering more applications in the near future. Despite their promise, cyclic polymers are still less explored than linear polymers like polyolefins and polycarbonates, which are widely used in daily life. Some critical issues, including controlling the molecular weight and finding suitable applications, remain big challenges in the cyclic-polymer field. This review briefly summarizes the commonly used synthetic methodologies and focuses more on the attractive functional materials and their biological properties and potential applications. PMID:26478835

  19. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  20. An advanced unmanned vehicle for remote applications

    SciTech Connect

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  1. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  2. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  3. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  4. Reliability and qualification of advanced microelectronics for space applications

    NASA Technical Reports Server (NTRS)

    Kayali, S.

    2003-01-01

    This paper provides a discussion of the subject and an approach to establish a reliability and qualification methodology to facilitate the utilization of state-of-the-art advanced microelectronic devices and structures in high reliability applications.

  5. Agricultural and environmental applications of biochar: Advances and barriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This summary chapter highlights the achieved advances in biochar research and the existing barriers to biochar application. Substantial research over the past decade on biochar production, characterization, and utilization has indicated that biochar serves as a promising agricultural and environment...

  6. Advanced remote handling for future applications: The advanced integrated maintenance system

    SciTech Connect

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System.

  7. Introduction to Natural Resources: Advanced Applications.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This guide, which is designed for use with student and teacher guides to a 10-unit secondary-level course in natural resources, contains a series of student supplements and advanced assignment and job sheets that provide students with additional opportunities to explore the following areas of natural resources and conservation education: outdoor…

  8. Advanced transponders for deep space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Kayalar, Selahattin; Yeh, Hen-Geul; Kyriacou, Charles

    1993-01-01

    Three architectures for advanced deep space transponders are proposed. The architectures possess various digital techniques such as fast Fourier transform (FFT), digital phase-locked loop (PLL), and digital sideband aided carrier detection with analog or digital turn-around ranging. Preliminary results on the design and conceptual implementation are presented. Modifications to the command detector unit (CDU) are also presented.

  9. Intelligent Facial Recognition Systems: Technology advancements for security applications

    SciTech Connect

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g., fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.

  10. 45 CFR 2522.570 - What information on performance measures must my grant application include?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false What information on performance measures must my grant application include? 2522.570 Section 2522.570 Public Welfare Regulations Relating to Public... information on performance measures must my grant application include? You must submit all of the following...

  11. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for a RAP? 270.110 Section 270.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Remedial Action Plans (RAPs) Applying for A Rap § 270.110 What must I include in my application for a RAP? You must include the following information in your application for a RAP: (a) The name, address,...

  12. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for a RAP? 270.110 Section 270.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Remedial Action Plans (RAPs) Applying for A Rap § 270.110 What must I include in my application for a RAP? You must include the following information in your application for a RAP: (a) The name, address,...

  13. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for a RAP? 270.110 Section 270.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Remedial Action Plans (RAPs) Applying for A Rap § 270.110 What must I include in my application for a RAP? You must include the following information in your application for a RAP: (a) The name, address,...

  14. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for a RAP? 270.110 Section 270.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Remedial Action Plans (RAPs) Applying for A Rap § 270.110 What must I include in my application for a RAP? You must include the following information in your application for a RAP: (a) The name, address,...

  15. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for a RAP? 270.110 Section 270.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Remedial Action Plans (RAPs) Applying for A Rap § 270.110 What must I include in my application for a RAP? You must include the following information in your application for a RAP: (a) The name, address,...

  16. 38 CFR 17.255 - Applications for grants for programs which include construction projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for programs which include construction projects. 17.255 Section 17.255 Pensions, Bonuses, and... Applications for grants for programs which include construction projects. In addition to the documents and... specifications for the construction project, and where applicable, sufficient explanations of...

  17. 38 CFR 17.255 - Applications for grants for programs which include construction projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for programs which include construction projects. 17.255 Section 17.255 Pensions, Bonuses, and... Applications for grants for programs which include construction projects. In addition to the documents and... specifications for the construction project, and where applicable, sufficient explanations of...

  18. 38 CFR 17.255 - Applications for grants for programs which include construction projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for programs which include construction projects. 17.255 Section 17.255 Pensions, Bonuses, and... Applications for grants for programs which include construction projects. In addition to the documents and... specifications for the construction project, and where applicable, sufficient explanations of...

  19. 38 CFR 17.255 - Applications for grants for programs which include construction projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for programs which include construction projects. 17.255 Section 17.255 Pensions, Bonuses, and... Applications for grants for programs which include construction projects. In addition to the documents and... specifications for the construction project, and where applicable, sufficient explanations of...

  20. 38 CFR 17.255 - Applications for grants for programs which include construction projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for programs which include construction projects. 17.255 Section 17.255 Pensions, Bonuses, and... Applications for grants for programs which include construction projects. In addition to the documents and... specifications for the construction project, and where applicable, sufficient explanations of...

  1. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  2. Recent advances in high-temperature superconductor wire fabrication and applications development

    SciTech Connect

    Hull, J.R.; Uherka, K.L.

    1992-08-01

    In this paper, recent advances in fabrication of HTS wires are summarized, and detailed discussion is provided for developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include: liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future include fault-current limiters and short transmission lines. 25 refs.

  3. Recent advances in high-temperature superconductor wire fabrication and applications development

    SciTech Connect

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of HTS wires are summarized, and detailed discussion is provided for developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include: liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future include fault-current limiters and short transmission lines. 25 refs.

  4. Applications for thermal NDT on advanced composites in aerospace structures

    NASA Astrophysics Data System (ADS)

    Baughman, Steve R.

    1998-03-01

    Following several years of investigating active thermal imaging techniques, Lockheed Martin Aeronautical Systems Company (LMASC) has introduced a portable, time-dependent thermography (TDT) system into the production inspection environment. Originally pursued as a rapid, non-contacting, nondestructive evaluation (NDE) tool for inspecting large surface areas, the TDT system has proven most useful as a rapid verification tool on advanced composite assemblies. TDT is a relatively new NDE methodology as compared to conventional ultrasonic and radiography testing. SEveral technical issues are being addressed as confidence in the system's capabilities increase. These include inspector training and certification, system sensitivity assessments, and test results interpretation. Starting in 1991, LMASC began a beta-site evaluation of a prototype TDT system developed by the Institute of Manufacturing Research at Wayne State University. This prototype was the forerunner of the current production system, which is offered commercially as a fully integrated thermal NDE system. Applications investigated to data include quality assurance of advanced aerospace composite structures/assemblies for disbonds/voids between skin and core. TDT has a number of advantages over traditional NDT methods. The process of acquiring thermal images is fast, and can decrease inspection time required to locate suspect areas. The system also holds promise for depot level inspections due to its portability. This paper describes a systematic approach to implementing TDT into the production inspection arena.

  5. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  6. Mechanochemical synthesis of advanced nanomaterials for catalytic applications.

    PubMed

    Xu, Chunping; De, Sudipta; Balu, Alina M; Ojeda, Manuel; Luque, Rafael

    2015-04-21

    Mechanochemical synthesis emerged as the most advantageous, environmentally sound alternative to traditional routes for nanomaterials preparation with outstanding properties for advanced applications. Featuring simplicity, high reproducibility, mild/short reaction conditions and often solvent-free condition (dry milling), mechanochemistry can offer remarkable possibilities in the development of advanced catalytically active materials. The proposed contribution has been aimed to provide a brief account of remarkable recent findings and advances in the mechanochemical synthesis of solid phase advanced catalysts as opposed to conventional systems. The role of mechanical energy in the synthesis of solid catalysts and their application is critically discussed as well as the influence of the synthesis procedure on the physicochemical properties and the efficiency of synthesized catalysts is studied. The main purpose of this feature article is to highlight the possibilities of mechanochemical protocols in (nano)materials engineering for catalytic applications.

  7. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  8. Marine biotechnology advances towards applications in new functional foods.

    PubMed

    Freitas, Ana C; Rodrigues, Dina; Rocha-Santos, Teresa A P; Gomes, Ana M P; Duarte, Armando C

    2012-01-01

    The marine ecosystem is still an untapped reservoir of biologically active compounds, which have considerable potential to supply food ingredients towards development of new functional foods. With the goal of increasing the availability and chemical diversity of functional marine ingredients, much research has been developed using biotechnological tools to discover and produce new compounds. This review summarizes the advances in biotechnological tools for production of functional ingredients, including enzymes, for the food industry. Tools involving biotechnological processes (bioreactors, fermentations, bioprocessing) and those involving genetic research designated as molecular biotechnology are discussed highlighting how they can be used in the controlled manipulation and utilization of marine organisms as sources of food ingredients, as well as discussing the most relevant shortcomings towards applications in new functional foods. PMID:22484300

  9. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  10. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-01-01

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions. PMID:27645770

  11. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  12. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  13. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  14. Power Calculations for General Linear Multivariate Models Including Repeated Measures Applications.

    PubMed

    Muller, Keith E; Lavange, Lisa M; Ramey, Sharon Landesman; Ramey, Craig T

    1992-12-01

    Recently developed methods for power analysis expand the options available for study design. We demonstrate how easily the methods can be applied by (1) reviewing their formulation and (2) describing their application in the preparation of a particular grant proposal. The focus is a complex but ubiquitous setting: repeated measures in a longitudinal study. Describing the development of the research proposal allows demonstrating the steps needed to conduct an effective power analysis. Discussion of the example also highlights issues that typically must be considered in designing a study. First, we discuss the motivation for using detailed power calculations, focusing on multivariate methods in particular. Second, we survey available methods for the general linear multivariate model (GLMM) with Gaussian errors and recommend those based on F approximations. The treatment includes coverage of the multivariate and univariate approaches to repeated measures, MANOVA, ANOVA, multivariate regression, and univariate regression. Third, we describe the design of the power analysis for the example, a longitudinal study of a child's intellectual performance as a function of mother's estimated verbal intelligence. Fourth, we present the results of the power calculations. Fifth, we evaluate the tradeoffs in using reduced designs and tests to simplify power calculations. Finally, we discuss the benefits and costs of power analysis in the practice of statistics. We make three recommendations: Align the design and hypothesis of the power analysis with the planned data analysis, as best as practical.Embed any power analysis in a defensible sensitivity analysis.Have the extent of the power analysis reflect the ethical, scientific, and monetary costs. We conclude that power analysis catalyzes the interaction of statisticians and subject matter specialists. Using the recent advances for power analysis in linear models can further invigorate the interaction. PMID:24790282

  15. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  16. Artificial placenta: Recent advances and potential clinical applications.

    PubMed

    Metelo-Coimbra, Catarina; Roncon-Albuquerque, Roberto

    2016-06-01

    Lung immaturity remains a major cause of morbidity and mortality in extremely premature infants. Positive-pressure mechanical ventilation, the method of choice for respiratory support in premature infants, frequently promotes by itself lung injury and a negative impact in the circulatory function. Extracorporeal lung support has been proposed for more than 50 years as a potential alternative to mechanical ventilation in the treatment of severe respiratory failure of extremely premature infants. Recent advances in this field included the development of miniaturized centrifugal pumps and polymethylpentene oxygenators, as well as the successful use of pump-assisted veno-venous extracorporeal gas exchange systems in experimental artificial placenta models. This review, which includes studies published from 1958 to 2015, presents an update on the artificial placenta concept and its potential clinical applications. Special focus will be devoted to the milestones achieved so far and to the limitations that must be overcome before its clinical application. Notwithstanding, the artificial placenta stands as a promising alternative to mechanical ventilation in extremely premature infants. Pediatr Pulmonol. 2016;51:643-649. © 2016 Wiley Periodicals, Inc.

  17. Protein Dielectrophoresis: Advances, Challenges and Applications

    PubMed Central

    Nakano, Asuka; Ros, Alexandra

    2013-01-01

    Protein dielectrophoresis (DEP) has the potential to play an important role as a manipulation, fractionation, pre-concentration and separation method in bioanalysis and as manipulation tool for nanotechnological applications. The first demonstrations of protein DEP have been reported almost twenty years ago. Since then various experimental realizations to manipulate proteins by DEP as well as more targeted applications employing protein DEP have been demonstrated. This review summarizes the experimental studies in the field of protein DEP trapping and focusing as well as specific applications in separation, molecular patterning, on bioprobes and biosensors. While a comprehensive theoretical model describing protein DEP is still lacking we also attempt to provide an overview of the factors influencing protein DEP and relate to currently available theoretical models. We further point out the variations in experimental conditions used in the past to study the somewhat 20 proteins as well as the implications of protein molecular structure to the DEP response. PMID:23400789

  18. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  19. 30 CFR 203.63 - Does my application have to include all leases in the field?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Royalty Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects § 203.63 Does my... relief for a development project or an expansion project, your application does not have to include...

  20. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  1. Next generation sequencing technology: Advances and applications.

    PubMed

    Buermans, H P J; den Dunnen, J T

    2014-10-01

    Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function.

  2. 30 CFR 203.63 - Does my application have to include all leases in the field?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the field? 203.63 Section 203.63 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Sulfur General § 203.63 Does my application have to include all leases in the field? (a) For authorized... the date of application, except as provided in paragraph (a)(3) of this section and § 203.64....

  3. 45 CFR 2522.570 - What information on performance measures must my grant application include?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPLICANTS Evaluation Requirements Performance Measures: Requirements and Procedures § 2522.570 What information on performance measures must my grant application include? You must submit all of the following as... 45 Public Welfare 4 2010-10-01 2010-10-01 false What information on performance measures must...

  4. Advances in laser diodes for pyrotechnic applications

    NASA Technical Reports Server (NTRS)

    Craig, Richard R.

    1993-01-01

    Background information concerning the use of laser diodes in pyrotechnic applications is provided in viewgraph form. The following topics are discussed: damage limits, temperature stability, fiber coupling issues, and small (100 micron) and large (400 micron) fiber results. The discussions concerning fiber results concentrate on the areas of package geometry and electro-optical properties.

  5. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  6. Underwater sensor networks: applications, advances and challenges.

    PubMed

    Heidemann, John; Stojanovic, Milica; Zorzi, Michele

    2012-01-13

    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds and simulation tools available to the research community.

  7. Advanced nanomaterials–sustainable preparation and their catalytic applications

    EPA Science Inventory

    Sustainable nanomaterials have attracted great attention as highly functionalized nanocatalysts in diverse forms including solid-supported nanocatalysts, graphene materials, and core-shell catalysts among other nanostructures. Technology advancements in last decades have allowed ...

  8. Advanced giant magnetoresistance technology for measurement applications

    NASA Astrophysics Data System (ADS)

    Weiss, Roland; Mattheis, Roland; Reiss, Günter

    2013-08-01

    Giant magnetoresistance (GMR) sensors are considered one of the first real applications of nanotechnology. They consist of nm-thick layered structures where ferromagnetic metals are sandwiched by nonmagnetic metals. Such multilayered films produce a large change in resistance (typically 10 to 20%) when subjected to a magnetic field, compared with a maximum change of a few per cent for other types of magnetic sensors. This technology has been intensively used in read heads for hard disk drives and now increasingly finds applications due to the high sensitivity and signal-to-noise ratio. Additionally these sensors are compatible with miniaturization and thus offer a high spatial resolution combined with a frequency range up to the 100 MHz regime and simple electronic conditioning. In this review, we first discuss the basics of the underlying magnetoresistance effects in layered structures and then present three prominent examples for future applications: in the field of current sensing the new GMR sensors offer high bandwidth and good accuracy in a space-saving open loop measurement configuration. In rotating systems they can be used for multiturn angle measurements, and in biotechnology the detection of magnetic particles enables the quantitative measurement of biomolecule concentrations.

  9. Advances and applications of occupancy models

    USGS Publications Warehouse

    Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.

    2013-01-01

    Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.

  10. Advances in photorefractive polymers and applications

    NASA Astrophysics Data System (ADS)

    Blanche, P.-A.; Lynn, B.; Norwood, R. A.; Peyghambarian, N.

    2015-09-01

    Photorefractive (PR) polymers change their index of refraction upon illumination through a series of electronic phenomena that makes these materials one of the most complex organic systems known. The refractive index change is dynamic and fully reversible, making PR materials very interesting for a large variety of applications such as holography and 3D display. In order to improve the recording speed and achieve videorate for our stereographic display application, we have introduced a new type of electrode geometry where the anode and cathode are in the same plane and are shaped as interpenetrating combs. This type of electrode geometry does not require the sample to be tilted with respect to the writing beams to record the hologram, which is a significant advantage. To monitor the highly non-homogeneous field resulting from this configuration, we used a multiphoton microscope to directly observe the chromophore orientation in situ upon the application of an electric field. Most recently, we developed a fast repetition rate laser (10kHz) where the pulse width can be adjusted from microseconds to milliseconds so that, in conjunction with a ns Q-switched Nd:YAG laser and an externally chopped CW laser, the diffraction efficiency of the material could be measured over 9 orders of magnitude. This measurement helps us better understand the mechanism of grating buildup inside photorefractive polymers.

  11. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  12. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  13. Ceramics for advanced O2/H2 application

    NASA Technical Reports Server (NTRS)

    Carpenter, H. W.

    1985-01-01

    Ceramics are prime candidate materials for advanced rocket engines because they possess high-temperature capability, a tolerance for aggressive environments, and low density. A program was conducted to assess the applicability of structural ceramics to advanced versions of the Space Shuttle main engine (SSME). Operating conditions of ceramic turbine components were defined and each component in the hot-gas path was assessed in regard to materials selection, manufacturing process and feasibility, and relative structural reliability. The conclusion is that ceramic components would be viable in advanced SSME turbopumps.

  14. Advances in functional magnetic resonance imaging: technology and clinical applications.

    PubMed

    Dickerson, Bradford C

    2007-07-01

    Functional MRI (fMRI) is a valuable method for use by clinical investigators to study task-related brain activation in patients with neurological or neuropsychiatric illness. Despite the relative infancy of the field, the rapid adoption of this functional neuroimaging technology has resulted from, among other factors, its ready availability, its relatively high spatial and temporal resolution, and its safety as a noninvasive imaging tool that enables multiple repeated scans over the course of a longitudinal study, and thus may lend itself well as a measure in clinical drug trials. Investigators have used fMRI to identify abnormal functional brain activity during task performance in a variety of patient populations, including those with neurodegenerative, demyelinating, cerebrovascular, and other neurological disorders that highlight the potential utility of fMRI in both basic and clinical spheres of research. In addition, fMRI studies reveal processes related to neuroplasticity, including compensatory hyperactivation, which may be a universally-occurring, adaptive neural response to insult. Functional MRI is being used to study the modulatory effects of genetic risk factors for neurological disease on brain activation; it is being applied to differential diagnosis, as a predictive biomarker of disease course, and as a means to identify neural correlates of neurotherapeutic interventions. Technological advances are rapidly occurring that should provide new applications for fMRI, including improved spatial resolution, which promises to reveal novel insights into the function of fine-scale neural circuitry of the human brain in health and disease.

  15. LBB application in the US operating and advanced reactors

    SciTech Connect

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  16. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.

    PubMed

    Yuskaitis, Christopher J; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y; Pearl, Phillip L

    2015-08-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  17. 40 CFR 1039.725 - What must I include in my application for certification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What must I include in my application... (positive or negative) based on projected production volumes. We may require you to include similar... positive emission credits you expect to use to offset the negative emission credits....

  18. 43 CFR 4300.21 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; REINDEER; GENERAL Applying for A Grazing Permit § 4300.21 What must I include in my application? (a) You must include a certification of reindeer allotment to you, signed by the Bureau of Indian Affairs, if you are to receive a herd from the Government. If you obtain reindeer from a source other than...

  19. 43 CFR 4300.21 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; REINDEER; GENERAL Applying for A Grazing Permit § 4300.21 What must I include in my application? (a) You must include a certification of reindeer allotment to you, signed by the Bureau of Indian Affairs, if you are to receive a herd from the Government. If you obtain reindeer from a source other than...

  20. 43 CFR 4300.21 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; REINDEER; GENERAL Applying for A Grazing Permit § 4300.21 What must I include in my application? (a) You must include a certification of reindeer allotment to you, signed by the Bureau of Indian Affairs, if you are to receive a herd from the Government. If you obtain reindeer from a source other than...

  1. 43 CFR 4300.21 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; REINDEER; GENERAL Applying for A Grazing Permit § 4300.21 What must I include in my application? (a) You must include a certification of reindeer allotment to you, signed by the Bureau of Indian Affairs, if you are to receive a herd from the Government. If you obtain reindeer from a source other than...

  2. 77 FR 57451 - Regulations Regarding the Application of Section 172(h) Including Consolidated Groups

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Regarding the Application of Section 172(h) Including Consolidated Groups; Proposed Rule #0;#0;Federal... Section 172(h) Including Consolidated Groups AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of proposed rulemaking. SUMMARY: This document contains proposed regulations under section...

  3. Advanced new materials with various applications

    NASA Astrophysics Data System (ADS)

    Radu-Claudiu, Fierascu; Rodica-Mariana, Ion; Irina, Dumitriu

    2009-01-01

    Nanotechnology is the manufacture and science of materials with at least one dimension in the nanometer scale [1]. Many nanomaterials have novel chemical and biological properties and most of them are not naturally occurring. Carbon nanotubes (CNTs) are an example of a carbon-based nanomaterial which has won enormous popularity in nanotechnology for its unique properties and applications [2]. CNTs have highly desirable physicochemical properties for use in commercial, environmental and medical sectors. The inclusion of CNTs to improve the quality and performance of many widely used products, as well as potentially in medicine, will dramatically affect occupational and public exposure to CNT based nanomaterials in the near future [3].

  4. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  5. Advanced COIL technologies for field applications

    NASA Astrophysics Data System (ADS)

    Tei, Kazuyoku; Sugimoto, Daichi; Ito, T.; Watanabe, G.; Vyskubenko, O.; Takeuchi, N.; Muto, S.; Kenzo, N.; Fujioka, Tomoo

    2005-01-01

    Chemical oxygen-iodine laser (COIL) has a great potential for applications such as decommissioning and dismantlement (D&D) of nuclear reactor, rock destruction and removal and extraction of a natural resource (Methane hydrate) because of the unique characteristics such as power scalability, high optical beam quality and optical fiber beam. Five-kilowatt Chemical oxygen-iodine laser (COIL) test facility has been developed. The chemical efficiency of 27% has been demonstrated with a moderate beam quality for optical fiber coupling. Our research program contains conventional/ejector-COIL scheme, Jet-SOG/Mist-SOG optimization, fiber delivery and long-term operation.

  6. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  7. Recent advances and applications of probabilistic topic models

    NASA Astrophysics Data System (ADS)

    Wood, Ian

    2014-12-01

    I present here an overview of recent advances in probabilistic topic modelling and related Bayesian graphical models as well as some of their more atypical applications outside of their home: text analysis. These techniques allow the modelling of high dimensional count vectors with strong correlations. With such data, simply calculating a correlation matrix is infeasible. Probabilistic topic models address this using mixtures of multinomials estimated via Bayesian inference with Dirichlet priors. The use of conjugate priors allows for efficient inference, and these techniques scale well to data sets with many millions of vectors. The first of these techniques to attract significant attention was Latent Dirichlet Allocation (LDA) [1, 2]. Numerous extensions and adaptations of LDA have been proposed: non-parametric models; assorted models incorporating authors, sentiment and other features; models regularised through the use of extra metadata or extra priors on topic structure, and many more [3]. They have become widely used in the text analysis and population genetics communities, with a number of compelling applications. These techniques are not restricted to text analysis, however, and can be applied to other types of data which can be sensibly discretised and represented as counts of labels/properties/etc. LDA and it's variants have been used to find patterns in data from diverse areas of inquiry, including genetics, plant physiology, image analysis, social network analysis, remote sensing and astrophysics. Nonetheless, it is relatively recently that probabilistic topic models have found applications outside of text analysis, and to date few such applications have been considered. I suggest that there is substantial untapped potential for topic models and models inspired by or incorporating topic models to be fruitfully applied, and outline the characteristics of systems and data for which this may be the case.

  8. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  9. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  10. Advanced Accelerator Applications University Participation Program

    SciTech Connect

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  11. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  12. Stimulus-responsive hydrogels: Theory, modern advances, and applications

    PubMed Central

    Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.

    2016-01-01

    Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415

  13. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  14. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  15. Annual Battery Conference on Applications and Advances, 2nd, California State University, Long Beach, Jan. 14-16, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Das, R. L. (Editor); Frank, H. A. (Editor); Pickett, D. F., Jr. (Editor); Eliash, B. M. (Editor)

    1987-01-01

    Various papers on battery applications and advances are presented. The general topics considered include: power systems in biomedical applications, batteries in electronic and computer applications, batteries in transportation and energy systems, space power systems, aircraft power systems, applications in defense systems, battery safety issues, and quality assurance and manufacturing.

  16. Advanced Life Systems for Extreme Environments: An Arctic Application

    NASA Technical Reports Server (NTRS)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and

  17. Advanced sheet steels for automotive applications

    NASA Astrophysics Data System (ADS)

    Fekete, James R.; Strugala, Donald C.; Yao, Zhicong

    1992-01-01

    Vacuum degassing has recently been used by sheet steel producers to improve their products' ductility and strength. Carbon contents can be reduced by an order of magnitude to less than 0.0030 wt.%. Through careful alloying and processing, a range of new steel products has been developed for the automotive industry. These products include interstitial-free, deep-drawing-quality steels; formable, high-strength, interstitial-free steels; and bake-hardenable steels. This article summarizes the chemistry and processing needed to produce these products.

  18. 76 FR 55788 - Amendments To Include New Applicant Types on Form ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... processing of the form. Form ID is the application for access codes to file on the Commission's Electronic..., 2011), 76 FR 10948 (February 28, 2011) (File No. S7-06-11). \\32\\ Id. \\33\\ See 15 U.S.C. 78c(a)(77) (as... COMMISSION 17 CFR Parts 239, 249, 269 and 274 Amendments To Include New Applicant Types on Form ID...

  19. [Advances in the application of smart phones in modern medicine].

    PubMed

    Wang, Lin; Hu, Jie; Li, Fei; Wei, Huilin; Li, Ying; Lu, Tianjian; Wang, Shuqi; Xu, Feng

    2014-02-01

    Since smart phones have been developed, significant advances in the function of mobile phone due to the development of software, hardware and accessories have been reached. Till now, smart phones have been engaged in daily life with an increasing impact. As a new medical model, mobile phone medicine is emerging and has found wide spread applications in medicine, especially in diagnosing, monitoring and screening various diseases. In addition, mo bile phone medical application shows great potential trend to improve healthcare in resource-limited regions due to its advantageous features of portability and information communication capability. Nowadays, the scientific and technological issues related to mobile phone medicine have attracted worldwide attention. In this review, we summarize state-of-the-art advances of mobile phone medicine with focus on its diagnostics applications in order to expand the fields of their applications and promote healthcare informatization.

  20. PREFACE: Advanced Materials for Demanding Applications

    NASA Astrophysics Data System (ADS)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  1. Advancing cell wall inhibitors towards clinical applications.

    PubMed

    Maffioli, Sonia I; Cruz, João C S; Monciardini, Paolo; Sosio, Margherita; Donadio, Stefano

    2016-03-01

    Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity. Consistently, 2014 has seen new, natural product-derived antibiotics approved for human use by the US Food and Drug Administration. One of the recently approved second-generation glycopeptides is dalbavancin, a semi-synthetic derivative of the natural product A40,926. This compound inhibits bacterial growth by binding to lipid intermediate II (Lipid II), a key intermediate in peptidoglycan biosynthesis. Like other recently approved antibiotics, dalbavancin has a complex history of preclinical and clinical development, with several companies contributing to different steps in different years. While our work on dalbavancin development stopped at the previous company, intriguingly our current pipeline includes two more Lipid II-binding natural products or derivatives thereof. In particular, we will focus on the properties of NAI-107 and related lantibiotics, which originated from recent screening and characterization efforts. PMID:26515981

  2. Advancing cell wall inhibitors towards clinical applications.

    PubMed

    Maffioli, Sonia I; Cruz, João C S; Monciardini, Paolo; Sosio, Margherita; Donadio, Stefano

    2016-03-01

    Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity. Consistently, 2014 has seen new, natural product-derived antibiotics approved for human use by the US Food and Drug Administration. One of the recently approved second-generation glycopeptides is dalbavancin, a semi-synthetic derivative of the natural product A40,926. This compound inhibits bacterial growth by binding to lipid intermediate II (Lipid II), a key intermediate in peptidoglycan biosynthesis. Like other recently approved antibiotics, dalbavancin has a complex history of preclinical and clinical development, with several companies contributing to different steps in different years. While our work on dalbavancin development stopped at the previous company, intriguingly our current pipeline includes two more Lipid II-binding natural products or derivatives thereof. In particular, we will focus on the properties of NAI-107 and related lantibiotics, which originated from recent screening and characterization efforts.

  3. Advanced reinforcement systems for intermetallic applications

    NASA Technical Reports Server (NTRS)

    Merrick, Howard F.; Labib, Mohammed L.

    1993-01-01

    A 2-D axisymmetric model was employed to determine the magnitude of the radial, axial, and hoop stresses caused by the thermal expansion difference between fiber and matrix and which result from the fabrication temperature cycle. Finite element analysis was conducted for single fiber model systems based on SCS-6/Ti3Al+Nb and Al2O3/NiAl. The stress distribution due to the imposition of a graded intermediate layer for each system was determined and included variables of layer thickness and gradation in interlayer chemistry in order to vary the expansion gradient between fiber and matrix. Thermal cycling tests were conducted on sputter coated SCS-6 fibers selectively coated with Ti3Al+Nb, with and without an intermediate layer. Cracking of the Ti3Al+Nb layers was prevented by an interlayer based on Ti-TiN-Ti. The interlayer thickness appeared critical to its efficiency. Similarly, for the case of Al2O3/NiAl, an intermediate layer consisting of a Ni bond coat on the sapphire fiber followed by a graded Al2O3-NiAl layer did not crack when given a thermal excursion to 1100 C and then cooled to room temperature. Acoustic emission tests on single fiber specimens were unsuccessful in detecting load drops associated with the successive fracture of the fiber. For the SCS-6/Ti3Al system this was the result of several factors which included the matrix/fiber ratio and poor bonding of the matrix and fiber. In the case of the Al2O3/NiAl system brittle failure of the NiAl matrix precluded fiber breakdown during tensile loading.

  4. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  5. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  6. Advanced Boost System Developing for High EGR Applications

    SciTech Connect

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  7. Advanced Concepts Research for Flywheel Technology Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Wagner, Robert

    2004-01-01

    The Missile Defense Agency (MDA) (formerly the Ballistic Missile Defense Organization) is embarking on a program to employ the use of High Altitude Airships (HAAs) for surveillance of coastal areas as a part of homeland defense. It is envisioned that these HAAs will fly at 70,000 feet continuously for at least a year, therefore requiring a regenerative electric power system. As part of a program to entice the MDA to utilize the NASA GRC expertise in electric power and propulsion as a means of risk reduction, an internal study program was performed to examine possible configurations that may be employed on a HAA to meet a theoretical surveillance need. This entailed the development of a set of program requirements which were flowed down to system and subsystem level requirements as well as the identification of environmental and infrastructure constraints. Such infrastructure constraints include the ability to construct a reasonably sized HAA within existing airship hangers, as the size of such vehicles could reach in excess of 600 ft. The issues regarding environments at this altitude are similar to those that would be imposed on satellite in Low Earth Orbit. Additionally, operational constraints, due to high winds at certain times of the year were also examined to determine options that could be examined to allow year round coverage of the US coast.

  8. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  9. Applications and advances of positron beam spectroscopy: appendix a

    SciTech Connect

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  10. 40 CFR 1037.725 - What must I include in my application for certification?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What must I include in my application for certification? 1037.725 Section 1037.725 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Averaging,...

  11. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054.205 What must I include in my application? This section specifies the... 40 CFR part 1065. (h) Identify the emission family's useful life. Describe the basis for...

  12. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054.205 What must I include in my application? This section specifies the... 40 CFR part 1065. (h) Identify the emission family's useful life. Describe the basis for...

  13. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054.205 What must I include in my application? This section specifies the... ranges we specify in 40 CFR part 1065. (h) Identify the emission family's useful life. Describe the...

  14. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054.205 What must I include in my application? This section specifies the... 40 CFR part 1065. (h) Identify the emission family's useful life. Describe the basis for...

  15. 40 CFR 1051.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... test data only for one grade unless the regulations of this part specify otherwise for your engine. (2... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What must I include in my application? 1051.205 Section 1051.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  16. 40 CFR 1051.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test data only for one grade unless the regulations of this part specify otherwise for your engine. (2... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What must I include in my application? 1051.205 Section 1051.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  17. 40 CFR 1060.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment. (f) Identify the emission family's useful life. (g) Include... the emission family comply with the requirements of this part, other referenced parts of the CFR,...

  18. 34 CFR 350.66 - What must a grantee include in a patent application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What must a grantee include in a patent application? 350.66 Section 350.66 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  19. 34 CFR 350.66 - What must a grantee include in a patent application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What must a grantee include in a patent application? 350.66 Section 350.66 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  20. 34 CFR 350.66 - What must a grantee include in a patent application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What must a grantee include in a patent application? 350.66 Section 350.66 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  1. 34 CFR 350.66 - What must a grantee include in a patent application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What must a grantee include in a patent application? 350.66 Section 350.66 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  2. 34 CFR 350.66 - What must a grantee include in a patent application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What must a grantee include in a patent application? 350.66 Section 350.66 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION DISABILITY...

  3. 40 CFR 1054.725 - What must I include in my application for certification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What must I include in my application... calculated at the end of the year. (2) Detailed calculations of projected emission credits (positive or... the model year. If you project negative emission credits for a family, state the source of...

  4. 40 CFR 1051.725 - What must I include in my applications for certification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What must I include in my applications... traded credits) to offset the deficit. (2) Detailed calculations of projected emission credits (positive... source of positive emission credits you expect to use to offset the negative emission credits....

  5. 40 CFR 1045.725 - What must I include in my application for certification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What must I include in my application... calculated at the end of the year. (2) Detailed calculations of projected emission credits (positive or... the model year. If you project negative emission credits for a family, state the source of...

  6. 13 CFR 134.611 - What should I include in my application for an award?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RULES OF PROCEDURE GOVERNING CASES BEFORE THE OFFICE OF HEARINGS AND APPEALS Implementation of the Equal Access to Justice Act § 134.611 What should I include in my application for an award? (a) Your.... It must contain the following information: (1) A statement that OHA has jurisdiction over the...

  7. 30 CFR 580.12 - What must I include in my application or notification?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... notification? 580.12 Section 580.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... nonrefundable service fee of $2,012 must be paid electronically through Pay.gov at: https://www.pay.gov/paygov/ and you must include a copy of the Pay.gov confirmation receipt page with your application....

  8. 30 CFR 580.12 - What must I include in my application or notification?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... notification? 580.12 Section 580.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... nonrefundable service fee of $2,012 must be paid electronically through Pay.gov at: https://www.pay.gov/paygov/ and you must include a copy of the Pay.gov confirmation receipt page with your application....

  9. 30 CFR 580.12 - What must I include in my application or notification?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... notification? 580.12 Section 580.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... nonrefundable service fee of $2,012 must be paid electronically through Pay.gov at: https://www.pay.gov/paygov/ and you must include a copy of the Pay.gov confirmation receipt page with your application....

  10. 34 CFR 367.11 - What assurances must a DSA include in its application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and (b), and consistent with 34 CFR 364.28, the DSA will seek to incorporate into and describe in the... section 704 of the Act and subpart C of 34 CFR part 364; and (g) The applicant has been designated by the... 34 Education 2 2014-07-01 2013-07-01 true What assurances must a DSA include in its...

  11. 34 CFR 367.11 - What assurances must a DSA include in its application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What assurances must a DSA include in its application? 367.11 Section 367.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION INDEPENDENT LIVING SERVICES FOR OLDER INDIVIDUALS WHO ARE...

  12. 34 CFR 367.11 - What assurances must a DSA include in its application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) and (b), and consistent with 34 CFR 364.28, the DSA will seek to incorporate into and describe in the... section 704 of the Act and subpart C of 34 CFR part 364; and (g) The applicant has been designated by the... 34 Education 2 2013-07-01 2013-07-01 false What assurances must a DSA include in its...

  13. 29 CFR 575.4 - Information to be included in application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Information to be included in application. 575.4 Section 575.4 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAIVER OF CHILD LABOR PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN...

  14. 29 CFR 575.4 - Information to be included in application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Information to be included in application. 575.4 Section 575.4 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAIVER OF CHILD LABOR PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN...

  15. 29 CFR 575.4 - Information to be included in application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Information to be included in application. 575.4 Section 575.4 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAIVER OF CHILD LABOR PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN...

  16. 29 CFR 575.4 - Information to be included in application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Information to be included in application. 575.4 Section 575.4 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAIVER OF CHILD LABOR PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN...

  17. 29 CFR 575.4 - Information to be included in application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Information to be included in application. 575.4 Section 575.4 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAIVER OF CHILD LABOR PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN...

  18. 34 CFR 367.11 - What assurances must a DSA include in its application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) and (b), and consistent with 34 CFR 364.28, the DSA will seek to incorporate into and describe in the... section 704 of the Act and subpart C of 34 CFR part 364; and (g) The applicant has been designated by the... 34 Education 2 2010-07-01 2010-07-01 false What assurances must a DSA include in its...

  19. 40 CFR 1045.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines, if applicable. (b) Explain how the emission control systems operate. Describe in detail all system components for controlling exhaust emissions, including all auxiliary emission control devices... specified in 40 CFR part 1068, Appendix III. For example, engine owners should have ready access...

  20. 40 CFR 1051.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... we specify in 40 CFR part 1065. (h) Identify the engine family's useful life. (i) Include the... application in certain cases without new emission data. (p) Report test results as follows: (1) Report all... your tests were valid under the requirements of this part and 40 CFR parts 86 and 1065. (2)...

  1. 34 CFR 606.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What must be included in cooperative arrangement grant applications? 606.12 Section 606.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION DEVELOPING...

  2. 34 CFR 606.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What must be included in cooperative arrangement grant applications? 606.12 Section 606.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION DEVELOPING...

  3. 34 CFR 606.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What must be included in cooperative arrangement grant applications? 606.12 Section 606.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION DEVELOPING...

  4. 34 CFR 606.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What must be included in cooperative arrangement grant applications? 606.12 Section 606.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION DEVELOPING...

  5. 34 CFR 606.12 - What must be included in cooperative arrangement grant applications?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What must be included in cooperative arrangement grant applications? 606.12 Section 606.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION DEVELOPING...

  6. 30 CFR 280.12 - What must I include in my application or notification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my application or notification? 280.12 Section 280.12 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR ON THE OUTER CONTINENTAL SHELF How...

  7. 30 CFR 280.12 - What must I include in my application or notification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I include in my application or notification? 280.12 Section 280.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE PROSPECTING FOR MINERALS OTHER THAN OIL, GAS, AND SULPHUR...

  8. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  9. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  10. Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)

    1996-01-01

    The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  12. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  13. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  14. Polymers as advanced materials for desiccant applications, 1988

    SciTech Connect

    Czanderna, A.W.; Neidlinger, H.H.

    1990-09-01

    This report documents work to identify a next-generation, low-cost material with which solar energy or heat from another low-cost energy source can be used for regenerating the water vapor sorption activity of the desiccant. The objective of the work is to determine how the desired sorption performance of advanced desiccant materials can be predicted by understanding the role of the material modifications and material surfaces. The work concentrates on solid materials to be used for desiccant cooling systems and which process water vapor in an atmosphere to produce cooling. The work involved preparing modifications of polystyrene sulfonic acid sodium salt, synthesizing a hydrogel, and evaluating the sorption performances of these and similar commercially available polymeric materials; all materials were studied for their potential application in solid commercial desiccant cooling systems. Background information is also provided on desiccant cooling systems and the role of a desiccant material within such a system, and it includes the use of polymers as desiccant materials. 31 refs., 16 figs., 5 tabs.

  15. Advances in the application of diffusion Monte Carlo to solids

    NASA Astrophysics Data System (ADS)

    Shulenburger, L.; Mattsson, T. R.

    2014-03-01

    The need for high fidelity electronic structure calculations has catalyzed an explosion in the development of new techniques. Improvements in DFT functionals, many body perturbation theory and dynamical mean field theory are starting to make significant headway towards reaching the accuracy required for a true predictive capability. One technique that is undergoing a resurgence is diffusion Monte Carlo (DMC). The early calculations with this method were of unquestionable accuracy (providing a valuable reference for DFT functionals) but were largely limited to model systems because of their high computational cost. Algorithmic advances and improvements in computer power have reached the point where this is no longer an insurmountable obstacle. In this talk I will present a broad study of DMC applied to condensed matter (arXiv:1310.1047). We have shown excellent agreement for the bulk modulus and lattice constant of solids exhibiting several different types of binding, including ionic, covalent and van der Waals. We will discuss both the opportunities for application of this method as well as opportunities for further theoretical improvements. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract No. DE-AC04-94AL85000.

  16. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  17. Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the Angstrom scale.

    PubMed

    Gai, Pratibha L; Yoshida, Kenta; Shute, Carla; Jia, Xiaoting; Walsh, Michael; Ward, Michael; Dresselhaus, Mildred S; Weertman, Julia R; Boyes, Edward D

    2011-07-01

    Structural and compositional studies of nanomaterials of technological importance have been carried out using advanced electron microscopy methods, including aberration-corrected transmission electron microscopy (AC-TEM), AC-high angle annular dark field scanning TEM (AC-HAADF-STEM), AC-energy filtered TEM, electron-stimulated energy dispersive spectroscopy in the AC-(S)TEM and high-resolution TEM (HRTEM) with scanning tunneling microscopy (STM) holder. The AC-EM data reveal improvements in resolution and minimization in image delocalization. A JEOL 2200FS double-AC field emission gun TEM/STEM operating at 200 kV in the Nanocentre at the University of York has been used to image single metal atoms on crystalline supports in catalysts, grain boundaries in nanotwinned metals, and nanostructures of tetrapods. Joule heating studies using HRTEM integrated with an STM holder reveal in situ crystallization and edge reconstruction in graphene. Real-time in situ AC-HAADF-STEM studies at elevated temperatures are described. Dynamic in-column energy filtering in an AC environment provides an integral new approach to perform dynamic in situ studies with aberration correction. The new results presented here open up striking new opportunities for atomic scale studies of nanomaterials and indicate future development directions.

  18. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  19. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    PubMed

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  20. Nanostructured Materials For Advanced Technological Applications: A Brief Introduction

    NASA Astrophysics Data System (ADS)

    Kulisch, W.; Freudenstein, R.; Ruiz, A.; Valsesia, A.; Sirghi, L.; Ponti, J.; Colpo, P.; Rossi, F.

    In this contribution a short introduction to nanostructured materials for advanced technological applications is presented. A major aim is to demonstrate, on the one hand, the diversity of approaches, methods, techniques and solutions, which are used currently worldwide — but also by the authors of the contributions collected in this book — in the field of nano-structured materials, but also that, on the other hand, these diverse topics are based on the same principles, face similar problems, and bear similar prospects for future applications. For this reason, frequent reference is made to the contributions to this book. Some examples to illustrate current topics, advances and problems are taken from the recent work of the present home institute of the author, the NanoBioTech group of the IHCP at the JRC.

  1. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  2. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  3. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  4. Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation.

    PubMed

    Wendell, David C; Samyn, Margaret M; Cava, Joseph R; Ellwein, Laura M; Krolikowski, Mary M; Gandy, Kimberly L; Pelech, Andrew N; Shadden, Shawn C; LaDisa, John F

    2013-06-01

    Computational fluid dynamics (CFD) simulations quantifying thoracic aortic flow patterns have not included disturbances from the aortic valve (AoV). 80% of patients with aortic coarctation (CoA) have a bicuspid aortic valve (BAV) which may cause adverse flow patterns contributing to morbidity. Our objectives were to develop a method to account for the AoV in CFD simulations, and quantify its impact on local hemodynamics. The method developed facilitates segmentation of the AoV, spatiotemporal interpolation of segments, and anatomic positioning of segments at the CFD model inlet. The AoV was included in CFD model examples of a normal (tricuspid AoV) and a post-surgical CoA patient (BAV). Velocity, turbulent kinetic energy (TKE), time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) results were compared to equivalent simulations using a plug inlet profile. The plug inlet greatly underestimated TKE for both examples. TAWSS differences extended throughout the thoracic aorta for the CoA BAV, but were limited to the arch for the normal example. OSI differences existed mainly in the ascending aorta for both cases. The impact of AoV can now be included with CFD simulations to identify regions of deleterious hemodynamics thereby advancing simulations of the thoracic aorta one step closer to reality. PMID:22917990

  5. Natural polyphenols based new therapeutic avenues for advanced biomedical applications.

    PubMed

    Agrawal, Megha

    2015-01-01

    Polyphenols are naturally occurring, synthetic or semisynthetic organic compounds that offer a vast array of advanced biomedical applications. The mostly researched polyphenolic compounds are resveratrol and flavanols, notably (-)-epicatechin. The ongoing research on clinically important resveratrol and flavanols has revealed their potentials as extremely efficient drug agents that can be leveraged for new therapeutic designs for combating stroke related injuries, cancer and renal failures. Here, we have highlighted recent developments in this area with an emphasis on the biomedical applications of polyphenols. Also, a perspective on the future research directions has been discussed. We believe that this review would facilitate further research and development of polyphenols as a therapeutic avenue in medical science.

  6. Recent advances in research applications of nanophase hydroxyapatite.

    PubMed

    Fox, Kate; Tran, Phong A; Tran, Nhiem

    2012-07-16

    Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.

  7. Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting

    NASA Astrophysics Data System (ADS)

    Shanti, Noah Omar

    Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base

  8. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  9. Microwave technology for waste management applications including disposition of electronic circuitry

    SciTech Connect

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.; Folz, D.C.

    1995-09-01

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse.

  10. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  11. Design Advances in Particulate Systems for Biomedical Applications.

    PubMed

    Lima, Ana Catarina; Alvarez-Lorenzo, Carmen; Mano, João F

    2016-07-01

    The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.

  12. Gold Nanoparticles: Recent Advances in the Biomedical Applications.

    PubMed

    Zhang, Xiaoying

    2015-07-01

    Among the multiple branches of nanotechnology applications in the area of medicine and biology, Nanoparticle technology is the fastest growing and shows significant future promise. Nanoscale structures, with size similar to many biological molecules, show different physical and chemical properties compared to either small molecules or bulk materials, find many applications in the fields of biomedical imaging and therapy. Gold nanoparticles (AuNPs) are relatively inert in biological environment, and have a number of physical properties that are suitable for several biomedical applications. For example, AuNPs have been successfully employed in inducing localized hyperthermia for the destruction of tumors or radiotherapy for cancer, photodynamic therapy, computed tomography imaging, as drug carriers to tumors, bio-labeling through single particle detection by electron microscopy and in photothermal microscopy. Recent advances in synthetic chemistry makes it possible to make gold nanoparticles with precise control over physicochemical and optical properties that are desired for specific clinical or biological applications. Because of the availability of several methods for easy modification of the surface of gold nanoparticles for attaching a ligand, drug or other targeting molecules, AuNPs are useful in a wide variety of applications. Even though gold is biologically inert and thus shows much less toxicity, the relatively low rate of clearance from circulation and tissues can lead to health problems and therefore, specific targeting of diseased cells and tissues must be achieved before AuNPs find their application for routine human use.

  13. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann

    2016-04-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  14. Advances in targeted proteomics and applications to biomedical research

    PubMed Central

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  15. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  16. Advances in targeted proteomics and applications to biomedical research.

    PubMed

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D; Liu, Tao; Qian, Wei-Jun; Smith, Richard D

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  17. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  18. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  19. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  20. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  1. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  2. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  3. The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications.

    PubMed

    Tong, Wei; Tran, Phong A; Turnley, Ann M; Aramesh, Morteza; Prawer, Steven; Brandt, Milan; Fox, Kate

    2016-04-01

    Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp(2) bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application.

  4. 40 CFR 1048.225 - How do I amend my application for certification to include new or modified engine configurations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part. (c) We may ask for more test data or engineering evaluations. You must give us these within 30... application if any changes occur with respect to any information included in your application. (a) You must... components you described in your application for certification. This includes production and design...

  5. Application of NASA's advanced life support technologies in polar regions

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Lewis, C.

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  6. Application of NASA's advanced life support technologies in polar regions.

    PubMed

    Bubenheim, D L; Lewis, C

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  7. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  8. Modern transform design for advanced image/video coding applications

    NASA Astrophysics Data System (ADS)

    Tran, Trac D.; Topiwala, Pankaj N.

    2008-08-01

    This paper offers an overall review of recent advances in the design of modern transforms for image and video coding applications. Transforms have been an integral part of signal coding applications from the beginning, but emphasis had been on true floating-point transforms for most of that history. Recently, with the proliferation of low-power handheld multimedia devices, a new vision of integer-only transforms that provide high performance yet very low complexity has quickly gained ascendency. We explore two key design approaches to creating integer transforms, and focus on a systematic, universal method based on decomposition into lifting steps, and use of (dyadic) rational coefficients. This method provides a wealth of solutions, many of which are already in use in leading media codecs today, such as H.264, HD Photo/JPEG XR, and scalable audio. We give early indications in this paper, and more fully elsewhere.

  9. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  10. Advanced Embedded Active Assemblies for Extreme Space Applications

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda; Moussessian, Alina; Mojarradi, Mohammad; Kolawa, Elizabeth

    2009-01-01

    This work describes the development and evaluation of advanced technologies for the integration of electronic die within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible liquid crystal polymer (LCP), using gold thermo-compression flip chip bonding, and embedding them within the material. Daisy chain LCP assemblies were thermal cycled from -135 to +85degC (Mars surface conditions for motor control electronics). The LCP assembly method was further utilized to embed an operational amplifier designed for operation within the Mars surface ambient. The embedded op-amp assembly was evaluated with respect to the influence of temperature on the operational characteristics of the device. Applications for this technology range from multifunctional, large area, flexible membrane structures to small-scale, flexible circuits that can be fit into tight spaces for flex to fit applications.

  11. Recent advances in industrial application of tannases: a review.

    PubMed

    Beniwal, Vikas; Kumar, Anil; Sharma, Jitender; Chhokar, Vinod

    2013-12-01

    Tannin acyl hydrolase (E.C. 3.1.1.20) commonly referred as tannase, is a hydrolytic enzyme that catalyses the hydrolysis of ester bonds present in gallotannins, ellagitannins, complex tannins and gallic acid esters. Tannases are the important group of botechnologically relevant enzymes distributed throughout the animal, plant and microbial kingdoms. However, microbial tannases are currently receiving a great deal of attention. Tannases are extensively used in food, feed, pharmaceutical, beverage, brewing and chemical industries. Owing to its diverse area of applications, a number of patents have been appeared in the recent past. The present review pretends to present the advances and perspectives in the industrial application of tannase with special emphasis on patents.

  12. Development of an advanced high-temperature fastener system for advanced aerospace vehicle application

    NASA Technical Reports Server (NTRS)

    Kull, F. R.

    1975-01-01

    The results of a program to develop a lightweight high temperature reusable fastening system for aerospace vehicle thermal protection system applications are documented. This feasibility program resulted in several fastener innovations which will meet the specific needs of the heat shield application. Three systems were designed from Hayes 188 alloy and tested by environmental exposure and residual mechanical properties. The designs include a clinch stud with a collar retainer, a weld stud with a split ring retainer, and a caged stud with a collar retainer. The results indicated that a lightweight, reusable, high temperature fastening system can be developed for aerospace vehicle application.

  13. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  14. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    SciTech Connect

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  15. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  16. Advances and Applications of Single Cell Sequencing Technologies

    PubMed Central

    Wang, Yong; Navin, Nicholas E.

    2015-01-01

    Single cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic. PMID:26000845

  17. Process Integration Study [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1992-06-01

    This work was carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  18. The removal of organic precursors of DBPs during three advanced water treatment processes including ultrafiltration, biofiltration, and ozonation.

    PubMed

    Zha, Xiao-Song; Ma, Lu-Ming; Wu, Jin; Liu, Yan

    2016-08-01

    The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L). PMID:27180835

  19. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  20. Advanced theoretical and experimental studies in automatic control and information systems. [including mathematical programming and game theory

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Polak, E.; Zadeh, L. A.

    1974-01-01

    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.

  1. Comparison between computations and experimental data in unsteady three-dimensional transonic aerodynamics, including aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Guruswamy, P.; Goorjian, P. M.

    1982-01-01

    Comparisons were made of computed and experimental data in three-dimensional unsteady transonic aerodynamics, including aeroelastic applications. The computer code LTRAN3, which is based on small-disturbance aerodynamic theory, was used to obtain the aerodynamic data. A procedure based on the U-g method was developed to compute flutter boundaries by using the unsteady aerodynamic coefficients obtained from LTRAN3. The experimental data were obtained from available NASA publications. All the studies were conducted for thin, unswept, rectangular wings with circular-arc cross sections. Numerical and experimental steady and unsteady aerodynamic data were compared for a wing with an aspect ratio of 3 and a thickness ratio of 5% at Mach numbers of 0.7 and 0.9. Flutter data were compared for a wing with an aspect ratio of 5. Two thickness ratios, 6% at Mach numbers of 0.715, 0.851, and 0.913, and 4% at Mach number of 0.904, were considered. Based on the unsteady aerodynamic data obtained from LTRAN3, flutter boundaries were computed; they were compared with those obtained from experiments and the code NASTRAN, which uses linear aerodynamics.

  2. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  3. The use of advanced materials in space structure applications

    NASA Astrophysics Data System (ADS)

    Eaton, D. C. G.; Slachmuylders, E. J.

    The last decade has seen the Space applications of composite materials become almost commonplace in the construction of configurations requiring high stiffness and/or dimensional stability, particularly in the field of antennas. As experience has been accumulated, applications for load carrying structures utilizing the inherent high specific strength/stiffness of carbon fibres have become more frequent. Some typical examples of these and their design development criteria are reviewed. As these structures and the use of new plastic matrices emerge, considerable attention has to be given to establishing essential integrity control requirements from both safety and cost aspects. The advent of manned European space flight places greater emphasis on such requirements. Attention is given to developments in the fields of metallic structures with discussion of the advantages and disadvantages of their application. The design and development of hot structures, thermal protection systems and air-breathing engines for future launch vehicles necessitates the use of the emerging metal/matrix and other advanced materials. Some of their important features are outlined. Means of achieving such objectives by greater harmonization within Europe are emphasized. Typical examples of on-going activities to promote such collaboration are described.

  4. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  5. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  6. Recent advances in bioprocessing application of membrane chromatography.

    PubMed

    Orr, Valerie; Zhong, Luyang; Moo-Young, Murray; Chou, C Perry

    2013-01-01

    Compared to traditional chromatography using resins in packed-bed columns, membrane chromatography is a relatively new and immature bioseparation technology based on the integration of membrane filtration and liquid chromatography into a single-stage operation. Over the past decades, advances in membrane chemistry have yielded novel membrane devices with high binding capacities and improved mass transfer properties, significantly increasing the bioprocessing efficiency for purification of biomolecules. Due to the disposable nature, low buffer consumption, and reduced equipment costs, membrane chromatography can significantly reduce downstream bioprocessing costs. In this review, we discuss technological merits and disadvantages associated with membrane chromatography as well as recent bioseparation applications with a particular attention on purification of large biomolecules.

  7. Recent advances of HTS power application research at IEE

    NASA Astrophysics Data System (ADS)

    Ma, Yanwei; Lin, Liangzhen; Xiao, Liye

    2006-06-01

    Recent advances of high temperature superconductors (HTS) for power applications in the Institute of Electrical Engineering (IEE), Chinese academy of Sciences are presented. A 75 meter, 10.5 kV/1.5 kA three phase HTS transmission cable has been successfully demonstrated in a live distribution grid in northwest China. A 10.5 kV/200A bridge-type fault current limiter (FCL) prototype based on Bi-2223 tapes is being tested in a Hunan power plant since August 2005. A 400V/16V/26 kVA three phase HTS transformer was designed, built and tested, and the on site system installation of a 10.5 kV/400V/630 kVA HTS transformer will be finished at Tebian Electric Ltd. soon. In addition, the progress of design and test of SMES is also given.

  8. SciDAC Advances and Applications in Computational Beam Dynamics

    SciTech Connect

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  9. Applications of Isotopes in Advancing Structural & Functional Heparanomics

    PubMed Central

    Tran, Vy M.; Nu Nguyen, Thao Kim; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and the study of heparanomics. There are several factors that exacerbate challenges involved in the structural elucidation of heparin and heparan sulfate. Therefore, there is a great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review article focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. This review article also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides. PMID:20838780

  10. Applications of isotopes in advancing structural and functional heparanomics.

    PubMed

    Tran, Vy M; Nguyen, Thao K N; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of the interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and heparanomics. There are several factors that exacerbate the challenges involved in the structural elucidation of heparin and heparan sulfate; therefore, there is great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry. This review also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides.

  11. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  12. 3D-QSAR - Applications, Recent Advances, and Limitations

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques are the most prominent computational means to support chemistry within drug design projects where no three-dimensional structure of the macromolecular target is available. The primary aim of these techniques is to establish a correlation of biological activities of a series of structurally and biologically characterized compounds with the spatial fingerprints of numerous field properties of each molecule, such as steric demand, lipophilicity, and electrostatic interactions. The number of 3D-QSAR studies has exponentially increased over the last decade, since a variety of methods are commercially available in user-friendly, graphically guided software. In this chapter, we will review recent advances, known limitations, and the application of receptor-based 3D-QSAR

  13. Joining SI3N4 for Advanced Turbomachinery Applications

    SciTech Connect

    GLASS, S. JILL; LOEHMAN, RONALD E.; HOSKING, F. MICHAEL; STEPHENS JR., JOHN J.; VIANCO, PAUL T.; NEILSEN, MICHAEL K.; WALKER, CHARLES A.; POLLINGER, J.P.; MAHONEY, F.M.; QUILLEN, B.G.

    2000-07-01

    The main objective of this project was to develop reliable, low-cost techniques for joining silicon nitride (Si{sub 3}N{sub 4}) to itself and to metals. For Si{sub 3}N{sub 4} to be widely used in advanced turbomachinery applications, joining techniques must be developed that are reliable, cost-effective, and manufacturable. This project addressed those needs by developing and testing two Si{sub 3}N{sub 4} joining systems; oxynitride glass joining materials and high temperature braze alloys. Extensive measurements were also made of the mechanical properties and oxidation resistance of the braze materials. Finite element models were used to predict the magnitudes and positions of the stresses in the ceramic regions of ceramic-to-metal joints sleeve and butt joints, similar to the geometries used for stator assemblies.

  14. Cardiovascular genetics: technological advancements and applicability for dilated cardiomyopathy.

    PubMed

    Kummeling, G J M; Baas, A F; Harakalova, M; van der Smagt, J J; Asselbergs, F W

    2015-07-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained by next-generation sequencing. Hence, the discovery rate of genetic defects in cardiovascular genetics has grown rapidly and the financial threshold for gene diagnostics has been lowered, making large-scale DNA sequencing broadly accessible. In this review, the genetic variants, mutations and inheritance models are briefly introduced, after which an overview is provided of current clinical and technological applications in gene diagnostics and research for cardiovascular disease and in particular, dilated cardiomyopathy. Finally, a reflection on the future perspectives in cardiogenetics is given.

  15. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  16. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    instantaneous spatial coverage is doubled without compromising the spatial resolution. Other related technology advances, including frequency selective surfaces, beam splitters, ultra wideband baluns, pre-amplification scheme, are addressed in less detail. Finally, the Electron Cyclotron Emission (ECE) radiometer system on the Experimental Advanced Superconducting Tokamak (EAST) is discussed.

  17. 41 CFR 301-74.16 - What must be included in any advertisement or application form relating to conference attendance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What must be included in any advertisement or application form relating to conference attendance? 301-74.16 Section 301-74.16... included in any advertisement or application form relating to conference attendance? (a) Any...

  18. 33 CFR 148.105 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: GENERAL Application for a License § 148.105 What must... participated in the decision to apply for a license to build a deepwater port; (3) A description of how each...) Experience in matters relating to deepwater ports. (1) A description of the applicant's, affiliate's,...

  19. 33 CFR 148.105 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: GENERAL Application for a License § 148.105 What must... participated in the decision to apply for a license to build a deepwater port; (3) A description of how each...) Experience in matters relating to deepwater ports. (1) A description of the applicant's, affiliate's,...

  20. 29 CFR 2570.34 - Information to be included in every exemption application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the matters discussed in this application and, to the best of my knowledge and belief, the...; (C) A designated officer or official where the applicant is an association, organization or other... knowledge and belief, the representations made in such statement are true and correct. (c) An...

  1. Advances in the application of holography for NDE

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.

    1985-01-01

    The basic methodology of holographic interferometry in nondestructive testing (NDT) applications are described. Applications to crack detection in ceramic materials, including a crack 50 microns deep in a turbine blade, are discussed in detail. The theoretical principles of holographic interferometry are explained, and a general description of a holographic interferometric recording system is given. A nondestructive interferometric technique for measuring the gradual erosion of calcareous stones exposed to acid rain is also presented. Detailed line drawings illustrating the hologram recording and interferometric fringe pattern analysis elements in an interferometric holographic NDT device are provided.

  2. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    SciTech Connect

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  3. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  4. Recent Advances in Biosensor Technology for Potential Applications - An Overview.

    PubMed

    Vigneshvar, S; Sudhakumari, C C; Senthilkumaran, Balasubramanian; Prakash, Hridayesh

    2016-01-01

    Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology. PMID:26909346

  5. Advanced fuel cells for transportation applications. Final report

    SciTech Connect

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  6. Recent Advances in Biosensor Technology for Potential Applications - An Overview.

    PubMed

    Vigneshvar, S; Sudhakumari, C C; Senthilkumaran, Balasubramanian; Prakash, Hridayesh

    2016-01-01

    Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology.

  7. 34 CFR 206.20 - What must be included in an application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGAGED IN MIGRANT AND OTHER SEASONAL FARMWORK-HIGH SCHOOL EQUIVALENCY PROGRAM AND COLLEGE ASSISTANCE... subpart C of 34 CFR part 75 (EDGAR-Direct Grant Programs); (b) Submit a grant application that: (1)...

  8. 34 CFR 206.20 - What must be included in an application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENGAGED IN MIGRANT AND OTHER SEASONAL FARMWORK-HIGH SCHOOL EQUIVALENCY PROGRAM AND COLLEGE ASSISTANCE... subpart C of 34 CFR part 75 (EDGAR-Direct Grant Programs); (b) Submit a grant application that: (1)...

  9. 34 CFR 206.20 - What must be included in an application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENGAGED IN MIGRANT AND OTHER SEASONAL FARMWORK-HIGH SCHOOL EQUIVALENCY PROGRAM AND COLLEGE ASSISTANCE... subpart C of 34 CFR part 75 (EDGAR-Direct Grant Programs); (b) Submit a grant application that: (1)...

  10. 34 CFR 206.20 - What must be included in an application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGAGED IN MIGRANT AND OTHER SEASONAL FARMWORK-HIGH SCHOOL EQUIVALENCY PROGRAM AND COLLEGE ASSISTANCE... subpart C of 34 CFR part 75 (EDGAR-Direct Grant Programs); (b) Submit a grant application that: (1)...

  11. 34 CFR 206.20 - What must be included in an application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGAGED IN MIGRANT AND OTHER SEASONAL FARMWORK-HIGH SCHOOL EQUIVALENCY PROGRAM AND COLLEGE ASSISTANCE... subpart C of 34 CFR part 75 (EDGAR-Direct Grant Programs); (b) Submit a grant application that: (1)...

  12. Application of symbolic computation to the analysis of mechanical systems, including robot arms

    NASA Technical Reports Server (NTRS)

    Hussain, M. A.; Noble, B.

    1984-01-01

    This paper illustrates the application of symbolic computation in connection with three aspects of mechanical systems: (1) The derivation of dynamical equations by Lagrangian methods; (2) The analysis and synthesis of kinematic mechanisms; and (3) A robot manipulator arm.

  13. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    PubMed

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  14. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  15. Recent advances in glycerol polymers: chemistry and biomedical applications.

    PubMed

    Zhang, Heng; Grinstaff, Mark W

    2014-11-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, the underlying chemistry of glycerol that provides access to a range of monomers for subsequent polymerizations is described. Then, the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth are reviewed. Next, several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity are described. Fourth, the growing market opportunity for the use of polymers in medicine is described. Finally, the findings are concluded and summarized, as well as the potential opportunities for continued research efforts are discussed.

  16. 30 CFR 285.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including: (1) Lease operator, ROW grant holder, or RUE grant holder; (2) Address; (3) Contact person and... decommissioning schedule for your lease, ROW grant, or RUE grant, including the expiration or relinquishment...

  17. Radioactive nanoparticles and their main applications: recent advances.

    PubMed

    Kharisov, Boris I; Kharissova, Oxana V; Berdonosov, Sergei S

    2014-01-01

    Selected nanoparticles and nanocomposites on the basis of radioactive elements are reviewed. Isotopes of metallic gold, iodine and technetium salts, CeO2 and other lanthanide and actinide compounds, as well as several p- (P, C, F, Te) and d- (Fe, Co, Cu, Cd, Zn) elements form most common radioactive nanoparticles. Methods for their fabrication, including dopation with radionuclides and neutron/proton/deuteron activation, are discussed. These nanocomposites possess a series of useful applications, in particular in biology and medicine, including cancer therapeutics, drug delivery systems and radiotracers, as well as in the studies of several catalytic processes and materials structure.

  18. Advanced gas engine cogeneration technology for special applications

    SciTech Connect

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R.

    1995-10-01

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  19. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  20. NASA Programs in Advanced Sensors and Measurement Technology for Aeronautical Applications

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    2004-01-01

    There are many challenges facing designers and operators of our next-generation aircraft in meeting the demands for efficiency, safety, and reliability which are will be imposed. This paper discusses aeronautical sensor requirements for a number of research and applications areas pertinent to the demands listed above. A brief overview will be given of aeronautical research measurements, along with a discussion of requirements for advanced technology. Also included will be descriptions of emerging sensors and instrumentation technology which may be exploited for enhanced research and operational capabilities. Finally, renewed emphasis of the National Aeronautics and Space Administration in advanced sensor and instrumentation technology development will be discussed, including project of technology advances over the next 5 years. Emphasis on NASA efforts to more actively advance the state-of-the-art in sensors and measurement techniques is timely in light of exciting new opportunities in airspace development and operation. An up-to-date summary of the measurement technology programs being established to respond to these opportunities is provided.

  1. Applications of advanced aerodynamic technology to light aircraft.

    NASA Technical Reports Server (NTRS)

    Crane, H. L.; Mcghee, R. J.; Kohlman, D. L.

    1973-01-01

    This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers. Preliminary data on the characteristics of the new airfoil are discussed. The configuration of an experimental wing for a Piper Seneca PA-34 and estimated airplane performance with this wing are discussed.

  2. Advanced thermionic reactors for surface nuclear power applications

    NASA Astrophysics Data System (ADS)

    Parlos, Alexander G.; Kent, Karl; Peddicord, Kenneth L.; Khan, Ehsan U.

    1991-09-01

    A preliminary feasibility study on a new concept for a highly compact space reactor power system is presented, consisting of in-core thermionic fuel elements and in-core heat pipes for passive core cooling. The reference fuel considered in this study is uranium carbide. The calculations reported include a neutronic design analysis using a 2D neutron transport model, as well as a simplified 1D thermal analysis of the reactor core, using a preliminary thermal sizing of the in-core heat pipes. Initial results indicate that the proposed core design is thermally and neutronically feasible, with a maximum steady-state fuel temperature below 2000 K. Alternate advanced fuels, such as various oxides of Am-242, result in exceedingly high fuel centerline temperatures because of the associated low thermal conductivities.

  3. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  4. Advances with the new AIMS fab 193 2nd generation: a system for the 65 nm node including immersion

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Poortinga, E.; Doornmalen, H. v.; Schmid, R.; Scherubl, T.; Harnisch, W.

    2005-06-01

    The Aerial Image Measurement System, AIMS, for 193nm lithography emulation is established as a standard for the rapid prediction of wafer printability for critical structures including dense patterns and defects or repairs on masks. The main benefit of AIMS is to save expensive image qualification consisting of test wafer exposures followed by wafer CD-SEM resist or wafer analysis. By adjustment of numerical aperture (NA), illumination type and partial coherence (σ) to match any given stepper/ scanner, AIMS predicts the printability of 193nm reticles such as binary with, or without OPC and phase shifting. A new AIMS fab 193 second generation system with a maximum NA of 0.93 is now available. Improvements in field uniformity, stability over time, measurement automation and higher throughput meet the challenging requirements of the 65nm node. A new function, "Global CD Map" can be applied to automatically measure and analyse the global CD uniformity of repeating structures across a reticle. With the options of extended depth-of-focus (EDOF) software and the upcoming linear polarisation capability in the illumination the new AIMS fab 193 second generation system is able to cover both dry and immersion requirements for NA < 1. Rigorous simulations have been performed to study the effects of polarisation for imaging by comparing the aerial image of the AIMS to the resist image of the scanner.

  5. Simulation of ultrasonic arrays for industrial and civil engineering applications including validation

    NASA Astrophysics Data System (ADS)

    Spies, M.; Rieder, H.; Orth, Th.; Maack, S.

    2012-05-01

    In this contribution we address the beam field simulation of 2D ultrasonic arrays using the Generalized Point Source Synthesis technique. Aiming at the inspection of cylindrical components (e.g. pipes) the influence of concave and convex surface curvatures, respectively, has been evaluated for a commercial probe. We have compared these results with those obtained using a commercial simulation tool. In civil engineering, the ultrasonic inspection of highly attenuating concrete structures has been advanced by the development of dry contact point transducers, mainly applied in array arrangements. Our respective simulations for a widely used commercial probe are validated using experimental results acquired on concrete half-spheres with diameters from 200 mm up to 650 mm.

  6. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  7. 40 CFR 1060.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which your certification is limited. For example, if your fuel system meets the emission requirements of this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment. (f) Identify the emission family's useful life. (g)...

  8. 40 CFR 1060.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... which your certification is limited. For example, if your fuel system meets the emission requirements of this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment. (f) Identify the emission family's useful life. (g)...

  9. 40 CFR 1060.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... which your certification is limited. For example, if your fuel system meets the emission requirements of this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment. (f) Identify the emission family's useful life. (g)...

  10. 40 CFR 1060.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... which your certification is limited. For example, if your fuel system meets the emission requirements of this part applicable only to handheld Small SI equipment, state that the requested certificate would apply only for handheld Small SI equipment. (f) Identify the emission family's useful life. (g)...

  11. 29 CFR 2570.35 - Information to be included in applications for individual exemptions only.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reflected in the plan's most recent annual report; (iii) The approximate percentage of the fair market value...) A copy of the most recent financial statements of each plan affected by the requested exemption; and... to the transaction upon discovery of the violation; (vii) That the applicant has submitted...

  12. 29 CFR 2570.35 - Information to be included in applications for individual exemptions only.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reflected in the plan's most recent annual report; (iii) The approximate percentage of the fair market value...) A copy of the most recent financial statements of each plan affected by the requested exemption; and... to the transaction upon discovery of the violation; (vii) That the applicant has submitted...

  13. Extended weighted fair queuing (EWFQ) algorithm for broadband applications including multicast traffic

    NASA Astrophysics Data System (ADS)

    Tufail, Mudassir; Cousin, Bernard

    1997-10-01

    Ensuring end-to-end bounded delay and fair allocation of bandwidth to a backlogged session are no more the only criterias for declaring a queue service scheme good. With the evolution of packet-switched networks, more and more distributed and multimedia applications are being developed. These applications demand that service offered to them should be homogeneously distributed at all instants contrarily to back-to-back packet's serving in WFQ scheme. There are two reasons for this demand of homogeneous service: (1) In feedback based congestion control algorithms, sources constantly sample the network state using the feedback from the receiver. The source modifies its emission rate in accordance to the feedback message. A reliable feedback message is only possible if the packet service is homogeneous. (2) In multicast applications, where packet replication is performed at switches, replicated packets are probable to be served at different rates if service to them, at different output ports, is not homogeneous. This is not desirable for such applications as the phenomena of packet replication to different multicast branches, at a switch, has to be carried out at a homogeneous speed for the following two important reasons: (1) heterogeneous service rates of replicated multicast packets result in different feedback informations, from different destinations (of same multicast session), and thus lead to unstable and less efficient network control. (2) in a switch architecture, the buffer requirement can be reduced if replication and serving of multicast packets are done at a homogeneous rate. Thus, there is a need of a service discipline which not only serve the applications at no less than their guaranteed rates but also assures a homogeneous service to packets. The homogeneous service to an application may precisely be translated in terms of maintaining a good inter-packets spacing. EWFQ scheme is identical to WFQ scheme expect that a packet is stamped with delayed

  14. 34 CFR 607.11 - What must be included in individual development grant applications?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Does an Institution Apply for a Grant? § 607.11 What must be included in individual development grant... development grant must include— (a) The institution's comprehensive development plan; (b) A description of the... 34 Education 3 2010-07-01 2010-07-01 false What must be included in individual development...

  15. Developments in advanced and energy saving thermal isolations for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; Fesmire, J. E.

    2015-12-01

    The cooling power consumption in large scale superconducting systems is huge and cryogenic devices used in space applications often require an extremely long cryogen holding time. To economically maintain the device at its operating temperature and minimize the refrigeration losses, high performance of thermal isolation is essential. The radiation from warm surrounding surfaces and conducting heat leaks through supports and penetrations are the dominant heat loads to the cold mass under vacuum condition. The advanced developments in various cryogenic applications to successfully reduce the heat loads through radiation and conduction are briefly and systematically discussed and evaluated in this review paper. These include: (1) thermal Insulation for different applications (foams, perlites, glass bubbles, aerogel and MLI), (2) sophisticated low-heat-leak support (cryogenic tension straps, trolley bars and posts with dedicated thermal intercepts), and (3) novel cryogenic heat switches.

  16. 45 CFR 2517.410 - What must a qualified organization include in an application for a grant or a subgrant?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fiscal audits and program evaluation; (ii) Comply with the nonduplication, nondisplacement, and grievance... PROGRAMS Application Contents § 2517.410 What must a qualified organization include in an application for a... organization must submit the following: (1) A plan describing the goals and activities of the proposed...

  17. Tandem Fan Applications in Advanced STOVL Fighter Configurations

    NASA Technical Reports Server (NTRS)

    Zola, Charlse L.; Wilson, Samuel B., III; Eskey, Megan A.

    1984-01-01

    The series/parallel tandem fan engine is evaluated for application in advanced STOVL supersonic fighter aircraft. Options in engine cycle parameters and design of the front fan flow diverter are examined for their effects on engine weight, dimensions, and other factors in integration of the engine with the aircraft. Operation of the engine in high-bypass flow mode during cruise and loiter flight is considered as a means of minimizizng fuel consumption. Engine thrust augmentation by burning in the front fan exhaust is discussed. Achievement of very sort takeoff with vectored thrust in briefly reviewed for tandem fan engine configurations with vectorable front fan nozzles. Examples are given of two aircraft configuration planforms, a delta-canard, and a forward-swept wing, to illustrate the major features. design considerations, and potential performance of the tandem fan installation in each. Full realization of the advantages of tandem fan propulsion are found to depend on careful selection of the aircraft configuration, since integration requirements can strongly influence the engine performance.

  18. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  19. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  20. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Astrophysics Data System (ADS)

    1994-07-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  1. Applications of advanced upper surface blowing propulsive-lift technology

    NASA Technical Reports Server (NTRS)

    Cochrane, J. A.; Riddle, D. W.; Youth, S.

    1982-01-01

    The success of the Quiet Short-Haul Research Aircraft led to studies of this technology for a business jet and a Short-Haul Transport. The studies showed that the Short-Haul Transport could operate from a 762.0-m runway with 95 passengers at low noise levels. Design range was 500 n. mi. but with maximum fuel load the runway length is only increased to 883.9 m while the range is increased to more than 1000 n. mi. Two business jet designs were studied; one design was based on a 457.2-m field length and the other was designed for a 760.0-m field length. The business jet designed for a 457.2-m field length can also be loaded to maximum fuel capacity. In this case the range increases from 500 n. mi. to 1400 n. mi. while the runway length increases from 457.2 m to 632.5 m. The business jet studies showed that the application of advanced propulsive-lift technology to this class aircraft can result in payload-range-speed performance comparable to current aircraft with about one-half the runway length requirement.

  2. Advanced torque converters for robotics and space applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This report describes the results of the evaluation of a novel torque converter concept. Features of the concept include: (1) automatic and rapid adjustment of effective gear ratio in response to changes in external torque (2) maintenance of output torque at zero output velocity without loading the input power source and (3) isolation of input power source from load. Two working models of the concept were fabricated and tested, and a theoretical analysis was performed to determine the limits of performance. It was found that the devices are apparently suited to certain types of tool driver applications, such as screwdrivers, nut drivers and valve actuators. However, quantiative information was insufficient to draw final conclusion as to robotic applications.

  3. Stimuli-responsive Pickering emulsions: recent advances and potential applications.

    PubMed

    Tang, Juntao; Quinlan, Patrick James; Tam, Kam Chiu

    2015-05-14

    Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.

  4. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... grant holder, or RUE grant holder; (2) Address; (3) Contact person and telephone number; and (4) Shore... lease, ROW grant, or RUE grant, including the expiration or relinquishment date and proposed month...

  5. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator, ROW grant holder, or RUE grant holder; (2) Address; (3) Contact person and telephone number; and... schedule for your lease, ROW grant, or RUE grant, including the expiration or relinquishment date...

  6. 30 CFR 285.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grant holder, or RUE grant holder; (2) Address; (3) Contact person and telephone number; and (4) Shore... lease, ROW grant, or RUE grant, including the expiration or relinquishment date and proposed month...

  7. 30 CFR 585.906 - What must my decommissioning application include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... grant holder, or RUE grant holder; (2) Address; (3) Contact person and telephone number; and (4) Shore... lease, ROW grant, or RUE grant, including the expiration or relinquishment date and proposed month...

  8. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  9. Recent advances in immuno-oncology and its application to urological cancers.

    PubMed

    Mataraza, Jennifer M; Gotwals, Philip

    2016-10-01

    Recent advances in immuno-oncology have the potential to transform the practice of medical oncology. Antibodies directed against negative regulators of T-cell function (checkpoint inhibitors), engineered cell therapies and innate immune stimulators, such as oncolytic viruses, are effective in a wide range of cancers. Immune'based therapies have had a clinically meaningful impact on the treatment of advanced melanoma, and the lessons regarding use of single agents and combinations in melanoma may be applicable to the treatment of urological cancers. Checkpoint inhibitors, cytokine therapy and therapeutic vaccines are already showing promise in urothelial bladder cancer, renal cell carcinoma and prostate cancer. Critical areas of future immuno-oncology research include the prospective identification of patients who will respond to current immune-based cancer therapies and the identification of new therapeutic agents that promote immune priming in tumours, and increase the rate of durable clinical responses.

  10. CARD-FISH for Environmental Microorganisms: Technical Advancement and Future Applications

    PubMed Central

    Kubota, Kengo

    2013-01-01

    Fluorescence in situ hybridization (FISH) has become a standard technique in environmental microbiology. More than 20 years have passed since this technique was first described, and it is currently used for the detection of ribosomal RNA, messenger RNA, and functional genes encoded on chromosomes. This review focuses on the advancement and applications of FISH combined with catalyzed reporter deposition (CARD, also known as tyramide signal amplification or TSA), in the detection of environmental microorganisms. Significant methodological improvements have been made in CARD-FISH technology, including its combination with other techniques and instruments. PMID:23124765

  11. Recent advances and future applications of microfluidic live-cell microarrays.

    PubMed

    Rothbauer, Mario; Wartmann, David; Charwat, Verena; Ertl, Peter

    2015-11-01

    Microfluidic live-cell microarrays show much promise as screening tools for biomedical research because they could shed light on key biological processes such as cell signaling and cell-to-cell and cell-to-substrate dynamic responses. While miniaturization reduces the need for expensive clinical grade reagents, the integration of functional components including micropumps, biosensors, actuators, mixers and gradient generators results in improved assay reliability, reproducibility and well-defined cell culture conditions. The present review addresses recent technological advances in microfluidic live-cell microarray technology with a special focus on the applications of microfluidic single-cell, multi-cell and 3D cell microarrays.

  12. Advanced tunable laser source for DoD applications

    SciTech Connect

    Cockroft, N.; Early, J.; Johnson, C.; Lester, C.; Quick, C.; Shimada, T.; Tiee, J.

    1996-06-01

    This is a final report of a two year project at the Los Alamos National Laboratory (LANL). The project sought to develop a new solid- state laser transmitter that can be tuned over an exceptionally broad spectral range and integrated with LIDAR remote sensing systems for applications in species specific chemical sensing. Activities have included non-linear frequency conversion of tunable chromium doped LiSAF laser radiation to the ultraviolet and infrared spectral regions. This system is capable of the detection of chemical species previously unapproachable, as well as an improvement in detection sensitivity of 1-2 orders of magnitude for species currently studied.

  13. Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws.

    PubMed

    Titze, Tobias; Lauerer, Alexander; Heinke, Lars; Chmelik, Christian; Zimmermann, Nils E R; Keil, Frerich J; Ruthven, Douglas M; Kärger, Jörg

    2015-11-23

    Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject.

  14. Advances in endodontics: Potential applications in clinical practice

    PubMed Central

    Kishen, Anil; Peters, Ove A.; Zehnder, Matthias; Diogenes, Anibal R.; Nair, Madhu K.

    2016-01-01

    Contemporary endodontics has seen an unprecedented advance in technology and materials. This article aimed to review some of the challenges and advances in the following sections: (1) endodontic imaging, (2) root canal preparation, (3) root canal disinfection, (4) root canal filling, and (4) regenerative endodontic procedures (REPs). Jointly, these advances are aimed at improving the state of the art and science of root canal treatment. PMID:27217630

  15. Advances in endodontics: Potential applications in clinical practice.

    PubMed

    Kishen, Anil; Peters, Ove A; Zehnder, Matthias; Diogenes, Anibal R; Nair, Madhu K

    2016-01-01

    Contemporary endodontics has seen an unprecedented advance in technology and materials. This article aimed to review some of the challenges and advances in the following sections: (1) endodontic imaging, (2) root canal preparation, (3) root canal disinfection, (4) root canal filling, and (4) regenerative endodontic procedures (REPs). Jointly, these advances are aimed at improving the state of the art and science of root canal treatment. PMID:27217630

  16. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    NASA Technical Reports Server (NTRS)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  17. Applications and advances of metabolite biosensors for metabolic engineering.

    PubMed

    Liu, Di; Evans, Trent; Zhang, Fuzhong

    2015-09-01

    Quantification and regulation of pathway metabolites is crucial for optimization of microbial production bioprocesses. Genetically encoded biosensors provide the means to couple metabolite sensing to several outputs invaluable for metabolic engineering. These include semi-quantification of metabolite concentrations to screen or select strains with desirable metabolite characteristics, and construction of dynamic metabolite-regulated pathways to enhance production. Taking inspiration from naturally occurring systems, biosensor functions are based on highly diverse mechanisms including metabolite responsive transcription factors, two component systems, cellular stress responses, regulatory RNAs, and protein activities. We review recent developments in biosensors in each of these mechanistic classes, with considerations towards how these sensors are engineered, how new sensing mechanisms have led to improved function, and the advantages and disadvantages of each of these sensing mechanisms in relevant applications. We particularly highlight recent examples directly using biosensors to improve microbial production, and the great potential for biosensors to further inform metabolic engineering practices.

  18. 29 CFR 2570.34 - Information to be included in every exemption application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the party in interest or its affiliate(s) may derive from control of the asset(s), such as from owning... disclosing the percentage of its current revenue that is derived from any party in interest involved in the... (including amounts received from preparing the appraisal report) that will be derived from the party...

  19. 29 CFR 2570.34 - Information to be included in every exemption application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the party in interest or its affiliate(s) may derive from control of the asset(s), such as from owning... disclosing the percentage of its current revenue that is derived from any party in interest involved in the... (including amounts received from preparing the appraisal report) that will be derived from the party...

  20. 25 CFR 1000.66 - What must be included in the application?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EDUCATION ACT Other Financial Assistance for Planning and Negotiation Grants for Non-BIA Programs... planning and negotiation grant must include: (a) Written notification by the governing body or its authorized representative of the Tribe's/Consortium's intent to engage in planning/negotiation...

  1. 40 CFR 1036.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... described in 40 CFR 86.007-21, with the following additional information: (a) Describe the engine family's... test procedures you used (see 40 CFR 1065.10(c)). (c) Include the emission-related installation... referenced parts of the CFR, and the Clean Air Act. Note that § 1036.235 specifies which engines to test...

  2. 77 FR 64768 - Regulations Regarding the Application of Section 172(h) Including Consolidated Groups; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ..., 2012 (77 FR 57452). The proposed regulation provides guidance regarding the treatment of corporate... (REG-140668-07), that was the subject of FR Doc. 2012-22838, is corrected as follows: 1. On page 57452...) Including Consolidated Groups; Correction AGENCY: Internal Revenue Service (IRS), Treasury....

  3. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel to show that it falls within the required ranges we specify in 40 CFR part 1065. (h) Identify the... your tests were valid under the requirements of this part and 40 CFR part 1065. (2) Report measured CO2... parts of the CFR, and the Clean Air Act. (x) Include good-faith estimates of U.S.-directed...

  4. 40 CFR 1037.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel to show that it falls within the required ranges we specify in 40 CFR part 1065. (h) Identify the... and 40 CFR part 86. (o) Report modeling results for ten configurations. Include modeling inputs and... comply with the requirements of this part, other referenced parts of the CFR, and the Clean Air Act....

  5. 40 CFR 1037.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel to show that it falls within the required ranges we specify in 40 CFR part 1065. (h) Identify the... and 40 CFR part 86. (o) Report modeling results for ten configurations. Include modeling inputs and... comply with the requirements of this part, other referenced parts of the CFR, and the Clean Air Act....

  6. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and how the modulation achieves the AECD's stated purpose. Use graphs and tables, as necessary. (8) Describe each AECD's specific calibration details. This may be in the form of data tables, graphical... § 1039.501). (f) Describe how you operated the emission-data engine before testing, including the...

  7. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and how the modulation achieves the AECD's stated purpose. Use graphs and tables, as necessary. (8) Describe each AECD's specific calibration details. This may be in the form of data tables, graphical...) Describe how you operated the emission-data engine before testing, including the duty cycle and the...

  8. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and how the modulation achieves the AECD's stated purpose. Use graphs and tables, as necessary. (8) Describe each AECD's specific calibration details. This may be in the form of data tables, graphical...) Describe how you operated the emission-data engine before testing, including the duty cycle and the...

  9. 40 CFR 1039.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and how the modulation achieves the AECD's stated purpose. Use graphs and tables, as necessary. (8) Describe each AECD's specific calibration details. This may be in the form of data tables, graphical...) Describe how you operated the emission-data engine before testing, including the duty cycle and the...

  10. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    ERIC Educational Resources Information Center

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  11. 40 CFR 1054.205 - What must I include in my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control systems operate. Describe the evaporative emission controls and show how your design will... controlling exhaust emissions, including all auxiliary emission control devices (AECDs) and all fuel-system... specified in 40 CFR part 1068, Appendix III. For example, engine owners should have ready access...

  12. 49 CFR 107.709 - Processing of an application for approval, including an application for renewal or modification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... consistent with the public interest and adequately will protect against the risks to life and property inherent in the transportation of hazardous materials in commerce; (3) The application states all...

  13. Advanced biohybrid materials based on nanoclays for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ruiz-Hitzky, Eduardo; Darder, Margarita; Wicklein, Bernd; Fernandes, Francisco M.; Castro-Smirnov, Fidel A.; Martín del Burgo, M. Angeles; del Real, Gustavo; Aranda, Pilar

    2012-10-01

    Bio-nanohybrids prepared by assembling natural polymers (polysaccharides, proteins, nucleic acids, etc) to nanosized silicates (nanoclays) and related solids (layered double hydroxides, LDHs) give rise to the so-called bionanocomposites constituting a group of biomaterials with potential applications in medicine. In this way, biopolymers, including chitosan, pectin, alginate, xanthan gum, ι-carrageenan, gelatin, zein, and DNA, as well as phospholipids such as phosphatidylcholine, have been incorporated in layered host matrices by means of ion-exchange mechanisms producing intercalation composites. Also bio-nanohybrids have been prepared by the assembly of diverse bio-polymers with sepiolite, a natural microfibrous magnesium silicate, in this case through interactions affecting the external surface of this silicate. The properties and applications of these resulting biomaterials as active phases of ion-sensors and biosensors, for potential uses as scaffolds for tissue engineering, drug delivery, and gene transfection systems, are introduced and discussed in this work. It is also considered the use of synthetic bionanocomposites as new substrates to immobilize microorganisms, as for instance to bind Influenza virus particles, allowing their application as effective low-cost vaccine adjuvants and carriers.

  14. 40 CFR 1051.225 - How do I amend my application for certification to include new or modified vehicle configurations...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification to include new or modified vehicle configurations or to change an FEL? 1051.225 Section 1051.225... application for certification to include new or modified vehicle configurations or to change an FEL? Before we... FEL for an engine family, as described in paragraph (f) of this section. (b) To amend your...

  15. 40 CFR 1051.225 - How do I amend my application for certification to include new or modified vehicle configurations...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification to include new or modified vehicle configurations or to change an FEL? 1051.225 Section 1051.225... application for certification to include new or modified vehicle configurations or to change an FEL? Before we... FEL for an engine family, as described in paragraph (f) of this section. (b) To amend your...

  16. 40 CFR 1051.225 - How do I amend my application for certification to include new or modified vehicle configurations...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification to include new or modified vehicle configurations or to change an FEL? 1051.225 Section 1051.225... application for certification to include new or modified vehicle configurations or to change an FEL? Before we... FEL for an engine family, as described in paragraph (f) of this section. (b) To amend your...

  17. 40 CFR 1051.225 - How do I amend my application for certification to include new or modified vehicle configurations...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification to include new or modified vehicle configurations or to change an FEL? 1051.225 Section 1051.225... application for certification to include new or modified vehicle configurations or to change an FEL? Before we... FEL for an engine family, as described in paragraph (f) of this section. (b) To amend your...

  18. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  19. Applications of advanced display technology for dismounted combatants (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Huffman, David C.

    2005-05-01

    Current military activity has made great use of small Special Tactics / Special Forces teams operating on the ground in forward areas of battle, directing Battlefield Air Operations (BAO), which include close air support, air traffic control management, and target identification and designation. A recent National Priority has been identified to improve the BAO Kit used by these Special Tactics Groups to reduce errors that may lead to unintended ground casualties. The primary objectives of the upgraded BAO Kit are to 1) improve the range and accuracy of target information; 2) eliminate opportunities for error in weapon delivery; 3) link target coordinate information directly into the weapons computer; and 4) reduce the weight carried by the warfighter by 50%. For these warfighters, L-3 Communications Display Systems and its technology partner, Universal Display Corporation, are utilizing advanced OLED display technology to create a powerful flexible display-based communication device. This will reduce the weight carried by the fighter by combining functions of the present computer, GPS equipment, and radio gear carried into the forward areas of battle. This will give the soldier a larger, higher resolution, increased battery life, and much lighter capability for the viewing of tactical information such as battlefield maps, GIS imaging data, command/control plots, and GPS-assisted navigational maps. Further integration of the device with voice and video messaging options will be explored. Both hand-held roll-up devices and wrist-worn devices are envisioned for the final product.

  20. Recent advances and applications of WRF-SFIRE

    NASA Astrophysics Data System (ADS)

    Mandel, J.; Amram, S.; Beezley, J. D.; Kelman, G.; Kochanski, A. K.; Kondratenko, V. Y.; Lynn, B. H.; Regev, B.; Vejmelka, M.

    2014-10-01

    Coupled atmosphere-fire models can now generate forecasts in real time, owing to recent advances in computational capabilities. WRF-SFIRE consists of the Weather Research and Forecasting (WRF) model coupled with the fire-spread model SFIRE. This paper presents new developments, which were introduced as a response to the needs of the community interested in operational testing of WRF-SFIRE. These developments include a fuel-moisture model and a fuel-moisture-data-assimilation system based on the Remote Automated Weather Stations (RAWS) observations, allowing for fire simulations across landscapes and time scales of varying fuel-moisture conditions. The paper also describes the implementation of a coupling with the atmospheric chemistry and aerosol schemes in WRF-Chem, which allows for a simulation of smoke dispersion and effects of fires on air quality. There is also a data-assimilation method, which provides the capability of starting the fire simulations from an observed fire perimeter, instead of an ignition point. Finally, an example of operational deployment in Israel, utilizing some of the new visualization and data-management tools, is presented.

  1. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  2. Applications of moving granular-bed filters to advanced systems

    SciTech Connect

    Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

    1993-09-01

    The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

  3. Development and characteristics of polymer monoliths for advanced LC bioscreening applications: A review.

    PubMed

    Acquah, Caleb; Moy, Charles K S; Danquah, Michael K; Ongkudon, Clarence M

    2016-03-15

    Biomedical research advances over the past two decades in bioseparation science and engineering have led to the development of new adsorbent systems called monoliths, mostly as stationary supports for liquid chromatography (LC) applications. They are acknowledged to offer better mass transfer hydrodynamics than their particulate counterparts. Also, their architectural and morphological traits can be tailored in situ to meet the hydrodynamic size of molecules which include proteins, pDNA, cells and viral targets. This has enabled their development for a plethora of enhanced bioscreening applications including biosensing, biomolecular purification, concentration and separation, achieved through the introduction of specific functional moieties or ligands (such as triethylamine, N,N-dimethyl-N-dodecylamine, antibodies, enzymes and aptamers) into the molecular architecture of monoliths. Notwithstanding, the application of monoliths presents major material and bioprocess challenges. The relationship between in-process polymerisation characteristics and the physicochemical properties of monolith is critical to optimise chromatographic performance. There is also a need to develop theoretical models for non-invasive analyses and predictions. This review article therefore discusses in-process analytical conditions, functionalisation chemistries and ligands relevant to establish the characteristics of monoliths in order to facilitate a wide range of enhanced bioscreening applications. It gives emphasis to the development of functional polymethacrylate monoliths for microfluidic and preparative scale bio-applications. PMID:26919447

  4. Recent advances and applications of the MAFIA codes

    NASA Astrophysics Data System (ADS)

    Wipf, S. G.; Marx, M.; Dohlus, M.; Steffen, B.; Blell, U.; Bartsch, M.; Hahne, P.; Schulz, A.; Schütt, P.; Wieland, T.; Becker, U.; Dehler, M.; Du, X.; Klatt, R.; Langstrof, A.; Pröpper, Zhang Min T.; van Rienen, U.; Schmitt, D.; Thoma, P.; Wagner, B.

    1993-12-01

    Over the last years MAFIA has grown to a more and more universal design tool for a vast range of applications not only in the field of accelerator physics. The currently distributed version 3.1 now includes a new solver module for time harmonic fields that enables the computation of eddy current distributions as well as the fields in driven rf systems. MAFIA 3.1 also includes static modules for electric and magnetic fields, 2D and 3D resonator solvers, 2D and 3D time domain solvers as well as 2.5D and 3D PIC modules. Thus MAFIA 3.1 now virtually covers the entire range of electromagnetic field problems. The fully menu driven user interface has been enhanced by implementation of macros, symbolic variables, and language structures that makes MAFIA fully programmable. On the application side there are numerous highlights such as extremely fast and accurate computations of S-parameters, calculation of antennas including farfield patterns, non-destructive testing analysis for carbon fiber reinforced plastic as used as air plane material, etc., to name only a few. In the accelerator physics area the new version added many enhancements on the calculation of impedances and wake fields with the possibility to simulate very short bunches without excessive need for memory. Version 3.2, scheduled for release in fall 1993, contains further new features such as fully lossy materials (complex fields), cylindrical coordinates for better cavity design, a possibility to add user-defined menus, various new 3D visualization tools, enhanced MAFIA language, and an AUTOMESH option. The most important new module is an optimizer, called OO, which basically combines all MAFIA modules into one (big) program. OO allows fully automatic optimization of electromagnetic components such as waveguide transitions, cavities, etc., according to user specified goal functions.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  6. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  7. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  8. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  9. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    SciTech Connect

    Zhu, Charles

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information

  10. Advances in contact algorithms and their application to tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.

    1988-01-01

    Currently used techniques for tire contact analysis are reviewed. Discussion focuses on the different techniques used in modeling frictional forces and the treatment of contact conditions. A status report is presented on a new computational strategy for the modeling and analysis of tires, including the solution of the contact problem. The key elements of the proposed strategy are: (1) use of semianalytic mixed finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) use of perturbed Lagrangian formulation for the determination of the contact area and pressure; and (3) application of multilevel iterative procedures and reduction techniques to generate the response of the tire. Numerical results are presented to demonstrate the effectiveness of a proposed procedure for generating the tire response associated with different Fourier harmonics.

  11. Recent advances in formation, properties, and applications of polymersomes.

    PubMed

    Liao, JinFeng; Wang, Cheng; Wang, YuJun; Luo, Feng; Qian, ZhiYong

    2012-01-01

    Polymersomes are self-assembled spherical vesicles based on amphiphilic block copolymers. This review presents a summary of the achievements in the field of polymersome researches to date. Polymersomes have been applied as versatile drug carriers. Some polymersomes, which have well-known stimuli-responsibility, can release drugs in a controlled manner at the target site when they are given a specific stimulation such as pH, temperature, light, magnetic field, hydrogen bond actions, electrostatic force or ultrasound. The preparation methods of polymersomes are similar to that of liposomes, including the thin film rehydration technique, solvent method, direct dissolution, double emulsion in microfluidic device, and electroformation. In addition, biologically active ligands, such as antibodies, can be readily conjugated onto the exterior brush surface of polymersomes to target the vesicles or to provide a therapeutic response. Polymersomes offer superior advantages for future clinical therapeutic and diagnostic imaging applications.

  12. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  13. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  14. Adsorption Microcalorimetry: Recent Advances in Instrumentation and Application

    NASA Astrophysics Data System (ADS)

    Crowe, Matthew C.; Campbell, Charles T.

    2011-07-01

    Adsorption microcalorimetry measures the energetics of adsorbate-surface interactions and can be performed by use of several different techniques. This review focuses on three methods: single-crystal adsorption calorimetry (SCAC), isothermal titration calorimetry (ITC), and electrochemical adsorption calorimetry. SCAC is a uniquely powerful technique that has been applied to a variety of atoms and molecules that represent a large variety of well-defined adsorbate species on a wide range of single-crystal surfaces. ITC and electrochemical microcalorimetry are useful for studying adsorption energies in liquid solutions (on surfaces of suspended powders) and at the electrode-electrolyte interface, respectively. Knowledge of the energetics of adsorbate formation is valuable to ongoing research in many fields, including catalysis, fuel cells, and solar power. In addition, calorimetric measurements serve as benchmarks for the improvement of computational approaches to understanding surface chemistry. We review instrumentation and applications, emphasizing our own work.

  15. Recent advances in high temperature instrumentation for hot section applications

    SciTech Connect

    Englund, D.R.; Seasholtz, R.G.

    1988-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technolgy leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The paper describes the state of the development of these sensors and measuring systems and, in some cases, will show examples of measurements made with this instrumentation.The paper covers work done at the NASA Lewis Research Center and at various contract and grant facilities.

  16. Recent advances in production, purification and applications of phycobiliproteins

    PubMed Central

    Sonani, Ravi Raghav; Rastogi, Rajesh Prasad; Patel, Rutvij; Madamwar, Datta

    2016-01-01

    An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins. PMID:26981199

  17. Recent advances in biomedical applications of accelerator mass spectrometry

    PubMed Central

    Hah, Sang Soo

    2009-01-01

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792

  18. Recent advances in production, purification and applications of phycobiliproteins.

    PubMed

    Sonani, Ravi Raghav; Rastogi, Rajesh Prasad; Patel, Rutvij; Madamwar, Datta

    2016-02-26

    An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.

  19. Recent advances in production, purification and applications of phycobiliproteins.

    PubMed

    Sonani, Ravi Raghav; Rastogi, Rajesh Prasad; Patel, Rutvij; Madamwar, Datta

    2016-02-26

    An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins. PMID:26981199

  20. A Case of Long-term Survival of Advanced Paratesticular Rhabdomyosarcoma Treated With a Multimodal Therapy Including a Combination of Cyclophosphamide, Vincristine, Doxorubicin and Dacarbazine.

    PubMed

    Isono, Makoto; Sato, Akinori; Asano, Tomohiko

    2016-07-01

    There is no established treatment for advanced rhabdomyosarcoma (RMS) with metastases at the time of diagnosis. A 17-year-old male was referred to our hospital because of a right scrotal mass. Computed tomography showed multiple lung metastases with pleural effusion and retroperitoneal lymph node metastasis, and bone scintigraphy revealed multiple bone metastases. Right high orchiectomy was performed and the tumor was diagnosed as paratesticular embryonal RMS. He was treated with a multimodal therapy including 17 cycles of combination chemotherapy consisting of cyclophosphamide, vincristine, doxorubicin and dacarbazine (CYVADIC) and achieved a long-term survival of 4 years. PMID:27335778

  1. Development and Application of a Nonbonded Cu2+ Model That Includes the Jahn–Teller Effect

    PubMed Central

    2015-01-01

    Metal ions are both ubiquitous to and crucial in biology. In classical simulations, they are typically described as simple van der Waals spheres, making it difficult to provide reliable force field descriptions for them. An alternative is given by nonbonded dummy models, in which the central metal atom is surrounded by dummy particles that each carry a partial charge. While such dummy models already exist for other metal ions, none is available yet for Cu2+ because of the challenge to reproduce the Jahn–Teller distortion. This challenge is addressed in the current study, where, for the first time, a dummy model including a Jahn–Teller effect is developed for Cu2+. We successfully validate its usefulness by studying metal binding in two biological systems: the amyloid-β peptide and the mixed-metal enzyme superoxide dismutase. We believe that our parameters will be of significant value for the computational study of Cu2+-dependent biological systems using classical models. PMID:26167255

  2. Advanced ammonia (NH3) monitoring system for industrial applications

    NASA Astrophysics Data System (ADS)

    Spector, Oded; Jacobson, Esther

    1999-12-01

    The present paper describes an Electro-Optical Monitoring System developed for the real time in-situ monitoring of Ammonia (NH3) emissions, at very low concentrations in air, well below the hazardous levels. Ammonia is the starting chemical for almost all industrially produced nitrogen compounds and is therefore one of the most important inorganic raw materials. Due to its unique chemical and physical characteristics, the Ammonia (NH3) anhydrous gas is used in various industrial applications such as: Air Conditioning, Refrigeration (including space shuttles), Agriculture and Chemical Processing. NH3 gas, being a highly irritant toxic and flammable gas with a pungent odor detectable by human perception at 53 ppm, has a TLV-TWA of 25 ppm (TLV-STEL of 35 ppm) and a lower explosive limit (LEL) of 15% in air. Being extremely corrosive and irritating to the skin, eyes, nose and respiratory tract, (irritation begins at 130 - 200 ppm), exposures to high concentrations (above 2500 ppm) are life threatening, thus early detection of Ammonia at concentrations up to 50 ppm is essential to prevent its toxic influence. Existing detection methods for NH3 rely mainly on chemical sensors and analytical methods that require the gas to be sampled and introduced into the detection system via a probe, compared to various standards (for determining the concentration) and the result is not always reflecting the actual gas concentration. The emerging optical open path remote sensing technology that analyzes the specific 'finger print' absorption characteristics of NH3 in various narrow spectral bands, specifically in the UV solar blind band, is discussed including the rationale of the detection algorithm and system design. The system offers warning and alarm signals set at the above low concentration detection sensitivity, (10 - 50 ppm(DOT)m) thus providing reliable Ammonia detection over an air path from 3 (including air-duct applications) to 400 ft (1 - 120 m). Typical installations of

  3. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    SciTech Connect

    Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M.; Strum, G.

    2012-08-15

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  4. LSST system analysis and integration task for an advanced science and application space platform

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.

  5. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method.

    PubMed

    Hurvitz, G; Ehrlich, Y; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  6. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.

  7. Integrative Biological Chemistry Program Includes The Use Of Informatics Tools, GIS And SAS Software Applications

    PubMed Central

    D’Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning courses using instrumentation, data-collection, data-storage, statistical-modeling analysis, visualization, and computational techniques. In this revised curriculum, students begin with a traditional set of biology, chemistry, physics, and mathematics major core-requirements, a geographic information systems (GIS) course, a choice of an instrumental analysis course or a statistical analysis systems (SAS) programming course, and then, students can add major-electives that further add depth and value to their future post-graduate specialty areas. Open-sourced georeferenced census, health and health disparity data were coupled with GIS and SAS tools, in a public health surveillance system project, based on US county zip-codes, to develop use-cases for chronic adult obesity where income, poverty status, health insurance coverage, education, and age were categorical variables. Across the 48 contiguous states, obesity rates are found to be directly proportional to high poverty and inversely proportional to median income and educational achievement. For the State of Delaware, age and educational attainment were found to be limiting obesity risk-factors in its adult population. Furthermore, the 2004–2010 obesity trends showed that for two of the less densely populated Delaware counties; Sussex and Kent, the rates of adult obesity were found to be progressing at much higher proportions when compared to the national average. PMID:26191337

  8. Fabrication of SWCNT-Ag nanoparticle hybrid included self-assemblies for antibacterial applications.

    PubMed

    Brahmachari, Sayanti; Mandal, Subhra Kanti; Das, Prasanta Kumar

    2014-01-01

    The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT) included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability (40-60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones. Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (∼90%) against all bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have been achieved due to the presence of higher -SH containing proteins in the cell walls of the bacteria. The developed nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface of the films. PMID:25191756

  9. A surplus production model including environmental effects: Application to the Senegalese white shrimp stocks

    NASA Astrophysics Data System (ADS)

    Thiaw, Modou; Gascuel, Didier; Jouffre, Didier; Thiaw, Omar Thiom

    2009-12-01

    In Senegal, two stocks of white shrimp ( Penaeusnotialis) are intensively exploited, one in the north and another in the south. We used surplus production models including environmental effects to analyse their changes in abundance over the past 10 years and to estimate their Maximum Sustainable Yield (MSY) and the related fishing effort ( EMSY). First, yearly abundance indices were estimated from commercial statistics using GLM techniques. Then, two environmental indices were alternatively tested in the model: the coastal upwelling intensity from wind speeds provided by the SeaWifs database and the primary production derived from satellite infrared images of chlorophyll a. Models were fitted, with or without the environmental effect, to the 1996-2005 time series. They express stock abundance and catches as functions of the fishing effort and the environmental index (when considered). For the northern stock, fishing effort and abundance fluctuate over the period without any clear trends. The model based on the upwelling index explains 64.9% of the year-to-year variability. It shows that the stock was slightly overexploited in 2002-2003 and is now close to full exploitation. Stock abundance strongly depends on environmental conditions; consequently, the MSY estimate varies from 300 to 900 tons according to the upwelling intensity. For the southern stock, fishing effort has strongly increased over the past 10 years, while abundance has been reduced 4-fold. The environment has a significant effect on abundance but only explains a small part of the year-to-year variability. The best fit is obtained using the primary production index ( R2 = 0.75), and the stock is now significantly overfished regardless of environmental conditions. MSY varies from 1200 to 1800 tons according to environmental conditions. Finally, in northern Senegal, the upwelling is highly variable from year to year and constitutes the major factor determining productivity. In the south, hydrodynamic

  10. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  11. Advances toward field application of 3D hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.

    2011-12-01

    , and thus bring HT closer to field practice. Topics to be discussed include: -Improving field efficiency through design and implementation of new modular, easily-installed equipment for 3D HT. -Validating field-scale 3D HT through application and cross-validation at the Boise Hydrogeophysical Research Site. -Developing guidelines for HT implementation based on field experience, numerical modeling, and a comprehensive literature review of the past 15 years of HT research. -Application of novel, fast numerical methods for large-scale HT data analysis. The results presented will focus on the application of 3D HT, but in general we also hope to provide insights on aquifer characterization that stimulate thought on the issue of continually updating aquifer characteristics estimates while recognizing uncertainties and providing guidance for future data collection.

  12. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  13. Radioprotectors in radiotherapy - advances in the potential application of phytochemicals.

    PubMed

    Szejk, Magdalena; Kołodziejczyk-Czepas, Joanna; Żbikowska, Halina Małgorzata

    2016-01-01

    Radiotherapy, in addition to chemotherapy, is currently the primary method of cancer treatment based on destruction of malignant cells by ionizing radiation. Unfortunately, it also affects normal cells, which is associated with negative consequences for a patient. Radioprotectors are compounds used to prevent/protect the non-tumor cells from the harmful effects of radiation. To play their role these compounds should meet several criteria; among others, they should significantly protect normal cells from radiation without changing the tumor cell radiosensitivity. In general, agents used to alter normal tissue toxicity from radiation can be broadly divided into three categories based on timing of delivery in relation to radiation: chemical radioprotectors, mitigators, and treatment. These groups include a diverse range of synthetic compounds in terms of their structure and protective mechanisms. The aminoradiothiol amifostine is the only radioprotectant approved in clinical application. However, its use is limited due to toxicity concerns (it may cause hypotension). Natural compounds, derived from plants, meet all criteria of the ideal radioprotector. They exert their protective actions against adverse effects of ionizing radiation by several mechanisms. Plant compounds that show radioprotective activity include flavonoids and phenolic acids, stilbenes, lycopene, alkaloids, peptides, polysaccharides, and phytohormones. Garlic, green tea, apples, citrus, and ginger are examples of constituents of the human diet that contain radioprotective substances. PMID:27356603

  14. Development of advanced magnetic resonance sensor for industrial applications. Final report

    SciTech Connect

    De Los Santos, A.

    1997-06-01

    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  15. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering.

    PubMed

    Stout, David A

    2015-01-01

    Since the discovery and synthesis of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) over a decade ago, researchers have envisioned and discovered new potential applications for these materials. CNTs and CNFs have rapidly become a platform technology for a variety of uses, including biomedical applications due to their mechanical, electrical, thermal, optical and structural properties. CNTs and CNFs are also advantageous due to their ability to be produced in many different shapes and sizes. Since their discovery, of the many imaginable applications, CNTs and CNFs have gained a significant amount of attention and therapeutic potential in tissue engineering and drug delivery applications. In recent years, CNTs and CNFs have made significant contributions in designing new strategies for, delivery of pharmaceuticals, genes and molecular probes into cells, stem cell therapies and assisting in tissue regeneration. Furthermore, it is widely expressed that these materials will significantly contribute to the next generation of health care technologies in treating diseases and contributing to tissue growth. Hence, this review seeks to explore the recent advancements, current status and limitations of CNTs and CNFs for drug delivery and tissue engineering applications.

  16. Multimodal Therapy including Yttrium-90 Radioembolization as a Bridging Therapy to Liver Transplantation for a Huge and Locally Advanced Intrahepatic Cholangiocarcinoma.

    PubMed

    Rayar, Michel; Levi Sandri, Giovanni Battista; Houssel-Debry, Pauline; Camus, Christophe; Sulpice, Laurent; Boudjema, Karim

    2016-09-01

    Treatment of intrahepatic cholangiocarcinoma remains a major challenge. For an unresectable lesion without extrahepatic spread, liver transplantation could be a potential solution but it is still associated with poor oncologic results owing to the absence of effective neoadjuvant treatment. We report the case of a young man with locally advanced intrahepatic cholangiocarcinoma presenting with multiple intrahepatic metastases and vascular structure involvement. The lesion was significantly downstaged by a multimodal therapy including intra-arterial Yttrium-90 radioembolization, systemic chemotherapy and external radiotherapy, allowing liver transplantation. Three years after the procedure, oncologic outcome is excellent with no sign of recurrence. Multimodal therapy including Yttrium-90 radioembolization could be relevant as neoadjuvant treatment before liver transplantation for unresectable intrahepatic cholangiocarcinoma. PMID:27689207

  17. New materials systems for advanced tribological and environmental applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    In this study, two different materials systems were developed to address current industrial problems of wear. The first system consisted of sterically hindered aliphatic polyester (SHAP) lubricants for use in hard disk magnetic recording applications. Specific goals included improved adhesion, durability and tribochemical stability compared to commercial perfluoropolyethers. While commercial perfluoropolyether lubricants are subject to catalytic degradation and mechanical scission, or suffer from severe stiction and dewetting problems, SHAP lubricants manifest greatly reduced stiction, superb thermal and oxidation stability, and excellent friction property, and make good candidates for broader applications, such as lubricants for MEMs or general purpose lubricants. The second material system involved a blend of Polytetrafluoroethylene (PTFE) and an Aromatic Thermosetting Polyester (ATSP) to achieve greatly improved mechanical properties and wear resistance compared to currently available blends of PTFE. The unique solid bonding capability and liquid crystalline nature of ATSP help form high aspect ratio microstructures, which allows fabrication of PTFE/ATSP composites across the entire composition range with greatly improved performance under greatly simplified conditions. A third project involved the design of new wide-spectrum antibacterial filters for point-of-use systems that are robust and can be easily regenerated and maintained. Silver coated fiberglass with colloidal sized silver particles was developed. Systems made of silver coated fiberglass are highly effective, have high capacity and can be regenerated easily. These disinfection units do not leach silver ions, or add taste or disinfection by-products into the treated water. Protozoa such as Cryptosporidium and Giardia can be held by the filter and destroyed during regeneration. They are an inexpensive, cleaner alternative to current point-of-use systems.

  18. Synthesis and characterization of advanced nanomaterials for energy applications

    NASA Astrophysics Data System (ADS)

    Xie, Ming

    Energy is essential for life. It is thus important to continue understanding how to reduce energy consumption, and increase energy generation. The use of nanoscale materials (nanomaterials) are expected to reduce resources and energy needed in fabricating electrical and electronic devices and help in reducing energy consumption. For example, boron nitride nanotubes (BNNTs) which have uniform band structures, are expected to find application in nanoscale electronic and optoelectronic devices. These devices will have smaller dimension, cost fewer resources and less energy to fabricate, and consume less energy due to minimum electron scattering in their ideally defect-free tubular structures. On the other hand, nanomaterials are also expected to improve the performance of thermoelectric devices that can convert heat into energy. In this thesis, we first investigated low-temperature synthesis of BNNTs (Chapter 1). Effects of substrate temperatures, bias voltages, and catalysts are discussed and a selective-phase growth model is proposed. During the course of this investigation, we discovered Si nanotubes (SiNTs) by catalytic plasma treatment (Chapter 2). The detailed growth parameters and characterizations are presented and a modified growth model is discussed. In addition, electronic properties are measured by AFM. Since Si has exceptional thermoelectric properties, the newly discovered SiNTs are prospects for related applications. We have thus evaluated the potential conversion efficiency and production cost of various nanostructured thermoelectric materials (Chapter 3 and 4). Based on state-of-the-art dish-stirling systems, we evaluate the feasibility of replacing stirling engines by thermoelectric modules. Finally, we have decided to investigate the properties of boron-nanocarbon ensembles (Chapter 5 and 6) as prospective thermoelectric materials. Detailed characterizations includes SEM, HRTEM, Raman, XRD are presented. Seebeck coefficient and electrical

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  20. Advanced applications of reduced density matrices in electronic structure theory

    NASA Astrophysics Data System (ADS)

    Rothman, Adam Eric

    This dissertation describes several applications of reduced density matrices (RDMs) in electronic structure theory. RDM methods are a valuable addition to the library of electronic structure theories because they reduce a many-electron problem to the space of just two electrons without approximation. New theoretical and computational avenues enabled by the two-electron RDM (2-RDM) have already shown substantial progress in calculating atomic and molecular energies and properties with an eye toward predictive chemistry. More than simply accurate calculations, RDM methods entail a paradigm shift in quantum chemistry. While one-electron approaches are conceptually easy to understand, the importance of the 2-RDM quantifies the centrality of a two-body framework. The 2-RDM facilitates a two-electron interpretation of quantum mechanics that will undoubtedly lead to a greater understanding of electron correlation. Two applications presented in the dissertation center around near-exact evaluation of the 2-RDM in chemical systems without the many-electron wave function, but approach the problem from different angles. The first applies variational 2-RDM theory to a model quantum dot; the second attempts non-variational determination of the 2-RDM in open-shell atomic and molecular systems using an extension of the anti-Hermitian contracted Schrodinger equation (ACSE). An example reaction is presented to demonstrate how energies computed with the 2-RDM can facilitate an understanding of chemical reactivity. A third application uses the one-electron RDM (1-RDM) as a tool for understanding molecular conductivity. In this case, the 1-RDM is valuable because it integrates out many extraneous degrees of freedom from metal baths, simplifying the electron transport problem but retaining enough information to predict the dependence of current on applied voltage. The results are competitive with other conductivity theories, including a dominant scattering-based understanding, but

  1. 34 CFR 611.2 - What management plan must be included in a Teacher Quality Enhancement Grants Program application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What management plan must be included in a Teacher Quality Enhancement Grants Program application? 611.2 Section 611.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF...

  2. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 1. [thermal analyzer manual

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1977-01-01

    The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.

  3. 34 CFR 611.2 - What management plan must be included in a Teacher Quality Enhancement Grants Program application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What management plan must be included in a Teacher Quality Enhancement Grants Program application? 611.2 Section 611.2 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF...

  4. 30 CFR 250.1726 - When must I submit an initial platform removal application and what must it include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I submit an initial platform removal application and what must it include? 250.1726 Section 250.1726 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL...

  5. 45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following: (a) A three-year strategic plan for promoting service-learning through programs under this part, or a revision of a previously approved three-year strategic plan. The application of a SEA must include a description of how the SEA will coordinate its service-learning plan with the State Plan...

  6. 45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following: (a) A three-year strategic plan for promoting service-learning through programs under this part, or a revision of a previously approved three-year strategic plan. The application of a SEA must include a description of how the SEA will coordinate its service-learning plan with the State Plan...

  7. 45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following: (a) A three-year strategic plan for promoting service-learning through programs under this part, or a revision of a previously approved three-year strategic plan. The application of a SEA must include a description of how the SEA will coordinate its service-learning plan with the State Plan...

  8. 45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following: (a) A three-year strategic plan for promoting service-learning through programs under this part, or a revision of a previously approved three-year strategic plan. The application of a SEA must include a description of how the SEA will coordinate its service-learning plan with the State Plan...

  9. 45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: (a) A three-year strategic plan for promoting service-learning through programs under this part, or a revision of a previously approved three-year strategic plan. The application of a SEA must include a description of how the SEA will coordinate its service-learning plan with the State Plan...

  10. 45 CFR 2517.410 - What must a qualified organization include in an application for a grant or a subgrant?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false What must a qualified organization include in an application for a grant or a subgrant? 2517.410 Section 2517.410 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE COMMUNITY-BASED...

  11. 45 CFR 2517.410 - What must a qualified organization include in an application for a grant or a subgrant?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What must a qualified organization include in an application for a grant or a subgrant? 2517.410 Section 2517.410 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE COMMUNITY-BASED...

  12. 34 CFR 611.2 - What management plan must be included in a Teacher Quality Enhancement Grants Program application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the proposed multiyear project, timeline, and budget information required by 34 CFR 75.112 and 75.117... 34 Education 3 2012-07-01 2012-07-01 false What management plan must be included in a Teacher Quality Enhancement Grants Program application? 611.2 Section 611.2 Education Regulations of the...

  13. 34 CFR 611.2 - What management plan must be included in a Teacher Quality Enhancement Grants Program application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the proposed multiyear project, timeline, and budget information required by 34 CFR 75.112 and 75.117... 34 Education 3 2014-07-01 2014-07-01 false What management plan must be included in a Teacher Quality Enhancement Grants Program application? 611.2 Section 611.2 Education Regulations of the...

  14. 34 CFR 611.2 - What management plan must be included in a Teacher Quality Enhancement Grants Program application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the proposed multiyear project, timeline, and budget information required by 34 CFR 75.112 and 75.117... 34 Education 3 2013-07-01 2013-07-01 false What management plan must be included in a Teacher Quality Enhancement Grants Program application? 611.2 Section 611.2 Education Regulations of the...

  15. 76 FR 74067 - Medicare Program; Announcement of a New Application Deadline for the Advance Payment Model

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Payment Model: Applications for the performance period beginning on April ] 1, 2012 will be accepted from... announces a new deadline for applications to the Advance Payment Model for the performance period beginning... February 1, 2012. The period during which applications will be accepted for the performance...

  16. Development of Advanced Seals for Industrial Turbine Applications

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet

    2002-10-01

    A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.

  17. Parachute systems technology: Fundamentals, concepts, and applications: Advanced parachute design

    SciTech Connect

    Peterson, C.W.; Johnson, D.W.

    1987-01-01

    Advances in high-performance parachute systems and the technologies needed to design them are presented in this paper. New parachute design and performance prediction codes are being developed to assist the designer in meeting parachute system performance requirements after a minimum number of flight tests. The status of advanced design codes under development at Sandia National Laboratories is summarized. An integral part of parachute performance prediction is the rational use of existing test data. The development of a data base for parachute design has been initiated to illustrate the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. Examples of advancements in parachute materials are presented, and recent problems with Mil-Spec broadgoods are reviewed. Finally, recent parachute systems tested at Sandia are summarized to illustrate new uses of old parachutes, new parachute configurations, and underwater recovery of payloads.

  18. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  19. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1988-01-01

    Advanced photovoltaic/electrochemical (batteries or regenerative fuel cells for storage) power system options for a lunar base are discussed and compared. Estimated system masses are compared with those projected for the SP-100 nuclear system. The results of the comparison are quantified in terms of the mass saved in a scenario which assembles the initial base elements in Low Earth Orbit (LEO) and launches from there to the lunar surface. A brief summary is given of advances in photovoltaic/electrochemical power system technologies currently under development in the NASA/OAST program. A description of the planned focussed technology program for surface power in the new Pathfinder initiative is also provided.

  20. Pain Related Cortical Oscillations: Methodological Advances and Potential Applications

    PubMed Central

    Peng, Weiwei; Tang, Dandan

    2016-01-01

    Alongside the time-locked event-related potentials (ERPs), nociceptive somatosensory inputs can induce modulations of ongoing oscillations, appeared as event-related synchronization or desynchronization (ERS/ERD) in different frequency bands. These ERD/ERS activities are suggested to reflect various aspects of pain perception, including the representation, encoding, assessment, and integration of the nociceptive sensory inputs, as well as behavioral responses to pain, even the precise details of their roles remain unclear. Previous studies investigating the functional relevance of ERD/ERS activities in pain perception were normally done by assessing their latencies, frequencies, magnitudes, and scalp distributions, which would be then correlated with subjective pain perception or stimulus intensity. Nevertheless, these temporal, spectral, and spatial profiles of stimulus induced ERD/ERS could only partly reveal the dynamics of brain oscillatory activities. Indeed, additional parameters, including but not limited to, phase, neural generator, and cross frequency couplings, should be paid attention to comprehensively and systemically evaluate the dynamics of oscillatory activities associated with pain perception and behavior. This would be crucial in exploring the psychophysiological mechanisms of neural oscillation, and in understanding the neural functions of cortical oscillations involved in pain perception and behavior. Notably, some chronic pain (e.g., neurogenic pain and complex regional pain syndrome) patients are often associated with the occurrence of abnormal synchronized oscillatory brain activities, and selectively modulating cortical oscillatory activities has been showed to be a potential therapy strategy to relieve pain with the application of neurostimulation techniques, e.g., repeated transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Thus, the investigation of the oscillatory activities proceeding from

  1. Pain Related Cortical Oscillations: Methodological Advances and Potential Applications.

    PubMed

    Peng, Weiwei; Tang, Dandan

    2016-01-01

    Alongside the time-locked event-related potentials (ERPs), nociceptive somatosensory inputs can induce modulations of ongoing oscillations, appeared as event-related synchronization or desynchronization (ERS/ERD) in different frequency bands. These ERD/ERS activities are suggested to reflect various aspects of pain perception, including the representation, encoding, assessment, and integration of the nociceptive sensory inputs, as well as behavioral responses to pain, even the precise details of their roles remain unclear. Previous studies investigating the functional relevance of ERD/ERS activities in pain perception were normally done by assessing their latencies, frequencies, magnitudes, and scalp distributions, which would be then correlated with subjective pain perception or stimulus intensity. Nevertheless, these temporal, spectral, and spatial profiles of stimulus induced ERD/ERS could only partly reveal the dynamics of brain oscillatory activities. Indeed, additional parameters, including but not limited to, phase, neural generator, and cross frequency couplings, should be paid attention to comprehensively and systemically evaluate the dynamics of oscillatory activities associated with pain perception and behavior. This would be crucial in exploring the psychophysiological mechanisms of neural oscillation, and in understanding the neural functions of cortical oscillations involved in pain perception and behavior. Notably, some chronic pain (e.g., neurogenic pain and complex regional pain syndrome) patients are often associated with the occurrence of abnormal synchronized oscillatory brain activities, and selectively modulating cortical oscillatory activities has been showed to be a potential therapy strategy to relieve pain with the application of neurostimulation techniques, e.g., repeated transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Thus, the investigation of the oscillatory activities proceeding from

  2. Advanced materials development for fossil energy conversion applications

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Kingsley, J.J.; Pederson, L.R.; Weber, W.J.; Youngblood, G.E.; Hurst, J.K.; Bell, A.E.; Grainger, D.W.; Rananavare, S.B.; Roe, D.K.; Thompson, D.H.

    1992-05-01

    Research activities being conducted as part of this project include: (1) fundamental studies of electrochemical processes occurring at surfaces and interfaces in fuel cells, and (2) development of novel materials synthesis and processing methodologies for fossil energy conversion applications. Complex impedance and dc polarization studies of the electrocatalytic activity at the cathode have allowed intrinsic materials properties to be separated from extrinsic properties related to morphology. Mixed conduction in cathode materials was shown to dramatically enhance electrocatalytic activity with this approach. Combustion synthesis methods were used to prepare multicomponent perovskite catalysts in the La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} system. Electronic properties of these catalysts can be altered by adjusting the composition, which affects both catalytic activity and selectivity. Inverse micelles have been utilized to prepare nanosized nickel sulfide particles, which show promise as hydrodesulfurization catalysts for liquefied coal. Self-assembling organic monolayers and derivatized inorganic surfaces have been used to control nucleation and crystal morphology of inorganic phases.

  3. Nutritional status and feeding-tube placement in patients with locally advanced hypopharyngeal cancer included in an induction chemotherapy-based larynx preservation program.

    PubMed

    Bozec, Alexandre; Benezery, Karen; Chamorey, Emmanuel; Ettaiche, Marc; Vandersteen, Clair; Dassonville, Olivier; Poissonnet, Gilles; Riss, Jean-Christophe; Hannoun-Lévi, Jean-Michel; Chand, Marie-Eve; Leysalle, Axel; Saada, Esma; Sudaka, Anne; Haudebourg, Juliette; Hebert, Christophe; Falewee, Marie-Noelle; Demard, François; Santini, José; Peyrade, Frédéric

    2016-09-01

    The objective of the study is to evaluate the nutritional status and determine its impact on clinical outcomes in patients with locally advanced hypopharyngeal cancer included in an induction chemotherapy (ICT)-based larynx preservation program without prophylactic feeding-tube placement. All patients with locally advanced (T3/4, N0-3, M0) hypopharyngeal squamous cell carcinoma, technically suitable for total pharyngolaryngectomy, treated by docetaxel, cisplatin and 5-fluorouracil (TPF)-ICT for larynx preservation at our institution between 2004 and 2013, were included in this retrospective study. Patients' nutritional status was closely monitored. Enteral nutrition was used if and when a patient was unable to sustain per-oral nutrition and hydration. The impact of nutritional status on clinical outcomes was investigated in univariate and multivariate analysis. A total of 53 patients (42 men and 11 women, mean age = 58.6 ± 8.2 years) were included in this study. Six (11.3 %) patients had lost more than 10 % of their usual body weight before therapy. Compared with patients' usual weight, the mean maximum patient weight loss during therapeutic management was 8.7 ± 4.5 kg. Enteral nutrition was required in 17 patients (32 %). We found no influence of the tested nutritional status-related factors on response to ICT, toxicity of ICT, overall, cause-specific and recurrence-free survival, and on post-therapeutic swallowing outcome. Maximum weight loss was significantly associated with a higher risk of enteral tube feeding during therapy (p = 0.03) and of complications (grade ≥3, p = 0.006) during RT. Without prophylactic feeding-tube placement, approximately one-third of the patients required enteral nutrition. There was no significant impact of nutritional status on oncologic or functional outcomes.

  4. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  5. 78 FR 71601 - KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Energy Regulatory Commission KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit... the applicant to KC Small Hydro LLC. (KCS Hydro). On November 5, 2013, Advanced Hydropower, Inc... the feasibility of a hydropower project to be located at the U.S. Army Corps of Engineers'...

  6. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  7. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Application for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information: Advanced Placement Test.... Full Text of Announcement I. Funding Opportunity Description Purpose of Program: The AP Test...

  8. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Applications for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... Announcement I. Funding Opportunity Description Purpose of Program: The AP Test Fee program awards grants...

  9. Clinical Application and Research Advances of CT Myocardial Perfusion Imaging.

    PubMed

    2016-06-10

    Computed tomography (CT)-based myocardial perfusion imaging (CTP)has been widely recognized as a one-station solution for the imaging of myocardial ischemia-related diseases. This article reviews the clinical scanning protocols,analytical methods,and research advances of CTP in recent years and briefly discusses its limitations and future development. PMID:27469926

  10. ADVANCED POWER SYSTEMS - ASH BEHAVIOR IN POWER SYSTEMS. INCLUDES THE SEMIANNUAL REPORT FOR THE PERIOD JANUARY 01, 1998 - JUNE 30, 1998.

    SciTech Connect

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature; Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined; Identify the relationship between the temperature of critical viscosity (T{sub cv}) as measured in a viscometer and the crystallization occurring in the melt; Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles; Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems; and Evaluate corrosion for alloys being used in supercritical combustion systems.

  11. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  12. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  13. Recent advances in percolation theory and its applications

    NASA Astrophysics Data System (ADS)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  14. Feasibility study of advanced technology hov systems. Volume 3. Benefit implications of alternative policies for including hov lanes in route guidance networks. Research report

    SciTech Connect

    Chira-Chavala, T.; Lin, W.H.

    1992-12-01

    This study aims to investigate whether it would be beneficial to include HOV lanes in route guidance networks when high-occupancy-vehicle (HOV) lanes exist on the corridors. This is an important policy issue for a number of reasons. First, HOV lanes are integral parts of many urban corridors in the U.S., and there is no compelling reason at this time to exclude them from route-guidance networks. Second, HOVs share same roadways with single-occupancy-vehicles (SOVs) outside HOV lanes, thus congestion outside HOV lanes also affects HOVs. Therefore, HOVs can conceivably benefit from having route guidance information to guide their journey. Third, evidence suggests that HOV lanes are a good public policy, thus it appears desirable to continue to provide travel-time advantages to HOVs over SOVs even when advanced route guidance technologies become available.

  15. Recent Advances in Global Measurement and Application of River Widths

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Allen, G. H.

    2015-12-01

    Among variables relevant to river form and discharge that can be observed from space, river width is perhaps the simplest to measure. Width can be extracted directly from optical or radar imagery, and application of remotely sensed widths to problems in hydrology, fluvial geomorphology, and ecology dates back more than two decades. Despite this long heritage, until very recently remotely sensed width measurements have largely been made on an ad-hoc basis for individual studies over relatively small regions. Global studies that required river widths have largely relied on estimates from downstream hydraulic geometry relationships with basin area, which inevitably simplify width variability and may, in practice, underestimate the fraction of wide rivers and the total river surface area in many basins. Over the last two years, multiple new regional- and global-scale, satellite-derived river width datasets have been developed that have substantially improved our global understanding of river form. These datasets include the Global Width Database for Large Rivers (GWD-LR), which provides width measurements for rivers wider than ~180 m, and all rivers wider than ~300 m, based on the SRTM water mask and the Global River Widths from Landsat (GRWL), which provides measurements for rivers as narrow as 30 m and all rivers wider than ~100 m. Several regional-scale datasets have also been developed. These datasets will facilitate improvements to regional and global scale hydrodynamic models, will provide more robust information on global river surface area for gas flux studies, and constitute novel information on global patterns of fluvial geomorphology. These datasets represent the beginning, not the end, of global river width measurements, however, as in the future multitemporal width measurements can be combined with recently developed algorithms to estimate river discharge for many rivers, globally.

  16. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  17. Atmospheric boundary layers in storms: advanced theory and modelling applications

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    . One of possible mechanisms responsible for non-local features of the long-lived PBLs could be the radiation of internal gravity waves (IGW) from the PBL upper boundary to the free atmosphere and the IGW-induced transport of the squared fluctuations of velocity and potential temperature. The free-flow stability plays an especially important role in is the conventionally neutral PBLs (those with the zero potential-temperature flux at the surface: Fθ=0 at z=0, developed against non-zero static stability in the free atmosphere: N>0). The above reasoning obviously calls for a comprehensive revision of the traditional theory. In a series of papers (quoted below in References) an advanced theory has been proposed. It includes the following developments.

  18. Clinical applications of advanced lipoprotein testing in diabetes mellitus

    PubMed Central

    Moin, Danyaal S; Rohatgi, Anand

    2011-01-01

    Traditional lipid profiles often fail to fully explain the elevated cardiovascular risk of individuals with diabetes mellitus. Advanced lipoprotein testing offers a novel means to evaluate dyslipidemia and refine risk estimation. Numerous observational studies have demonstrated a characteristic pattern of elevated levels of small, dense LDL particles, out of proportion to traditional lipid levels, in patients with both diabetes mellitus and the metabolic syndrome. Commonly used glucose and lipid-lowering agents have varied effects in patients with diabetes on both LDL and HDL subfractions. The exact role of advanced lipoprotein testing in patients with diabetes mellitus and the metabolic syndrome remains unclear but may offer improved assessment of cardiovascular risk compared with traditional lipid measurements. PMID:22162979

  19. Advances in the biomedical applications of the EELA Project.

    PubMed

    Hernández, Vicente; Blanquer, Ignacio; Aparicio, Gabriel; Isea, Raúl; Chaves, Juan Luis; Hernández, Alvaro; Mora, Henry Ricardo; Fernández, Manuel; Acero, Alicia; Montes, Esther; Mayo, Rafael

    2007-01-01

    In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA Project, which has brought together collaborating groups of Latin America and Europe. One year ago we presented this e-infrastructure used, among others, by the biomedical groups for the studies of oncological analysis, neglected diseases, sequence alignments and computational phylogenetics. After this period, the achieved advances are summarised in this paper.

  20. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    PubMed Central

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  1. Modern night vision goggles for advanced infantry applications

    NASA Astrophysics Data System (ADS)

    Estrera, Joseph P.; Ostromek, Timothy E.; Isbell, Wayne; Bacarella, Antonio V.

    2003-09-01

    Northrop Grumman Electro-Optical Systems (NGEOS) has concentrated in recent years on the development of advanced night vision goggle (NVG) systems. These NVGs developments concentrate on past operational deficiencies such as high light/bright source conditions during military operations in urban terrain (MOUT), poor individual movement technique (IMT) infantry operations, and obscured battlefield and reduced weather conditions. The first area of NVG advancement involves direct image intensifier (I2) replacement involving automatic gated power supply technology for wide dynamic NVG operation and advanced Generation III halo free I2 technology for reduction of NVG image halo and "blooming" artifacts. The second significant development area is NVG individual movement technique (IMT) deficiencies such as reduced field of view, reduced depth perception, center of gravity problems, and limited operation flexibility. These issues of NVG IMT have resulted in the development of an IMT enhanced night vision goggle for the U.S. Army's enhanced night vision goggle (ENVG). Finally, Northrop Grumman EOS is developing a NVG with the capability of producing optimized real-time image fusion from an image intensified sensor and uncooled long wavelength infrared (LWIR) sensor. This new technology allows for optimum imaging in battlefield obscured and laser polluted environment. These image fusion NVG development efforts have concentrated on both optical overlay image fusion and digital image fusion. This paper will compare and contrast these two types of image fusion technologies.

  2. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  3. Simulation of concomitant magnetic fields on fast switched gradient coils used in advanced application of MRI

    NASA Astrophysics Data System (ADS)

    Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.

    2012-10-01

    The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.

  4. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications.

    PubMed

    O'Neill, P F; Ben Azouz, A; Vázquez, M; Liu, J; Marczak, S; Slouka, Z; Chang, H C; Diamond, D; Brabazon, D

    2014-09-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes.

  5. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications.

    PubMed

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  6. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  7. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    PubMed Central

    O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.

    2014-01-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804

  8. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  9. Advanced I/O for large-scale scientific applications.

    SciTech Connect

    Klasky, Scott; Schwan, Karsten; Oldfield, Ron A.; Lofstead, Gerald F., II

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while

  10. Improved survival of children with advanced neuroblastoma treated by intensified therapy including myeloablative chemotherapy with stem cell transplantation: a retrospective analysis from the Tohoku Neuroblastoma Study Group.

    PubMed

    Imaizumi, M; Watanabe, A; Kikuta, A; Takano, T; Ito, E; Shimizu, T; Tsuchiya, S; Iinuma, K; Konno, T; Ohi, R; Hayashi, Y

    2001-10-01

    In the hospitals of the Tohoku Neuroblastoma Study Group (TNBSG), treatment for children with advanced neuroblastoma (NB) was intensified in the mid-1990's with the introduction of myeloablative therapy (MT) with stem cell transplantation (SCT) including the use of autologous peripheral blood stem cells (PBSC) and bone marrow transplantation (BMT). In this report, we examined whether the intensified therapy improved the outcome of children with advanced NB (age> 12 months) who were diagnosed between 1991 and 1997. Patients were 36 children (23 boys and 13 girls) with an average age of 3.4 years (range; 1 to 14 years). Six of them had stage III disease, and the other 30 had stage IV. They were treated initially with induction chemotherapy, surgery, and post-operative chemoradiotherapy, after which 17 of them continued further chemotherapy and the other 19 received MT/SCT (18 with PBSCT and 1 with BMT). Progression-free survival (PFS) rate at seven years from diagnosis was 43.5% for all patients, 66.7% for stage III patients and 38.2% for stage IV patients. The difference between stage III and IV patients was not significant. Among the 30 patients with stage IV disease, PFS at seven years was significantly higher in the 19 patients who received MT/SCT (55.6%) than in the 11 patients who did not receive it (12.5%). There was no difference in clinical and biological risk factors between these two groups, except for the proportion of patients with favorable response to initial therapy (36% and 80% for patients without and with MT/SCT, respectively). Furthermore, the proportion of patients with N-myc amplification was significantly higher in patients with progressive disease (PD) after MT/SCT than in those in CR after MT/SCT. The results of this retrospective study of children with advanced NB suggest that therapy intensification involving MT/SCT might result in lengthened survival time for patients with stage IV disease, and that post-transplant PD remains a risk for

  11. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    PubMed

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. PMID:27165254

  12. Application of advanced polymeric materials for controlled release pesticides

    NASA Astrophysics Data System (ADS)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  13. Advanced packaging technology for high frequency photonic applications

    SciTech Connect

    Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

    1996-03-01

    An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

  14. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  15. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  16. 78 FR 49061 - Valuation of Federal Coal for Advance Royalty Purposes and Information Collection Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Applicable to All Solid Minerals Leases; Proposed Rule #0;#0;Federal Register / Vol. 78, No. 155 / Monday... Purposes and Information Collection Applicable to All Solid Minerals Leases AGENCY: Office of Natural... solid minerals leases and also are necessary to implement the EPAct Federal coal advance...

  17. Advanced Woven SiC/SiC Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2007-01-01

    The temperature, stress, and environmental conditions of many gas turbine, hypersonic, and even nuclear applications make the use of woven SiC/SiC composites an attractive enabling material system. The development in SiC/SiC composites over the past few years has resulted in significant advances in high temperature performance so that now these materials are being pursued for several turbine airfoil and reusable hypersonic applications. The keys to maximizing stress capability and maximizing temperature capability will be outlined for SiC/SiC. These include the type of SiC fiber, the fiber-architecture, and the matrix processing approach which leads to a variety of matrix compositions and structure. It will also be shown that a range of mechanical, thermal, and permeability properties can be attained and tailored depending on the needs of an application. Finally, some of the remaining challenges will be discussed in order for the use of these composite systems to be fully realized.

  18. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

    SciTech Connect

    Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S.; Cetel, A.D.

    1999-07-01

    The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

  19. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  20. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the