Sample records for advanced attack helicopter

  1. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  2. The Evolution of the Advanced Attack Helicopter

    DTIC Science & Technology

    1975-06-06

    p. 18. C. V. Glines (LTC, USA), "De Bothezat’s Flying Octopus ," Airman, Vol VI, No. I (January, 1962), 43. 29Ross, p. 58. 20 in his own right, being...AIR MOBILE OPIRATIONS, A Report for the Blue Ribbon Defense Panel by COL Jay D. Vanderpool, USA, Ret. (February 1970), 29. F. IY 70A Observation...not produce significant quantitative progress. -Attack Helicopters The Key to Army Air Mobile Operations, A Report for the Blue Ribbon Defense Panel by

  3. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  4. Speech recognition in advanced rotorcraft - Using speech controls to reduce manual control overload

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Bortolussi, Michael R.

    1988-01-01

    An experiment has been conducted to ascertain the usefulness of helicopter pilot speech controls and their effect on time-sharing performance, under the impetus of multiple-resource theories of attention which predict that time-sharing should be more efficient with mixed manual and speech controls than with all-manual ones. The test simulation involved an advanced, single-pilot scout/attack helicopter. Performance and subjective workload levels obtained supported the claimed utility of speech recognition-based controls; specifically, time-sharing performance was improved while preparing a data-burst transmission of information during helicopter hover.

  5. US Army Attack Aviation in a Decisive Action Environment: History, Doctrine, and a Need for Doctrinal Refinement

    DTIC Science & Technology

    2015-05-23

    flight. The design used the engine, transmission, and rotor system of the UH-1 design. In doing so, Bell helicopters publicly declared that the Cobra...Public Release; Distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The attack helicopter airframe and role evolved slowly, over time, to...attack helicopter doctrine, heavily influenced by the Global War on Terror and the 11th Attack Helicopter Regiment’s disastrous deep attack during

  6. An Analysis of Factors That Influence Logistics, Operational Availability, and Flight Hour Supply of the German Attack Helicopter Fleet

    DTIC Science & Technology

    2017-06-01

    maintenance times from the fleet are randomly resampled when running the model to enhance model realism. The use of a simulation model to represent the...helicopter regiment. 2. Attack Helicopter UH TIGER The EC665, or Airbus Helicopter TIGER, (Figure 3) is a four- bladed , twin- engine multi-role attack...migrated into the automated management system SAP Standard Product Family (SASPF), and the usage clock starts to run with the amount of the current

  7. Development and validation of a blade-element mathematical model for the AH-64A Apache helicopter

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein

    1995-01-01

    A high-fidelity blade-element mathematical model for the AH-64A Apache Advanced Attack Helicopter has been developed by the Aeroflightdynamics Directorate of the U.S. Army's Aviation and Troop Command (ATCOM) at Ames Research Center. The model is based on the McDonnell Douglas Helicopter Systems' (MDHS) Fly Real Time (FLYRT) model of the AH-64A (acquired under contract) which was modified in-house and augmented with a blade-element-type main-rotor module. This report describes, in detail, the development of the rotor module, and presents some results of an extensive validation effort.

  8. Development Test 1 Advanced Attack Helicopter Competitive Evaluation Hughes YAH-64 Helicopter

    DTIC Science & Technology

    1976-12-01

    pilot or the copilot/gunner. The gun/rocket firing circuits were armed by selecting either guns or rockets on the armament panel (fig. 36, app B). The...number of 30mm rounds to be fired and gun barrel positions could only be set from the gunner position for DT I testing. Once the systems were armed ...fuselage is of a semimonocoque construction of primarily aluminum alloys. It consists of 10 major bulkheads and frames and 8 major longerons and

  9. Dynamic analysis using superelements for a large helicopter model

    NASA Technical Reports Server (NTRS)

    Patel, M. P.; Shah, L. C.

    1978-01-01

    Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.

  10. A dissociation of objective and subjective workload measures in assessing the impact of speech controls in advanced helicopters

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.; Bortolussi, Michael R.

    1988-01-01

    Among the new technologies that are expected to aid helicopter designers are speech controls. Proponents suggest that speech controls could reduce the potential for manual control overloads and improve time-sharing performance in environments that have heavy demands for manual control. This was tested in a simulation of an advanced single-pilot, scout/attack helicopter. Objective performance indicated that the speech controls were effective in decreasing the interference of discrete responses during moments of heavy flight control activity. However, subjective ratings indicated that the use of speech controls required extra effort to speak precisely and to attend to feedback. Although the operational reliability of speech controls must be improved, the present results indicate that reliable speech controls could enhance the time-sharing efficiency of helicopter pilots. Furthermore, the results demonstrated the importance of using multiple assessment techniques to completely assess a task. Neither the objective nor the subjective measures alone provided complete information. It was the contrast between the measures that was most informative.

  11. Attack Helicopter Operations: Art or Science

    DTIC Science & Technology

    1991-05-13

    ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S

  12. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.

    PubMed

    Usherwood, James R

    2009-03-01

    Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.

  13. Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  14. Development of ADOCS controllers and control laws. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  15. Back symptoms in aviators flying different aircraft.

    PubMed

    Grossman, Alon; Nakdimon, Idan; Chapnik, Leah; Levy, Yuval

    2012-07-01

    Back pain is a common complaint among military aviators of various aircraft. We attempted to define the epidemiologic characteristics of this complaint in military aviators of the Israeli Air Force. Aviators of various aircraft (fighter, attack helicopter, utility helicopter, and transport and cargo) completed 566 questionnaires. The questionnaires included various demographic variables as well as questions specifically addressing type of aircraft, location, and severity of pain. Questionnaires were analyzed according to aircraft type, weekly and total number of flight hours. Back pain was significantly more common among utility and attack helicopter pilots. Compared with only 64.02% of fighter pilots, 89.38% of utility and 74.55% of attack helicopter pilots reported some degree of back pain. Cervical region pain was more common among fighter pilots (47.2%) and utility helicopter pilots (47.3%) compared with attack helicopter (36.4%) and transport (22.3%) pilots. Cervical region pain of moderate-severe degree was more common among utility helicopter pilots (7.1%). Mid and low back pain at all degrees of severity were more common among helicopter pilots. A significant proportion of subjects suffered from pain in multiple regions, particularly among utility helicopter pilots (32.74%). Severity of pain was graded higher in all three regions (cervical, mid, and lower back) in utility helicopter pilots. Utility helicopter pilots have more prevalent and more severe back pain than pilots of other platforms. Yet, it is difficult to make a clear association between type of aircraft and the region of back pain.

  16. The Tank-Attack Helicopter in the European Mid-Intensity Conflict Environment: An Operational Effectiveness Analysis of Competitiveness/ Compatibility

    DTIC Science & Technology

    1975-06-06

    that the warp and woof of the whole cloth will not become discernible until the attack helicopter Is pitted against the tank In actual combat. The...This authoritative book on Soviet military thinking, a product of fifteen leading Soviet military theoreticians headed by Marshal Vasily ...the principal armor-defeating weapons systems ...Most people think in terms of two attack helicopters pitted against an enemy target, perhaps with

  17. Flow Environment Study Near the Empennage of a 15-Percent Scale Helicopter Model

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Berry, John D.; Hodges, W. Todd; Reis, Deane G.

    2000-01-01

    Development of advanced rotorcraft configurations has highlighted a need for high-quality experimental data to support the development of flexible and accurate analytical design tools. To provide this type of data, a test program was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to measure the flow near the empennage of a 15-percent scale powered helicopter model with an operating tail fan. Three-component velocity profiles were measured with laser velocimetry (LV) one chord forward of the horizontal tail for four advance ratios to evaluate the effect of the rotor wake impingement on the horizontal tail angle of attack. These velocity data indicate the horizontal tail can experience unsteady angle of attack variations of over 30 degrees due to the rotor wake influence. The horizontal tail is most affected by the rotor wake above advance ratios of 0.10. Velocity measurements of the flow on the inlet side of the tail fan were made for a low-speed flight condition using conventional LV techniques. The velocity data show an accelerated flow near the tail fan duct, and vorticity calculations track the passage of main rotor wake vortices through the measurement plane.

  18. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  19. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  20. A mathematical representation of an advanced helicopter for piloted simulator investigations of control system and display variations

    NASA Technical Reports Server (NTRS)

    Aiken, E. W.

    1980-01-01

    A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.

  1. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  2. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  3. Simulating effectiveness of helicopter evasive manoeuvres to RPG attack

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Thomson, D. G.

    2010-04-01

    The survivability of helicopters under attack by ground troops using rocket propelled grenades has been amply illustrated over the past decade. Given that an RPG is unguided and it is infeasible to cover helicopters in thick armour, existing optical countermeasures are ineffective - the solution is to compute an evasive manoeuvre. In this paper, an RPG/helicopter engagement model is presented. Manoeuvre profiles are defined in the missile approach warning sensor camera image plane using a local maximum acceleration vector. Required control inputs are then computed using inverse simulation techniques. Assessments of platform survivability to several engagement scenarios are presented.

  4. The effects of speech controls on performance in advanced helicopters in a double stimulation paradigm

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.; Vidulich, Michael A.

    1991-01-01

    The potential benefit of speech as a control modality has been investigated with mixed results. Earlier studies suggests that speech controls can reduce the potential of manual control overloads and improve time-sharing performance. However, these benefits were not without costs. Pilots reported higher workload levels associated with the use of speech controls. To further investigate these previous findings, an experiment was conducted in a simulation of an advanced single-pilot, scout/attack helicopter at NASA-Ames' ICAB (interchangeable cab) facility. Objective performance data suggested that speech control modality was effective in reducing interference of discrete, time-shared responses during continuous flight control activity. Subjective ratings, however, indicated that the speech control modality increased workload. Post-flight debriefing indicated that these results were mainly due to the increased effort to speak precisely to a less than perfect voice recognition system.

  5. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    PubMed Central

    Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868

  6. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    DTIC Science & Technology

    2015-12-01

    automatic blade fold of the new composite rotor blades, new performance matched transmissions, a new four-bladed tail rotor and drive system, upgraded...Upgrades December 2015 SAR March 18, 2016 10:59:17 UNCLASSIFIED 4 Col Steven Girard PMA-276 USMC Light/Attack Helicopter Program Executive Officer...attack helicopter is to provide rotary wing close air support, anti-armor, armed escort, armed/visual reconnaissance and fire support coordination

  7. Engineering Design Test 4 YAH-64 Advanced Attack Helicopter

    DTIC Science & Technology

    1980-01-01

    representative absorber installed data. However, this data was used for comparison with the absorber removed vibration levels. Additionally, a comparison of the...Figure 5 presents a comparison of performance measured duriag EDT-4 and EDT-2. Dimensional data for each flight are presented in figures 6 through 9...pilot could easily compensate for the lack of yaw rate danilpilg. 28. The YAH-64 requires a high brake pedal pres,,ure dirw ! r )wtJ i.iv (pcrations and

  8. Development Test 1 Advanced Attack Helicopter Competitive Evaluation Bell YAH-63 Helicopter

    DTIC Science & Technology

    1976-12-01

    ff. The poor design of the rotor speed gauge (para 110). gg. The increased level of vibration at an aft eg (para 115). hh . The...4 r j- lR fl ; fl i |n t! jn \\ ift inn ■’ T1’ ! i r h- ’ ... r" ..M if_ B P i: 13 L. KNDl S) n ID 0 TI Rl k f k ff ^ 1 II JB Cli...jje^^g-^ iäSfci^W, " ~—’-’’— -■~*v*’yr*pnsm*v*fr. wnvuf^ u«^ff4rflWW!IJJfJWJIMUI!V.WI’!’ ’ jB ^g^lSWP r?-*«?^WV«r.i?.M»,lB;i»«TOi-<’r™ 7 (X

  9. Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1991-01-01

    The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.

  10. Study to Determine the CB (Chemical/Biological) Threat and Define Alternative Crew Protection Systems for the Advanced Attack Helicopter (AAH). Volume 1

    DTIC Science & Technology

    1980-12-01

    NTIS GRA&I DTIC TAR Unannou.nced _ Just if i cat i o Distribution/ Availability Codes Avail and/or Dist Special ii -.- ,-4. ,S... -. UNCLASSIFIED...fighting ability. U Biological agents consist of living micro-organisms including bacteria, rickettsia and viruses . These agents are affected by their...six hours when worn with a protective hood. While virus particles are normally extremely minute, it is assumed in this study that they must be

  11. CLOSE AIR SUPPORT (CAS) FOR COUNTERINSURGENCY (COIN) AND THE UPWARD TRAJECTORY OF UNMANNED AIRCRAFT SYSTEMS (UAS): NAVIGATING THE UNDISCOVERED DOMAIN

    DTIC Science & Technology

    2015-10-01

    collateral damage. Further mitigating collateral damage, “…the SDB Focused Lethality Munition (FLM) variant incorporates a carbon fiber composite ...Effectiveness Modern attack helicopters execute the CAS mission with various standoff weapons. RW assets are slow moving and susceptible to MANPADS and...small arms fire, and attack helicopters used for CAS are primarily in a medium or low threat environment where enemy air defenses are weak or not

  12. A numerical analysis of the British Experimental Rotor Program blade

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  13. Subcontract Competition.

    DTIC Science & Technology

    1982-11-01

    McAreavy Advanced Attack Helicopter, ATTN;. DRCPM-AAH Target Acquisition Designation System/Pilot Night Vision System, ATTN; nRCPM-AAH-TP USA Aviation...Arabian National Guard Modernization Program, ATTN: DRCPM-NG USA Communications-Electronics Command, ATTN: DRCPM-GARS SMOKE/OBSCURANTS, ATTN; DRCPM...LI~ C.’ t4 oo C) ON )~ al C a;- n en𔃾D 9- C% L In C) c! o c5 4o Lo’ w - 0) ’. co L t~0 0l C)O~L 1,.- ool *.- # 0 t; -, j CC -J tmj Li -00 0 0 C 0*J

  14. Manufacturing Methods and Technology (MANTECH) Program Manufacturing Techniques for a Composite Tail Section for the Advanced Attack Helicopter.

    DTIC Science & Technology

    1981-10-01

    Protection Resin Nomex Composite Structure Tooling Graphite Electrolysis Ballistic Survivability 24. AUMT ACT’ (Zim llea m di nemsy mitily by block minubr...angles required by the design. 105 , ~ ii i w d q 100 Aluminum male molds (Figure 69) are u~tri to lay up prepreg material to form the angles that attach...aluminum male mold shaped to the airfoil contour as Figure 78 indicates. The spars and ribs are laid up in matched metal molds with silicone rubber

  15. Should Helicopters Transport Patients Who Become Sick After a Chemical, Biological, Radiological, Nuclear, and Explosive Attack?

    PubMed

    Yanagawa, Youichi; Ishikawa, Kouhei; Takeuchi, Ikuto; Nagasawa, Hiroki; Jitsuiki, Kei; Ohsaka, Hiromichi; Omori, Kazuhiko

    The local fire department executed a training simulation for chemical and explosive incidents at a large sports facility. In this training simulation, a physician-staffed helicopter arrived at the request of the fire department and landed just outside the cold zone in the parking area. The doctor and nurse of the helicopter were escorted to a red area in the cold zone, which was selected based on the results of postdecontamination triage. After the patients had been treated, they were air medically evacuated to the base hospital. In the Tokyo subway sarin attack in 1995, St Luke's International Hospital admitted over 600 victims. During this incident, 23.2% of medical staff suffered secondary injury from sarin exposure. If air medial crews respond with subsequent postexposure effects during flight, an affected pilot could lose control of the helicopter, resulting in a fatal crash. Based on potential safety concerns for air medical and ground personnel, our recommendation would be that air medical helicopters not be dispatched to sites of chemical, biological, radiological, nuclear, and explosive incidents. Copyright © 2018 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  16. Technology Strategy in Irregular Warfare: High-Tech Versus Right-Tech

    DTIC Science & Technology

    2015-12-01

    ny-countys-confiscated-gun-policy/. 88 newest AH-64E. It has upgraded engines and rotor blades that enable the attack helicopter to have a quicker...was the extent of their defensive operations. Aircraft, helicopter gunships, armored vehicles, and artillery were directly used by Soviet forces...it into raw numbers, the Soviet Air Force had approximately 6,894 fixed-wing aircraft, and 3,320 helicopters .126 The Soviet Army had five times

  17. Kinematic properties of the helicopter in coordinated turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Jeske, J. A.

    1981-01-01

    A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.

  18. The Airbag as a Supplement to Standard Restraint Systems in the AH-1 and AH-64 Attack Helicopters and Its Role in Reducing Head Strikes of the Copilot/ Gunner. Volume 1

    DTIC Science & Technology

    1991-01-01

    shelf and locally available automotive airbag system was selected for the tests. The system was a driver’s side airbag designed by Honda Motor Company...allowance for hardware redesign or modifi- cation. Despite these limitations, the study succeeded in demonstrating a problem exists and a supplemental airbag ...JSAARL Repqrt No. 91-8 AD-A233 349 Volume’ I(3 The Airbag as a Supplement to Standard Restraint Systems in the AH-1 and AH-64 Attack Helicopters and

  19. Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Bossler, Robert B., Jr.

    1993-01-01

    Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.

  20. Operational Testing of Software-Intensive Systems: Observations and Comments

    DTIC Science & Technology

    2011-03-01

    Hood and Camp Bowie , Texas, October 16–December 8, 2006. This phase included an engineering company, an attack helicopter troop, and a battalion (-) of... Arnold . 2007a. Test data report for the Black Hawk Utility Helicopter (UH-60M) Initial Operational Test Phase IIa, Medical Evacuation Helicopter (HH...60M) Ex- cursion. U.S. Army Operational Test Command, Febru- ary 2007. Manning, W., J. B. Bush, C. Scott, and C. Arnold . 2007b. Test data report for

  1. KSC01pp0739

    NASA Image and Video Library

    2001-04-05

    KENNEDY SPACE CENTER, FLA. -- A medevac helicopter assists with transporting “victims” during a staged mass casualty exercise in the Launch Complex 39 area. Employees are playing roles in the fictitious sniper attack that is being staged to validate capabilities of KSC’s fire, medical, helicopter transport and security personnel to respond to such an event.

  2. KSC01pp0740

    NASA Image and Video Library

    2001-04-05

    KENNEDY SPACE CENTER, FLA. -- Rescue personnel place a “victim” in a medevac helicopter during a staged mass casualty exercise in the Launch Complex 39 area. Employees are playing roles in the fictitious sniper attack that is being staged to validate capabilities of KSC’s fire, medical, helicopter transport and security personnel to respond to such an event

  3. Combat Development Study. Close Support Study Group 2 (CSSG 2). Volume 3. Main Report. Chapters 8-14 and Appendices A-G

    DTIC Science & Technology

    1980-02-01

    support structure with respect to laser designation and acquistion systems and laser/guided munitions? Discussion, The advanced attack helicopter cu...times to practically zero even under the heavy load conditions described herein. The AMSAA analysis results, described In a preceding paragraph, were...M113A1 (1) AN/VRC-47 (1) GLLD (1) AN/VRC-47 (2) AN/GRC-160 (1) PADS (2) AN/GRC-160 (1) AN/GRA-39 (1) AN/VRC-47 (2) AN/GRA-39 (1) KY-38 (2) AN/GRC-160

  4. Cyber-Physical Attacks With Control Objectives

    DOE PAGES

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2017-08-18

    This study studies attackers with control objectives against cyber-physical systems (CPSs). The goal of the attacker is to counteract the CPS's controller and move the system to a target state while evading detection. We formulate a cost function that reflects the attacker's goals, and, using dynamic programming, we show that the optimal attack strategy reduces to a linear feedback of the attacker's state estimate. By changing the parameters of the cost function, we show how an attacker can design optimal attacks to balance the control objective and the detection avoidance objective. In conclusion, we provide a numerical illustration based onmore » a remotely controlled helicopter under attack.« less

  5. Cyber-Physical Attacks With Control Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    This study studies attackers with control objectives against cyber-physical systems (CPSs). The goal of the attacker is to counteract the CPS's controller and move the system to a target state while evading detection. We formulate a cost function that reflects the attacker's goals, and, using dynamic programming, we show that the optimal attack strategy reduces to a linear feedback of the attacker's state estimate. By changing the parameters of the cost function, we show how an attacker can design optimal attacks to balance the control objective and the detection avoidance objective. In conclusion, we provide a numerical illustration based onmore » a remotely controlled helicopter under attack.« less

  6. Naval Coalition Building with the GCC States

    DTIC Science & Technology

    2002-12-01

    1987 the USS Stark was attacked by an Iraq F-1 and A U.S. Navy Helicopter had attacked an Iranian warship, Iran Ajr while it was laying mines in the...Interests,” National Interests in International Society. (Ithaca, N.Y., Cornell University Press: 1996) 4. 60 Empire and “pax Britannia

  7. Sampling tree tops by helicopter...special pole pruner cuts branchlets

    Treesearch

    John F. Wear; Robert G. Winterfeld

    1966-01-01

    A new technique for sampling tops of tall Douglas-fir trees by using a special pole pruner from a helicopter has been developed and field-tested. Thee pole pruner cuts and holds a branchlet. Foliage samples collected will be compared by spectral analysis to show the type of aerial imagery that best differentiates healthy trees from those attacked by root rot.

  8. The Effect of USMC Enlisted Aviation Maintenance Qualifications on Aviation Readiness

    DTIC Science & Technology

    2015-12-01

    rotary wing platforms of USMC. Three types of squadrons are examined: the Marine Light Attack Helicopter Squadron (HMLA), the Marine Medium Tilt Rotor ...following: about one-half of the maintainers of interest in a helicopter or tilt- rotor squadron are < CDI; about 22% are CDIs; 15% are CDQARs; and 14% are...Maintenance Program ........................................7  2.  Squadron Composition

  9. AV-95 Sun Devil: High-Speed Military Rotorcraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The AV-95 Sun Devil must combine helicopter capabilities, such as vertical takeoff and landings (VTOL) and rotor-powered flight, along with long-duration cruise and high-speed dash capabilities unobtainable by conventional helicopters. To be able to perform both tasks, and perform them well, the AV-95 Sun Devil design incorporates several unconventional devices; the AV-95 uses two convertible turbofan engines, able to provide both shaft power for the main rotor and tall fan as well as jet thrust either separately or simultaneously. Other devices used for the AV-95 include a variable diameter main rotor and a blown flap. In helicopter mode, the AV-95 Sun Devil performs like a winged helicopter. The addition of wings to an attack helicopter results in two significant advantages. First, the addition of wings makes a helicopter more maneuverable than a wingless, but otherwise similar helicopter. Second, since the wings produce lift, rotor stall and compressibility effects can be significantly delayed at high tip velocities. In fixed-wing mode, the main rotor is completely off-loaded but slightly powered, and the rotor diameter has been minimized. The AV-95 Sun Devil has many advantages over other VTOL aircraft. The conversion process is simple and fast; conversion does not make the AV-95 vulnerable to enemy attack during conversion such as a tilt-wing or a tilt-rotor. Stop-rotor aircraft and a stowed rotor aircraft require heavy breaking of the rotor for conversion; this adds time for conversion and weight to the aircraft. Because the AV-95 never stops the rotor in flight, much weight is spared, and conversion is much simpler and faster.

  10. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  11. A SIMULATION OF HELICOPTER AIRCRAFT IN AN ARMED RECONNAISSANCE MODE, FOR THE CDC 1604 DIGITAL COMPUTER.

    DTIC Science & Technology

    A model is presented which is a computer simulation of a duel involving two helicopter sections, a scout and an attack section, and an armored mobile...constructed in an attempt to include the possible effects of terrain on tactics used by the combatants in the duel . The computer program, logic and model results are included. (Author)

  12. Conference on Helicopter Structures Technology, Moffett Field, Calif., November 16-18, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.

  13. Rotor Performance at High Advance Ratio: Theory versus Test

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  14. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  15. Materiel Acquisition Management of U.S. Army Attack Helicopters

    DTIC Science & Technology

    1989-06-02

    used to evaluate the existing helicopter program periodically in order to determine utility in reference to all evaluation criteria. Defintion of... mixed integer linear programming model, the Phoenix model has demonstrated the potential to assist in the analysis of strategic and operational issues in...Fleet Max i of Aircraft per Fleet Programmed Buys .. -- Technology Unit Production mix Retirement Start-up ROTIE Flying Hour Aviation Overheadl I Aviation

  16. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  17. Spot-weld bonding on the Blackhawk helicopter

    NASA Technical Reports Server (NTRS)

    Salking, M. J.

    1972-01-01

    The Sikorsky S-67 Blackhawk attack helicopter utilizes spot-weld bonding for stringer to skin attachment on more than 5 per cent of its surface area. It is the first American aircraft to utilize spot weld bonding, although the process has been used for some years in the U.S.S.R. The process consists of applying adhesive on the surfaces to be joined, spot welding through the adhesive, then curing the adhesive.

  18. Prehospital airway management on rescue helicopters in the United Kingdom.

    PubMed

    Schmid, M; Mang, H; Ey, K; Schüttler, J

    2009-06-01

    Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.

  19. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  20. Documenting helicopter operations from an energy standpoint

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Stepniewski, W. Z.

    1974-01-01

    Results are presented of a study of the relative and absolute energy consumption of helicopters, including limited comparisons with fixed-wing aircraft, and selected surface transportation vehicles. Additional comparisons were made to determine the level of reduction in energy consumption expected from the application of advanced technologies to the helicopter design and sizing process. It was found that improvements in helicopter consumption characteristics can be accomplished through the utilization of advanced technology to reduce drag, structures weight, and powerplant fuel consumption.

  1. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  2. Game Theory and U-Boats in the Bay of Biscay

    DTIC Science & Technology

    2003-03-01

    a necessary condition for optimality in this case. Baston and Bostock (1989) approach a one-dimensional helicopter versus submarine game, modeled as...given number of bombs with which to attack the submarine, and the payoff is whether or not the submarine is destroyed. Baston and Bostock solve the...323 (March-April 2002). Baston , V. J. and F. A. Bostock. “A One-Dimensional Helicopter-Submarine Game,” Naval Research Logistics, Vol. 36: 479-490

  3. Research requirements for development of advanced-technology helicopter transmissions. [reduction of maintenance costs

    NASA Technical Reports Server (NTRS)

    Lemanski, A. J.

    1976-01-01

    Helicopter drive-system technology which would result in the largest benefit in direct maintenance cost when applied to civil helicopters in the 1980 timeframe was developed. A prototype baseline drive system based on 1975 technology provided the basis for comparison against the proposed advanced technology in order to determine the potential for each area recommended for improvement. A specific design example of an advanced-technology main transmission is presented to define improvements for maintainability, weight, producibility, reliability, noise, vibration, and diagnostics. Projections of the technology achievable in the 1980 timeframe are presented. Based on this data, the technologies with the highest payoff (lowest direct maintenance cost) for civil-helicopter drive systems are identified.

  4. Research requirements to reduce civil helicopter life cycle cost

    NASA Technical Reports Server (NTRS)

    Blewitt, S. J.

    1978-01-01

    The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.

  5. Power transfer systems for future navy helicopters. Final report 25 Jun 70--28 Jun 72

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossler, R.B. Jr.

    1972-11-01

    The purpose of this program was to conduct an analysis of helicopter power transfer systems (pts), both conventional and advanced concept type, with the objective of reducing specific weights and improving reliability beyond present values. The analysis satisfied requirements specified for a 200,000 pound cargo transport helicopter (CTH), a 70,000 pound heavy assault helicopter, and a 15,000 pound non-combat search and rescue helicopter. Four selected gearing systems (out of seven studied), optimized for lightest weight and equal reliability for the CTH, using component proportioning via stress and stiffness equations, had no significant difference between their aircraft payloads. All optimized ptsmore » were approximately 70% of statistically predicted weight. Reliability increase is predicted via gearbox derating using Weibull relationships. Among advanced concepts, the Turbine Integrated Geared Rotor was competitive for weight, technology availability and reliability increase but handicapped by a special engine requirement. The warm cycle system was found not competitive. Helicopter parametric weight analysis is shown. Advanced development Plans are presented for the pts for the CTH, including total pts system, selected pts components, and scale model flight testing in a Kaman HH2 helicopter.« less

  6. The Effect of a Monocular Helmet-Mounted Display on Aircrew Health: A Cohort Study of Apache AH Mk 1 Pilots Four-Year Review

    DTIC Science & Technology

    2009-12-01

    forward-looking infrared FOV field-of-view HDU helmet display unit HMD helmet-mounted display IHADSS Integrated Helmet and Display...monocular Integrated Helmet and Display Sighting System (IHADSS) helmet-mounted display ( HMD ) in the British Army’s Apache AH Mk 1 attack helicopter has any...Integrated Helmet and Display Sighting System, IHADSS, Helmet-mounted display, HMD , Apache helicopter, Visual performance UNCLAS UNCLAS UNCLAS SAR 96

  7. An introduction to the physical aspects of helicopter stability

    NASA Technical Reports Server (NTRS)

    Gessow, Alfred; Amer, Kenneth B

    1950-01-01

    In order to provide engineers interested in rotating-wing aircraft, but with no specialized training in stability theory, some understanding of the factors that influence the flying qualities of the helicopter, an explanation is made of both the static stability and the stick-fixed oscillation in hovering and forward flight in terms of fundamental physical quantities. Three significant stability factors -- static stability with angle of attack, static stability with speed, and damping due to a pitching or rolling velocity -- are explained in detail.

  8. Investigating Flight with a Toy Helicopter

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  9. Comparison of helicopter and ground emergency medical service: a retrospective analysis of a German rescue helicopter base.

    PubMed

    Mommsen, Philipp; Bradt, Nikolas; Zeckey, Christian; Andruszkow, Hagen; Petri, Max; Frink, Michael; Hildebrand, Frank; Krettek, Christian; Probst, Christian

    2012-01-01

    In consideration of rising cost pressure in the German health care system, the usefulness of helicopter emergency medical service (HEMS) in terms of time- and cost-effectiveness is controversially discussed. The aim of the present study was to investigate whether HEMS is associated with significantly decreased arrival and transportation times compared to ground EMS. In a retrospective study, we evaluated 1,548 primary emergency missions for time sensitive diagnoses (multiple trauma, traumatic brain and burn injury, heart-attack, stroke, and pediatric emergency) performed by a German HEMS using the medical database, NADIN, of the German Air Rescue Service. Arrival and transportation times were compared to calculated ground EMS times. HEMS showed significantly reduced arrival times at the scene in case of heart-attack, stroke and pediatric emergencies. In contrast, HEMS and ground EMS showed comparable arrival times in patients with multiple trauma, traumatic brain and burn injury due to an increased flight distance. HEMS showed a significantly decreased transportation time to the closest centre capable of specialist care in all diagnosis groups (p<0.001). The results of the present study indicate the time-effectiveness of German air ambulance services with significantly decreased transportation times.

  10. A simulation investigation of scout/attack helicopter directional control requirements for hover and low-speed tasks

    NASA Technical Reports Server (NTRS)

    Bivens, Courtland C.; Guercio, Joseph G.

    1987-01-01

    A piloted simulator experiment was conducted to investigate directional axis handling qualities requirements for low speed and hover tasks performed by a Scout/Attack helicopter. Included were the directional characteristics of various candidate light helicopter family configurations. Also, the experiment focused on conventional single main/tail rotor configurations of the OH-58 series aircraft, where the first-order yaw-axis dynamic effects that contributed to the loss of tail rotor control were modeled. Five pilots flew 22 configurations under various wind conditions. Cooper-Harper handling quality ratings were used as the primary measure of merit of each configuration. The results of the experiment indicate that rotorcraft configurations with high directional gust sensitivity require greater minimum yaw damping to maintain satisfactory handling qualities during nap-of-the-Earth flying tasks. It was also determined that both yaw damping and control response are critical handling qualities parameters in performing the air-to-air target acquisition and tracking task. Finally, the lack of substantial yaw damping and larger values of gust sensitivity increased the possibility of loss of directional control at low airspeeds for the single main/tail rotor configurations.

  11. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  12. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  13. Study of the Army Helicopter Design Hover Criterion Using Temperature and Pressure Altitude

    DTIC Science & Technology

    2017-09-01

    the Advanced Scout Helicopter Special Study Group reexamined the design point requirement. They recommended increasing the design point pressure...other combinations group between these two extremes. Ultimately, the design point for a helicopter has to be determined by the user of the...helicopter designs . 6. References Aviation Agency. 1972. “Heavy Lift Helicopter (HLH) Concept Formulation Study (U)”, Action Control Number 2958

  14. A flight investigation of basic performance characteristics of a teetering-rotor attack helicopter

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1979-01-01

    Flight data were obtained with an instrumented AH-16 helicopter having uninstrumented, standard main-rotor blades. The data are presented to facilitate the analysis of data taken when the same vehicle was flown with instrumented main-rotor blades built with new airfoils. Test results include data on performance, flight-state parameters, pitch-link loads and blade angles for level flight, descending turns and pull-ups. Flight test procedures and the effects of both trim variations and transient phenomena on the data are discussed.

  15. Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation

    NASA Technical Reports Server (NTRS)

    Brentner, K. S.

    1986-01-01

    A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.

  16. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  17. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  18. A Comparison of Interactional Aerodynamics Methods for a Helicopter in Low Speed Flight

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Letnikov, Victor; Bavykina, Irena; Chaffin, Mark S.

    1998-01-01

    Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.

  19. Advanced Airfoils Boost Helicopter Performance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  20. NASA helicopter transmission system technology program

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1983-01-01

    The purpose of the NASA Helicopter Transmission System Technology Program is to improve specific mechanical components and the technology for combining these into advanced drive systems to make helicopters more viable and cost competitive for commerical applications. The history, goals, and elements of the program are discussed.

  1. Research requirements to reduce empty weight of helicopters by use of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffstedt, D.J.

    1976-12-01

    Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12% at recurring costs competetive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12% was shown to significantly reduce energy consumption in modern high-performance helicopters.

  2. Parasite-Drag Measurements of Five Helicopter Rotor Hubs

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B.; Harrington, Robert D.

    1959-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.

  3. Technical Workshop: Advanced Helicopter Cockpit Design

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C. (Editor); Callas, G. P. (Editor)

    1984-01-01

    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.

  4. Canada in Afghanistan: 2001-2010. A Military Chronology

    DTIC Science & Technology

    2010-12-01

    allies provided air support around Panjwai – fighters, bombers, attack helicopters, unmanned drones and even spy planes.240 • Objective Rugbythe White...accessed at http://www.nationalpost.com/news/story.html?id=1138920 on 22 February 2010; Armstrong, Jane; Bill Curry ; Graeme Smith, “Soldier’s

  5. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  6. Equipment for pre-hospital airway management on Helicopter Emergency Medical System helicopters in central Europe.

    PubMed

    Schmid, M; Schüttler, J; Ey, K; Reichenbach, M; Trimmel, H; Mang, H

    2011-05-01

    For advanced out-of-hospital airway management, skilled personnel and adequate equipment are key prerequisites. There are little data on the current availability of airway management equipment and standards of medical staff on Helicopter Emergency Medical System (HEMS) helicopters in central Europe. An internet search identified all HEMS helicopters in Austria, Switzerland and Luxembourg. We identified 15 HEMS helicopter bases in Switzerland, 28 in Austria and three in Luxembourg. A questionnaire was sent to all bases, asking both for the details of the clinical background and experience of participating staff, and details of airway management equipment carried routinely on board. Replies were received from 14 helicopter bases in Switzerland (93%), 25 bases in Austria (89%) and all three bases in Luxembourg. Anaesthesiologists were by far the most frequent attending physicians (68-85%). All except one bases reported to have at least one alternative supraglottic airway device. All bases had capnometry and succinylcholine. All bases in the study except two in Austria had commercial pre-packed sets for a surgical airway. All helicopters were equipped with automatic ventilators, although not all were suitable for non-invasive ventilation (NIV; Switzerland: 43%, Austria: 12%, Luxembourg: 100%). Masks for NIV were rarely available in Switzerland (two bases; 14%) and in Austria (three bases; 12%), whereas all three bases in Luxembourg carried those masks. Most HEMS helicopters carry appropriate equipment to meet the demands of modern advanced airway management in the pre-hospital setting. Further work is needed to ensure that appropriate airway equipment is carried on all HEMS helicopters.

  7. Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses

    NASA Technical Reports Server (NTRS)

    Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken

    2010-01-01

    This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.

  8. Research requirements to reduce empty weight of helicopters by use of advanced materials

    NASA Technical Reports Server (NTRS)

    Hoffstedt, D. J.

    1976-01-01

    Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12 percent at recurring costs competive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12 percent was shown to significantly reduce energy consumption in modern high-performance helicopters.

  9. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  10. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE PAGES

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2017-03-31

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  11. Assessment of Attack Reconnaissance Helicopter (ARH) Machining, Cutting and Drilling Operations

    DTIC Science & Technology

    2006-09-29

    Date: June 20, 2006 Name Organization Email Jim Corwin Consultant JCAI/Army corwinj@att.net Cindy Fenny Process Engineer Bell / Process Engineering...bellhelicopter.textron.com Cindy Fenny Process Eng 817-280-2549 cfenny@bellhelicopter.textron.com Max Trull Process Eng 817-280-2678 mtrull@bellhelicopter.textron.com Ron

  12. An Analysis of the Deployment of the 235th Aviation Company (Attack Helicopter)

    DTIC Science & Technology

    1977-07-01

    moves. Possible additional economies in future deployments of this nature are discussed in subsequent portions of this analysis. b. For this...tubes with water and clean the area in and around the horns with O-D-406, or equivalent, disinfectant- deodorant solution. f. Lock cyclic and

  13. Advanced Control System Increases Helicopter Safety

    NASA Technical Reports Server (NTRS)

    2008-01-01

    With support and funding from a Phase II NASA SBIR project from Ames Research Center, Hoh Aeronautics Inc. (HAI), of Lomita, California, produced HeliSAS, a low-cost, lightweight, attitude-command-attitude-hold stability augmentation system (SAS) for civil helicopters and unmanned aerial vehicles. HeliSAS proved itself in over 160 hours of flight testing and demonstrations in a Robinson R44 Raven helicopter, a commercial helicopter popular with news broadcasting and police operations. Chelton Flight Systems, of Boise, Idaho, negotiated with HAI to develop, market, and manufacture HeliSAS, now available as the Chelton HeliSAS Digital Helicopter Autopilot.

  14. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  15. Performance degradation of helicopter rotor in forward flight due to ice

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Dadone, L.; Shaw, R. J.

    1985-01-01

    This study addresses the analytical assessment of the degradation in the forward flight performance of the front rotor Boeing Vertol CH47D helicopter in a rime ice natural icing encounter. The front rotor disk was divided into 24 15-deg sections and the local Mach number and angle of attack were evaluated as a function of azimuthal and radial location for a specified flight condition. Profile drag increments were then calculated as a function of azimuthal and radial position for different times of exposure to icing, and the rotor performance was re-evaluated including these drag increments. The results of the analytical prediction method, such as horsepower required to maintain a specific flight condition, as a function of icing time have been generated. The method to illustrate the value of such an approach in assessing performance changes experienced by a helicopter rotor as a result of rime ice accretion is described.

  16. Lift capability prediction for helicopter rotor blade-numerical evaluation

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  17. Heavy Class Helicopter Fuselage Model Drag Reduction by Active Flow Control Systems

    NASA Astrophysics Data System (ADS)

    De Gregorio, F.

    2017-08-01

    A comprehensive experimental investigation of helicopter blunt fuselage drag reduction using active flow control is being carried out within the European Clean Sky program. The objective is to demonstrate the capability of several active flow technologies to decrease fuselage drag by alleviating the flow separation occurring in the rear area of some helicopters. The work is performed on a simplified blunt fuselage at model-scale. Two different flow control actuators are considered for evaluation: steady blowing, unsteady blowing (or pulsed jets). Laboratory tests of each individual actuator are first performed to assess their performance and properties. The fuselage model is then equipped with these actuators distributed in 3 slots located on the ramp bottom edge. This paper addresses the promising results obtained during the wind-tunnel campaign, since significant drag reductions are achieved for a wide range of fuselage angles of attack and yaw angles without detriment of the other aerodynamic characteristics.

  18. Military medical advances resulting from the conflict in Korea, Part I: Systems advances that enhanced patient survival.

    PubMed

    Baker, Michael S

    2012-04-01

    The Korean War started several years after the World War II had ended and no recognition of the threat or preparation was made for this possibility. The military and its medical service had been downsized after World War II and had to quickly ramp up to meet the surprise attack. The war provided the laboratory for trials and experimentation with the new technological developments of the era. The Korean conflict led to numerous advances in medical systems and patient care. The Mobile Army Surgical Hospital came of age, and was instrumental in saving many lives. Helicopters saw their first regular use as flying ambulances to take the injured to definitive care in a timely fashion. The national blood banking program was rapidly geared up and new techniques such as plastic bags for collection and delivery resulted. Body armor was developed that would allow mobility while offering protection and was widely used for the first time. Each of these systems improvements saved the lives of soldiers in combat and were soon to be used in the civilian sector to save and improve lives around the world.

  19. Correlation study between vibrational environmental and failure rates of civil helicopter components

    NASA Technical Reports Server (NTRS)

    Alaniz, O.

    1979-01-01

    An investigation of two selected helicopter types, namely, the Models 206A/B and 212, is reported. An analysis of the available vibration and reliability data for these two helicopter types resulted in the selection of ten components located in five different areas of the helicopter and consisting primarily of instruments, electrical components, and other noncritical flight hardware. The potential for advanced technology in suppressing vibration in helicopters was assessed. The are still several unknowns concerning both the vibration environment and the reliability of helicopter noncritical flight components. Vibration data for the selected components were either insufficient or inappropriate. The maintenance data examined for the selected components were inappropriate due to variations in failure mode identification, inconsistent reporting, or inaccurate informaton.

  20. Helicopter human factors

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1988-01-01

    The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.

  1. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 6: Vehicle Configuration Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Five high speed rotorcraft configurations are considered: the high speed helicopter, compound helicopter, ABC, tilt rotor and the X wing. The technology requirements and the recommended actions are discussed.

  2. Aerially applied verbenone-releasing flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho

    Treesearch

    N. E. Gillette; N. Erbilgin; J. N. Webster; L. Pederson; S. R. Mori; J. D. Stein; D. R. Owen; K. M. Bischel; D. L. Wood

    2009-01-01

    We tested a new formulation of verbenone, an antiaggregation pheromone of the mountain pine beetle (Dendroctonus ponderosae Hopkins) (Coleoptera: Curculionidae: Scolytinae), for area-wide protection of lodgepole pine (Pinus contorta Douglas ex Loudon) stands in the western United States. Helicopter applications of verbenone-...

  3. KSC01pp0737

    NASA Image and Video Library

    2001-04-05

    KENNEDY SPACE CENTER, FLA. -- Medical, paramedic and other personnel attend to role-playing “victims” on the grass in the Launch Complex 39 area. It is the site of a staged mass casualty exercise designed to validate capabilities of KSC’s fire, medical, helicopter transport and security personnel to respond to an event such as this fictitious sniper attack

  4. RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter

    NASA Technical Reports Server (NTRS)

    Flemming, R.; Ruddell, A.

    1974-01-01

    The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.

  5. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  6. Feasibility study for ergonomic analysis and design of future helicopter cockpit systems

    NASA Technical Reports Server (NTRS)

    Hawkins, H. L.

    1985-01-01

    The Army's light scout-attack helicopters (LHXs), planned for deployment in the 1990's, will fly nap-of-the-earth (NOE) missions in high threat environments, often under poor visibility and adverse atmospheric conditions, and probably with a one man crew. A procedure for the analysis of pilot workload that will identify and explicate the main characteristics of those LHX mission components holding overload potential is described. A principled, in-depth, explication of the cognitive demans of LHX piloting is essential to any effective effort to address the human factors issues. A task-analytic procedure that will yield the detail and organizstion needed to achieve these goals is examined.

  7. The Role of Ethics in International Arms Transfers

    DTIC Science & Technology

    2016-06-01

    PAKISTAN F-16C/D CASE………………………………………21 3 THE SAUDI ARABIA F-15 SA CASE.……………………………….. 33 4 THE NIGERIA COBRA HELICOPTER CASE……………………….. 48 5...to Pakistan in 2006, the sale of F-15’s to Saudi Arabia in 2011, and the decision to deny the transfer of Cobra attack helicopters to Nigeria in 2014...chapters will evaluate the decision-making process for three difficult arms transfer cases in Pakistan, Saudi Arabia, and Nigeria using the jus ad

  8. Integrated locating of helicopter stations and helipads for wounded transfer under demand location uncertainty.

    PubMed

    Bozorgi-Amiri, Ali; Tavakoli, Shayan; Mirzaeipour, Hossein; Rabbani, Masoud

    2017-03-01

    Health emergency medical service (HEMS) plays an important role in reducing injuries by providing advanced medical care in the shortest time and reducing the transfer time to advanced treatment centers. In the regions without ground relief coverage, it would be faster to transfer emergency patients to the hospital by a helicopter. In this paper, an integer nonlinear programming model is presented for the integrated locating of helicopter stations and helipads by considering uncertainty in demand points. We assume three transfer modes: (1) direct transfer by an ambulance, (2) transfer by an ambulance to a helicopter station and then to the hospital by a helicopter, (3) transfer by an ambulance to a predetermined point and then to the hospital by a helicopter. We also assume that demands occur in a square-shaped area, in which each side follows a uniform distribution. It is also assumed that demands in an area decrease errors in the distances between each two cities. The purpose of this model is to minimize the transfer time from demand points to the hospital by considering different modes. The proposed model is examined in terms of validity and applicability in Lorestan Province and a sensitivity analysis is also conducted on the total allocated budget. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Land suitability for establishing rainwater harvesting systems for fighting wildfires

    Treesearch

    José María León Villalobos; Manuel Anaya Garduño; Enrique Ojeda Trejo; Dante Arturo Rodríguez Trejo; José Luis Oropeza Mota; Jorge Luis García Rodríguez

    2013-01-01

    Rainwater harvesting systems (RHSs) can be used to improve the efficiency of helicopter firefighting operations. To this end, RHSs need to be strategically located in areas with high wildfire occurrence to maximize their usefulness. In this study, spatial analysis was carried out to determine suitable sites for establishing RHSs intended for air attack operations in...

  10. Aerially applied methylcyclohexenone-releasing flakes protect Psuedotsuga menziesii stands from attack by Dendroctonus pseudotsugae

    Treesearch

    N. E. Gillette; C. J. Mehmel; J. N. Webster; S. R. Mori; N. Erbilgin; D. L. Wood; J. D. Stein

    2009-01-01

    We tested methylcyclohexenone (MCH), an anti-aggregation pheromone for the Douglas-fir beetle (Dendroctonus pseudotsugae), for protection of Douglas-fir (Pseudotsuga menziesii) stands by applying MCH-releasing polymer flakes by helicopter twice during summer 2006 to five 4.05-ha plots in the State of Washington, USA. Five similar plots served as...

  11. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  12. Testing of YUH-61A helicopter transmission in NASA Lewis 2240-kW (3000-hp facility

    NASA Technical Reports Server (NTRS)

    Mitchell, A. M.; Oswald, F. B.; Schuller, F. T.

    1986-01-01

    A helicopter transmission that was being considered for the Army's Utility Tactical Transport Attack System (UTTAS) was tested in the NASA Lewis 2240-kW (3000-hp) test facility to obtain the transmission's operational data. The results will form a vibration and efficiency data base for evaluation similar-class helicopter transmissions. The transmission's mechanical efficiency was determined to be 98.7 percent at its rated power level of 2080 kW (2792 hp). At power levels up to 113 percent of rated the transmission displayed 56 percent higher vibration acceleration levels on the right input than on the left input. Both vibration signature analysis and final visual inspection indicated that the right input spiral-bevel gear had poor contact patterns. The highest vibration meter level was 52 g's rms at the accessory gear, which had free-wheeling gearsets. At 113 percent power and 100 percent rated speed the vibration meter levels generally ranged from 3 to 25 g's rms.

  13. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  14. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  15. A helicopter emergency medical service may allow faster access to highly specialised care.

    PubMed

    Afzali, Monika; Hesselfeldt, Rasmus; Steinmetz, Jacob; Thomsen, Annemarie Bondegaard; Rasmussen, Lars S

    2013-07-01

    Centralization of the hospital system entails longer transport for some patients. A physician-staffed helicopter may provide effective triage, advanced management and fast transport to highly specialized treatment for time-critical patients. The aim of this study was to describe activity and possible beneficial effect of a physician-staffed helicopter in a one-year trial period in eastern Denmark. This was a prospective observational study of all missions related to a daylight operating, physician-staffed helicopter. We recorded information about the activity during 12 months, focusing on dispatchment, diagnoses, medical interventions, admission patterns and 30-day mortality. There were a total of 574 missions resulting in 609 patient contacts. Activity ranged from 22 to 76 missions per month. The helicopter was grounded 6% of its operating time, mainly due to weather conditions. The primary patient categories were trauma (43.5%) and cardiac disease (26.1%). The physician acted as Medical Incident Officer at three major incidents. A total of 53 endotracheal intubations, 13 intraosseous cannula insertions and four tube thoracostomies were performed. The median hospital length-of-stay was four days, 30-day mortality was 6.1% and 86 patients were transferred to intensive care units. The physician-staffed helicopter had approximately two missions per day the first year, mainly in relation to trauma and cardiac patients needing specialized treatment. Advanced medical interventions were commonly performed. Funded by Trygfonden. not relevant.

  16. KSC01pp0738

    NASA Image and Video Library

    2001-04-05

    KENNEDY SPACE CENTER, FLA. -- Within sight of the Vehicle Assembly Building, medical, paramedic and other personnel attend to role-playing “victims” on the grass in the Launch Complex 39 area. It is the site of a staged mass casualty exercise designed to validate capabilities of KSC’s fire, medical, helicopter transport and security personnel to respond to an event such as this fictitious sniper attack

  17. KSC01pp0736

    NASA Image and Video Library

    2001-04-05

    KENNEDY SPACE CENTER, FLA. -- During a staged mass casualty exercise in the Launch Complex 39 area, security and medical personnel take care of a “victim” on the ground by the bleachers. Employees are playing roles in the fictitious sniper attack that is being staged to validate capabilities of KSC’s fire, medical, helicopter transport and security personnel to respond to such an event

  18. CAS, Interdiction, and Attack Helicopters

    DTIC Science & Technology

    2005-06-01

    E.J. Degen, and David Tohn, On Point: The United States Army in Operation Iraqi Freedom, (Fort Leavenworth, KA : Combat Studies Institute Press, 2004...Grau and Michael W. Gress, trans. and eds. The Soviet- Afghan War: How a Superpower Fought and Lost, (Lawrence, KA : University Press of Kansas, 2002...149 Grinalds, 73. 150 Michael O’Hanlon and Adriana Lins de Albuquerque, Iraq Index: Tracking Variables

  19. Aircraft and related factors in crashes involving spatial disorientation: 15 years of U.S. Air Force data.

    PubMed

    Lyons, Terence J; Ercoline, William; O'Toole, Kevin; Grayson, Kevin

    2006-07-01

    Previous studies have determined that spatial disorientation (SD) causes 0.5-23% of aircraft crashes, but SD-related crash and fatality rates in different aircraft types have not been systematically studied. SD crashes for the fiscal years 1990 to 2004 and aircraft sortie numbers for all U.S. Air Force (USAF) aircraft were obtained from the USAF Safety Center. Contingency table analysis and Chi-squared tests were used to evaluate differences in SD rates. SD accounted for 11% of USAF crashes with an overall rate of 2.9 per million sorties and a crash fatality rate of 69%. The SD rate was higher in fighter/attack aircraft and helicopters than in training and transport aircraft. The risk of SD was increased at night with 23% of night crashes being caused by SD. But the SD rate and crash fatality rate were not higher in single-crewmember aircraft. SD risk is significantly increased in helicopters and fighter/attack aircraft and at night. The data suggest that a second crewmember does not protect against SD. Further study of specific SD scenarios could lead to focused interventions for SD prevention.

  20. X-36 Carried Aloft by Helicopter during Radio and Telemetry Tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A Bell UH-1 helicopter lifts the X-36 Tailless Fighter Agility Research Aircraft off the ground for radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed/ high angles of attack and at high speed/low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  1. X-36 Carried Aloft by Helicopter during Radio and Telemetry Tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A Bell UH-1 helicopter lifts the X-36 Tailless Fighter Agility Research Aircraft off the ground for radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  2. The Development of the CONDUIT Advanced Control System Design and Evaluation Interface with a Case Study Application to an Advanced Fly by Wire Helicopter Design

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason

    1999-01-01

    This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.

  3. MARSOC Aviation: An Incremental Approach

    DTIC Science & Technology

    2012-06-24

    MARSOC. Through a series of near, mid, and long term investments in building and training a cadre of experienced aircrew, the creation of aMarine Corps...investments in building and training a cadre of experienced aircrew, the creation of a Marine Corps special operations aviation element can be...from the current AH-1W attack helicopter. The Zulu has increased speed, range, payload, endurance, standoff ability, and situational awareness

  4. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire

    Treesearch

    Mark A. Finney; Roberta Bartlette; Larry Bradshaw; Kelly Close; Brandon M. Collins; Paul Gleason; Wei Min Hao; Paul Langowski; John McGinely; Charles W. McHugh; Erik Martinson; Phillip N. Omi; Wayne Shepperd; Karl Zeller

    2003-01-01

    The Hayman Fire started on June 8, 2002, about 1.5 miles southwest of Tappan Mountain on the south side of County Highway 77, in Park County, Colorado (fig. 1). It was first reported at about 1 acre in size at approximately 1655 hours (appendix C). An aggressive initial attack response consisted of air tankers, helicopters, engines, and ground crews, but they were...

  5. The 3rd ACR in TAL’AFAR: Challenges and Adaptations

    DTIC Science & Technology

    2008-01-08

    raisins, and cucumbers, usually served in the local diet with grilled lamb and unleavened bread. Tal’Afar contains 18 distinctly named neighbor...accordingly, visiting the Joint Readiness Training Center at Ft. Polk, Louisiana, in the fall of 2002 to brush up...less confront an ill- defined insurgency. Featuring Bradley fighting vehicles, Abrams tanks, Apache attack helicopters, and armed-to-the- teeth

  6. At Issue: Helicopter Parents and Millennial Students, an Annotated Bibliography

    ERIC Educational Resources Information Center

    Pricer, Wayne F.

    2008-01-01

    Technological advances have made it easy for parents and children--many of them students--to communicate instantaneously. Devices and technologies such as cell phones, laptops, texting, and e-mail all enable various forms of instant communication. "Helicopter parents" are regarded as very overprotective and overly involved in the affairs of their…

  7. Helicopter far-field acoustic levels as a function of reduced rotor speeds

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Lemasurier, Philip; Smith, Charles D.

    1990-01-01

    This paper will present far-field measured noise levels relative to tests conducted with a model S-76A helicopter. The project was designed to provide supplemental experimental flight data which may be used to further study reduced helicopter rotor speeds (and thus, advancing blade-tip Mach number) effects on far-field acoustic levels. The aircraft was flown in straight and level flight while operating with both the rotor speed and flight speed as test variables. The rotor speed was varied over the range of 107 percent of the main-rotor speed (NR) to 90 percent NR and with the forward flight speed varied over the range of 155 to 35 knots indicated air speed. These conditions produced a wide range of advancing blade-tip Mach numbers to which the noise data are related.

  8. Mach number scaling of helicopter rotor blade/vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  9. An experimental investigation of the helicopter rotor blade element airloads on a model rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Fisher, R. K., Jr.; Tompkins, J. E.; Bobo, C. J.; Child, R. F.

    1971-01-01

    A wind tunnel test program was conducted on an eight foot diameter model rotor system to determine blade element airloads characteristics in the unstalled and stalled flight regimes. The fully articulated model rotor system utilized three blades with a Vertol 23010-1.58 airfoil section, the blades being 1/7.5 scale models of the Ch-47C rotor blades. Instrumentation was incorporated at the blade 75% radial station to measure pressure and skin friction distributions, surface streamline directions and local angle of attack. The test program was conducted in three phases; non-rotating, hover and forward flight at advance ratios of 0.15, 0.35 and 0.60. Test data were analyzed with respect to providing insight to the mechanisms affecting blade stall, particularly retreating blade stall during forward flight conditions. From such data, an assessment was made as to the applicability of current theoretical analyses used for the prediction of blade element airloads in the stall regime.

  10. Square tracking sensor for autonomous helicopter hover stabilization

    NASA Astrophysics Data System (ADS)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  11. Advances in traction drive technology

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  12. On the design of decoupling controllers for advanced rotorcraft in the hover case

    NASA Technical Reports Server (NTRS)

    Fan, M. K. H.; Tits, A.; Barlow, J.; Tsing, N. K.; Tischler, M.; Takahashi, M.

    1991-01-01

    A methodology for design of helicopter control systems is proposed that can account for various types of concurrent specifications: stability, decoupling between longitudinal and lateral motions, handling qualities, and physical limitations of the swashplate motions. This is achieved by synergistic use of analytical techniques (Q-parameterization of all stabilizing controllers, transfer function interpolation) and advanced numerical optimization techniques. The methodology is used to design a controller for the UH-60 helicopter in hover. Good results are achieved for decoupling and handling quality specifications.

  13. Wind-tunnel measurement of noise emitted by helicopter rotors at high speed

    NASA Astrophysics Data System (ADS)

    Prieur, J.

    Measurements of high-speed impulsive helicopter rotor noise in a wind-tunnel are presented. High-speed impulsive noise measurements have been performed in 1988 in the ONERA S2ch wind-tunnel, fitted with an acoustic lining, on two types of rotors. They show that substantial noise reduction is obtained with sweptback tips, initially designed for aerodynamic purposes, which lower transonic effects on the advancing blade tip. Emphasis is placed on the necessity of taking into account the acoustic annoyance problem, using noise prediction tools, when designing new helicopter blades.

  14. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    NASA Technical Reports Server (NTRS)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  15. Helicopter technology benefits and needs. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Adams, R. J.

    1980-01-01

    Present public service helicopter benefits and the potential benefits of an advanced public service rotorcraft (200 knots to 300 knots) are summarized. Past and future public service growth is quantified and assessed and needs, problem areas, and desired vehicle characteristics are defined. Research and technology recommendations are formulated and the costs and benefits of research options are assessed.

  16. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  17. Armed Helicopters: How the Army Fought Its Way into Attack Aviation

    DTIC Science & Technology

    2015-04-01

    the Graduation Requirements for the Degree of MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Dr. Christopher M. Rein Maxwell Air...and firepower.68 Colonel Trevor Dupuy accurately described the critical nature of capturing these developments during the Vietnam war when he said...Washington D.C.: United States Air Force, 1987. Rein, Dr Christopher M., ACSC/DEL. To the author. E-mail, 26 November 2014. Stockfisch, J.A

  18. Marine light attack helicopter close air support trainer for situation awareness

    DTIC Science & Technology

    2017-06-01

    environmental elements outside the aircraft. The initial environment elements included in the trainer are those relating directly to the CAS execution...ambient environmental elements. These elements were limited the few items required to create a virtual environment . The terrain is simulated to...words) In today’s dynamic combat environment , the importance of Close Air Support (CAS) has increased significantly due to a greater need to avoid

  19. Afghanistan, the Taliban, and Osama bin Laden: The Background to September 11

    ERIC Educational Resources Information Center

    Social Education, 2011

    2011-01-01

    On May 1, 2011, a group of U.S. soldiers boarded helicopters at a base in Afghanistan, hoping to find a man named Osama bin Laden. Bin Laden, the leader of the al Qaeda terrorist network, was responsible for a number of terrorist attacks around the world, including those of September 11, 2001, that killed nearly 3,000 people in the United States.…

  20. Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mckillip, R. M., Jr.

    1984-01-01

    Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.

  1. Analysis of tasks for dynamic man/machine load balancing in advanced helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, C.C.

    1987-10-01

    This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.

  2. [Automatic mechanical chest compression during helicopter transportation].

    PubMed

    Kyrval, Helle S; Ahmad, Khalil

    2010-11-15

    We describe a case story with a drowned, hypothermic trauma patient treated with an automatic mechanical chest compression device during helicopter transportation to a trauma center. After falling from a 25 meter high bridge into 2 °C water, she was rescued lifeless 17 minutes later. Advanced life support was initiated. During transport by a rescue helicopter, chest compressions were effectively provided by Lund University Cardiopulmonary Assist System (LUCAS). Upon arrival to a trauma centre approx. 60 minutes later, the patient was treated with extracorporal circulation and rewarmed. She was eventually discharged to her home with minor loss of cerebral function.

  3. Research requirements for development of improved helicopter rotor efficiency

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1976-01-01

    The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.

  4. Research requirements for development of regenerative engines for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, R.D.

    1976-12-01

    The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.

  5. Research requirements for development of regenerative engines for helicopters

    NASA Technical Reports Server (NTRS)

    Semple, R. D.

    1976-01-01

    The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.

  6. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Floros, Matthew W.

    2004-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  7. Army Attack Helicopters: Can They Survive on the Airland Battlefield?

    DTIC Science & Technology

    1987-06-05

    include details of air action given by ground observors on both sides, but contains a great dcal of minutia . A thorough 13 reading will give one all...volunteered ..... and they were firmly fastened on the lateral stretchers, their automatic weapons pointing forward. Twenty minutes later, astonished...detonation point area. The implications for lessor degrees of warfighting were readily apparent and would be soon self evident. By this time, combat units

  8. Dragon’s Claws: The Improvised Explosive Device (IED) as a Weapon of Strategic Influence

    DTIC Science & Technology

    2009-03-01

    admiration, respect, regret, sadness, guilt, and even anguish. They emotionally prepared themselves for loading their friends’ flag- draped coffins...including attacks on armoured vehicles, outposts and helicopters.164 AQI certainly has not limited its operations to the guidelines of Zarqawi’s letter...reports of American casualties, glimpses of flag- draped coffins, and stories of towns rallying behind the families of their fallen heroes accumulate in

  9. Department of Defense Annual Report to Congress on Defense Acquisition Challenge Program for FY 2006

    DTIC Science & Technology

    2007-06-01

    Synthetic Instrument Measurement and Stimulus System – Improves aircraft avionics and electronic attack pod testing to expedite repair of critical...integration into CIWS • Navy requirement Cancelled / Not procured Air Force (4 Projects) • Quiet Eyes • On Aircraft (B-2) Laser Additive...System • Met Requirement/Rolled into FY07 Cost Effective Light Aircraft Missile Protect DAC for Army, Navy and Air Force helicopters • Did Not

  10. Generalized Helicopter Rotor Performance Predictions

    DTIC Science & Technology

    1977-09-01

    34- V : ~ ~ t V ~ ’ . - - - - - - -- behavior . In order to use this routine, the user must input a negative number for the variable XITLIM, item 73...the values provided in Section E. It is realized that available data on airfoil behavior at large angles of attack are very limited, but so is the...where dynamic pressure is low, little precision is lost in performance calculation by using one common representation for most airfoil behavior . As a

  11. Design and pilot evaluation of the RAH-66 Comanche Core AFCS

    NASA Technical Reports Server (NTRS)

    Fogler, Donald L., Jr.; Keller, James F.

    1993-01-01

    This paper addresses the design and pilot evaluation of the Core Automatic Flight Control System (AFCS) for the Reconnaissance/Attack Helicopter (RAH-66) Comanche. During the period from November 1991 through February 1992, the RAH-66 Comanche control laws were evaluated through a structured pilot acceptance test using a motion base simulator. Design requirements, descriptions of the control law design, and handling qualities data collected from ADS-33 maneuvers are presented.

  12. Development and application of a technique for reducing airframe finite element models for dynamics analysis

    NASA Technical Reports Server (NTRS)

    Hashemi-Kia, Mostafa; Toossi, Mostafa

    1990-01-01

    A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.

  13. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  14. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  15. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    NASA Technical Reports Server (NTRS)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.

  16. Technology needs for high speed rotorcraft (2)

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    1991-01-01

    An analytical study was conducted to identify rotorcraft concepts best capable of combining a cruise speed of 350 to 450 knots with helicopter-like low speed attributes, and to define the technology advancements needed to make them viable by the year 2000. A systematic approach was used to compare the relative attributes and mission gross weights for a wide range of concepts, resulting in a downselect to the most promising concept/mission pairs. For transport missions, tilt-wing and variable diameter tilt-rotor (VDTR) concepts were found to be superior. For a military scout/attack role, the VDTR was best, although a shrouded rotor concept could provide a highly agile, low observable alternative if its weight empty fraction could be reduced. A design speed of 375 to 425 knots was found to be the maximum desirable for transport missions, with higher speed producing rapidly diminishing benefits in productivity. The key technologies that require advancement to make the tilt-wing and VDTR concepts viable are in the areas of wing and proprotor aerodynamics, efficient structural design, flight controls, refinement of the geared flap pitch control system, expansion of the speed/descent envelope, and the structural and aerodynamic tradeoffs of wing thickness and forward sweep. For the shrouded rotor, weight reduction is essential, particularly with respect to the mechanism for covering the rotor in cruise.

  17. Investigation of the Low-Subsonic Stability and Control Characteristics of a Free-Flying Model of a Thick 70 deg Delta Reentry Configuration

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Shanks, Robert E.

    1961-01-01

    An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.

  18. The need for a dedicated public service helicopter design

    NASA Technical Reports Server (NTRS)

    Morrison, R.

    1984-01-01

    The need to provide the necessary funding to research, design and contract the building of an advanced technology rotorcraft that will meet the mission demands of public service (fire, police, paramedics and rescue) operators is discussed. Noise and cost factors, the greatest objections on the part of many police and public adminstrators are addressed. The growth of helicopter utilization in public service is documented.

  19. Hub and blade structural loads measurements of an SA349/2 helicopter

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel

    1988-01-01

    Data from 23 flight conditions, including level flights ranging from advance ratio mu = 0.14 to 0.37 and steady turning flights from advance ratio mu = 0.26 to 0.35, are presented for an Aerospatiale SA349/2 Gazelle helicopter. The data include hub loads data (for 6 of the 23 conditions), blade structural data at eleven different blade radial stations, and fuselage structural data. All dynamic data are presented as harmonic analysis coefficients (ten harmonics per rotor revolution). The data acquisition and reduction procedures are also documented. Blade structural and inertial properties are provided in addition to control system geometry and properties.

  20. Identifying and analyzing methods for reducing the energy consumption of helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Rosenstein, H. J.

    1976-01-01

    Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.

  1. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  2. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  3. An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics

    NASA Technical Reports Server (NTRS)

    Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.

    1989-01-01

    A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.

  4. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne

    2007-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  5. Design of an advanced 500-HP helicopter transmission

    NASA Technical Reports Server (NTRS)

    Braddock, C. E.

    1982-01-01

    A 500-hp Advanced Technology Demonstrator helicopter transmission was designed by an American aerospace company under a NASA contract. The project was mainly concerned with designing a 500-hp version of the OH-58C 317-hp transmission which would have the capabilities for a long, quiet life at a minimum increase in cost, weight, and space, which usually increase along with power increases. This objective was accomplished by implementing advanced technology which has been developed during the last decade and by making improvements dictated by field experience. The improvements are related to bearings made of cleaner gear steels, spiral bevel gears made of cleaner gear steels, high contact ratio spur gear teeth in the planetary which will reduce noise level and increase gear life, and modifications concerning the sun gear.

  6. Eliminating Fratricide from Attack Helicopter Fires: An Army Aviator’s Perspective

    DTIC Science & Technology

    1994-06-03

    conflict. The question then becomes, is it inevitable? Virtually every discussion, thesis, or study on the topic of fratricide has concluded that, taken in...system, perhaps fratricide’s inevitability can be challenged. The question for this study then becomes: Given the virtual all 3 weather, day/night...other references devoted to the topic of fratricide throughout the manual, it is a start. It is virtually impossible to even find mention of fratricide in

  7. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  8. Effect of advanced component technology on helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Townsend, Dennis P.

    1989-01-01

    Experimental tests were performed on the NASA/Bell Helicopter Textron (BHT) 500 hp advanced technology transmission (ATT) at the NASA Lewis Research Center. The ATT was a retrofit of the OH-58C helicopter 236 kW (317 hp) main rotor transmission, upgraded to 373 kW (500 hp), with a design goal of retaining long life with a minimum increase in cost, weight, and size. Vibration, strain, efficiency, deflection, and temperature experiments were performed and the results were compared to previous experiments on the OH-58A, OH-58C, and UH-60A transmissions. The high-contact-ratio gears and the cantilevered-mounted, flexible ring gear of the ATT reduced vibration compared to that of the OH-58C. The ATT flexible ring gear improved planetary load sharing compared to that of the rigid ring gear of the UH-60A transmission. The ATT mechanical efficiency was lower than that of the OH-58A transmission, probably due to the high-contact-ratio planetary gears.

  9. Optimum Design of a Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2006-01-01

    A design and aeromechanics investigation was conducted for a 100,000-lb compound helicopter with a single main rotor, which is to cruise at 250 knots at 4000 ft/95 deg F condition. Performance, stability, and control analyses were conducted with the comprehensive rotorcraft analysis CAMRAD II. Wind tunnel test measurements of the performance of the H-34 and UH-1D rotors at high advance ratio were compared with calculations to assess the accuracy of the analysis for the design of a high speed helicopter. In general, good correlation was obtained when an increase of drag coefficients in the reverse flow region was implemented. An assessment of various design parameters (disk loading, blade loading, wing loading) on the performance of the compound helicopter was conducted. Lower wing loading (larger wing area) and higher blade loading (smaller blade chord) increased aircraft lift-to-drag ratio. However, disk loading has a small influence on aircraft lift-to-drag ratio. A rotor parametric study showed that most of the benefit of slowing the rotor occurred at the initial 20 to 30% reduction of the advancing blade tip Mach number. No stability issues were observed with the current design. Control derivatives did not change significantly with speed, but the did exhibit significant coupling.

  10. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  11. Improving rotorcraft survivability to RPG attack using inverse methods

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Thomson, D. G.

    2009-09-01

    This paper presents the results of a preliminary investigation of optimal threat evasion strategies for improving the survivability of rotorcraft under attack by rocket propelled grenades (RPGs). The basis of this approach is the application of inverse simulation techniques pioneered for simulation of aggressive helicopter manoeuvres to the RPG engagement problem. In this research, improvements in survivability are achieved by computing effective evasive manoeuvres. The first step in this process uses the missile approach warning system camera (MAWS) on the aircraft to provide angular information of the threat. Estimates of the RPG trajectory and impact point are then estimated. For the current flight state an appropriate evasion response is selected then realised via inverse simulation of the platform dynamics. Results are presented for several representative engagements showing the efficacy of the approach.

  12. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    NASA Technical Reports Server (NTRS)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  13. Laser development for optimal helicopter obstacle warning system LADAR performance

    NASA Astrophysics Data System (ADS)

    Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.

    2005-04-01

    Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.

  14. Helicopter-based emergency medical services for a sparsely populated region: A study of 42,500 dispatches.

    PubMed

    Østerås, Ø; Brattebø, G; Heltne, J-K

    2016-05-01

    The Helicopter Emergency Medical Service (HEMS) in Norway is operated day and night, despite challenging geography and weather. In Western Norway, three ambulance helicopters, with a rapid response car as an alternative, cover close to 1 million inhabitants in an area of 45,000 km(2) . Our objective was to assess patterns of emergency medical problems and treatments in HEMS in a geographically large, but sparsely populated region. Data from all HEMS dispatches during 2004-2013 were assessed retrospectively. Information was analyzed with respect to patient treatment and characteristics, in addition to variations in services use during the day, week, and seasons. A total of 42,456 dispatches were analyzed. One third of the patients encountered were severely ill or injured, and two thirds of these received advanced treatment. Median activation time and on-scene time in primary helicopter missions were 5 and 11 min, respectively. Most patients (95%) were reached within 45 min by helicopter or rapid response car. Patterns of use did not change. More than one third of all dispatches were declined or aborted, mostly due to no longer medical indication, bad weather conditions, or competing missions. One third of the patients encountered were severely ill or injured, and more than two thirds of these received advanced treatment. HEMS use did not change over the 10-year period, however HEMS use peaked during daytime, weekends, and the summer. More than one third of all dispatches were declined or aborted. © 2015 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

  15. Advanced Standoff Interdiction Weapon and Sensor System. Volume 1

    DTIC Science & Technology

    1972-06-15

    interdiction system to counter enemy infiltration along the water - ways and roads of Southeast Asia. The sensors were selected to give the helicopter a...was con- ceived as an interdiction system to counter enemy infiltration along the water - ways ard roads of Southeast Asia. The sensors were selected...controller enabled him to fly the helicopter to intercept the moving target. Mount camera film was exposed while the target was being fracked by the

  16. Corps Helicopter Attack Planning System (CHAPS). Positional Handbook. Appendix A. Messages. Appendix B. Statespace Construction Sample Session

    DTIC Science & Technology

    1989-10-01

    REVIEW MENU PROGRAM (S) CHAPS PURPOSE AND OVERVIEV The Do Review menu allows the user to select which missions to perform detailed analysis on and...input files must be resident on the computer you are running SUPR on. Any interface or file transfer programs must be successfully executed prior to... COMPUTER PROGRAM WAS DEVELOPED BY SYSTEMS CONTROL TECHNOLOGY FOR THE DEPUTY CHIEF OF STAFF/OPERATIONS,HQ USAFE. THE USE OF THE COMPUTER PROGRAM IS

  17. Military Review. Volume 82, Number 2, March-April 2002

    DTIC Science & Technology

    2002-04-01

    Association (1997), 399-411. 6. A.M. Friedlander, S.L. Welkos, M.L.M. Pitt, J.W. Ezzell , P.L. Worsham, K.J. Rose, et al., �Postexposure Prophylaxis Against...forces. The helicopter drop should be from two to three miles behind the target, so that instead of going deeper into enemy territory for the attack...333 pages, $25.00. Two weeks before the end of World War II, a Japanese submarine in the Philippine Sea, about 350 miles East of Leyte, torpedoed

  18. Helicopter Maritime Environment Trainer: Maintenance Manual (Simulateur D’Entrainement Virtuel pour Helicoptere Maritime: Manual D’Entretien)

    DTIC Science & Technology

    2011-06-01

    rotor blades. This increases or decreases the angle of attack of all the blades simultaneously and, consequently, the tilt or vertical thrust...is the primary horizontal control for the main rotor. Directional control is accomplished by tilting the main rotor that produces a directional...thrust in that direction. The rotor is tilted by changing the pitch of each blade individually as it makes a complete rotation. The cyclic pitch change

  19. Right Sizing the Force: Restructuring the Marine Light Attack Helicopter (HML/A) Squadron to Better Meet the Emerging Threat

    DTIC Science & Technology

    2009-04-29

    visual coverage armed with responsive, high volume offensive or defensive door mounted machine guns and nearly 3600 weapons coverage. In addition, a fixed...forward gun option and forward firing rocket capacity substantially expand firepower options. Team this crew and machine with the world’s premiere...escort. 1 Headquarters, U. S. Marine Corps, Vision & Strategy 2025, (Washington, DC: Headquarters, U.S. Marine Corps, June 18, 2008), 9. 2 Scott Atwood

  20. Advanced Infantry Training: An Empirical Analysis Of (0341) Mortarman Success While Attending Advanced Mortarman Course

    DTIC Science & Technology

    2017-12-01

    13 Table 2. TFDW File Descriptions ... evaluation FO Forward Observer FY Fiscal year GT General technical HLZ Helicopter landing zone ID Identification ITB Infantry Training...survive during AMCs most difficult training phases, to include FDC and advanced FDC evaluations . These events require a heightened degree of cognitive

  1. An experimental study of helicopter rotor rotational noise in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Harris, W. L.; Widnall, S. E.

    1976-01-01

    The rotational noise of model helicopter rotors in forward flight was studied in an anechoic wind tunnel. The parameters under study were the rotor thrust (blade loading), blade number and advance ratio. The separate effects of each parameter were identified with the other parameters being held constant. The directivity of the noise was also measured. Twelve sets of data for rotational noise as a function of frequency were compared with the theory of Lowson and Ollerhead. In general, the agreement is reasonably good, except for the cases of (1) low and high disk loadings, (2) the four bladed rotor, and (3) low advance ratios. The theory always under-estimates the rotational noise at high harmonics.

  2. Optimal helicopter trajectory planning for terrain following flight

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.

  3. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Mardoian, George H.; Ezzo, Maureen B.

    1990-01-01

    An assessment is presented of ten composite tail rotor spars and four horizontal stabilizers exposed to the effects of in-flight commercial service for up to nine years to establish realistic environmental factors for use in future designs. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since 1979. Full scale static and fatigue tests were conducted on graphite/epoxy and Kevlar/epoxy composite components removed from Sikorsky Model S-76 helicopters in commercial operations off the Gulf Coast of Louisiana. Small scale static and fatigue tests were conducted on coupons obtained from panels exposed to outdoor conditions in Stratford, CT and West Palm Beach, Florida. The panel materials and ply configurations were representative of the S-76 components. The results are discussed of moisture analyses and strength tests on both the S-76 components and composite panels after up to nine years of outdoor exposure. Full scale tests performed on the helicopter components did not disclose any significant reductions from the baseline strengths. The results increased confidence in the long term durability of advanced composite materials in helicopter structural applications.

  4. Call selection for the Helicopter Emergency Medical Service: implications for ambulance control.

    PubMed Central

    Coats, T J; Newton, A

    1994-01-01

    The increasing sophistication of pre-hospital care, with paramedics and many types of 'rapid response' units, requires the use of advanced systems of ambulance control. The introduction of call selection by a paramedic in the ambulance control room significantly improved the tasking of the Helicopter Emergency Medical Service. This paper illustrates the need for a system to grade 999 calls, so that the appropriate pre-hospital response can be directed to each patient. PMID:8182675

  5. Correlation of SA349/2 helicopter flight-test data with a comprehensive rotorcraft model

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel

    1986-01-01

    A comprehensive rotorcraft analysis model was used to predict blade aerodynamic and structural loads for comparison with flight test data. The data were obtained from an SA349/2 helicopter with an advanced geometry rotor. Sensitivity of the correlation to wake geometry, blade dynamics, and blade aerodynamic effects was investigated. Blade chordwise pressure coefficients were predicted for the blade transonic regimes using the model coupled with two finite-difference codes.

  6. Novel Robust Models for Damage Tolerant Helicopter Components

    DTIC Science & Technology

    2002-12-01

    was performed on the same materials under two loading spectra, Rotarix , a standard spectrum for a helicopter rotorhead, and Falstaff, a fixed wing...the best agreement for Rotarix on 7010 aluminium, with errors of only 15-20%. FASTRAN was second best. All other models made non conservative...SAE 4340 steel. For Rotarix . K(PR)still was the closest, for Falstaff, other models achieved better accuracy. All predictions were made blind, in advance of knowledge of the validation test data.

  7. 14 CFR Appendix J to Part 36 - Alternative Noise Certification Procedure for Helicopters Under Subpart H Having a Maximum...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... produce the same advancing blade tip Mach number as associated with the reference conditions; (i) Advancing blade tip Mach number (MAT) is defined as the ratio of the arithmetic sum of blade tip rotational... the reference advancing blade tip Mach number. The adjusted reference airspeed shall be maintained...

  8. 14 CFR Appendix J to Part 36 - Alternative Noise Certification Procedure for Helicopters Under Subpart H Having a Maximum...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... produce the same advancing blade tip Mach number as associated with the reference conditions; (i) Advancing blade tip Mach number (MAT) is defined as the ratio of the arithmetic sum of blade tip rotational... the reference advancing blade tip Mach number. The adjusted reference airspeed shall be maintained...

  9. 14 CFR Appendix J to Part 36 - Alternative Noise Certification Procedure for Helicopters Under Subpart H Having a Maximum...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... produce the same advancing blade tip Mach number as associated with the reference conditions; (i) Advancing blade tip Mach number (MAT) is defined as the ratio of the arithmetic sum of blade tip rotational... the reference advancing blade tip Mach number. The adjusted reference airspeed shall be maintained...

  10. 14 CFR Appendix J to Part 36 - Alternative Noise Certification Procedure for Helicopters Under Subpart H Having a Maximum...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... produce the same advancing blade tip Mach number as associated with the reference conditions; (i) Advancing blade tip Mach number (MAT) is defined as the ratio of the arithmetic sum of blade tip rotational... the reference advancing blade tip Mach number. The adjusted reference airspeed shall be maintained...

  11. 14 CFR Appendix J to Part 36 - Alternative Noise Certification Procedure for Helicopters Under Subpart H Having a Maximum...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... produce the same advancing blade tip Mach number as associated with the reference conditions; (i) Advancing blade tip Mach number (MAT) is defined as the ratio of the arithmetic sum of blade tip rotational... the reference advancing blade tip Mach number. The adjusted reference airspeed shall be maintained...

  12. Steady and Periodic Pressure Measurements on a Generic Helicopter Fuselage Model in the Presence of a Rotor

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Gorton, Susan A.

    2000-01-01

    A wind tunnel test of a generic helicopter fuselage model with an independently mounted rotor has been conducted to obtain steady and periodic pressure data on the helicopter body. The model was tested at four advance ratios and three thrust coefficients. The periodic unsteady pressure coefficients are marked by four peaks associated with the passage of the four rotor blades. Blade passage effects are largest on the nose and tail boom of the model. The magnitude of the pulse increases with rotor thrust coefficient. Tabular listings of the unsteady pressure data are included to permit independent analysis. A CD-rom containing the steady and unsteady pressure data presented in the report is available from the authors.

  13. Helicopter external noise prediction and reduction

    NASA Astrophysics Data System (ADS)

    Lewy, Serge

    Helicopter external noise is a major challenge for the manufacturers, both in the civil domain and in the military domain. The strongest acoustic sources are due to the main rotor. Two flight conditions are analyzed in detail because radiated sound is then very loud and very impulsive: (1) high-speed flight, with large thickness and shear terms on the advancing blade side; and (2) descent flight, with blade-vortex interaction for certain rates of descent. In both cases, computational results were obtained and tests on new blade designs have been conducted in wind tunnels. These studies prove that large noise reduction can be achieved. It is shown in conclusion, however, that the other acoustic sources (tail rotor, turboshaft engines) must not be neglected to define a quiet helicopter.

  14. Wind-Tunnel Evaluation of the Effect of Blade Nonstructural Mass Distribution on Helicopter Fixed-System Loads

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Mirick, Paul H.; Wilkie, W. Keats

    1998-01-01

    This report provides data obtained during a wind-tunnel test conducted to investigate parametrically the effect of blade nonstructural mass on helicopter fixed-system vibratory loads. The data were obtained with aeroelastically scaled model rotor blades that allowed for the addition of concentrated nonstructural masses at multiple locations along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for 10 blade-mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each blade-mass configuration. This report provides the fixed-system forces and moments measured during testing. The comprehensive database obtained is well-suited for use in correlation and development of advanced rotorcraft analyses.

  15. Periodic control of the individual-blade-control helicopter rotor

    NASA Technical Reports Server (NTRS)

    Mckillip, R. M., Jr.

    1985-01-01

    This paper describes the results of an investigation into methods of controller design for linear periodic systems utilizing an extension of modern control methods. Trends present in the selection of various cost functions are outlined, and closed-loop controller results are demonstrated for two cases: first, on an analog computer simulation of the rigid out of plane flapping dynamics of a single rotor blade, and second, on a 4 ft diameter single-bladed model helicopter rotor in the MIT 5 x 7 subsonic wind tunnel, both for various high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.

  16. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  17. Descriptive Summaries of the Research Development Test & Evaluation. Army Appropriation FY 1984. Supporting Data FY 1984 Budget Estimate Submitted to Congress--February 1983. Volume I.

    DTIC Science & Technology

    1983-02-01

    s.,ccesstully modeled to enhance future computer design simulations; (2) a new methodology for conduc*n dynamic analysis of vehicle mechanics was...to prelminary design methodology for tilt rotors, advancing blade concepts configuration helicopters, and compound helicopters in conjunction with...feasibility of low-level personnel parachutes has been demon- strated. A study was begun to design a free-fall water contalner. An experimental program to

  18. McDonnell Douglas Helicopter Company independent research and development: Preparing for the future

    NASA Technical Reports Server (NTRS)

    Haggerty, Allen C.

    1988-01-01

    During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.

  19. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  20. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  1. Advanced Email Risk Classification and Recipient Decision Assistance

    ERIC Educational Resources Information Center

    Estes, Aaron

    2016-01-01

    Email attacks comprise an overwhelming majority of the daily attacks on modern enterprise. "Phishing" is the leading attack vector for the world's most dangerous threats such as the so-called, Advanced Persistent Threat (APT), and hacktivist groups such as Anonymous and LulzSec. The leading mitigation strategy is a combination of user…

  2. Rotorcraft technology at Boeing Vertol: Recent advances

    NASA Technical Reports Server (NTRS)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  3. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    DTIC Science & Technology

    1976-03-01

    section is closed off by a sandwich skin panel. At Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August... Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August 1970. 6. Laasko, J. II., and

  4. Advanced unambiguous state discrimination attack and countermeasure strategy in a practical B92 QKD system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Youn, Chun Ju

    2018-01-01

    Even though unconditional security of B92 quantum key distribution (QKD) system is based on the assumption of perfect positive-operator-valued measures, practical B92 systems only utilize two projective measurements. Unfortunately, such implementation may degrade the security of the B92 QKD system due to Eve's potential attack exploiting the imperfection of system. In this paper, we propose an advanced attack strategy with an unambiguous state discrimination (USD) measurement which makes practical B92 QKD systems insecure even under a lossless channel. In addition, we propose an effective countermeasure against the advanced USD attack model by monitoring double-click events. We further address a fundamental approach to make the B92 QKD system tolerable to attack strategies with USD measurements using a multi-qubit scheme.

  5. Measuring Flow With Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1988-01-01

    Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.

  6. Advanced Cyber Industrial Control System Tactics, Techniques, and Procedures (ACI TTP) for Department of Defense (DOD) Industrial Control Systems (ICS)

    DTIC Science & Technology

    2016-08-10

    enable JCS managers to detect advanced cyber attacks, mitigate the effects of those attacks, and recover their networks following an attack. It also... managers of ICS networks to Detect, Mitigate, and Recover from nation-state-level cyber attacks (strategic, deliberate, well-trained, and funded...Successful Detection of cyber anomalies is best achieved when IT and ICS managers remain in close coordination. The Integrity Checks Table

  7. Classification of response-types for single-pilot NOE helicopter combat tasks

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.

    1987-01-01

    Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.

  8. SECURITY MODELING FOR MARITIME PORT DEFENSE RESOURCE ALLOCATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Dunn, D.

    2010-09-07

    Redeployment of existing law enforcement resources and optimal use of geographic terrain are examined for countering the threat of a maritime based small-vessel radiological or nuclear attack. The evaluation was based on modeling conducted by the Savannah River National Laboratory that involved the development of options for defensive resource allocation that can reduce the risk of a maritime based radiological or nuclear threat. A diverse range of potential attack scenarios has been assessed. As a result of identifying vulnerable pathways, effective countermeasures can be deployed using current resources. The modeling involved the use of the Automated Vulnerability Evaluation for Risksmore » of Terrorism (AVERT{reg_sign}) software to conduct computer based simulation modeling. The models provided estimates for the probability of encountering an adversary based on allocated resources including response boats, patrol boats and helicopters over various environmental conditions including day, night, rough seas and various traffic flow rates.« less

  9. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  10. An analytical study for the design of advanced rotor airfoils

    NASA Technical Reports Server (NTRS)

    Kemp, L. D.

    1973-01-01

    A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.

  11. The weight optimization of an armored crashworthy crewseat through the use of advanced composites and design

    NASA Technical Reports Server (NTRS)

    Lindsay, Howard A.; Motoyama, Stephen M.; Smith, Kent F.

    1990-01-01

    The development of composite-related technology applicable to armored crashworthy helicopter crewseats is discussed. The main objective was to achieve a significant weight reduction relative to the first-generation seats exemplified by the UH-60A and the AH-64A designs. This weight reduction was achieved while maintaining full compliance with the most recent version of the military crashworthy crewseat specification, MIL-S-58095A. The technology developed during this effort is intended to apply to the next generation of Army helicopters, such as LHX.

  12. Aerodynamic characteristics of a 1/4 scale powered helicopter model with a V-type empennage. [conducted in the Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Freeman, C. E.; Phelps, A. E., III; Mineck, R. E.

    1978-01-01

    An investigation was made in the Langley V/STOL tunnel to determine rotor induced effects on a 1/4-scale helicopter model with a conventional empennage and also a V-type empennage with dihedral angles of 45 deg, 50 deg, 55 deg, and 60 deg. Static longitudinal and lateral directional stability data are presented for rotor advance ratios of 0.057, 0.102, and 0.192 in level flight and climb attitudes. The data are presented without analysis or discussion.

  13. Lessons learned from cross-border medical response to the terrorist bombings in Tabba and Ras-el-Satan, Egypt, on 07 October 2004.

    PubMed

    Leiba, Adi; Blumenfeld, Amir; Hourvitz, Ariel; Weiss, Gali; Peres, Michal; Laor, Dani; Schwartz, Dagan; Arad, Jacob; Goldberg, Avishay; Levi, Yeheskel; Bar-Dayan, Yaron

    2005-01-01

    Large-scale, terrorist attacks can happen in peripheral areas, which are located close to a country's borders and far from its main medical facilities and involve multi-national casualties and responders. The objective of this study was to analyze the terrorist suicide bombings that occurred on 07 October 2004, near the Israeli-Egyptian border, as representative of such a complex scenario. Data from formal debriefings after the event were processed in order to learn about victim outcomes, resource utilization, critical events, and time course of the emergency response. A total of 185 injured survivors were repatriated: four were severely wounded, 13 were moderately injured, and 168 were mildly injured. Thirty-eight people died. A forward medical team landed at the border town's airport, which provided reinforcement in the field and in the local hospital. Israeli and Egyptian search and rescue teams collaborated at the destruction site. One-hundred sixty-eight injured patients arrived at the small border hospital that rapidly organized itself for the mass-casualty incident, operating as an evacuation "staging hospital". Twenty-three casualties secondarily were distributed to two major trauma centers in the south and the center of Israel, respectively, either by ambulance or by helicopter. Large-scale, terrorist attacks at a peripheral border zone can be handled by international collaboration, reinforcement of medical teams at the site itself and at the peripheral neighboring hospital, rapid rearrangement of an "evacuation hospital", and efficient transport to trauma centers by ambulances, helicopters, and other aircraft.

  14. Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.

    2003-01-01

    A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.

  15. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  16. Tradeoff analysis of technology needs for public service helicopters

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Bryant, W. R., Jr.; Simpson, W. E.

    1985-01-01

    The design requirements for a family or type of Public Service Helicopter (PSH) is examined which will satisfy the needs of municipal and state governments in the following mission areas: Emergency Medical Service--Airborne Rescue Squad; Law Enforcement; Search and Rescue; and Environmental Control (Fire Fighting, Pollution, Resource Management). The report compares both design and performance requirements as specified by the PSH user's group against current technological capabilities, RTOPS and US Army LHX design requirements. The study explores various design trade-offs and options available to the aircraft designer/manufacturer in order to meet the several criteria specified by the PSH user's group. In addition, the report includes a brief assessment of the feasibility of employing certain advanced rotorcraft designs to meet the stringent combination of operational capabilities desired by the Public Service Helicopter Users.

  17. Prediction and measurement of low-frequency harmonic noise of a hovering model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Aggarawal, H. R.; Schmitz, F. H.; Boxwell, D. A.

    1989-01-01

    Far-field acoustic data for a model helicopter rotor have been gathered in a large open-jet, acoustically treated wind tunnel with the rotor operating in hover and out of ground-effect. The four-bladed Boeing 360 model rotor with advanced airfoils, planform, and tip shape was run over a range of conditions typical of today's modern helicopter main rotor. Near in-plane acoustic measurements were compared with two independent implementations of classical linear theory. Measured steady thrust and torque were used together with a free-wake analysis (to predict the thrust and drag distributions along the rotor radius) as input to this first-principles theoretical approach. Good agreement between theory and experiment was shown for both amplitude and phase for measurements made in those positions that minimized distortion of the radiated acoustic signature at low-frequencies.

  18. A rotor-mounted digital instrumentation system for helicopter blade flight research measurements

    NASA Technical Reports Server (NTRS)

    Knight, V. H., Jr.; Haywood, W. S., Jr.; Williams, M. L.

    1978-01-01

    A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft.

  19. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  20. Does modern helicopter construction reduce noise exposure in helicopter rescue operations?

    PubMed

    Küpper, Thomas; Jansing, Paul; Schöffl, Volker; van Der Giet, Simone

    2013-01-01

    During helicopter rescue operations the medical personnel are at high risk for hearing damage by noise exposure. There are two important factors to be taken into account: first, the extreme variability, with some days involving no exposure but other days with extreme exposure; second, the extreme noise levels during work outside the helicopter, e.g. during winch operations. The benefit of modern, less noisier constructions and the consequences for noise protection are still unknown. We estimated the noise exposure of the personnel for different helicopter types used during rescue operations in the Alps and in other regions of the world with special regard to the advanced types like Eurocopter EC 135 to compare the benefit of modern constructions for noise protection with earlier ones. The rescue operations over 1 year of four rescue bases in the Alps (Raron and Zermatt in Switzerland; Landeck and Innsbruck in Austria, n = 2731) were analyzed for duration of rescue operations (noise exposure). Noise levels were measured during rescue operations at defined points inside and outside the different aircraft. The setting is according to the European standard (Richtlinie 2003/10/EG Amtsblatt) and to Class 1 DIN/IEC 651. With both data sets the equivalent noise level L(eq8h) was calculated. For comparison it was assumed that all rescue operations were performed with a specific type of helicopter. Then model calculations for noise exposure by different helicopter types, such as Alouette IIIb, Alouette II 'Lama', Ecureuil AS350, Bell UH1D, Eurocopter EC135, and others were performed. Depending on modern technologies the situation for the personnel has been improved significantly. Nevertheless noise prevention, which includes noise intermissions in spare time, is essential. Medical checks of the crews by occupational medicine (e.g. 'G20' in Germany) are still mandatory.

  1. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  2. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.; Gaubert, Michel

    1986-01-01

    A flight test program was conducted to obtain data from an upgraded Gazelle helicopter with an advanced geometry, three bladed rotor. Data were acquired on upper and lower surface chordwise blade pressure, blade bending and torsion moments, and fuselage structural loads. Results are presented from 16 individual flight conditions, including level flights ranging from 10 to 77 m/sec at 50 to 3000 m altitude, turning flights up to 2.0 g, and autorotation. Rotor aerodynamic data include information from 51 pressure transducers distributed chordwise at 75, 88, and 97% radial stations. Individual tranducer pressure coefficients and airfoil section lift and pitching moment coefficients are presented, as are steady state flight condition parameters and time dependence rotor loads. All dynamic data are presented as harmonic analysis coefficients.

  3. Helicopters for the future

    NASA Technical Reports Server (NTRS)

    Ward, J. F.

    1984-01-01

    Technology needed to provide the basis for creating a widening rotary wing market include: well defined and proven design; reductions in noise, vibration, and fuel consumption; improvement of flying and ride quality; better safety; reliability; maintainability; and productivity. Unsteady transonic flow, yawed flow, dynamic stall, and blade vortex interaction are some of the problems faced by scientists and engineers in the helicopter industry with rotorcraft technology seen as an important development for future advanced high speed vehicle configurations. Such aircraft as the Boeing Vertol medium lift Model 360 composite aircraft, the Sikorsky Advancing Blade Concept (ABC) aircraft, the Bell Textron XV-15 Tilt Rotor Aircraft, and the X-wing rotor aircraft are discussed in detail. Even though rotorcraft technology has become an integral part of the military scene, the potential market for its civil applications has not been fully developed.

  4. Durability of commercial aircraft and helicopter composite structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  5. China Naval Modernization: Implications for U.S. Navy Capabilities - Background and Issues for Congress

    DTIC Science & Technology

    2012-10-17

    0 0 ~60 ~90 Helicopters n/a n/a n/a n/a ~34 ~153 ~157 Subtotal above aircraft n/a n/a n/a n/a ~179 ~468 ~ 505 Source: Prepared by CRS. Source for...Congressional Research Service 87 The Air-Sea Battle Concept centers on networked, integrated, attack-in-depth to disrupt, destroy and defeat ( NIA -D3) A2/AD...of U.S. forces; and defeat an adversary’s employed weapons to preserve essential U.S. Joint forces and their enablers. Through NIA -D3, air and naval

  6. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  7. Development and application of an analysis of axisymmetric body effects on helicopter rotor aerodynamics using modified slender body theory

    NASA Technical Reports Server (NTRS)

    Yamauchi, G.; Johnson, W.

    1984-01-01

    A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.

  8. Development of an analytical method to predict helicopter main rotor performance in icing conditions

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.

    1992-01-01

    Historically, certification of a helicopter for flight into known icing conditions was a problem. This is because of the current emphasis on flight testing for verification of system performance. Flight testing in icing conditions is difficult because, in addition to being dangerous and expensive, many times conditions which are sought after cannot be readily found in nature. The problem is compounded for helicopters because of their small range in comparison to many fixed wing aircraft. Thus, helicopters are forced to wait for conditions to occur in a certain region rather than seeking them out. These and other drawbacks to flight testing prompted extreme interest in developing validated alternatives to flight testing. One such alternative is theoretical prediction. It is desirable to have the ability to predict how a helicopter will perform when subjected to icing conditions. Herein, calculations are restricted to the main rotor, and are illustrated. The computational tool used to obtain performance is the lifting line analysis of B65. B65 incorporates experimental data into data banks in order to determine the section lift, drag, and moment characteristics of various airfoils at different Mach numbers and angles of attack. The local flow angle is calculated at user specified radial locations. This flow angle, along with the local Mach number is then cross referenced with the airfoil tables to obtain the local section characteristics. The local characteristics are then integrated together to obtain the entire rotor attributes. Once the clean performance is known, characterization of the type and shape of ice which accretes on the rotor blades is obtained using the analysis of LEWICE. The Interactive Boundary Layer (IBL) method then calculates the 2-D characteristics of the iced airfoil for input into the airfoil data bank of B65. Calculations are restricted to natural ice shedding and it is assumed that no de-icing takes place. Once the new lift, drag, and moment characteristics are known for the entire blade radius, this information is fed into B65, where the iced performance is then calculated.

  9. Vehicle for civil helicopter ride quality research

    NASA Technical Reports Server (NTRS)

    Snyder, W. J.; Schlegel, R. G.

    1975-01-01

    A research aircraft for investigating the factors involved in civil helicopter operations was developed for NASA Langley Research Center. The aircraft is a reconfigured 17000 kg (36000 lb) military transport helicopter. The basic aircraft was reconfigured with advanced acoustic treatment, air-conditioning, and a 16-seat airline cabin. During the spring of 1975, the aircraft was flight tested to measure interior environment characteristics - noise and vibration - and was flown on 60 subjective flight missions with over 600 different subjects. Data flights established noise levels somewhat higher than expected, with a pure tone at 1400 Hz and vertical vibration levels between 0.07g and 0.17g. The noise and vibration levels were documented during subjective flight evaluations as being the primary source of discomfort. The aircraft will be utilized to document in detail the impact of various noise and vibration levels on passenger comfort during typical short-haul missions.

  10. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  11. Perturbation solutions for the influence of forward flight on helicopter rotor flapping stability

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    The stability of the flapping motion of a helicopter rotor blade in forward flight is investigated, using a perturbation technique which gives analytic expressions for the eigenvalues, including the influence of the periodic aerodynamic forces in forward flight. The perturbation solutions are based on small advance ratio (the ratio of the helicopter forward speed to the rotor tip speed). The rotor configurations considered are a single, independent blade; a teetering rotor; a gimballed rotor with three, four, and five or more blades; and a rotor with N independent blades. The constant coefficient approximation with the equations and degrees of freedom in the nonrotating frame represents the flap dynamic reasonably well for the lower frequency modes, although it cannot, of course, be completely correct. The transfer function of the rotor flap response to sinusoidal pitch input is examined, as an alternative to the eigenvalues as a representation of the dynamic characteristics of the flap motion.

  12. Development of circumferential seal for helicopter transmissions: Results of bench and flight tests

    NASA Technical Reports Server (NTRS)

    Strom, T. N.; Ludwig, L. P.

    1975-01-01

    A modified circumferential segmented ring seal was designed for direct replacement of a helicopter transmission elastomeric lip seal operating on a shaft diameter of 13.91 centimeters (5.481 in.) at sliding velocities to 52.48 m/sec (10 330 ft/min). The modifications involved the garter spring tension, shaft roundness, seal housing flatness, and pumping grooves to inhibit leakage. Operation of the seals in bench tests under simulated helicopter transmission conditions revealed that the seal leakage rate was within acceptable limits and that the wear rate was negligible. The low leakage and wear rates were confirmed in flight tests of 600 and 175 hours (sliding speed, 48.11 m/sec (9470 ft/min)). An additional 200 hours of air worthiness qualification testing (aircraft tie down) demonstrated that the seal can operate at the advanced sliding conditions of 52.48 m/sec (10 330 ft/min).

  13. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  14. The X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California.

    NASA Image and Video Library

    2000-12-08

    The X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.

  15. The Development of an Advanced Anti-Icing/Deicing Capability for U.S. Army Helicopters. Volume II. Ice Protection System Application to the UH-1H helicopter

    DTIC Science & Technology

    1975-11-01

    Project Lfgineer for this effort was ]Richard I. Adin of tL* eta ~ ’ -’ ’. -. - " - -ý - - , I - OWLAMWRS The 01 Mp io Otis vap am wae to No conmved an...area. One is the ultrasonic type and the second is the infrared occlusion type. Both sensors include aspirators using engine compressor bleed air to...half pound per minute of enginie bleed air to operate the aspirator . The principal benefit of the aspiration is during hover, as there is sufficient

  16. State-of-the-art cockpit design for the HH-65A helicopters

    NASA Technical Reports Server (NTRS)

    Castleberry, D. E.; Mcelreath, M. Y.

    1982-01-01

    In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.

  17. Materials for helicopter gears

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Some of the power train transmission gears in helicopter drive systems can become critical components as performance requirements are increased; accordingly, increasing attention must be paid to new alloys in order to obtain required performance reliability and survivability. Candidate advanced alloys, with improved high temperature properties, while increasing the resistance to scoring and scuffing, tend to have lower ductility and fracture toughness. An attempt is made to identify design materials, and process problems and requirements. In addition, it is recommended that the characterization of candidate steels be accelerated; preliminary investigation indicates that new alloys may provide improved capability against surface distress.

  18. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  19. OPERATION COBRA. Deliberate Attack, Exploitation

    DTIC Science & Technology

    1984-05-25

    to attack Sens, then continue to Troyes , on the Seine River. CCA was in the north, crossing the Loing River at Souppes against light resistance and...advanced from Troyes and prepared positions close to Sens. Under strong artillery support, a task force from CCA (TF Oden) attacked the enemy frontally...movement towards the Seine River on 24 August with an advance toward Troyes . Facing the combat command were what remained of the 51st SS Brigade, light

  20. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control

    NASA Astrophysics Data System (ADS)

    Ma, Xunjun; Lu, Yang; Wang, Fengjiao

    2017-09-01

    This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.

  1. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  2. Cooperating attackers in neural cryptography.

    PubMed

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  3. Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment

    DOT National Transportation Integrated Search

    1999-05-01

    The National Aeronautics and Space Administration (NASA), in partnership with the Federal Aviation Administration (FAA), is conducting a research and development program to modernize the National Airspace System (NAS) . The mission of NASA's Advanced...

  4. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1993-01-01

    The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.

  5. Aeromechanics Analysis of a Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2006-01-01

    A design and aeromechanics investigation was conducted for a 100,000-lb compound helicopter with a single main rotor, which is to cruise at 250 knots at 4000 ft/95 deg F condition. Performance, stability, and control analyses were conducted with the comprehensive rotorcraft analysis CAMRAD II. Wind tunnel test measurements of the performance of the H-34 and UH-1D rotors at high advance ratio were compared with calculations to assess the accuracy of the analysis for the design of a high speed helicopter. In general, good correlation was obtained with the increase of drag coefficients in the reverse flow region. An assessment of various design parameters (disk loading, blade loading, wing loading) on the performance of the compound helicopter was made. Performance optimization was conducted to find the optimum twist, collective, tip speed, and taper using the comprehensive analysis. Blade twist was an important parameter on the aircraft performance and most of the benefit of slowing the rotor occurred at the initial 20 to 30% reduction of rotor tip speed. No stability issues were observed with the current design and the control derivatives did not change much with speed, but did exhibit significant coupling.

  6. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    NASA Technical Reports Server (NTRS)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  7. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    NASA Astrophysics Data System (ADS)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  8. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  9. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  10. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  11. Helicopter collision avoidance and brown-out recovery with HELLAS

    NASA Astrophysics Data System (ADS)

    Seidel, Christian; Schwartz, Ingo; Kielhorn, Peter

    2008-10-01

    EADS Germany is the world market leader in commercial and military Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Federal Police and Royal Thai Air Force. HELLAS was also successfully evaluated by the Foreign Comparative Test Program (FCT) of the U.S. Army and other governmental agencies. Currently the successor system for military applications, HELLAS-Awareness, is in qualification phase. It will have extended sensor performance, enhanced real-time data processing capabilities and advanced human machine interface (HMI) features. Flight tests on NH90 helicopter have been successfully performed. Helicopter series integration is scheduled to begin from 2009. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate. We will show the HMI representations. This HELLAS system is the basis for a 3 dimensional see-and-remember-system for brown-out recovery. When landing in sandy or dusty areas the downwash of the helicopter rotor causes clouds of visually-restrictive material that can completely obstruct the pilot's outside reference, resulting in a complete loss of situational awareness and spatial orientation of the pilot which can end up in total loss of aircraft control and dangerous accidents. The brown-out recovery system presented here creates an augmented enhanced synthetic vision of the landing area with the surrounding which is based on HELLAS range image data as well as altimeter and inertial reference information.

  12. Hydrogen Fuel Cell on a Helicopter: A System Engineering Approach

    NASA Astrophysics Data System (ADS)

    Nesheiwat, Rod

    Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that utilize a specialized set of tools and artifacts.

  13. Helicopter rotor and engine sizing for preliminary performance estimation

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Bowles, J. V.; Lee, H. C.

    1986-01-01

    Methods are presented for estimating some of the more fundamental design variables of single-rotor helicopters (tip speed, blade area, disk loading, and installed power) based on design requirements (speed, weight, fuselage drag, and design hover ceiling). The well-known constraints of advancing-blade compressibility and retreating-blade stall are incorporated into the estimation process, based on an empirical interpretation of rotor performance data from large-scale wind-tunnel tests. Engine performance data are presented and correlated with a simple model usable for preliminary design. When approximate results are required quickly, these methods may be more convenient to use and provide more insight than large digital computer programs.

  14. Crew station research and development facility training for the light helicopter demonstration/validation program

    NASA Technical Reports Server (NTRS)

    Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL

    1992-01-01

    The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.

  15. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  16. Developments in the design, analysis, and fabrication of advanced technology transmission elements

    NASA Technical Reports Server (NTRS)

    Drago, R. J.; Lenski, J. W., Jr.

    1982-01-01

    Over the last decade, the presently reported proprietary development program for the reduction of helicopter drive system weight and cost and the enhancement of reliability and survivability has produced high speed roller bearings, resin-matrix composite rotor shafts and transmission housings, gear/bearing/shaft system integrations, photoelastic investigation methods for gear tooth strength, and the automatic generation of complex FEM models for gear/shaft systems. After describing the design features and performance capabilities of the hardware developed, attention is given to the prospective benefits to be derived from application of these technologies, with emphasis on the relationship between helicopter drive system performance and cost.

  17. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 4: Flight Control Avionics Systems and Human Factors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Helicopter user needs, technology requirements and status, and proposed research and development action are summarized. It is divided into three sections: flight dynamics and control; all weather operations; and human factors.

  18. Computations and turbulent flow modeling in support of helicopter rotor technology

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1985-01-01

    The angle of attack (AOA) tandem cavity wind tunnel experiment was prepared. Actual wind tunnel testing started shortly after the beginning of 1985. A multi-probe aerodynamic rake was designed and installed for use in surveying the shear layers present over the open cavity on the Kuiper Airborne Observatory (KAO). The nature of the behavior of the thermal environment within the KAO cavity at operational altitudes was determined. Assistance was given in the design of the cavity for the University of Denver radiometer. Attempts to distinguish between the optical terms of blur circle size (or image size) and the term due to jitter were discussed.

  19. How do they get here: Does the method of transportation impact salvage for patients with testicular torsion?

    PubMed

    Weiss, D A; Tsarouhas, N; Carr, M C; Kalmus, A; Zderic, S A

    2017-06-01

    A growing number of patients are arriving at our tertiary care center for evaluation of possible testicular torsion using ambulance or helicopter transport. In many cases the parents arrive by car before the patient arrives. Are these advanced methods of medical transport worth the expense and risk in the case of suspected testicular torsion? We evaluated the total number of patients presenting to our emergency room for suspected testicular torsion to see if the means of transport affected testicular survival. Retrospective. As shown below in the table, the means of transport did not impact on testicular salvage. It is understandable that many patients with scrotal pain seek treatment closer to home because of their pediatrician's recommendation and/or family preference. However once evaluated many patients are transferred because of a lack of urologists willing to evaluate and treat the pediatric patients in community settings or because of a lack of anesthesia support. These patients are often transported by ambulance or helicopter. Our data would suggest that there is no improvement in the testicular salvage rate seen with these more advanced means of medical transportation compared with transfer by private car even when we restrict the analysis to patients traveling from over 40 miles away. We suspect that important time is lost while waiting to make such transfer arrangements. Furthermore transfer by ambulance or helicopter is more expensive and these costs are often passed on to families. Transfer by helicopter is also riskier. While an argument can be made in favor of medical transport over long distances or long driving times, this data suggests that many of these transfers could be accomplished by car with no effect on testicular salvage rates. The rate of testicular salvage was not affected by the means of transport to our tertiary facility. Only 4 patients would have required advanced of medical transport if this were limited to those facilities over 100 miles or 1.5 hours driving time away. This would achieve a substantial cost savings with no measurable change in outcome. Copyright © 2017. Published by Elsevier Ltd.

  20. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  1. Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Cox, Charles; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    As part of a NASA initiative to reduce helicopter main rotor noise, a Phase 1 study has been performed of candidate noise reduction concepts. Both conventional and novel design technologies have been analyzed that reduce the community impact of helicopter operations. In this study the noise reduction potential and design implications are assessed for conventional means of noise reduction, e.g., tip speed reduction, tip shapes and airfoil tailoring, and for two innovative design concepts: modulated blade spacing and x-force control. Main rotor designs that incorporate modulated blade spacing are shown to have reduced peak noise levels in most flight operations. X-force control alters the helicopter's force balance whereby the miss distance between main rotor blades and shed vortices can be controlled. This control provides a high potential to mitigate BVI noise radiation. Each concept is evaluated using best practice design and analysis methods, achieving the study's aim to significantly reduce noise with minimal performance degradation and no vibration increase. It is concluded that a SILENT main rotor design, incorporating the modulated blade spacing concept, offers significantly reduced noise levels and the potential of a breakthrough in how a helicopter's sound is perceived and judged. The SILENT rotor represents a definite advancement in the state-of-the-art and is selected as the design concept for demonstration in Phase 2. A Phase 2 Implementation Plan is developed for whirl cage and wind tunnel evaluations of a scaled model SILENT rotor.

  2. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    NASA Technical Reports Server (NTRS)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  3. Achieving Helicopter Modernization with Advanced Technology Turbine Engines

    DTIC Science & Technology

    1999-04-01

    computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but

  4. Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.

    1992-01-01

    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  5. Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Chou, R. C.; Davies, E. G.; Tsui, K. C.

    1978-01-01

    The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures.

  6. Helicopter human factors research

    NASA Technical Reports Server (NTRS)

    Nagel, David C.; Hart, Sandra G.

    1988-01-01

    Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.

  7. A piloted simulator investigation of stability and control, display and crew-loading requirements for helicopter instrument approach. Part 1: Technical discussion and results

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.

    1982-01-01

    A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.

  8. With a small stabilization parachute trailing behind, the X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight

    NASA Image and Video Library

    2000-12-08

    With a small stabilization parachute trailing behind, the X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.

  9. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Mardoian, George H.; Ezzo, Maureen B.

    1994-01-01

    This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.

  10. Dynamic Stall Patterns

    NASA Astrophysics Data System (ADS)

    Davidson, Phillip; Babbitt, Ashli; Magstadt, Andrew; Nikoueeyan, Pourya; Naughton, Jonathan; Jonathan Naughton Team

    2014-11-01

    The performance of helicopter and wind turbine blades is affected by dynamic stall. Dynamic stall has received considerable attention, but it is still difficult to simulate and not fully understood. Over the past seven years, many airfoils for helicopter and wind turbine use ranging from 9.5 to 30% thick have been experimentally tested and simulated while dynamically pitching to further characterize dynamic stall. Tests have been run at chord Reynolds number between 225,000-440,000 for various reduced frequencies, mean angles of attack, and oscillation amplitudes. Characterization of stall has been accomplished using data from previous studies as well as the unsteady pressure and flow-field data available from our own work. Where available, combined surface and flow-field data allow for clear identification of the types of stall observed and the flow structure associated with them. The results indicate that thin airfoil stall, leading edge stall, and trailing edge stall are observed in the oscillating airfoil experiments and simulations. These three main stall types are further divided into subcategories. By improving our understanding of the features of dynamic stall, it is expected that physics-based simulations can be improved. Work supported by DOE and a gift from BP.

  11. Correlated Attack Modeling (CAM)

    DTIC Science & Technology

    2003-10-01

    describing attack models to a scenario recognition engine, a prototype of such an engine was developed, using components of the EMERALD intrusion...content. Results – The attacker gains information enabling remote access to database (i.e., privileged login information, database layout to allow...engine that uses attack specifications written in CAML. The implementation integrates two advanced technologies devel- oped in the EMERALD program [27, 31

  12. Holographic flow visualization in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Reeves, M.

    1990-11-01

    Holographic flow visualization has found many applications in rotating turbomachinery. Applications in the design of aeroengine fans, automotive turbochargers, turbines, helicopter rotors, and advanced propfans are discussed. Work in ducted rotating flows and rotating free aerofoils is brought together and new developments in each field are revealed.

  13. Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment

    NASA Technical Reports Server (NTRS)

    Koenke, Edmund J.; Carpenter, Elisabeth J.; Williams, Larry; Caiafa, Caesar

    1999-01-01

    The National Aeronautics and Space Administration (NASA), in partnership with the Federal Aviation Administration (FAA), is conducting a research and development program to modernize the National Airspace System (NAS). The mission of NASA's Advanced Air Transportation Technologies (AATT) project is to develop advanced Air Traffic Management (ATM) concepts and decision support tools for eventual deployment and implementation by the FAA and the private sector. One major objective of the NASA AATT project is to understand and promote the needs of all user classes. The Gulf of Mexico (GoMex) airspace has unique needs. A large number of helicopters operate in this area with only limited surveillance and sometimes-severe environmental conditions. Thunderstorms are the most frequent weather hazard during the spring, summer, and fall. In winter, reduced hours of daylight, low ceilings, strong winds, and icing conditions may restrict operations. Hurricanes impose the most severe weather hazard. The hurricane season, from June through October, normally requires at least one mass evacuation of all offshore platforms.

  14. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-01-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  15. Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Morris, P. M.

    1985-01-01

    The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.

  16. Gulf of Mexico Helicopter Offshore System Technologies Recommended Development Path

    NASA Technical Reports Server (NTRS)

    Koenke, Edmund J.; Williams, Larry; Calafa, Caesar

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Advanced Air Transportation Technologies (AATT) project in cooperation with the Department of Transportation (DOT) Volpe National Transportation Systems Center (VNTSC) contracted with the System Resources Corporation (SRC) for the evaluation of the existing environment and the identification of user and service provider needs in the Gulf of Mexico low-altitude Offshore Sector. The results of this contractor activity are reported in the Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment. A recommended system design and transition strategy was then developed to satisfy the identified needs within the constraints of the environment. This work, also performed under contract to NASA, is the subject of this report.

  17. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  18. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  19. Loads and performance data from a wind-tunnel test of model articulated helicopter rotors with 2 different blade torsional stiffnesses

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1983-01-01

    A passive means of tailoring helicopter rotor blades to improve performance and reduce loads was evaluated. The parameters investigated were blade torsional stiffness, blade section camber, and distance between blade structural elastic axis and blade tip aerodynamic center. This offset was accomplished by sweeping the tip. The investigation was conducted at advance ratios of 0.20, 0.30, and 0.40. Data are presented without analysis; however, cross referencing of performance data and harmonic loads data may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating passive aeroelastic tailoring or rotor blade parameters.

  20. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  1. DARPA Helicopter Quieting Program W911NF0410424

    DTIC Science & Technology

    2009-05-01

    Leishman , J. G. and Beddoes , T. S., “A Semi-Empirical Model for Dynamic Stall ,” Journal of the American Heli- copter Society, Vol. 34, No. 3, July 1989...of physical phenomena that include transonic and compressibility effects on the advancing blade, dynamic stall on the retreating blades and the...research approach is that even the most advanced models of a given discipline, e.g., comprehensive structural or flight dynamics codes , concentrate on a very

  2. Recent Advances in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  3. Recent Advances in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  4. Advanced Transmission Components Investigation Program. Bearing and Seal Development.

    DTIC Science & Technology

    1980-08-01

    STATEMENT The purpose of the program was to evaluate a modified tapered roller bearing component incorporating a VASCO-X2 integral inner race and ribbed...cup for use on the spiral bevel input shaft of an advanced helicopter main transmission. The test results indicated that this bearing concept, with its...in future transmissions. The limited oil-off survivability testing conducted did not produce expected results; however, it shovged that this type of

  5. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  6. Defending Against Advanced Persistent Threats Using Game-Theory.

    PubMed

    Rass, Stefan; König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system's protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest.

  7. An overview of key technology thrusts at Bell Helicopter Textron

    NASA Technical Reports Server (NTRS)

    Harse, James H.; Yen, Jing G.; Taylor, Rodney S.

    1988-01-01

    Insight is provided into several key technologies at Bell. Specific topics include the results of ongoing research and development in advanced rotors, methodology development, and new configurations. The discussion on advanced rotors highlight developments on the composite, bearingless rotor, including the development and testing of full scale flight hardware as well as some of the design support analyses and verification testing. The discussion on methodology development concentrates on analytical development in aeromechanics, including correlation studies and design application. New configurations, presents the results of some advanced configuration studies including hardware development.

  8. Double protection passive pour les equipages de l’helicoptere d’attaque Tigre : Concept et etude experimentale (Design and Experimental Study of the Passive Double Hearing Protection for the Crew of the Attack Helicopter Tiger)

    DTIC Science & Technology

    2005-04-01

    alain.leger@fr.thalesgroup.com THALES Aerospace Rue Toussaint Catros 33187 Le Haillan FRANCE RESUME Les coques des écouteurs du casque Topowl ont...déjà fait l’objet d’une étude visant à optimiser leur protection auditive dans les stricts budgets de masse et de volume impartis. La présente...techniques audio (p. 17-1 – 17-14). Compte rendu de réunion RTO-MP-HFM-123, Communication 17. Neuilly-sur-Seine, France : RTO. Disponible sur le site

  9. Analyzing Risks and Vulnerabilities of Various Computer Systems and Undergoing Exploitation using Embedded Devices

    NASA Technical Reports Server (NTRS)

    Branch, Drew Alexander

    2014-01-01

    Security is one of the most if not the most important areas today. After the several attacks on the United States, security everywhere has heightened from airports to communication among the military branches legionnaires. With advanced persistent threats (APTs) on the rise following Stuxnet, government branches and agencies are required, more than ever, to follow several standards, policies and procedures to reduce the likelihood of a breach. Attack vectors today are very advanced and are going to continue to get more and more advanced as security controls advance. This creates a need for networks and systems to be in an updated, patched and secured state in a launch control system environment. Attacks on critical systems are becoming more and more relevant and frequent. Nation states are hacking into critical networks that might control electrical power grids or water dams as well as carrying out advanced persistent threat (APTs) attacks on government entities. NASA, as an organization, must protect its self from attacks from all different types of attackers with different motives. Although the International Space Station was created, there is still competition between the different space programs. With that in mind, NASA might get attacked and breached for various reasons such as espionage or sabotage. My project will provide a way for NASA to complete an in house penetration test which includes: asset discovery, vulnerability scans, exploit vulnerabilities and also provide forensic information to harden systems. Completing penetration testing is a part of the compliance requirements of the Federal Information Security Act (FISMA) and NASA NPR 2810.1 and related NASA Handbooks. This project is to demonstrate how in house penetration testing can be conducted that will satisfy all of the compliance requirements of the National Institute of Standards and Technology (NIST), as outlined in FISMA. By the end of this project, I hope to have carried out the tasks stated above as well as gain an immense knowledge about compliance, security tools, networks and network devices, as well as policies and procedures.

  10. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  11. Flow visualization of mast-mounted-sight/main rotor aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Kelley, Henry L.

    1993-01-01

    Flow visualization tests were conducted on a 27 percent-scale AH-64 attack helicopter model fitted with various mast-mounted-sight configurations in an attempt to identify the cause of adverse vibration encountered during full-scale flight tests of an Apache/Longbow configuration. The tests were conducted at the NASA Langley Research Center in the 14- by 22-Foot Subsonic Tunnel. A symmetric and an asymmetric mast-mounted-sight oriented at several skew angles were tested at forward and rearward flight speeds of 30 and 45 knots. A laser light sheet seeded with vaporized propylene glycol was used to visualize the wake of the sight in planes parallel and perpendicular to the freestream flow. Analysis of the flow visualization data identified the frequency of the wake shed from the sight, the angle-of-attack at the sight, and the location where the sight wake crossed the rotor plane. Differences in wake structure were observed between the various sight configurations and slew angles. Postulations into the cause of the adverse vibration found in flight test are given along with considerations for future tests.

  12. Practical security and privacy attacks against biometric hashing using sparse recovery

    NASA Astrophysics Data System (ADS)

    Topcu, Berkay; Karabat, Cagatay; Azadmanesh, Matin; Erdogan, Hakan

    2016-12-01

    Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user's password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.

  13. Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

    NASA Astrophysics Data System (ADS)

    Sahoo, Dipankar

    Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.

  14. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    NASA Technical Reports Server (NTRS)

    Pausder, Heinz-Juergen; Blanken, Chris L.

    1992-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hr of flight time during 10 days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.

  15. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    NASA Technical Reports Server (NTRS)

    Blanken, Chris L.; Pausder, Heinz-Jurgen

    1994-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter aeromechanics have recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effect of time delays in a high bandwidth vehicle on handling qualities. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays of up to 160 milliseconds over the baseline and band width values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities Aeronautical Design Standard (ADS)-33C.

  16. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    NASA Technical Reports Server (NTRS)

    Pausder, Heinz-Juergen; Blanken, Chris L.

    1993-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.

  17. Ground and Helicopter Emergency Medical Services Time Tradeoffs Assessed with Geographic Information.

    PubMed

    Widener, Michael J; Ginsberg, Zac; Schleith, Daniel; Floccare, Douglas J; Hirshon, Jon Mark; Galvagno, Samuel

    2015-07-01

    We describe how geographic information systems (GIS) can be used to assess and compare estimated transport time for helicopter and ground emergency medical services. Recent research shows that while the odds of a trauma patient's survival increase with helicopter emergency medical services (HEMS), they may not increase to the extent necessary to make HEMS cost effective. This study offers an analytic tool to objectively quantify the patient travel time advantage that HEMS offers compared to ground emergency medical services (GEMS). Using helicopter dispatch data from the Maryland State Police from 2000-2011, we computed transport time estimates for HEMS and GEMS, compare these results to a reference transport time of 60 min, and use geospatial interpolation to extrapolate the total response times for each mode across the study region. Mapping the region's trauma incidents and modeling response times, our findings indicate the GIS framework for calculating transportation time tradeoffs is useful in identifying which areas can be better served by HEMS or GEMS. The use of GIS and the analytical methodology described in this study present a method to compare transportation by air and ground in the prehospital setting that accounts for how mode, distance, and road infrastructure impact total transport time. Whether used to generate regional maps in advance or applied real-time, the presented framework provides a tool to identify earlier incident locations that favor HEMS over GEMS transport modes.

  18. Fatigue methodology III; Proceedings of the AHS National Technical Specialists' Meeting on Advanced Rotorcraft Structures, Scottsdale, AZ, Oct. 3-5, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Papers on rotorcraft and fatigue methodology are presented, covering topics such as reliability design for rotorcraft, a comparison between theory and fatigue test data on stress concentration factors, the retirement lives of rolling element bearings, hydrogen embrittlement risk analysis for high hardness steel parts, and rotating system load monitoring with minimum fixed system instrumentation. Additional topics include usage data collection to improve structural integrity of operational helicopters, usage monitory of military helicopters, improvements to the fatigue substantiation of the H-60 composite tail rotor blade, helicopter surviellance programs, and potential application of automotive fatigue technology in rotorcraft design. Also, consideration ismore » given to fatigue evaluation of C/MH-53 E main rotor damper threaded joints, SH-2F airframe fatigue test program, a ply termination concept for improving fracture and fatigue strength of composite laminates, the analysis and testing of composite panels subject to muzzle blast effects, the certification plan for an all-composite main rotor flexbeam, and the effects of stacking sequence on the flexural strength of composite beams.« less

  19. Wireless Sensors Pinpoint Rotorcraft Troubles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs. For example, one persistent issue in helicopter maintenance and operation is that their components are subject to high amounts of wear compared to fixed-wing aircraft. In particular, the rotor drive system that makes flight possible undergoes heavy vibration during routine performance, slowly degrading components in a way that can cause failures if left unmonitored. The level of attention required to ensure flight safety makes helicopters very expensive to maintain. As a part of NASA s Fundamental Aeronautics Program, the Subsonic Rotary Wing Project seeks to advance knowledge about and improve prediction capabilities for rotorcraft, with the aim of developing technology that will meet future civilian requirements like higher efficiency and lower noise flights. One of the program s goals is to improve technology to detect and assess the health of critical components in rotorcraft drive systems.

  20. A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.

    1980-01-01

    A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.

  1. Fuel conservation evaluation of US Army helicopters. Part 5. Ah-1S flight testing. Final report, 31 July-21 September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, L.L.; Savage, R.T.; Vincent, R.L.

    1983-01-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the AH-1S (Prod) helicopter to provide data to determine the most fuel efficient operating conditions. Hot and cold weather test sites were used to extend the range of the advancing tip Mach number data to supplement existing AH-1S performance data. Preliminary analysis of non-dimensional data identifies the effects of compressibility on performance and shows a power penalty of as much as 6% at a high NR/theta. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficientmore » operating conditions.« less

  2. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  3. Development of Novel Methods for the Reduction of Noise and Weight in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Keith, Theo G., Jr.

    2003-01-01

    Over the 70-year evolution of the helicopter, man's understanding of vibration control has greatly increased. However, in spite of the increased performance, the extent of helicopter vibration problems has not significantly diminished. Crew vibration and noise remains important factors in the design of all current helicopters. With more complex and critical demands being placed on aircrews, it is essential that vibration and noise not impair their performance. A major source of helicopter cabin noise (which has been measured at a sound pressure level of over 100 dB) is the gearbox. Reduction of this noise has been a goal of NASA and the U.S. Army. Gear mesh noise is typically in the frequency range of 1000 to 3000 Hz, a range important for speech. A requirement for U.S. Army/NASA Advanced Rotorcraft Transmission project has been a 10-dB reduction compared to current designs. A combined analytical/experimental effort has been underway, since the end of the 80's, to study effects of design parameters on noise production. The noise generated by the gear mesh can be transmitted to the surrounding media through the bearings that support the gear shaft. Therefore, the use of fluid film bearings instead of rolling element bearings could reduce the transmission noise by 10 dB. In addition, the fluid film bearings that support the gear shaft can change the dynamics of the gear assembly by providing damping to the system and by being softer than rolling element bearings. Wave bearings can attenuate, and filter, the noise generated by a machine component due to the dynamic stiffness and damping coefficients. The attenuation ratio could be as large as 35-40 dB. The noise components at higher frequencies than a synchronous frequency can be almost eliminated.

  4. Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv

    2001-01-01

    Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

  5. X-36 on Ground after Radio and Telemetry Tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  6. Advanced Protected Services: A Concept Paper on Survivable Service-Oriented Systems

    DTIC Science & Technology

    2010-05-07

    resiliency and protection of such systems to a level where they can withstand sustained attacks from well-motivated adversaries. In this paper we...that are designed for the protection of systems that are based on service-oriented architectures. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...resilient against malicious attacks , and to demonstrate the utility of the developed advanced protection techniques in settings that exhibit various

  7. Aeromechanics and man-machine integration technology opportunities for rotorcraft of the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1989-01-01

    Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.

  8. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics. Final report, 1987-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opalka, K.O.

    1989-08-01

    The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.

  9. A benchmark system to optimize our defense against an attack on the US food supply using the Risk Reduction Effectiveness and Capabilities Assessment Program.

    PubMed

    Hodoh, Ofia; Dallas, Cham E; Williams, Paul; Jaine, Andrew M; Harris, Curt

    2015-01-01

    A predictive system was developed and tested in a series of exercises with the objective of evaluating the preparedness and effectiveness of the multiagency response to food terrorism attacks. A computerized simulation model, Risk Reduction Effectiveness and Capabilities Assessment Program (RRECAP), was developed to identify the key factors that influence the outcomes of an attack and quantify the relative reduction of such outcomes caused by each factor. The model was evaluated in a set of Tabletop and Full-Scale Exercises that simulate biological and chemical attacks on the food system. More than 300 participants representing more than 60 federal, state, local, and private sector agencies and organizations. The exercises showed that agencies could use RRECAP to identify and prioritize their advance preparation to mitigate such attacks with minimal expense. RRECAP also demonstrated the relative utility and limitations of the ability of medical resources to treat patients if responders do not recognize and mitigate the attack rapidly, and the exercise results showed that proper advance preparation would reduce these deficiencies. Using computer simulation prediction of the medical outcomes of food supply attacks to identify optimal remediation activities and quantify the benefits of various measures provides a significant tool to agencies in both the public and private sector as they seek to prepare for such an attack.

  10. Component research for future propulsion systems

    NASA Technical Reports Server (NTRS)

    Walker, C. L.; Weden, G. J.; Zuk, J.

    1981-01-01

    Factors affecting the helicopter market are reviewed. The trade-offs involving acquisition cost, mission reliability, and life cycle cost are reviewed, including civil and military aspects. The potential for advanced vehicle configurations with substantial improvements in energy efficiency, operating economics, and characteristics to satisfy the demands of the future market are identified. Advanced propulsion systems required to support these vehicle configurations are discussed, as well as the component technology for the engine systems. Considerations for selection of components in areas of economics and efficiency are presented.

  11. Relationship of Helicopter Parenting on Autonomy Development in First-Year College Students

    ERIC Educational Resources Information Center

    Moriarty, Elizabeth A.

    2011-01-01

    Anecdotally, college administrators report that parents are increasingly more involved in every aspect of their students' college experience. Several factors are believed to contribute to this perceived increase in parental involvement. Advances in technology make it easier for parents and students to stay in contact (Henning, 2007). The…

  12. Helicopter Aeromechanics

    DTIC Science & Technology

    1985-04-01

    evaluation is predominantly based on the impressions he gets from the stimulation of his sensual receptors, i.e. visual, motional and auditorial cues. For...Exchanging of scientific and technical information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the...extented. International cooperation has always been stimulating . Strong technology transfer restrictions could result in a technical isolation with

  13. Advanced Simulator for Combat, Transport Vehicles, Submarines, Vessels, Airplanes and Helicopters

    DTIC Science & Technology

    2004-10-01

    simulation experiments. 3.1 Road vehicles - lane change test In order to evaluate the driving dynamics and also the driving safety of road vehicles...8] L.D. Chen, Y. Papelis, G. Watson, D. Solis. NADS at the University of Iowa: A Tool for Driving Safety Research, In Proceedings of 1st Human

  14. USMC Electronic Warfare 2025: Trading Expertise for Advanced Technology

    DTIC Science & Technology

    2011-04-15

    REFERENCES TO THIS STUDY SHOULD INCLUDE THE FOREGOING STATEMENT. QUOTATIONS FROM, ABSTRACTIONS FROM, OR REPRODUCTION OF ALL OR ANY PART OF THIS...formed with the.use of helicopters as nodes, including: MV-22B Ospreys, UH-1 Y Venoms, AH-1Z Vipers and CH-53K Super Stallions . The conceived benefits of

  15. Worldwide flight and ground-based exposure of composite materials

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Baker, D. J.

    1984-01-01

    The long-term durability of those advanced composite materials which are applicable to aircraft structures was discussed. The composite components of various military and commercial aircraft and helicopters were reviewed. Both ground exposure and flight service were assessed in terms of their impact upon composite structure durability. The ACEE Program is mentioned briefly.

  16. Ethics Today: Are Our Principles Still Relevant?

    ERIC Educational Resources Information Center

    Garnar, Martin

    2015-01-01

    In 1939 technological advances included the first handheld electric slicing knife, the first mass-produced helicopter, and the first transmission of a picture via a cable system (Science and Technology 2001). That year also saw the first Code of Ethics adopted by the American Library Association (ALA OIF 2010, 311). Can an ethical code first…

  17. Prediction of unsteady airfoil flows at large angles of incidence

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

    1992-01-01

    The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

  18. Charts for Estimating Tail-rotor Contribution to Helicopter Directional Stability and Control in Low-Speed Flight

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B; Gessow, Alfred

    1955-01-01

    Theoretically derived charts and equations are presented by which tail-rotor design studies of directional trim and control response at low forward speed can be conveniently made. The charts can also be used to obtain the main-rotor stability derivatives of thrust with respect to collective pitch and angle of attack at low forward speeds. The use of the charts and equations for tail-rotor design studies is illustrated. Comparisons between theoretical and experimental results are presented. The charts indicate, and flight tests confirm, that the region of vortex roughness which is familiar for the main rotor is also encountered by the tail rotor and that prolonged operation at the corresponding flight conditions would be difficult.

  19. Lot 4 AH-64E Apache Attack Helicopter Follow-on Operational Test and Evaluation Report

    DTIC Science & Technology

    2014-12-01

    groups/TLX/. P01 P02 P03 M01/02M03/04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16/19 M17 M20 M21 0 20 40 60 80 100 Mission ID N A SA T LX R at in g...M03/04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16/19 M17 M20 M21 0 2 4 6 8 10 Mission ID Be df or d W or kl oa d Box length is range of ratings

  20. Airway management by physician-staffed Helicopter Emergency Medical Services - a prospective, multicentre, observational study of 2,327 patients.

    PubMed

    Sunde, Geir Arne; Heltne, Jon-Kenneth; Lockey, David; Burns, Brian; Sandberg, Mårten; Fredriksen, Knut; Hufthammer, Karl Ove; Soti, Akos; Lyon, Richard; Jäntti, Helena; Kämäräinen, Antti; Reid, Bjørn Ole; Silfvast, Tom; Harm, Falko; Sollid, Stephen J M

    2015-08-07

    Despite numerous studies on prehospital airway management, results are difficult to compare due to inconsistent or heterogeneous data. The objective of this study was to assess advanced airway management from international physician-staffed helicopter emergency medical services. We collected airway data from 21 helicopter emergency medical services in Australia, England, Finland, Hungary, Norway and Switzerland over a 12-month period. A uniform Utstein-style airway template was used for collecting data. The participating services attended 14,703 patients on primary missions during the study period, and 2,327 (16 %) required advanced prehospital airway interventions. Of these, tracheal intubation was attempted in 92 % of the cases. The rest were managed with supraglottic airway devices (5 %), bag-valve-mask ventilation (2 %) or continuous positive airway pressure (0.2 %). Intubation failure rates were 14.5 % (first-attempt) and 1.2 % (overall). Cardiac arrest patients showed significantly higher first-attempt intubation failure rates (odds ratio: 2.0; 95 % CI: 1.5-2.6; p < 0.001) compared to non-cardiac arrest patients. Complications were recorded in 13 %, with recognised oesophageal intubation being the most frequent (25 % of all patients with complications). For non-cardiac arrest patients, important risk predictors for first-attempt failure were patient age (a non-linear association) and administration of sedatives (reduced failure risk). The patient's sex, provider's intubation experience, trauma type (patient category), indication for airway intervention and use of neuromuscular blocking agents were not risk factors for first-attempt intubation failure. Advanced airway management in physician-staffed prehospital services was performed frequently, with high intubation success rates and low complication rates overall. However, cardiac arrest patients showed significantly higher first-attempt failure rates compared to non-cardiac arrest patients. All failed intubations were handled successfully with a rescue device or surgical airway. www.clinicaltrials.gov NCT01502111 . Registered 22 December 2011.

  1. S-Boxes Based on Affine Mapping and Orbit of Power Function

    NASA Astrophysics Data System (ADS)

    Khan, Mubashar; Azam, Naveed Ahmed

    2015-06-01

    The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.

  2. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  3. Novel Method For Low-Rate Ddos Attack Detection

    NASA Astrophysics Data System (ADS)

    Chistokhodova, A. A.; Sidorov, I. D.

    2018-05-01

    The relevance of the work is associated with an increasing number of advanced types of DDoS attacks, in particular, low-rate HTTP-flood. Last year, the power and complexity of such attacks increased significantly. The article is devoted to the analysis of DDoS attacks detecting methods and their modifications with the purpose of increasing the accuracy of DDoS attack detection. The article details low-rate attacks features in comparison with conventional DDoS attacks. During the analysis, significant shortcomings of the available method for detecting low-rate DDoS attacks were found. Thus, the result of the study is an informal description of a new method for detecting low-rate denial-of-service attacks. The architecture of the stand for approbation of the method is developed. At the current stage of the study, it is possible to improve the efficiency of an already existing method by using a classifier with memory, as well as additional information.

  4. A simulator study on information requirements for precision hovering

    NASA Technical Reports Server (NTRS)

    Lemons, J. L.; Dukes, T. A.

    1975-01-01

    A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.

  5. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2003-01-01

    Th tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. For many years such correlation has been performed for helicopter rotors (rotors designed for edgewise flight), but correlation activities for tiltrotors have been limited, in part by the absence of appropriate measured data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, U4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) now provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will present calculations of airloads, wake geometry, and performance, including correlation with TRAM DNW measurements. The calculations were obtained using CAMRAD II, which is a modern rotorcraft comprehensive analysis, with advanced models intended for application to tiltrotor aircraft as well as helicopters. Comprehensive analyses have received extensive correlation with performance and loads measurements on helicopter rotors. The proposed paper is part of an initial effort to perform an equally extensive correlation with tiltrotor data. The correlation will establish the level of predictive capability achievable with current technology; identify the limitations of the current aerodynamic, wake, and structural models of tiltrotors; and lead to recommendations for research to extend tiltrotor aeromechanics analysis capability. The purpose of the Tilt Rotor Aeroacoustic Model (TRAM) experimental project is to provide data necessary to validate tiltrotor performance and aeroacoustic prediction methodologies and to investigate and demonstrate advanced civil tiltrotor technologies. The TRAM project is a key part of the NASA Short Haul Civil Tiltrotor (SHCT) project. The SHCT project is an element of the Aviation Systems Capacity Initiative within NASA. In April-May 1998 the TRAM was tested in the isolated rotor configuration at the Large Low-speed Facility of the German-Dutch Wind Tunnels (DNW). A preparatory test was conducted in December 1997. These tests were the first comprehensive aeroacoustic test for a tiltrotor, including not only noise and performance data, but airload and wake measurements as well. The TRAM can also be tested in a fill-span configuration, incorporating both rotors Lnd a fuselage model. The wind tunnel installation of the TRAM isolated rotor is shown. The rotor tested in the DNW was a 1/4-scale (9.5 ft diameter) model of the right-hand V-22 proprotor. The rotor and nacelle assembly was attached to an acoustically-treated, isolated rotor test stand through a mechanical pivot (the nacelle conversion axis). The TRAM was analyzed using the rotorcraft comprehensive analysis CAMRAD II. CAMRAD II is an aeromechanical analysis of helicopters and rotorcraft that incorporates a combination of advanced technologies, including multibody dynamics, nonlinear finite elements, and rotorcraft aerodynamics. The trim task finds the equilibrium solution (constant or periodic) for a steady state operating condition, in this case a rotor operating in a wind tunnel. For wind tunnel operation, the thrust and flapping are trimmed to target values. The aerodynamic model includes a wake analysis to calculate the rotor nonuniform induced-velocities, using a free wake geometry. The paper will present the results of CAMRAD II calculations compared to the TRAM DNW measurements for hover performance, helicopter mode performance, and helicopter mode airloads. An example of the hover performance results, comparing both mearements and calculations for the JVX (large scale) and TRAM (small scale) rotors, is shown. An example of the helicopter mode performance, showing the influence of the aerodynamic model (particularly the stall delay model) on the calculated power, induced power, and profile power is also shown. An example of the helicopter mode airloads, showing the influence of various wake and aerodynamic models on the calculations, is shown. Good correlation with measured airloads is obtained using the multiple-trailer wake model. The paper will present additional results, and describe and discuss the aerodynamic behavior in detail.

  6. Advanced Fuel Development and Fuel Combustion

    DTIC Science & Technology

    1997-08-01

    development of supercritical fluid extraction techniques for gums and deposits; 5) generation of homogeneous, liquid phase kinetic data on the consumption...Gas Chromatography 12 TASK NO. 09: Assessment of the Friction Characteristics and Scuffing Potential of a Helicopter Transmission Lubricant...stations can easily be contaminated by personnel improperly disposing of other materials such as mineral oil lubricants, silicone oils, hydraulic fluids

  7. ARC-2009-ACD09-0150-002

    NASA Image and Video Library

    2009-07-22

    NASA Research Park (NRP) Moffett Field, California: Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation.

  8. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  9. Wind-Tunnel Investigation of the Effect of Angle of Attack and Flapping-Hinge Offset on Periodic Bending Moments and Flapping of a Small Rotor

    NASA Technical Reports Server (NTRS)

    McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.

    1959-01-01

    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.

  10. Advanced traveler information system capabilities : human factors research needs : summary report

    DOT National Transportation Integrated Search

    2003-09-01

    The number and intensity of domestic and international terrorist events, along with the September 11, 2001, attacks, change the way Americans think and live. Terrorists attack targets where human casualties and economic consequences are likely to be ...

  11. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall

    NASA Technical Reports Server (NTRS)

    Piziali, R. A.

    1994-01-01

    A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.

  12. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  13. The helicopter as a caring context: Experiences of people suffering trauma.

    PubMed

    Sandström, Linda; Nilsson, Carina; Juuso, Päivi; Engström, Åsa

    2017-05-01

    When emergency medical services (EMS) are needed, the choice of transport depends on several factors. These may include the patient's medical condition, transport accessibility to the accident site and the receiving hospital's resources. Emergency care research is advancing, but little is known about the patient's perspective of helicopter emergency medical services (HEMS). The aim of this study was to describe trauma patients' experiences of HEMS. Thirteen persons (ages 21-76) were interviewed using an interview guide. Data were analyzed using qualitative content analysis. The analysis resulted in three themes: Being distraught and dazed by the event - patients experienced shock and tension, as well as feelings of curiosity and excitement. Being comforted by the caregivers - as the caregivers were present and attentive, they had no need for relatives in the helicopter. Being safe in a restricted environment - the participants' injuries were taken seriously and the caregivers displayed effective teamwork. For trauma patients to be taken seriously and treated as 'worst cases' enables them to trust their caregivers and 'hand themselves over' to their care. HEMS provide additional advantageous circumstances, such as being the sole patient and having proximity to a small, professional team. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2000-12-08

    The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight from NASA's Dryden Flight Research Center, Edwards, California. The X-40 is attached to a sling which is suspended from the CH-47 by a 110-foot-long cable during the tests, while a small parachute trails behind to provide stability. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.

  15. Network Security Risk Assessment System Based on Attack Graph and Markov Chain

    NASA Astrophysics Data System (ADS)

    Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian

    2017-10-01

    Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.

  16. Helicopter noise regulations: An industry perspective

    NASA Technical Reports Server (NTRS)

    Wagner, R. A.

    1978-01-01

    A review of helicopter noise measurement programs and noise reduction/economic studies of FAA is given along with a critique of a study which addresses the economic impact of noise reduction on helicopter noise. Modification of several helicopters to reduce noise and demonstrate the economic impact of the application of the current state-of-the-art technology is discussed. Specific helicopters described include Boeing Vertol 347 Helicopter, Hughes OH-6 Helicopter, and Hughes 269C Helicopter. Other topics covered include: (1) noise trends and possible noise limits; (2) accuracy of helicopter noise prediction techniques; (3) limited change possibilities of derivatives; and (4) rotor impulsive noise. The unique operational capabilities of helicopters and the implications relative to noise regulations and certification are discussed.

  17. Cyber War: The Next Frontier for NATO

    DTIC Science & Technology

    2015-03-01

    cyber-attacks as a way to advance their agenda. Common examples of cyber- attacks include computer viruses, worms , malware, and distributed denial of...take advantage of security holes and cause damage to computer systems, steal financial data, or acquire sensitive secrets. As technology becomes

  18. 77 FR 12991 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA...) that was published in the Federal Register. That AD applies to Robinson Helicopter Company (Robinson...

  19. 77 FR 23388 - Airworthiness Directives; Bell Helicopter Textron Canada Limited Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Airworthiness Directives; Bell Helicopter Textron Canada Limited Helicopters AGENCY: Federal Aviation... are publishing a new airworthiness directive (AD) for Bell Helicopter Textron Canada Limited (Bell..., contact Bell Helicopter Textron Canada Limited, 12,800 Rue de l'Avenir, Mirabel, Quebec J7J1R4, telephone...

  20. 77 FR 27116 - Safety Zone, Naval Helicopter Association Reunion Helicopter Demonstration, Elizabeth River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ...-AA00 Safety Zone, Naval Helicopter Association Reunion Helicopter Demonstration, Elizabeth River... establishing a temporary safety zone on the Elizabeth River in the vicinity of Norfolk, VA to support the Naval... of life on navigable waters during the Naval Helicopter Association Reunion Helicopter Demonstration...

  1. Personal Rotorcraft Design and Performance with Electric Hybridization

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2017-01-01

    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  2. A comprehensive PIV measurement campaign on a fully equipped helicopter model

    NASA Astrophysics Data System (ADS)

    De Gregorio, Fabrizio; Pengel, Kurt; Kindler, Kolja

    2012-07-01

    The flow field around a helicopter is characterised by its inherent complexity including effects of fluid-structure interference, shock-boundary layer interaction, and dynamic stall. Since the advancement of computational fluid dynamics and computing capabilities has led to an increasing demand for experimental validation data, a comprehensive wind tunnel test campaign of a fully equipped and motorised generic medium transport helicopter was conducted in the framework of the GOAHEAD project. Different model configurations (with or without main/tail rotor blades) and several flight conditions were investigated. In this paper, the results of the three-component velocity field measurements around the model are surveyed. The effect of the interaction between the main rotor wake and the fuselage for cruise/tail shake flight conditions was analysed based on the flow characteristics downstream from the rotor hub and the rear fuselage hatch. The results indicated a sensible increment of the intensity of the vortex shedding from the lower part of the fuselage and a strong interaction between the blade vortex filaments and the wakes shed by the rotor hub and by the engine exhaust areas. The pitch-up phenomenon was addressed, detecting the blade tip vortices impacting on the horizontal tail plane. For high-speed forward flight, the shock wave formation on the advancing blade was detected, measuring the location on the blade chord and the intensity. Furthermore, dynamic stall on the retreating main rotor blade in high-speed forward flight was observed at r/ R = 0.5 and 0.6. The analysis of the substructures forming the dynamic stall vortex revealed an unexpected spatial concentration suggesting a rotational stabilisation of large-scale structures on the blade.

  3. Exploiting Small Leakages in Masks to Turn a Second-Order Attack into a First-Order Attack and Improved Rotating Substitution Box Masking with Linear Code Cosets.

    PubMed

    DeTrano, Alexander; Karimi, Naghmeh; Karri, Ramesh; Guo, Xiaofei; Carlet, Claude; Guilley, Sylvain

    2015-01-01

    Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set.

  4. Exploiting Small Leakages in Masks to Turn a Second-Order Attack into a First-Order Attack and Improved Rotating Substitution Box Masking with Linear Code Cosets

    PubMed Central

    DeTrano, Alexander; Karimi, Naghmeh; Karri, Ramesh; Guo, Xiaofei; Carlet, Claude; Guilley, Sylvain

    2015-01-01

    Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set. PMID:26491717

  5. Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Qian, Yaoru

    2018-05-01

    In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.

  6. NASA/Army Rotorcraft Transmission Research, a Review of Recent Significant Accomplishments

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1994-01-01

    A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.

  7. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  8. A synchronous strobed laser light sheet for helicopter model rotor flow visualization

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Rhodes, David B.; Jones, Stephen B.; Franke, John M.

    1990-01-01

    A synchronous, strobed laser light sheet has been developed for use in flow visualization of a helicopter rotor model. The light sheet strobe circuit included selectable blade position, strobe duration, and multiple pulses per revolution for rotors having 2 to 9 blades. The flow was seeded with propylene glycol. Between runs, a calibration grid board was placed in the plane of the laser sheet and recorded with the video camera at the position used to record the flow field. A slip-sync mode permitted slow motion visualization of the flow field over complete rotations of the rotor. The system was used to make two-dimensional flow field cuts of a four-bladed rotor operating at advance ratio of 0.37 at wind tunnel speeds up to 79.25 meters per second (260 feet per second).

  9. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight. Volume 3: Rectangular planform blades at an advance ratio of 0.30

    NASA Technical Reports Server (NTRS)

    Elliott, Joe W.; Althoff, Susan L.; Sailey, Richard H.

    1988-01-01

    An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center to measure the inflow into a scale model helicopter rotor in forward flight (micron sub infinity = 0.30). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 180 separate locations in order to clearly define the inflow character. These data are presented without analysis.

  10. A flight investigation of performance and loads for a helicopter with 10-64C main rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K.; Tomaine, R. L.; Stevens, D. D.

    1980-01-01

    A flight investigation produced data on performance and rotor loads for a teetering rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade section contour. The test envelope included hover, forward flight speeds from 34 to 83 m/sec (65 to 162 knots), and collective fixed maneuvers at about 0.25 tip speed ratio. The data set for each test point describes vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak to peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor. Detailed data for an advanced airfoil on an AH-1G are presented.

  11. 75 FR 20933 - Airworthiness Directives; Arrow Falcon Exporters, Inc. (previously Utah State University...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... Helicopter Services (previously Erickson Air-Crane Co.); Garlick Helicopters, Inc.; Global Helicopter... Forestry; Firefly Aviation Helicopter Services (previously Erickson Air-Crane Co.); Garlick Helicopters...

  12. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.

  13. A framework for developing and integrating effective routing strategies within the emergency management decision-support system : [research brief].

    DOT National Transportation Integrated Search

    2012-05-01

    The terrorist attacks on September 11th, as well as other coordinated attacks on transit centers in Madrid and London, have underscored the importance of evacuation planning to : transportation professionals. With computer technology advancement, urb...

  14. A Testbed for Data Fusion for Helicopter Diagnostics and Prognostics

    DTIC Science & Technology

    2003-03-01

    and algorithm design and tuning in order to develop advanced diagnostic and prognostic techniques for air craft health monitoring . Here a...and development of models for diagnostics, prognostics , and anomaly detection . Figure 5 VMEP Server Browser Interface 7 Download... detections , and prognostic prediction time horizons. The VMEP system and in particular the web component are ideal for performing data collection

  15. An Operational Utility Assessment: Measuring the Effectiveness of the Joint Concept Technology Demonstration (JCTD), Joint Forces Protection Advance Security System (JFPASS)

    DTIC Science & Technology

    2008-12-01

    time- on-task in deploying a patrol force, for example. In its most basic form, an FOB consists of a ring of barbed wire around a position with a...Modernizing The Marine Corps’ CH- 53 Super Stallion Helicopter,” Thesis, NPS (December 2001). HIGH LEVEL OF IMPORTANCE LOW 62 TASKS

  16. Prehospital Nursing in Maryland - Legal Considerations

    DTIC Science & Technology

    1991-01-01

    Certified CRTs’ scope of practice includes performing all phases of cardiopulmonary resuscitation including administration of drugs and intravenous solutions...who Prehospital Nursing 36 man the MedEvac helicopters, may perform all phases of prehospital advanced life support (ATLS), administer drugs and... midwifery . In Massachusetts, the Board of Registration in Nursing is authorized to establish conditions and regulations for nursing practice in the

  17. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  18. Lift distribution and velocity field measurements for a three-dimensional, steady blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Norman, Thomas R.

    1987-01-01

    A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.

  19. 78 FR 56592 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters AGENCY: Federal Aviation...) 76-12- 07 for all Bell Model 204B and certain serial-numbered Model 205A-1 helicopters with a certain... detect a crack in the link segments and, for affected Model 205A-1 helicopters, replacing the chain and...

  20. Exploratory flow visualization investigation of mast-mounted sights in presence of a rotor

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Kelley, Henry L.

    1995-01-01

    A flow visualization investigation with a laser light sheet system was conducted on a 27-percent-scale AH-64 attack helicopter model fitted with two mast-mounted sights in the langley 14- by 22-foot subsonic tunnel. The investigation was conducted to identify aerodynamic phenomena that may have contributed to adverse vibration encountered during full-scale flight of the AH-64D apache/longbow helicopter with an asymmetric mast-mounted sight. Symmetric and asymmetric mast-mounted sights oriented at several skew angles were tested at simulated forward and rearward flight speeds of 30 and 45 knots. A laser light sheet system was used to visualize the flow in planes parallel to and perpendicular to the free-stream flow. Analysis of these flow visualization data identified frequencies of flow patterns in the wake shed from the sight, the streamline angle at the sight, and the location where the shed wake crossed the rotor plane. Differences in wake structure were observed between the sight configurations and various skew angles. Analysis of lateral light sheet plane data implied significant vortex structure in the wake of the asymmetric mast-mounted sight in the configuration that produced maximum in-flight vibration. The data showed no significant vortex structure in the wake of the asymmetric and symmetric configurations that produced no increase in in-flight adverse vibration.

  1. Materiel requirements for airborne minefield detection system

    NASA Astrophysics Data System (ADS)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  2. Step to improve neural cryptography against flipping attacks.

    PubMed

    Zhou, Jiantao; Xu, Qinzhen; Pei, Wenjiang; He, Zhenya; Szu, Harold

    2004-12-01

    Synchronization of neural networks by mutual learning has been demonstrated to be possible for constructing key exchange protocol over public channel. However, the neural cryptography schemes presented so far are not the securest under regular flipping attack (RFA) and are completely insecure under majority flipping attack (MFA). We propose a scheme by splitting the mutual information and the training process to improve the security of neural cryptosystem against flipping attacks. Both analytical and simulation results show that the success probability of RFA on the proposed scheme can be decreased to the level of brute force attack (BFA) and the success probability of MFA still decays exponentially with the weights' level L. The synchronization time of the parties also remains polynomial with L. Moreover, we analyze the security under an advanced flipping attack.

  3. The Diabetic Foot Attack: "'Tis Too Late to Retreat!"

    PubMed

    Vas, Prashanth R J; Edmonds, Michael; Kavarthapu, Venu; Rashid, Hisham; Ahluwalia, Raju; Pankhurst, Christian; Papanas, Nikolaos

    2018-03-01

    The "diabetic foot attack" is one of the most devastating presentations of diabetic foot disease, typically presenting as an acutely inflamed foot with rapidly progressive skin and tissue necrosis, at times associated with significant systemic symptoms. Without intervention, it may escalate over hours to limb-threatening proportions and poses a high amputation risk. There are only best practice approaches but no international protocols to guide management. Immediate recognition of a typical infected diabetic foot attack, predominated by severe infection, with prompt surgical intervention to debride all infected tissue alongside broad-spectrum antibiotic therapy is vital to ensure both limb and patient survival. Postoperative access to multidisciplinary and advanced wound care therapies is also necessary. More subtle forms exist: these include the ischemic diabetic foot attack and, possibly, in a contemporary categorization, acute Charcot neuroarthropathy. To emphasize the importance of timely action especially in the infected and ischemic diabetic foot attack, we revisit the concept of "time is tissue" and draw parallels with advances in acute myocardial infarction and stroke care. At the moment, international protocols to guide management of severe diabetic foot presentations do not specifically use the term. However, we believe that it may help increase awareness of the urgent actions required in some situations.

  4. Defending Against Advanced Persistent Threats Using Game-Theory

    PubMed Central

    König, Sandra; Schauer, Stefan

    2017-01-01

    Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker’s incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system’s protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest. PMID:28045922

  5. Control definition study for advanced vehicles

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  6. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly on pitching kinematics. The cambered ellipse exhibits light reverse flow dynamic stall for a wide range of pitching kinematics. Deep dynamic stall over the cambered ellipse airfoil is observed for high mean pitch angles and pitch amplitudes. The detailed results and analysis in this work contributes to the development of a new generation of high-speed helicopters.

  7. Novel approaches to helicopter obstacle warning

    NASA Astrophysics Data System (ADS)

    Seidel, Christian; Samuelis, Christian; Wegner, Matthias; Münsterer, Thomas; Rumpf, Thomas; Schwartz, Ingo

    2006-05-01

    EADS Germany is the world market leader in commercial Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Border Control (Bundespolizei) and Royal Thai Airforce and is successfully evaluated by the Foreign Comparative Test Program (FCT) of the USSOCOM. Currently the successor system HELLAS-Awareness is in development. It will have extended sensor performance, enhanced realtime data processing capabilities and advanced HMI features. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate of 3Hz. The workflow of the data processing will be presented with focus on novel filter techniques and obstacle classification methods. As commonly known the former are indispensable due to unavoidable statistical measuring errors and solarisation. The amount of information in the filtered raw data is further reduced by ground segmentation. The remaining raised objects are extracted and classified in several stages into different obstacle classes. We will show the prioritization function which orders the obstacles concerning to their threat potential to the helicopter taking into account the actual flight dynamics. The priority of an object determines the display and provision of warnings to the pilot. Possible HMI representation includes video or FLIR overlay on multifunction displays, audio warnings and visualization of information on helmet mounted displays and digital maps. Different concepts will be presented.

  8. Experimental Investigation of a Helicopter Rotor Hub Flow

    NASA Astrophysics Data System (ADS)

    Reich, David

    The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.

  9. CASE STUDY: DIELDRIN ATTACK IN DALYAN LAGOON

    EPA Science Inventory

    During the first two weeks of December 2005, NATO sponsored an Advanced Study Institute (ASI) in Istanbul, Turkey. Part of this ASI involved a case study of a terrorist attack, where a chemical was assumed to be dumped into Sulunger Lake in Turkey. This chapter documents the re...

  10. Decision Aids for Airborne Intercept Operations in Advanced Aircrafts

    NASA Technical Reports Server (NTRS)

    Madni, A.; Freedy, A.

    1981-01-01

    A tactical decision aid (TDA) for the F-14 aircrew, i.e., the naval flight officer and pilot, in conducting a multitarget attack during the performance of a Combat Air Patrol (CAP) role is presented. The TDA employs hierarchical multiattribute utility models for characterizing mission objectives in operationally measurable terms, rule based AI-models for tactical posture selection, and fast time simulation for maneuver consequence prediction. The TDA makes aspect maneuver recommendations, selects and displays the optimum mission posture, evaluates attackable and potentially attackable subsets, and recommends the 'best' attackable subset along with the required course perturbation.

  11. Crash-resistant fuel system effectiveness in civil helicopter crashes.

    PubMed

    Hayden, Mark S; Shanahan, Dennis F; Chen, Li-Hui; Baker, Susan P

    2005-08-01

    Crash-resistant fuel systems (CRFS) have demonstrated close to 100% effectiveness in survivable crashes of Army helicopters, but the technology has been slow to transfer into the civil helicopter arena. Federal standards for civil helicopter CRFS are less stringent than those for military helicopters. A reduction in standards for CRFS in military helicopters is being considered. The goal of this study was to determine whether crashes of civil helicopters with CRFS are less likely to result in post-crash fire than crashes of those without. Crashes of civil helicopters during 1982-2004 were analyzed, comparing Bell 206 helicopters manufactured with CRFS with Aerospatial 350 helicopters manufactured during the same period (post-1981), but lacking CRFS. Bell 206 helicopters with CRFS were also compared with earlier models without CRFS. The highest proportion of crashes with post-crash fires (11.3%) was in AS-350s manufactured after 1981 (non-CRFS), and the lowest (3.7%) was in Bell 206s (with CRFS) [unadjusted risk ratio (RR) = 3.3, 95% confidence interval (CI) = 1.04, 10.50; adjusted for light and weather, RR = 2.81, Cl = 0.82, 9.69]. Earlier models of Bell 206s without CRFS had higher risk of post-crash fire than post-1981 models with CRFS (7.4% vs. 3.7%; adjusted RR = 2.11, Cl = 0.82, 5.45). The results of this study suggest a better performance, in terms of post-crash fire prevention, of CRFS-equipped civil helicopters as compared with those without CRFS. It is possible that CRFS in civil helicopters have not achieved the same degree of effectiveness as CRFS in military helicopters. CRFS should be used more widely in civil helicopters. The more stringent CRFS requirements for military helicopters should not be reduced without further research.

  12. Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.

    1989-01-01

    Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.

  13. 77 FR 44434 - Airworthiness Directives; Various Restricted Category Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Erickson Air-Crane Co.); California Department of Forestry; Garlick Helicopters, Inc.; Global Helicopter... Helicopter Services (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick... Helicopter Services (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick...

  14. 78 FR 60182 - Airworthiness Directives; Bell Helicopter Textron, Inc., Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Helicopter Textron, Inc. (Bell), Model 214B, 214B-1, and 214ST helicopters. This AD requires creating a... and 214B-1 helicopters with a certain spindle installed. The NPRM proposed to require creating a...

  15. AFRPL Graphite Performance Prediction Program. Improved Capability for the Design and Ablation Performance Prediction of Advanced Air Force Solid Propellant Rocket Nozzles

    DTIC Science & Technology

    1976-12-01

    corrosive attack by both acids and alkali and, in addition, is provided with a special Dynel veil for protection against fluoride attack. 3.1.4...throat region, namely , the entrance, center, and exit. In addition, at each station, the diameters were determined at two angular positions 90° apart. The...characterization test matrix. 3.2.1.1 Rocket Motor Environments Rocket motor environments were based on three advanced MX propellants, namely , * XLDB * HTPB * PEG

  16. Strategies for the prevention of a successful biological warfare aerosol attack.

    PubMed

    Wiener, S L

    1996-05-01

    Biological warfare (BW) aerosol attacks are different from chemical attacks in that they may provide no warning/all clear signals that allow the soldier to put on or remove his M17/M40 protective mask. Methods are now being perfected to detect a BW aerosol cloud using an airborne (helicopter) pulsed laser system to scan the lower altitudes upwind from a troop concentration of corps size, and to sample and analyze the nature of the aerosol within a brief time interval. This system has certain limitations and vulnerabilities, since it is designed specifically to detect a line-type aerosol attack. Provision of, training with, and field use of a lightweight dust mist or HEPA filter respirator for each soldier is proposed for protection against undetected aerosol attacks. This particulate filter respirator would be issued in addition to the M17/M40 mask. Such a BW respirator will be able to purify the soldier's air by removing particles in the 0.3- to 15-micro m-diameter range with an efficiency of 98 to 100%. Particle size of BW aerosols is in the same range, with an optimum size for high-efficiency casualty production of 1 to 5 micro m mass median diameter. The proposed BW respirator will be lightweight; will require low inhalation pressures; will be comfortable to wear for prolonged periods; will not interfere with vision, hearing, and communication; and will not degrade overall effectiveness and performance to the degree observed with the M17/M40 masks. Such respirators would be worn as part of a contingency defense against an enemy likely to use BW agents. This respirator could be worn for prolonged periods when under threat of an undetectable BW attack during weather conditions favorable to the success of such an attack (i.e., low wind velocity and temperature inversion in the target area). In addition, tactically important assets such as command and control centers and missile batteries can also be protected continuously by air filtration systems powered by electricity (modular collective protection equipment). Vaccinations against anthrax, botulism, Q fever, plague, and tularemia are now available and immune protection against ricin and staphylococcal toxins appears feasible in the near future. Chemotherapy can also be provided for prophylaxis of infectious agents released on the battlefield. The vaccines and antibiotics can provide back-up protection against an unexpected BW attack during a period when the BW respirator is not in use or malfunctions due to a poor seal or filter leak. Enemy sites of biological weapon production, assembly, testing, and storage, and delivery vehicles can be targeted for destruction by bombs and/or missiles. An integrated, well-planned, BW defense with multiple components can decrease the likelihood of a successful enemy BW aerosol attack.

  17. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  18. Advanced Cyber Attack Modeling Analysis and Visualization

    DTIC Science & Technology

    2010-03-01

    Graph Analysis Network Web Logs Netflow Data TCP Dump Data System Logs Detect Protect Security Management What-If Figure 8. TVA attack graphs for...Clustered Graphs,” in Proceedings of the Symposium on Graph Drawing, September 1996. [25] K. Lakkaraju, W. Yurcik, A. Lee, “NVisionIP: NetFlow

  19. 77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ...-0530; Directorate Identifier 2011-SW-075-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Bell Helicopter...

  20. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  1. ’Offsets’ for NATO Procurement of the Airborne Warning and Control System: Opportunities and Implications

    DTIC Science & Technology

    1976-02-01

    the Anglo-French ; azel ’, the German B9715, and the Italian Ag129--all appear responsi- e to a U.S. need for an Advanced Scout -32- Helicopter (ASH...currencies by OECD using IMF parity rates, or average of annual range of flexible rates. -86- code (individual chemicals, such as sulphuric acid , etc.), it is

  2. Recent Sikorsky R and D progress

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The recent activities and progress in four specific areas of Sikorsky's research and development program are summarized. Since the beginning of the S-76 design in 1974, Sikorsky has been aggressively developing the technology for using composite materials in helicopter design. Four specific topics are covered: advanced cockpit/controller efforts, fly-by-wire controls on RSRA/X-Wing, vibration control via higher harmonic control, and main rotor aerodynamic improvements.

  3. Advanced Integrated Multi-sensor Surveillance (AIMS). Mission, Function, Task Analysis

    DTIC Science & Technology

    2007-06-01

    flaps, elevators and rudder control surfaces are based on conventional mechanical systems, using dual hydraulic boosters. Trim tabs are provided for... dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been detected, the crew attempts to discover the...NAVCOM advises helicopter of on-scene weather, elevation, flight conditions and salient terrain features which may impact hoisting requirements

  4. Autonomic physiological data associated with simulator discomfort

    NASA Technical Reports Server (NTRS)

    Miller, James C.; Sharkey, Thomas J.; Graham, Glenna A.; Mccauley, Michael E.

    1993-01-01

    The development of a physiological monitoring capability for the Army's advanced helicopter simulator facility is reported. Additionally, preliminary physiological data is presented. Our objective was to demonstrate the sensitivity of physiological measures in this simulator to self-reported simulator sickness. The data suggested that heart period, hypergastria, and skin conductance level were more sensitive to simulator sickness than were vagal tone and normal electrogastric activity.

  5. Arctic Ice Studies

    DTIC Science & Technology

    1993-02-01

    Aeronautics and Space Administration; DMSP: Defense Meteorological Satellit= innovative helicopter survey for ambient Program; AVHRR: Advanced Very High...a" aA z’•Lae Na g 419" .aso ." -I Nas"o Te a ’ b 0 York A4CJ ’ crk A19. YCrk t•nrtid 0 .436 b = -. 49cr9k Trott *._-. 3 - -. Now A19. No~v, AtC. Nowv

  6. Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.

    ERIC Educational Resources Information Center

    Dalle-Molle, John

    The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…

  7. Evaluation of an oil-debris monitoring device for use in helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Blanchette, Donald M.; Biron, Gilles

    1992-01-01

    Experimental tests were performed on an OH-58A helicopter main-rotor transmission to evaluate an oil-debris monitoring device (ODMD). The tests were performed in the NASA 500-hp Helicopter Transmission Test Stand. Five endurance tests were run as part of a U.S. Navy/NASA/Army advanced lubricants program. The tests were run at 100 percent design speed, 117-percent design torque, and 121 C (250 F) oil inlet temperature. Each test lasted between 29 and 122 hr. The oils that were used conformed to MIL-L-23699 and DOD-L-85734 specifications. One test produced a massive sun-gear fatigue failure; another test produced a small spall on one sun-gear tooth; and a third test produced a catastrophic planet-bearing cage failure. The ODMD results were compared with oil spectroscopy results. The capability of the ODMD to detect transmission component failures was not demonstrated. Two of the five tests produced large amounts of debris. For these two tests, two separate ODMD sensors failed, possibly because of prolonged exposure to relatively high oil temperatures. One test produced a small amount of debris and was not detected by the ODMD or by oil spectroscopy. In general, the ODMD results matched the oil spectroscopy results. The ODMD results were extremely sensitive to oil temperature and flow rate.

  8. Ground crewmen help guide the alignment of the X-40A as the experimental craft is gently lowered to the ground by a U.S. Army CH-47 Chinook helicopter following a captive-carry test flight

    NASA Image and Video Library

    2000-12-08

    Ground crewmen help guide the alignment of the X-40 technology demonstrator as the experimental craft is gently lowered to the ground by a U.S. Army CH-47 Chinook cargo helicopter following a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software. Following a series of captive-carry flights, the X-40 made several free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The captive carry flights helped verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether.

  9. The impact of urban operations on helicopter noise requirements

    NASA Technical Reports Server (NTRS)

    Spector, S. R.

    1978-01-01

    The interrelationship of urban helicopter operations, helicopter noise, and the establishment of urban public-use heliports is discussed. Public resistance to urban helicopter operations due to concern for safety and noise is shown to negatively impact the establishment of public-use heliports in urban centers. It is indicated that increased government and industry effort to reduce helicopter noise is needed to ensure continued growth in the helicopter industry.

  10. Helicopter Northeast Corridor Operational Test Support.

    DTIC Science & Technology

    1980-06-01

    helicopters in the U. S. and Canada show a predom- inent application of small helicopters COMMERCIAL USES OF SMALL AND MEDIUM for corporate, charter, aerial...appli- HEICOPTERS cations and public safety. Medium/ U.S. and Canada. Exolessedin oercent. Small Medium heavy helicopters are used predomi- Use...safety (police. lire 17.5 4.0 fighting. etc. LTraining 6.0 - Figure 5 GROWTH FORECAST FOR SMALL AND MEDIUM HELICOPTERS For U.S. and Canada. Helicopter

  11. Design and development of an advanced two-stage centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, D.L.; Waterman, W.F.

    1995-04-01

    Small turboshaft engines require high-pressure-ratio, high-efficiency compressors to provide low engine fuel consumption. This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T800-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vaned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact ofmore » sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23% surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.« less

  12. Aerodynamic Performance of a 0.27-Scale Model of an AH-64 Helicopter with Baseline and Alternate Rotor Blade Sets

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1990-01-01

    Performance of a 27 percent scale model rotor designed for the AH-64 helicopter (alternate rotor) was measured in hover and forward flight and compared against and AH-64 baseline rotor model. Thrust, rotor tip Mach number, advance ratio, and ground proximity were varied. In hover, at a nominal thrust coefficient of 0.0064, the power savings was about 6.4 percent for the alternate rotor compared to the baseline. The corresponding thrust increase at this condition was approx. 4.5 percent which represents an equivalent full scale increase in lift capability of about 660 lbs. Comparable results were noted in forward flight except for the high thrust, high speed cases investigated where the baseline rotor was slightly superior. Reduced performance at the higher thrusts and speeds was likely due to Reynolds number effects and blade elasticity differences.

  13. Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  14. Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  15. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  16. Using Discrete Event Simulation To Analyze Personnel Requirements For The Malaysian Armys New Utility Helicopter Fleet

    DTIC Science & Technology

    2016-06-01

    HELICOPTER FLEET Hasnan bin Mohamad Rais Major, Malaysian Army B.S., University Technology of Malaysia , 2000 Submitted in partial...HELICOPTER MAINTENANCE POLICY B. The objective of MAA helicopter maintenance activities is to preserve helicopter safety and mission reliability to

  17. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  18. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  19. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  20. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  1. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  2. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  3. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  4. 77 FR 42954 - Airworthiness Directives; Boeing Vertol (Type Certificate Currently Held by Columbia Helicopters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...)) and Kawasaki Heavy Industries, Limited Helicopters (Kawasaki) AGENCY: Federal Aviation Administration... Columbia Helicopters, Inc.) and Kawasaki Heavy Industries, Limited Helicopters: Amendment 39-17124; Docket... Heavy Industries, Limited Model KV107-II and KV107-IIA helicopters with an upper collective pitch...

  5. 76 FR 10489 - Special Conditions: Bell Helicopter Textron Canada Limited Model 407 Helicopter, Installation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... non-critical control functions, since this model helicopter has been certificated to meet the... Canada Limited (Bell) model 407 helicopter. This model helicopter will have novel or unusual design..., Rotorcraft Directorate, Regulations and Policy Group (ASW-111), 2601 Meacham Blvd., Fort Worth, Texas 76137...

  6. 46 CFR 108.486 - Helicopter decks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  7. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  8. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  9. 14 CFR 36.11 - Acoustical change: Helicopters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...

  10. 14 CFR 36.11 - Acoustical change: Helicopters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...

  11. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  12. 14 CFR 36.11 - Acoustical change: Helicopters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...

  13. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  14. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  15. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  16. 46 CFR 108.486 - Helicopter decks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  17. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  18. 14 CFR 36.11 - Acoustical change: Helicopters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...

  19. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  20. 14 CFR 36.11 - Acoustical change: Helicopters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...

  1. 46 CFR 108.486 - Helicopter decks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  2. 46 CFR 108.486 - Helicopter decks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  3. 46 CFR 108.486 - Helicopter decks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  4. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  5. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  6. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  7. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  8. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  9. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  10. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  11. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...

  12. 75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... there are six U.S. part 27 helicopter manufacturers that produce composite helicopters. MD Helicopters... and is not expected to produce composite heliopters in the future.. 8/10/2009 Part 29 Helicopter... helicopter inspection time for a composite part will be the same as or less than for a metallic part...

  13. X-Wing RSRA - 80 Knot Taxi Test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Rotor Systems Research Aircraft/X-Wing, a vehicle that was used to demonstrate an advanced rotor/fixed wing concept called X-Wing, is shown here during high-speed taxi tests at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, on 4 November 1987. During these tests, the vehicle made three taxi tests at speeds of up to 138 knots. On the third run, the RSRA/X-Wing lifted off the runway to a 25-foot height for about 16 seconds. This liftoff maneuver was pre-planned as an aid to evaluations for first flight. At the controls were NASA pilot G. Warren Hall and Sikorsky pilot W. Faull. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  14. X-Wing Research Vehicle in Hangar

    NASA Technical Reports Server (NTRS)

    1987-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  15. X-Wing Research Vehicle

    NASA Technical Reports Server (NTRS)

    1986-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on 25 September 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  16. Assessing inspection sensitivity as it relates to damage tolerance in composite rotor hubs

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.; Rackow, Kirk

    2001-08-01

    Increasing niche applications, growing international markets, and the emergence of advanced rotorcraft technology are expected to greatly increase the population of helicopters over the next decade. In terms of fuselage fatigue, helicopters show similar trends as fixed-wing aircraft. The highly unsteady loads experienced by rotating wings not only directly affect components in the dynamic systems but are also transferred to the fixed airframe structure. Expanded use of rotorcraft has focused attention on the use of new materials and the optimization of maintenance practices. The FAA's Airworthiness Assurance Center (AANC) at Sandia National Labs has joined with Bell Helicopter andother agencies in the rotorcraft industry to evaluate nondestructive inspection (NDI) capabilities in light of the damage tolerance of assorted rotorcraft structure components. Currently, the program's emphasis is on composite rotor hubs. The rotorcraft industry is constantly evaluating new types of lightweight composite materials that not only enhance the safety and reliability of rotor components but also improve performance and extended operating life as well. Composite rotor hubs have led to the use of bearingless rotor systems that are less complex and require less maintenance than their predecessors. The test facility described in this paper allows the structural stability and damage tolerance of composite hubs to be evaluated using realistic flight load spectrums of centrifugal force and bending loads. NDI was integrated into the life-cycle fatigue tests in order to evaluate flaw detection sensitivity simultaneously wiht residual strength and general rotor hub peformance. This paper will describe the evolving use of damage tolerance analysis (DTA) to direct and improve rotorcraft maintenance along with the related use of nondestructive inspections to manage helicopter safety. OVeralll, the data from this project will provide information to improve the producibility, inspectability, serviceability, and cost effectively of rotorcraft components.

  17. Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface

    NASA Astrophysics Data System (ADS)

    Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.

    2017-06-01

    Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.

  18. Acute Treatment of Migraine

    PubMed Central

    ÖZTÜRK, Vesile

    2013-01-01

    Migraine is one of the most frequent disabling neurological conditions with a major impact on the patient’s quality of life. Migraine has been described as a chronic disorder that characterized with attacks. Attacks are characterized by moderate–severe, often unilateral, pulsating headache attacks, typically lasting 4 to 72 hours. Migraine remains underdiagnosed and undertreated despite advances in the understanding of its pathophysiology. This article reviews management of migraine acute pharmacological treatment. Currently, for the acute treatment of migraine attacks, non-steroidal anti-inflammatory drugs (NSAIDs) and triptans (serotonin 5HT1B/1D receptor agonists) are recommended. Before intake of NSAID and triptans, metoclopramide or domperidone is useful. In very severe attacks, subcutaneous sumatriptan is first choice. The patient should be treated early in the attack, use an adequate dose and formulation of a medication. Ideally, acute therapy should be restricted to no more than 2 to 3 days per week to avoid medication overuse. PMID:28360580

  19. An evaluation of helicopter noise and vibration ride qualities criteria

    NASA Technical Reports Server (NTRS)

    Hammond, C. E.; Hollenbaugh, D. D.; Clevenson, S. A.; Leatherwood, J. D.

    1981-01-01

    Two methods of quantifying helicopter ride quality; absorbed power for vibration only and the NASA ride comfort model for both noise and vibration are discussed. Noise and vibration measurements were obtained on five operational US Army helicopters. The data were converted to both absorbed power and DISC's (discomfort units used in the NASA model) for specific helicopter flight conditions. Both models indicate considerable variation in ride quality between the five helicopters and between flight conditions within each helicopter.

  20. Hybrid Intrusion Forecasting Framework for Early Warning System

    NASA Astrophysics Data System (ADS)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  1. Helicopter discrimination apparatus for the murine radar

    DOEpatents

    Webb, Jr., John G.; Gray, Roger M.

    1977-01-01

    A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.

  2. Small helicopter could find niche in remote heavy lift operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-21

    A new helicopter specifically designed for external vertical lift operations, such as moving transportable rig components or seismic equipment in remote locations, operates more efficiently than most other medium or heavy-lift helicopters, according to manufacturer Kaman Aerospace. The single-pilot helicopter was designed as an aerial truck for efficient lifting of heavy loads but with the operating costs of a light-lift craft. The K-Max helicopter can lift more pounds of cargo per gallon of fuel consumed than other similar helicopters, according to Kaman. For example, to transport a 5,000-lb load at an elevation of 8,000 ft, the K-Max helicopter consumes 85more » gal of fuel/hr. Under the same load conditions, the next most efficient commercially available helicopter consumes 160 gal of fuel/hr and requires two pilots. The 4,500-lb helicopter can lift 5,000 lb to an altitude of 8,000 ft or about 6,000 lb at low altitudes.« less

  3. 75 FR 62639 - Air Ambulance and Commercial Helicopter Operations, Part 91 Helicopter Operations, and Part 135...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...This proposed rule addresses air ambulance and commercial helicopter operations, part 91 helicopter operations, and load manifest requirements for all part 135 aircraft. From 2002 to 2008, there has been an increase in fatal helicopter air ambulance accidents. To address these safety concerns, the FAA is proposing to implement operational procedures and require additional equipment on board helicopter air ambulances. Many of these proposed requirements currently are found in agency guidance publications and would address National Transportation Safety Board (NTSB) safety recommendations. Some of these safety concerns are not unique to the helicopter air ambulance industry and affect all commercial helicopter operations. Accordingly, the FAA also is proposing to amend regulations pertaining to all commercial helicopter operations conducted under part 135 to include equipment requirements, pilot training, and alternate airport weather minima. The changes are intended to provide certificate holders and pilots with additional tools and procedures that will aid in preventing accidents.

  4. Airworthiness and Flight Characteristics Test (A&FC) of the CH-47D helicopter

    DTIC Science & Technology

    1984-02-01

    Development Specification which were evaluated during this test. The Advanced Flight Control System heading select capability and the pressure refueling...determine compliance with the CH-47D Prime Item Development Specification (PIDS). 2. This Directorate agrees with the report conclusions and...Evaluations (PAE) (refs 1 and 2. app A), climatic laboratory tests (ref 3), and icing tests (ref 4). The US Army Aviation Research and Development

  5. ARC-2009-ACD09-0150-003

    NASA Image and Video Library

    2009-07-22

    Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation. The company is based at the NASA Research Park (NRP) Moffett Field, California as a lease holder.

  6. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  7. Anthrax vaccines: present status and future prospects.

    PubMed

    Kaur, Manpreet; Singh, Samer; Bhatnagar, Rakesh

    2013-08-01

    The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.

  8. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    NASA Astrophysics Data System (ADS)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)

  9. Noise characteristics of eight helicopters

    DOT National Transportation Integrated Search

    1977-07-01

    This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulat...

  10. Should Colleges Be Sued for Harboring Intolerance?

    ERIC Educational Resources Information Center

    Sanders, Steve

    2008-01-01

    Gregory A. Love, then a student at Morehouse College, in Atlanta, was beaten in 2002 with a baseball bat by a fellow student in a dormitory shower after Love made what his attacker perceived as a homosexual advance. The attacker was later convicted of aggravated assault and battery. Love sued Morehouse, arguing that the institution was liable for…

  11. Short revolving wings enable hovering animals to avoid stall and reduce drag

    NASA Astrophysics Data System (ADS)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  12. Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.

    1990-01-01

    The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.

  13. Characterizing Strokes and Stroke Mimics Transported by Helicopter Emergency Medical Services.

    PubMed

    Sequeira, Denisse; Martin-Gill, Christian; Kesinger, Matthew R; Thompson, Laura R; Jovin, Tudor G; Massaro, Lori M; Guyette, Francis X

    2016-01-01

    Stroke is the leading cause of disability in the United States with most of these patients being transported by emergency medical services. These providers are the first medical point of contact and must be able to rapidly and accurately identify stroke and transport these patients to the appropriate facilities for treatment. There are many conditions that have similar presentations to stroke and can be mistakenly identified as potential strokes, thereby affecting the initial prehospital triage. A retrospective observational study examined patients with suspected strokes transported to a single comprehensive stroke center (CSC) by a helicopter emergency medical service (HEMS) agency from 2007 through 2013. Final diagnosis was extracted from the Get with the Guidelines (GWTG) database and hospital discharge diagnosis for those not included in the database. Frequencies of discharge diagnosis were calculated and then stratified into interfacility vs. scene transfers. In this study 6,243 patients were transported: 3,376 patients were screened as potential strokes, of which 2,527 had a final diagnosis of stroke (2,242 ischemic stroke and 285 transient ischemic attack), 166 had intracranial hemorrhage, and 655 were stroke mimics. Stroke mimics were more common among scene transfers (223, 32%) than among interfacility transfers (432, 16%). In our study approximately 20% of potential stroke patients transported via HEMS were mimics. Identifying the need for CSC resources can be an important factor in creating a prehospital triage tool to facilitate patient transport to an appropriate health care facility.

  14. Dynamic stability of a helicopter with hinged rotor blades

    NASA Technical Reports Server (NTRS)

    Hohenemser, K

    1939-01-01

    The present report is a study of the dynamic stability of a helicopter with hinged rotor blades under hovering conditions. While in this case perfect stability can in general not be obtained it is possible by means of design features to prolong the period of the spontaneous oscillations of the helicopter and reduce their amplification, and so approximately assure neutral equilibrium. The possibility of controlled stability of a helicopter fitted with hinged blades is proved by the successful flights of various helicopters, particularly of the Focker FW61 helicopter.

  15. The non-trusty clown attack on model-based speaker recognition systems

    NASA Astrophysics Data System (ADS)

    Farrokh Baroughi, Alireza; Craver, Scott

    2015-03-01

    Biometric detectors for speaker identification commonly employ a statistical model for a subject's voice, such as a Gaussian Mixture Model, that combines multiple means to improve detector performance. This allows a malicious insider to amend or append a component of a subject's statistical model so that a detector behaves normally except under a carefully engineered circumstance. This allows an attacker to force a misclassification of his or her voice only when desired, by smuggling data into a database far in advance of an attack. Note that the attack is possible if attacker has access to database even for a limited time to modify victim's model. We exhibit such an attack on a speaker identification, in which an attacker can force a misclassification by speaking in an unusual voice, and replacing the least weighted component of victim's model by the most weighted competent of the unusual voice of the attacker's model. The reason attacker make his or her voice unusual during the attack is because his or her normal voice model can be in database, and by attacking with unusual voice, the attacker has the option to be recognized as himself or herself when talking normally or as the victim when talking in the unusual manner. By attaching an appropriately weighted vector to a victim's model, we can impersonate all users in our simulations, while avoiding unwanted false rejections.

  16. Helicopter noise analysis : round-robin test

    DOT National Transportation Integrated Search

    1981-08-01

    This report documents the results of an international round robin test on the analysis of helicopter noise. Digital spectral noise data of a 3.5-second simulated helicopter flyover and identical analog test tapes containing helicopter noise data, ref...

  17. A NASA helicopter returns to PAFB after being painted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At S.R. 3 a NASA helicopter returns to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.

  18. A NASA helicopter lifts off from KSC after being painted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At S.R. 3 a NASA helicopter lifts off to return to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.

  19. A NASA helicopter arrives at KSC for painting

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pilot of the NASA helicopter secures the rotary blade before the helicopter's transfer to Ransom Road at KSC. It is one of four UH-1H helicopters that will have its blades painted, changing the black to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.

  20. A comparative study and application of continuously variable transmission to a single main rotor heavy lift helicopter

    NASA Astrophysics Data System (ADS)

    Hameer, Sameer

    Rotorcraft transmission design is limited by empirical weight trends that are proportional to the power/torque raised to the two-thirds coupled with the relative inexperience industry has with the employment of variable speed transmission to heavy lift helicopters of the order of 100,000 lbs gross weight and 30,000 installed horsepower. The advanced rotorcraft transmission program objectives are to reduce transmission weight by at least 25%, reduce sound pressure levels by at least 10 dB, have a 5000 hr mean time between removal, and also incorporate the use of split torque technology in rotorcraft drivetrains of the future. The major obstacle that challenges rotorcraft drivetrain design is the selection, design, and optimization of a variable speed transmission in the goal of achieving a 50% reduction in rotor speed and its ability to handle high torque with light weight gears, as opposed to using a two-speed transmission which has inherent structural problems and is highly unreliable due to the embodiment of the traction type transmission, complex clutch and brake system. This thesis selects a nontraction pericyclic continuously variable transmission (P-CVT) as the best approach for a single main rotor heavy lift helicopter. The objective is to target and overcome the above mentioned obstacle for drivetrain design. Overcoming this obstacle provides advancement in the state of the art of drivetrain design over existing planetary and split torque transmissions currently used in helicopters. The goal of the optimization process was to decrease weight, decrease noise, increase efficiency, and increase safety and reliability. The objective function utilized the minimization of the weight and the major constraint is the tooth bending stress of the facegears. The most important parameters of the optimization process are weight, maintainability, and reliability which are cross-functionally related to each other, and these parameters are related to the torques and operating speeds. The analysis of the split torque type P-CVT achieved a weight reduction of 42.5% and 40.7% over planetary and split torque transmissions respectively. In addition, a 19.5 dB sound pressure level reduction was achieved using active gear struts, and also the use of fabricated steel truss like housing provided a higher maintainability and reliability, low cost, and low weight over cast magnesium housing currently employed in helicopters. The static finite element analysis of the split torque type P-CVT, both 2-D and 3-D, yielded stresses below the allowable bending stress of the material. The goal of the finite element analysis is to see if the designed product has met its functional requirements. The safety assessment of the split torque type P-CVT yielded a 99% probability of mission success based on a Monte Carlo simulation using stochastic-petri net analysis and a failure hazard analysis. This was followed by an FTA/RBD analysis which yielded an overall system failure rate of 140.35 failures per million hours, and a preliminary certification and time line of certification was performed. The use of spherical facegears and pericyclic kinematics has advanced the state of the art in drivetrain design primarily in the reduction of weight and noise coupled with high safety, reliability, and efficiency.

  1. Analysis and correlation with theory of rotor lift-limit test data

    NASA Technical Reports Server (NTRS)

    Sheffler, M.

    1979-01-01

    A wind tunnel test program to define the cruise performance and determine any limitations to lift and propulsive force of a conventional helicopter rotor is described. A 2.96 foot radius model rotor was used. The maximum lift and propulsive force obtainable from an articulated rotor for advance ratios of 0.4 to 0.67, and the blade load growth as the lift approaches the limit are determined. Cruise rotor performance for advance ratios of 0.4 to 0.67 and the sensitivity of the rotor forces and moments to rotor control inputs as the lift limit is approached are established.

  2. Results of NASA/Army transmission research

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Townsend, Dennis P.; Coe, Harold H.

    1988-01-01

    Since 1970 the NASA Lewis Research Center and the U.S. Army Aviation Systems Command have shared an interest in advancing the technology for helicopter propulsion systems. In particular, that portion of the program that applies to the drive train and its various mechanical components are outlined. The major goals of the program were (and continue to be) to increase the life, reliability, and maintainability, reduce the weight, noise, and vibration, and maintain the relatively high mechanical efficiency of the gear train. Major historical milestones are reviewed, significant advances in technology for bearings, gears, and transmissions are discussed, and the outlook for the future is presented. The reference list is comprehensive.

  3. New opportunities for future small civil turbine engines: Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    An overview of four independent studies forecasts the potential impact of advanced technology turbine engines in the post 1988 market, identifies important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude are predicted to challenge the reciprocating engine in the 300-500 SHP class.

  4. 78 FR 47531 - Airworthiness Directives; Various Restricted Category Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Technology, Inc.; Hagglund Helicopters, LLC (previously Western International Aviation, Inc.); International.... This AD requires creating a component history card or equivalent record for each main rotor grip (grip....); California Department of Forestry; Garlick Helicopters, Inc.; Global Helicopter Technology, Inc.; Hagglund...

  5. The effect of a helicopter on DC fields and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, E.L.; Rindall, B.D.; Tarko, N.J.

    1993-10-01

    When a plan was initiated to utilize a helicopter to perform work on an energized, high voltage dc transmission line by bonding the helicopter to the conductor, it was necessary to determine what effect, if any, the helicopter would have on the dc fields and ions. In addition, it was necessary to determine the possible effect on helicopter instrumentation and communications. A test site and research facility at Lundar, Manitoba, Canada, provided the ideal location for making these tests. As a result, the information obtained determined that a helicopter-airborne platform could safely be used to perform the work.

  6. Optimization process in helicopter design

    NASA Technical Reports Server (NTRS)

    Logan, A. H.; Banerjee, D.

    1984-01-01

    In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.

  7. Operation Heli-STAR - Atlanta Communications Experiment (ACE). Volume 9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Operation Heli-STAR (Helicopter Short-Haul Transportation and Aviation Research) was established and operated in Atlanta, Georgia, during the period of the 1996 Centennial Olympic Games. Heli-STAR had three major thrusts: (1) the establishment and operation of a helicopter-based cargo transportation system, (2) the management of low-altitude air traffic in the airspace of an urban area, and (3) the collection and analysis of research and development data associated with items 1 and 2. Heli-STAR was a cooperative industry/government program that included parcel package shippers and couriers in the Atlanta area, the helicopter industry, aviation electronics manufacturers, the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA), and support contractors. Several detailed reports have been produced as a result of Operation Heli-STAR. These include four reports on acoustic measurements and associated analyses, and reports on the Heli-STAR tracking data including the data processing and retrieval system, the Heli-STAR cargo simulation, and the community response system. In addition, NASA's Advanced General Aviation Transport Experiments (AGATE) program has produced a report describing the Atlanta Communications Experiment (ACE) which produced the avionics and ground equipment using automatic dependent surveillance-broadcast (ADS-B) technology. This latter report is restricted to organizations belonging to NASA's AGATE industry consortium. A complete list of these reports is shown on the following page.

  8. Measures for simulator evaluation of a helicopter obstacle avoidance system

    NASA Technical Reports Server (NTRS)

    Demaio, Joe; Sharkey, Thomas J.; Kennedy, David; Hughes, Micheal; Meade, Perry

    1993-01-01

    The U.S. Army Aeroflightdynamics Directorate (AFDD) has developed a high-fidelity, full-mission simulation facility for the demonstration and evaluation of advanced helicopter mission equipment. The Crew Station Research and Development Facility (CSRDF) provides the capability to conduct one- or two-crew full-mission simulations in a state-of-the-art helicopter simulator. The CSRDF provides a realistic, full field-of-regard visual environment with simulation of state-of-the-art weapons, sensors, and flight control systems. We are using the CSRDF to evaluate the ability of an obstacle avoidance system (OASYS) to support low altitude flight in cluttered terrain using night vision goggles (NVG). The OASYS uses a laser radar to locate obstacles to safe flight in the aircraft's flight path. A major concern is the detection of wires, which can be difficult to see with NVG, but other obstacles--such as trees, poles or the ground--are also a concern. The OASYS symbology is presented to the pilot on a head-up display mounted on the NVG (NVG-HUD). The NVG-HUD presents head-stabilized symbology to the pilot while allowing him to view the image intensified, out-the-window scene through the HUD. Since interference with viewing through the display is a major concern, OASYS symbology must be designed to present usable obstacle clearance information with a minimum of clutter.

  9. NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  10. NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.

  11. NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  12. NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  13. NDARC NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne R.

    2009-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  14. NDARC - NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2015-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  15. NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  16. Recent advances in management and treatment of hereditary angioedema.

    PubMed

    Sardana, Niti; Craig, Timothy J

    2011-12-01

    Hereditary angioedema (HAE) is a rare autosomal-dominant disease characterized by recurrent self-limiting episodes of skin and mucosal edema. Morbidity and mortality are significant, and new and pending therapies are now available to reduce the risk associated with the disease. To update the reader on new advances in HAE to improve patient care. We performed a literature search of Ovid, PubMed, and Google to develop this review. Articles that are necessary for the understanding and use of the new therapeutic options for HAE were chosen, and studies of high quality were used to support the use of therapies, and in most cases, results from phase III studies were used. Until recently, therapy for HAE attacks in the United States consisted of symptom relief with narcotics, hydration, and fresh-frozen plasma, which contains active C1 inhibitor. Therapy to prevent HAE attacks has been confined to androgens and, occasionally, antifibrinolytic agents; however, both drug groups have significant adverse effects. The approval of C1-inhibitor concentrate for prevention and acute therapy has improved efficacy and safety. Ecallantide has also been approved for therapy of attacks, and icatibant is expected to be approved in the next few months for attacks. Recombinant C1 inhibitor is presently in phase III studies and should be available for attacks in the near future. In this article we review the changing therapeutic options available for patients in 2011 and beyond.

  17. 77 FR 54796 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... France Model AS350 helicopters. This AD requires installing protection sleeves over certain forward... helicopters have been approved by the aviation authority of France and are approved for operation in the...

  18. 77 FR 44118 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Eurocopter France (Eurocopter) Model EC155B1 helicopters with a certain... Determination These helicopters have been approved by the aviation authority of France and are approved for...

  19. 77 FR 5994 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for all Eurocopter France EC130B4 helicopters that have not had Eurocopter... actions. FAA's Determination These helicopters have been approved by the aviation authority of France and...

  20. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    PubMed Central

    Oktay, Tugrul; Sal, Firat

    2015-01-01

    Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841

  1. A NASA helicopter is prepared for return to PAFB after being painted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At S.R. 3 a pilot prepares a NASA helicopter for a return flight to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.

  2. Optimal landing of a helicopter in autorotation

    NASA Technical Reports Server (NTRS)

    Lee, A. Y. N.

    1985-01-01

    Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.

  3. Advanced Integrated Multi-Sensor Surveillance (AIMS): Mission, Function, Task Analysis

    DTIC Science & Technology

    2007-06-01

    hydraulic boosters. Trim tabs are provided for the ailerons, elevators, and rudder surfaces. The wing flap is a high lift flowler type, and the flap...crew is able to observe and record a vessel dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been...features which may impact hoisting requirements, as well as closest hospital facilities with helicopter access (North Battleford, SK). NAVCOM also

  4. Dynamic Stall on Advanced Airfoil Sections,

    DTIC Science & Technology

    1980-05-01

    that travel downstream from the regime, where the boundary-layer charac- leading-edge region; throughout the teristics differ the most. Before compar...largest chord lengths of travel . As we shall see value of CL, , but it also has very large in later sections, the onset of super- negative pitc-iing...or chordlengths of travel , and the or deep dynamic stall characteristics of curves are phased so that the angles of any of the helicopter sections. The

  5. Time-and-Spatially Adapting Simulations for Efficient Dynamic Stall Predictions

    DTIC Science & Technology

    2015-09-01

    Experi- mental Investigation and Fundamental Understand- ing of a Full-Scale Slowed Rotor at High Advance Ratios,” Journal of the American Helicopter ...remains a major roadblock in the design and analysis of conventional rotors as well as new concepts for future vertical lift. Several approaches to...of conventional rotors as well as new concepts for future vertical lift. Several approaches to reduce the cost of these dynamic stall simulations for

  6. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  7. Maryland's Helicopter Emergency Medical Services Experience From 2001 to 2011: System Improvements and Patients' Outcomes.

    PubMed

    Hirshon, Jon Mark; Galvagno, Samuel M; Comer, Angela; Millin, Michael G; Floccare, Douglas J; Alcorta, Richard L; Lawner, Benjamin J; Margolis, Asa M; Nable, Jose V; Bass, Robert R

    2016-03-01

    Helicopter emergency medical services (EMS) has become a well-established component of modern trauma systems. It is an expensive, limited resource with potential safety concerns. Helicopter EMS activation criteria intended to increase efficiency and reduce inappropriate use remain elusive and difficult to measure. This study evaluates the effect of statewide field trauma triage changes on helicopter EMS use and patient outcomes. Data were extracted from the helicopter EMS computer-aided dispatch database for in-state scene flights and from the state Trauma Registry for all trauma patients directly admitted from the scene or transferred to trauma centers from July 1, 2000, to June 30, 2011. Computer-aided dispatch flights were analyzed for periods corresponding to field triage protocol modifications intended to improve system efficiency. Outcomes were separately analyzed for trauma registry patients by mode of transport. The helicopter EMS computer-aided dispatch data set included 44,073 transports. There was a statewide decrease in helicopter EMS usage for trauma patients of 55.9%, differentially affecting counties closer to trauma centers. The Trauma Registry data set included 182,809 patients (37,407 helicopter transports, 128,129 ambulance transports, and 17,273 transfers). There was an increase of 21% in overall annual EMS scene trauma patients transported; ground transports increased by 33%, whereas helicopter EMS transports decreased by 49%. Helicopter EMS patient acuity increased, with an attendant increase in patient mortality. However, when standardized with W statistics, both helicopter EMS- and ground-transported trauma patients showed sustained improvement in mortality. Modifications to state protocols were associated with decreased helicopter EMS use and overall improved trauma patient outcomes. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  8. The making of helicopters: its strategic implications for EMS helicopter operations.

    PubMed

    Thomas, F

    1998-01-01

    The purpose of this article is to provide EMS helicopter personnel with an understanding of the civil helicopter manufacturing industry. Specifically, this article examines the current helicopter marketplace and how various manufactures are responding to the recent decline in new helicopter sales. This article further describes how helicopters are designed and manufactured and how global markets, international competition, and strategic considerations are influencing future helicopter design and production. Data for this paper were obtained from a literature search through the ABI-inform Telnet Services offered through the University of Utah Marriott Library. On a search of "helicopter" during the past 5 years, 566 abstracts were identified, all of which were reviewed for information related to the purpose of this article. Forty-seven articles were identified and read in detail for information that may have related to the purpose of this article. In addition, a library search to identify textbooks that describe helicopter production systems was undertaken but did not identify any written resources. Because of the lack of written resources available in writing this article, a direct interview survey of leading helicopter manufactures, associations, and industry writers was conducted. Only information that was considered "public knowledge" was available because of concerns by the various manufactures that publication of confidential information could be detrimental to their competitive advantage. Because helicopter-manufacturing plants were not located within easy travel range, no direct observation of the production facilities could be undertaken. Furthermore, information regarding production and operational management was not easily accessible because the data were not published or were considered confidential. Therefore industry analysis had to take place through direct survey interviewing technique and data obtained through an analysis of the available published data.

  9. A review of US Army aircrew-aircraft integration research programs

    NASA Technical Reports Server (NTRS)

    Key, D. C.; Aiken, E. W.

    1984-01-01

    If the U.S. Army's desire to develop a one crew version of the Light Helicopter Family (LHX) helicopter is to be realized, both flightpath management and mission management will have to be performed by one crew. Flightpath management, the helicopter pilot, and the handling qualities of the helicopter were discussed. In addition, mission management, the helicopter pilot, and pilot control/display interface were considered. Aircrew-aircraft integration plans and programs were reviewed.

  10. Bell Helicopter Advanced Rotocraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Henry, Zachary S.

    1995-01-01

    Future rotorcraft transmissions require key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight to power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for the future rotorcraft transmission when compared with a current state-of-the-art transmission (SOAT) are: (1) a 25 percent weight reduction; (2) a 10 dB reduction in the transmitted noise level; and (3) a system reliability of 5000 hours mean-time-between-removal (MTBR) for the transmission. This report summarizes the work conducted by Bell Helicopter Textron, Inc. to achieve these goals under the Advanced Rotorcraft Transmission (ART) program from 1988 to 1995. The reference aircraft selected by BHTI for the ART program was the Tactical Tiltrotor which is a 17,000 lb gross weight aircraft. A tradeoff study was conducted comparing the ART with a Selected SOAT. The results showed the ART to be 29 percent lighter and up to 13 dB quieter with a calculated MTBR in excess of 5000 hours. The results of the following high risk component and material tests are also presented: (1) sequential meshing high contact ratio planetary with cantilevered support posts; (2) thin dense chrome plated M50 NiL double row spherical roller planetary bearings; (3) reduced kinematic error and increased bending strength spiral bevel gears; (4) high temperature WE43 magnesium housing evaluation and coupon corrosion tests; (5) flexure fatigue tests of precision forged coupons simulating precision forged gear teeth; and (6) flexure fatigue tests of plasma carburized coupons simulating plasma carburized gear teeth.

  11. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  12. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  13. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  14. 29 CFR 1910.183 - Helicopters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...

  15. 29 CFR 1910.183 - Helicopters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...

  16. 29 CFR 1910.183 - Helicopters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...

  17. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  18. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  19. 78 FR 15277 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... AD are intended to prevent an uncommanded landing gear retraction that would cause the helicopter... requirements were intended to prevent an uncommanded landing gear retraction that would cause the helicopter... have caused untimely retraction of the main landing gear, causing helicopters to sink, resulting in...

  20. General equilibrium characteristics of a dual-lift helicopter system

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Kanning, G.

    1986-01-01

    The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

Top