Science.gov

Sample records for advanced avalanche photodiode

  1. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  2. Advanced active quenching circuits for single-photon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  3. Avalanche speed in thin avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  4. Avalanche characteristics of single heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Low, L. C.; You, A. H.; Andy, L. L. Y.; Tan, S. L.

    2009-03-01

    A simple Monte Carlo (MC) model is proposed to study the avalanche characteristics of heterojunction avalanche photodiode (HAPD). This model is capable to simulate the avalanche multiplication and excess noise factor in HAPDs by including the dead-space effect, hole to electron ionization ratio and heterointerface probability. The dead-space effect showed a vital role in reducing noise in single junction HAPDs based on the statistical determination in our model. It is shown that the dead-space effect reduces the avalanche noise in heterojunction device due to the localized ionization events. We found that the dead-space effect and the number of hole feedback impact ionizations are still the dominant effects to improve the excess noise factor especially in the injection layer of the device. In addition, the probability of electron and hole to cross the heterointerface will eliminate the secondary impact ionizations in the device.

  5. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  6. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  7. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1984-01-01

    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  8. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  9. Effect of avalanche build-up time on avalanche photodiode sensitivity

    SciTech Connect

    Ando, H.; Kanbe, H.

    1985-03-01

    A calculation method for the receiver sensitivity of an avalanche photodiode is considered, taking into account avalanche build-up time and carrier transit time, in addition to the CR time constant. Actual receiver performance is estimated in a high data rate region of up to 10 Gbits/s for germanium avalanche photodiodes, applying the measured avalanche build-up time.

  10. Type-II Superlattice Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Huang, Jun

    Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most

  11. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    SciTech Connect

    Suzuki, Shingo; Namekata, Naoto Inoue, Shuichiro; Tsujino, Kenji

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  12. Photon detection with cooled avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  13. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  14. Cooled avalanche photodiode used for photon detection

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  15. A cooled avalanche photodiode with high photon detection probability

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  16. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    NASA Technical Reports Server (NTRS)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  17. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  18. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  19. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  20. Silicon avalanche photodiodes developed at the Institute of Electron Technology

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz

    2004-07-01

    Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.

  1. 3D avalanche multiplication in Si-Ge lateral avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Jamil, Erum; Hayat, Majeed M.; Davids, Paul S.; Camacho, Ryan M.

    2016-05-01

    Si-Ge lateral avalanche photodiodes (Si-Ge LAPDs) are promising devices for single photon detection, but they also have technology challenges. Si-Ge LAPDs are CMOS compatible and capable of detecting photons near the 1550 nm telecommunications bands. However, the Si-Ge LAPD exhibits a unique avalanche multiplication process in silicon, where the electrons and holes follow curved paths in three-dimensional space. Traditional models for the analysis of the avalanche multiplication process assume one-dimensional paths for the carriers that undergo the chains of impact ionizations; therefore, they are not suitable for analyzing the avalanche properties of Si-Ge LAPDs. In this paper, the statistics of the avalanche process in the Si-Ge LAPD are modeled analytically using a method that was recently developed by our group for understanding the avalanche multiplication in nanopillar, core-shell GaAs avalanche photodiodes, for which the electric field is non-uniform in magnitude and direction. Specifically, the calculated mean avalanche gain and the excess noise are presented for the Si-Ge LAPD device. It is also shown that the avalanche characteristics depend upon the specific avalanche path taken by the carrier, which depends, in turn, on the lateral location where each photon is absorbed in the Ge absorber. This property can be exploited to achieve reduced excess noise as well as wavelength-sensitive single-photon detection.

  2. Modeling of avalanche multiplication and noise in heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Groves, C.; David, J. P. R.; Rees, G. J.; Ong, D. S.

    2004-06-01

    A simple Monte Carlo model is used to simulate the avalanche process in a multiplication region which incorporates a heterojunction, intended to introduce localization into the ionization process and reduce excess avalanche noise. The results are compared with those of models where the ionization path length distribution is represented by an exponential decay, displaced from the origin by a ballistic dead space. While the latter results depend sensitively on the arbitrary choice of scheme used to evaluate the model parameters, they agree remarkably well with Monte Carlo, considering the simplicity of the model.

  3. Gain-Bandwidth Product Optimization of Heterostructure Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Kwon, Oh-Hyun; Hayat, Majeed M.; Campbell, Joe C.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2005-05-01

    A generalized history-dependent recurrence theory for the time-response analysis is derived for avalanche photodiodes with multilayer, heterojunction multiplication regions. The heterojunction multiplication region considered consists of two layers: a high-bandgap Al_0.6 Ga_0.4 As energy-buildup layer, which serves to heat up the primary electrons, and a GaAs layer, which serves as the primary avalanching layer. The model is used to optimize the gain-bandwidth product (GBP) by appropriate selection of the width of the energy-buildup layer for a given width of the avalanching layer. The enhanced GBP is a direct consequence of the heating of primary electrons in the energy-buildup layer, which results in a reduced first dead space for the carriers that are injected into the avalanche-active GaAs layer. This effect is akin to the initial-energy effect previously shown to enhance the excess-noise factor characteristics in thin avalanche photodiodes (APDs). Calculations show that the GBP optimization is insensitive to the operational gain and the optimized APD also minimizes the excess-noise factor.

  4. Receiver characteristics of laser altimeters with avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  5. Geiger-mode avalanche photodiodes, history, properties and problems

    NASA Astrophysics Data System (ADS)

    Renker, D.

    2006-11-01

    Geiger-mode avalanche photodiodes (G-APDs) have been developed during recent years and promise to be an alternative to photomultiplier tubes. They have many advantages like single photon response, high detection efficiency, high gain at low bias voltage and very good timing properties but some of their properties, the dark count rate for example, can be a problem. Several types of G-APDs are on the market and should be selected carefully for a given application.

  6. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  7. Design, fabrication, and characterization of InSb avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Abautret, J.; Evirgen, A.; Perez, J. P.; Christol, P.; Rouvié, A.; Cluzel, R.; Cordat, A.; Rothman, J.

    2013-12-01

    In this communication, the potentiality of InSb material as an avalanche photodiode (APD) device is investigated. Current density-voltage (J-V) characteristics at 77K of InSb pin photodiodes were simulated by using ATLAS software from SILVACO, in dark conditions and under illumination. In order to validate parameter values used for the modeling, theoretical J-V results were compared with experimental measurements performed on InSb diodes fabricated by molecular beam epitaxy. Next, assuming a multiplication process only induced by the electrons (e-APD), different designs of separate absorption and multiplication (SAM) APD structure were theoretically investigated and the first InSb SAM APD structure with 1μm thick multiplication layer was then fabricated and characterized.

  8. Characterization of midwave infrared InSb avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Abautret, J.; Perez, J. P.; Evirgen, A.; Rothman, J.; Cordat, A.; Christol, P.

    2015-06-01

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(-50 mV) = 32 nA/cm2 at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at -4 V at 77 K. The Okuto-Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  9. A 1.06 micrometer avalanche photodiode receiver

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  10. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  11. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  12. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  13. Correcting for accidental correlations in saturated avalanche photodiodes.

    PubMed

    Grieve, J A; Chandrasekara, R; Tang, Z; Cheng, C; Ling, A

    2016-02-22

    In this paper we present a general method for estimating rates of accidental coincidence between a pair of single photon detectors operated within their saturation regimes. By folding the effects of recovery time of both detectors and the detection circuit into an "effective duty cycle" we are able to accomodate complex recovery behaviour at high event rates. As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated with detector saturation. We show that by post-processing using the updated model, we observe an improvement in polarization correlation visibility from 88.7% to 96.9% in our experimental dataset. This technique will be useful in improving the signal-to-noise ratio in applications which depend on coincidence measurements, especially in situations where rapid changes in flux may cause detector saturation. PMID:26907016

  14. Avalanche photodiode based time-of-flight mass spectrometry

    SciTech Connect

    Ogasawara, Keiichi Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  15. Design and characterization of avalanche photodiodes in submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Pancheri, L.; Bendib, T.; Dalla Betta, G.-F.; Stoppa, D.

    2014-03-01

    The fabrication of Avalanche Photodiodes (APDs) in CMOS processes can be exploited in several application domains, including telecommunications, time-resolved optical detection and scintillation detection. CMOS integration allows the realization of systems with a high degree of parallelization which are competitive with hybrid solutions in terms of cost and complexity. In this work, we present a linear-mode APD fabricated in a 0.15μm process, and report its gain and noise characterization. The experimental observations can be accurately predicted using Hayat dead-space noise model. Device simulations based on dead-space model are then used to discuss the current status and the perspectives for the integration of high-performance low-noise devices in standard CMOS processes.

  16. Systematic afterpulsing-estimation algorithms for gated avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Wiechers, Carlos; Ramírez-Alarcón, Roberto; Muñiz-Sánchez, Oscar R.; Yépiz, Pablo Daniel; Arredondo-Santos, Alejandro; Hirsch, Jorge G.; U'Ren, Alfred B.

    2016-09-01

    We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts which actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms which we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms which we propose here can complement technologies designed for the reduction of afterpulsing.

  17. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  18. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  19. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Musienko, Y.; Renker, D.

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1×1 mm 2. The properties of this device have been measured and will be reported.

  20. Studies of avalanche photodiodes for scintillating fibre tracking readout

    SciTech Connect

    Fenker, H; Thomas, J

    1993-01-01

    Avalanche Photodiodes (APDs) operating in ``Geiger Mode`` have been studied in a fibre tracking readout environment. A fast recharge circuit has been developed for high rate data taking, and results obtained from a model fibre tracker in the test beam at Brookhaven National Laboratory are presented. A high rate calibrated light source has been developed using a commercially available laser diode and has been used to measure the efficiency of the devices. The transmission of the light from a 1mm fibre onto a 0.5mm diameter APD surface has been identified as the main problem in the use of these particular devices for scintillating fibre tracking in the Superconducting Supercollider environment. Solutions to this problem are proposed.

  1. Systematic afterpulsing-estimation algorithms for gated avalanche photodiodes.

    PubMed

    Wiechers, Carlos; Ramírez-Alarcón, Roberto; Muñiz-Sánchez, Oscar R; Yépiz, Pablo Daniel; Arredondo-Santos, Alejandro; Hirsch, Jorge G; U'Ren, Alfred B

    2016-09-10

    We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts that actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead-time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms that we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms that we propose here can complement technologies designed for the reduction of afterpulsing. PMID:27661361

  2. Geiger-mode Avalanche Photodiodes for High Time Resolution Astrophysics

    NASA Astrophysics Data System (ADS)

    Phelan, Don; Morrison, Alan P.

    Geiger-mode Avalanche Photodiodes (GM-APDs) are establishing themselves as potential candidates for the broad temporal range covered in high time resolution astrophysics (HTRA). These detectors have already been employed in astronomical instrumentation and significant results have been obtained to date. Their high time resolution and quantum efficiency make these single photon event counting detectors ideal for observations of stochastic phenomena, and ultimately for extreme HTRA observations. In this chapter, we review the technology and to illustrate their potential we briefly touch on specific science goals and astronomical applications. We then focus on the fabrication and characterisation of GM-APDs, and discuss the development and challenges posed in designing array devices.

  3. Characterization of midwave infrared InSb avalanche photodiode

    SciTech Connect

    Abautret, J. Evirgen, A.; Perez, J. P.; Christol, P.; Rothman, J.; Cordat, A.

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  4. Development and characterization of CMOS avalanche photodiode arrays

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Christian, James F.; Augustine, Frank L.; Squillante, Michael R.; Entine, Gerald

    2005-04-01

    Avalanche photodiode (APD) arrays fabricated by using complementary metal-oxide-semiconductor (CMOS) fabrication technology offer the possibility of combining these high sensitivity detectors with cost effective, on-board, complementary circuitry. Using CMOS techniques, Radiation Monitoring Devices has developed prototype pixels with active diameters ranging from 5 to 60 microns and with measured quantum efficiencies of up to 65%. The prototype CMOS APD pixel designs support both proportional and Geiger modes of photo-detection. When operating in Geiger mode, these APD"s act as single-optical-photon-counting detectors that can be used for time-resolved measurements under signal-starved conditions. We have also designed and fabricated CMOS chips that contain not only the APD pixels, but also associated circuitry for both actively and passively quenching the self-propagating Geiger avalanche. This report presents the noise and timing performance for the prototype CMOS APD pixels in both the proportional and Geiger modes of operation. It compares the quantum efficiency and dark-count rate of different pixel designs as a function of the applied bias and presents a discussion of the maximum count rates that is obtained with each of the two types of quenching circuits for operating the pixel in Geiger mode. Preliminary data on the application of the APD pixels to laser ranging and fluorescent lifetime measurement is also presented.

  5. Investigation of the avalanche photodiodes for the CMS electromagnetic calorimeter operated at high gain

    NASA Astrophysics Data System (ADS)

    Deiters, K.; Diemoz, M.; Godinovic, N.; Ingram, Q.; Longo, E.; Montecchi, M.; Musienko, Y.; Nicol, S.; Patel, B.; Renker, D.; Reucroft, S.; Rusack, R.; Sakhelashvili, T.; Singovski, A.; Soric, I.; Swain, J.; Vikas, P.

    2001-04-01

    Avalanche Photodiodes (APD) with improved characteristics were developed by Hamamatsu Photonics for the Electromagnetic Calorimeter of the CMS experiment. This report presents measurements of the latest generation of APDs, which are capable to operate at high gains (˜2000).

  6. Capacity of avalanche-photodiode-detected pulse position modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, Jon; Ceniceros, Juan M.

    2000-05-01

    The capacity is determined for an optical channel employing Pulse Position Modulation (PPM) and an Avalanche PhotoDiode (APD) detector. This channel is different from the usual optical channel in that the detector output is characterized by a Webb-plus-Gaussian distribution, not a Poison distribution. The capacity is expressed as a function of the PPM order, slot width, laser dead time, average number of incident signal and background photons received, and APD parameters. Based on a system using a laser and detector proposed for X2000 second delivery, numerical results provide upper bounds on the data rate and level of background noise that the channel can support while operating at a given BER. For the particular case studied, the capacity-maximizing PPM order is near 2048 for nighttime reception and 16 for daytime reception. Reed-Solomon codes can handle background levels 2.3 to 7.6 dB below the ultimate level that can be handled by codes operating at the Shannon limit.

  7. Capacity of avalanche-photodiode-detected pulse position modulation

    NASA Astrophysics Data System (ADS)

    Chen, GuiFen; Yin, FuChang

    2002-08-01

    The capacity of channel is tha highest data rate it can reliably support.Whenever the data rate is less than the capacity of the channel, there exists an error-correcting code for the channel that has an output probability of error as small as desired, and coversely, whenever the data rate is more than the capacity the probability oferror is bounded away from zero. The capacity is determined an optical channel employing Pulse Position modulation (PPM) and an Avalanche Photodiode (APD) detector. The channel is different from the usual optical channel in that the detector output is characterized by a webb-plus-gaussian distribution, not a poisson distribution. The capacity is expressed as a funtion of the PPM order, solt width ,laser dead time , average number of incident singal and background photons received, and APD parameters. Based on a system using a laser and detector proposed for x2000 second delivery, numerical results provide upper bounds on the data rate and level of background noise that the channel can support while operating at a given BER For the particular case studied, the capacity-maximizing PPM order is near 2048 for nighttime reception and 16 for daytime reception. Reed-Solomon codes can hanndle backgroun levels 2.3 to 7.6 dB below the ultimate level that can be handled by codes operating at the Shannon limit.

  8. A New Positioning Algorithm for Position-Sensitive Avalanche Photodiodes.

    PubMed

    Zhang, Jin; Olcott, Peter D; Levin, Craig S

    2007-06-01

    We are using a novel position sensitive avalanche photodiode (PSAPD) for the construction of a high resolution positron emission tomography (PET) camera. Up to now most researchers working with PSAPDs have been using an Anger-like positioning algorithm involving the four corner readout signals of the PSAPD. This algorithm yields a significant non-linear spatial "pin-cushion" distortion in raw crystal positioning histograms. In this paper, we report an improved positioning algorithm, which combines two diagonal corner signals of the PSAPD followed by a 45° rotation to determine the X or Y position of the interaction. We present flood positioning histogram data generated with the old and new positioning algorithms using a 3 × 4 array of 2 × 2 × 3 mm(3) and a 3 × 8 array of 1 × 1 × 3 mm(3) of LSO crystals coupled to 8 × 8 mm(2) PSAPDs. This new algorithm significantly reduces the pin-cushion distortion in raw flood histogram image. PMID:24307743

  9. Foliage penetration optimization for Geiger-mode avalanche photodiode lidar

    NASA Astrophysics Data System (ADS)

    Johnson, Steven E.

    2013-05-01

    Geiger-mode avalanche photodiode (GMAPD) Lidar systems can be used to image targets that are partially concealed by foliage. This application of GMAPD Lidar is challenging because most APDs operating in Geiger- mode report only one range measurement per transmitted laser pulse. If a GMAPD makes a foliage range measurement, it cannot make a range measurement to a target concealed by the foliage. When too much laser energy is received, the vast majority of range measurements are from the foliage and only a small percentage are from the target. Some GMAPD Lidar systems can report their average detection probability during operation. The average detection probability, which is often called "P-det", is calculated over an array of GMAPDs, over multiple laser pulses, or over both. However, the detection probability does not distinguish between target range measurements, foliage range measurements, and noise events. In this paper, it is shown that when certain collection parameters are known, that the probability of detecting a target obscured by foliage can be maximized by selecting the appropriate "P-det". It is also shown that for a typical foliage penetration scenario where most of the reflected laser energy is from the foliage that operating with a "P-det" between 65% and 80% produces a near-maximum target detection probability.

  10. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  11. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    PubMed Central

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  12. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  13. High-Operating-Temperature HgCdTe Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Baier, N.; Ballet, P.; Mollard, L.; Fournier, M.; Gout, J. S.; Chamonal, J.-P.

    2009-08-01

    In this communication we report the first results of electro-optical characterization of planar heterostructure HgCdTe avalanche photodiodes (APDs), which enables the operation of APDs at high gain, at low bias, and with low dark current and/or at high operating temperature (HOT). The APD is based on a heterostructure in which the photons are detected in a wide-band-gap layer, and the photoelectrons are amplified in a vertical junction in a confined narrow-gap layer. The dark diffusion current and thermal background sensitivity of the device are limited by using a thin narrow-band-gap amplification layer. In addition, the defect-limited dark current is also expected to be reduced due to the reduced volume of the narrow-band-gap depletion layer. The electro-optical performance was characterized at T = 80 K and T = 200 K for two devices with a nominal thickness of the amplification layer of w = 100 nm and 500 nm, realized in x Cd = 0.3 Hg-vacancy-doped layers grown by molecular-beam epitaxy (MBE). The measurements show an average gain of < M< = 10 at a reverse bias of 5 V, which is slightly reduced compared with a conventional APD with x Cd = 0.3. The thermal diffusion current measured at low reverse bias, V b = 0.1 V, and at T = 200 K is about 0.1 mA/cm2 to 0.3 mA/cm2, which is a factor of 50 lower than standard x Cd = 0.3 n-on- p APDs. The quantum efficiency due to absorption in the gain layer is high (QEpeak > 30%), although no antireflecting coating was used, indicating that the device can also be used for high-operating-temperature thermal detection.

  14. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    PubMed

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm. PMID:27557187

  15. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication.

    PubMed

    Ferraro, Mike S; Clark, William R; Rabinovich, William S; Mahon, Rita; Murphy, James L; Goetz, Peter G; Thomas, Linda M; Burris, Harris R; Moore, Christopher I; Waters, William D; Vaccaro, Kenneth; Krejca, Brian D

    2015-11-01

    In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.

  16. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    NASA Astrophysics Data System (ADS)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  17. Improved x-ray detection and particle identification with avalanche photodiodes

    SciTech Connect

    Diepold, Marc Franke, Beatrice; Götzfried, Johannes; Hänsch, Theodor W.; Krauth, Julian J.; Mulhauser, Françoise; Nebel, Tobias; Pohl, Randolf; Fernandes, Luis M. P.; Amaro, Fernando D.; Gouvea, Andrea L.; Monteiro, Cristina M. B.; Santos, Joaquim M. F. dos; Machado, Jorge; Amaro, Pedro; Santos, José Paulo; and others

    2015-05-15

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

  18. Impact ionization engineered avalanche photodiode arrays for free space optical communication

    NASA Astrophysics Data System (ADS)

    Ferraro, Mike S.; Rabinovich, William S.; Clark, William R.; Waters, William D.; Campbell, Joe C.; Mahon, Rita; Vaccaro, Kenneth; Krejca, Brian D.

    2016-03-01

    High sensitivity photodetectors serve two purposes in free space optical communication: data reception and position sensing for pointing, tracking, and stabilization. Because of conflicting performance criteria, two separate detectors are traditionally utilized to perform these tasks but recent advances in the fabrication and development of large area, low noise avalanche photodiode (APD) arrays have enabled these devices to be used both as position sensitive detectors (PSD) and as communications receivers. Combining these functionalities allows for more flexibility and simplicity in optical assembly design without sacrificing the sensitivity and bandwidth performance of smaller, single element data receivers. Beyond eliminating the need to separate the return beam into two separate paths, these devices enable implementation of adaptive approaches to compensate for focal plane beam wander and breakup often seen in highly scintillated terrestrial and maritime optical links. While the Naval Research Laboratory (NRL) and Optogration Inc, have recently demonstrated the performance of single period, InAlAs/InGaAs APD arrays as combined data reception and tracking sensors, an impact ionization engineered (I2E) epilayer design achieves even lower carrier ionization ratios by incorporating multiple multiplication periods engineered to suppress lower ionization rate carriers while enhancing the higher ionization rate carriers of interest. This work presents a three period I2E concentric, five element avalanche photodiode array rated for bandwidths beyond 1GHz with measured carrier ionization ratios of 0.05-0.1 at moderate APD gains. The epilayer design of the device will be discussed along with initial device characterization and high speed performance measurements.

  19. Modeling the gain and bandwidth of submicron active layer n+-i-p+ avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Majumder, Kanishka; Das, N. R.

    2012-10-01

    The electron initiated avalanche gain and bandwidth are calculated for thin submicron GaAs n+-i-p+ avalanche photodiode. A model is used to estimate the avalanche build-up of carriers in the active multiplication layer considering the dead-space effect. In the model, the carriers are identified both by their energy and position in the multiplication region. The excess energy of the carriers above threshold is assumed to be equally distributed among the carriers generated after impact ionization. The gain versus bias and bandwidth versus gain characteristics of the device are also demonstrated for different active layer thicknesses of the APD.

  20. The blocking probability of Geiger-mode avalanche photo-diodes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-01-01

    When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.

  1. Photon Detection with Cooled Avalanche Photodiodes: Theory and Preliminary Experimental Results

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Hays, D. A.

    1985-01-01

    Avalanche photodiodes (APDs) can be operated in a geiger-tube mode so that they can respond to single electron events and thus be used as photon counting detectors. Operational characteristics and theory of APDs while used in this mode are analyzed and assessed. Preliminary experimental investigation of several commercially available APDs has commenced, and initial results for dark count statistics are presented.

  2. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  3. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  4. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    PubMed Central

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  5. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  6. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays. PMID:26836674

  7. Dynamics of local micro-breakdown in the Geiger mode of avalanche photodiodes

    SciTech Connect

    Verhovtseva, A. V. Gergel, V. A.

    2009-07-15

    Mathematical modeling methods were used to study the dynamics of micro-breakdown development in structures of silicon avalanche photodiodes. The constructed model considers the locality of the avalanchexs multiplication region appearing during single photon absorption and the delay of the avalanchexs current spreading over the rear electrode of the diode. The calculations showed two different phases of transient process of the formation of the electrical signal, i.e., the rapid and slow ones due to current spreading and ordinary RC recharge, respectively. The load resistances required to implement the pulsed mode of operation of the structures of the avalanche photodiode were calculated for a series of actual diode capacitances and spreading resistances of the rear electrode.

  8. Improved x-ray detection and particle identification with avalanche photodiodes.

    PubMed

    Diepold, Marc; Fernandes, Luis M P; Machado, Jorge; Amaro, Pedro; Abdou-Ahmed, Marwan; Amaro, Fernando D; Antognini, Aldo; Biraben, François; Chen, Tzu-Ling; Covita, Daniel S; Dax, Andreas J; Franke, Beatrice; Galtier, Sandrine; Gouvea, Andrea L; Götzfried, Johannes; Graf, Thomas; Hänsch, Theodor W; Hildebrandt, Malte; Indelicato, Paul; Julien, Lucile; Kirch, Klaus; Knecht, Andreas; Kottmann, Franz; Krauth, Julian J; Liu, Yi-Wei; Monteiro, Cristina M B; Mulhauser, Françoise; Naar, Boris; Nebel, Tobias; Nez, François; Santos, José Paulo; dos Santos, Joaquim M F; Schuhmann, Karsten; Szabo, Csilla I; Taqqu, David; Veloso, João F C A; Voss, Andreas; Weichelt, Birgit; Pohl, Randolf

    2015-05-01

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment. PMID:26026509

  9. Avalanche photodiode with high responsivity in 0.35 μm CMOS

    NASA Astrophysics Data System (ADS)

    Gaberl, Wolfgang; Schneider-Hornstein, Kerstin; Enne, Reinhard; Steindl, Bernhard; Zimmermann, Horst

    2014-04-01

    The presented linear mode avalanche photodiode (APD) uses the standard layers and process steps available in the 0.35-μm Si bulk CMOS process. Due to a low-doped epitaxial layer with a resistivity of 664 Ω cm, a deep intrinsic zone is realized to enable a large depleted absorption region at already moderate bias voltages and therefore ensures a high low-voltage responsivity. In combination with avalanche gain at high bias voltages, this leads to an overall responsivity of 1.7×105 A/W at 1.1 nW optical input power and 670-nm wavelength. The maximum achieved avalanche gain was 4.94×105. The maximum -3 dB frequency of 700 MHz was measured at a reverse bias voltage of 30 V and an optical input power of 14.7 μW.

  10. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  11. Geiger avalanche photodiodes as tentative light detectors for VHE gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Pellion, D.; Jradi, K.; Le Padellec, A.; Rennane, A.; Moutier, F.; Borrel, V.; Esteve, D.; Magenc, C.; Bazer-Bachi, A. R.

    2010-03-01

    Due to its sensitivity and speed, the detector still widely used in Cerenkov astrophysics experiments remains the PhotoMultiplier Tube (PMT). For instance, recent pathbreaking experiments in Very High Energy astrophysics (VHE), such as MAGIC and HESS, have used mainstream PMT technology [Aharonian, F. et al Astron. Astrophys. 492(1):L25-L28 (2008)]. Moreover the Cerenkov Telescope Array (CTA) which is now in its design phase, is also planed to be based on PMT’s. However, there are some disadvantages to the PMT technology: the rather poor quantum efficiency, the use of high voltages, the high cost when used in large number in a matrix arrangement and the large weight. Hence, we have investigated the possibility to design future Cerenkov telescopes based on solid state technology, specifically Geiger avalanche photodiodes. In a preliminary development test, we placed HAMAMATSU avalanche photodiodes at the focal plane of a 60 cm diameter telescope at the Pic du Midi in the French Pyrénées, in order to record incident cosmic rays. In this paper, we describe not only the experimental setup but we also put special emphasis to the reduction of the semi-conductor noise. We also show first data that were recorded during two runs in the fall of 2006, and conclude by the presentation of the design of an “integrated, low-cost solid state photodiode arrangement” which might be an alternative to PMT’s for future VHE telescopes.

  12. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    PubMed

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-01-01

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination. PMID:27537882

  13. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

    PubMed Central

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-01-01

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under −32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e- rms, full well capacity of 8000e-, and the conversion gain of 75 µV/e- are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination. PMID:27537882

  14. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    PubMed

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-08-15

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  15. Design considerations for high-speed low-noise avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ng, Beng K.; Ng, Jo S.; Hambleton, Paul J.; David, John P. R.; Ong, D. S.; Rees, Graham J.; Tozer, Richard C.

    2001-10-01

    Realization of high-speed avalanche photodiodes (APDs) requires the use of thin avalanche regions to reduce carrier transit time. A systematic investigation on the effect of dead space on the current impulse response and bandwidth of short APDs was carried out using a random path length model assuming a constant carrier velocity. The results indicate that, although dead space suppresses large multiplication values in a short device to give low excess noise, the number of impact ionization a carrier can undergo in a single transit is reduced. Consequently, multiple carrier feedback processes are necessary to achieve a given multiplication value. This results in an increase in the response time and reduces the bandwidth of short APDs. Conventional local models that take no account of the dead space effect will tend to overestimate the operating speed of these devices.

  16. Polarization engineering of back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Yang, Guofeng; Wang, Fuxue

    2016-08-01

    The back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes (APDs) with a p-type graded AlGaN layer have been designed to investigate the polarization engineering on the performance of the devices. The calculated results show that the APD with p-graded AlGaN layer exhibits lower avalanche breakdown voltage and increased maximum multiplication gain compared to the structure with conventional p-type AlGaN layer. The improved performance of the designed APD is numerically explained by the polarization-assisted enhancement of the ionization electric field in the multiplication region and polarization doping effect caused by the p-type graded layer.

  17. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-01

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current. PMID:22273682

  18. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W-1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K-1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  19. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  20. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W‑1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K‑1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  1. Wavelength-division-multiplexed InGaAs/InP avalanched photodiodes for quantum key distributions

    NASA Astrophysics Data System (ADS)

    Lee, Moon Hyeok; Ha, Changkyun; Jeong, Heung-Sun; Kim, Dong Wook; Lee, Seoung Hun; Lee, Min Hee; Kim, Kyong Hon

    2016-02-01

    We demonstrate improved single photon detection efficiencies of InGaAs/InP avalanche photodiodes (APDs) in a wavelength-division-multiplexed (WDM) scheme for high-capacity plug-and-play-type two-way quantum key distributions (QKDs). Single-photon detectors (SPDs) combined in the WDM APD scheme can be used to overcome the detection speed limit of a single SPD which is caused mainly by the afterpulse effect. The multiple SPDs combined in the parallel WDM scheme can increase the single photon detection capacity, although additional optical losses resulted from the WDM MUX and deMUX devices induce limited increases.

  2. A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Banoushi, A.; Kardan, M. R.; Ataee Naeini, M.

    2005-06-01

    We obtain a transfer function and a circuit model for separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM-APD's). This model is used to calculate the frequency and time responses of the APD's, and to investigate the influence of the carrier velocities and dead-space effect on the bandwidth of the devices. It is shown that for thinner APD's, the dead-space effect can be included by considering a non-local model for carrier velocities, and a local model for impact ionization rates. The new approach is easier than the previous methods, and the calculated results are in good agreement with experimental data.

  3. Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1989-01-01

    The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.

  4. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  5. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  6. 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems.

    PubMed

    Nada, Masahiro; Yokoyama, Haruki; Muramoto, Yoshifumi; Ishibashi, Tadao; Matsuzaki, Hideaki

    2014-06-16

    50-Gbit/s error-free operation is demonstrated by a high-speed avalanche photodiode for the first time. The APD exhibits 3-dB bandwidth of 35 GHz and excellent receiver sensitivity of -10.8 dBm at a BER of 10(-12) against non-return to zero input optical signals. These results indicate our APD is promising for the systems with serial baud rate of 50 Gbit/s such as 400-Gbit/s Ethernet systems.

  7. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  8. Measurements of the photon detection efficiency done for Geiger-mode avalanche photodiodes (G-APD)

    NASA Astrophysics Data System (ADS)

    Gentile, S.; Meddi, F.; Kuznetsova, E.

    2010-04-01

    Estimation of the Photon Detect Efficiency (PDE) of multi-pixel Geiger-mode avalanche photodiodes (G-APD) based on measurements of the G-APD response to low-intensity light is presented. The fit of the light-response spectra takes into account after-pulsing and cross-talk effects and yields the value of initial photons. Using a calibrated photo-detector as a reference, the value of the PDE can be calculated. The sources of systematic error of the obtained PDE is discussed as well as possibility for its minimization.

  9. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Aull, Brian F.; Loomis, Andrew H.; Young, Douglas J.; Stern, Alvin; Felton, Bradley J.; Daniels, Peter J.; Landers, Debbie J.; Retherford, Larry; Rathman, Dennis D.; Heinrichs, Richard M.; Marino, Richard M.; Fouche, Daniel G.; Albota, Marius A.; Hatch, Robert E.; Rowe, Gregory S.; Kocher, David G.; Mooney, James G.; O'Brien, Michael E.; Player, Brian E.; Willard, Berton C.; Liau, Zong-Long; Zayhowski, John J.

    2004-06-01

    Lincoln Laboratory has developed 32 x 32-pixel ladar focal planes comprising silicon geiger-mode avalanche photodiodes and high-speed all-digital CMOS timing circuitry in each pixel. In Geiger mode operation, the APD can detect as little as a single photon, producing a digital CMOS-compatible voltage pulse. This pulse is used to stop a high-speed counter in the pixel circuit, thus digitizing the time of arrival of the optical pulse. This "photon-to-digital conversion" simultaneously achieves single-photon sensitivity and 0.5-ns timing. We discuss the development of these focal planes and present imagery from ladar systems that use them.

  10. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Després, Philippe; Funk, Tobias; Shah, Kanai S.; Hasegawa, Bruce H.

    2007-06-01

    Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 × 4 array of four channels 8 × 8 mm2 PSAPDs or an 8 × 8 array of 4 × 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 × 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I (ap30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging.

  11. Cd Hg Te (1.3 µm - 1.55 µm) Avalanche Photodiode

    NASA Astrophysics Data System (ADS)

    Meslage, J.; Pichard, G.; Fragnon, M.; Royer, M.; Nguyen Duy, M.; Biosrobert, C.; Morvan, D.

    1983-11-01

    The particular Cd0.7 Hg0.3Te band structure:almost equality of band gap and spin orbit splitting, provides good ionization properties to this alloy : a high ionization coefficients ratio is expected. The devices elaboration is made by planar technology. A N+/N/P+ structure is achieved by ions implantation followed by a diffusion process. A diffused guard ring allows to avoid surface and junction edge effects. The I (V) characteristic shows a breakdown voltage (VB) of about 100 V. The dark current at 0.95 VB, amounts 100nA.Photodiodes sensitivity is typiclly of 0.7. A/W when M=1.Multiplication coefficients as high as 40 have been measured, the photoresponse spatial homogeneity in gain mode has been also controlled with a lOμm size spot : no microplasma effect have been observed. Photodetectors sensitivity, measured at 500 MHz, remains identical in avalanche operating mode. Good linearity is obtained when plotting P-N schottky noise versus light intensity No excess noise was observed. The study of the avalanche photodiode noise, synchronous with 1.3. μm DEL emission, at 30 MHz with a 1 MHz bandwith has been carried out in relation to the multiplication factor, and has led to an estimation of the ionization coefficient ratio.

  12. Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance

    NASA Astrophysics Data System (ADS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-05-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  13. Performance of a junction termination extension avalanche photodiode for use with scintillators

    NASA Astrophysics Data System (ADS)

    Gramsch, E.; Pcheliakov, O.; Chistokhin, Igor B.

    2008-11-01

    An avalanche photodiode with a ring structure called junction termination extension (JTE) was built and tested. It has three diffused rings around the main junction to avoid early breakdown at the surface. The ITE rings have less doping than the main junction and can be built by well controlled single ion-implantation through a single mask. Avalanche photodiodes with two mm diameter active area have been have been built by implantation of boron with a dose of 2, 3, 4 and 5 × 1012 cm-2, followed by deep diffusion of the junction up to 14 μm. The dark current is strongly dependent on the implantation dose, decreasing with decreasing charge. For the APDs with implanted dose of 5 × 1012 cm-2 a gain of 8 is obtained at 1120 V. The energy resolution from a 137Cs source was measured to be 24.4% FWHM with a 2 × 2 × 2 mm3 BGO scintillator. We have also performed simulations of the gain and breakdown voltage that correlate well with the results.

  14. Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-09-01

    We report on the development of focal plane arrays (FPAs) employing two-dimensional arrays of InGaAsP-based Geiger-mode avalanche photodiodes (GmAPDs). These FPAs incorporate InP/InGaAs(P) Geiger-mode avalanche photodiodes (GmAPDs) to create pixels that detect single photons at shortwave infrared wavelengths with high efficiency and low dark count rates. GmAPD arrays are hybridized to CMOS read-out integrated circuits (ROICs) that enable independent laser radar (LADAR) time-of-flight measurements for each pixel, providing three-dimensional image data at frame rates approaching 200 kHz. Microlens arrays are used to maintain high fill factor of greater than 70%. We present full-array performance maps for two different types of sensors optimized for operation at 1.06 μm and 1.55 μm, respectively. For the 1.06 μm FPAs, overall photon detection efficiency of >40% is achieved at <20 kHz dark count rates with modest cooling to ~250 K using integrated thermoelectric coolers. We also describe the first evalution of these FPAs when multi-photon pulses are incident on single pixels. The effective detection efficiency for multi-photon pulses shows excellent agreement with predictions based on Poisson statistics. We also characterize the crosstalk as a function of pulse mean photon number. Relative to the intrinsic crosstalk contribution from hot carrier luminescence that occurs during avalanche current flows resulting from single incident photons, we find a modest rise in crosstalk for multi-photon incident pulses that can be accurately explained by direct optical scattering.

  15. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.

    PubMed

    Farrell, Alan C; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M; Huffaker, Diana L

    2015-01-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. PMID:26627932

  16. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  17. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    PubMed Central

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-01-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. PMID:26627932

  18. A Monte Carlo simulator for noise analysis of avalanche photodiode pixels in low-light image sensing

    NASA Astrophysics Data System (ADS)

    Resetar, Tomislav; Süss, Andreas; Vermandere, Elke; Karpiak, Bogdan; Puers, Robert; Van Hoof, Chris

    2016-03-01

    Noise performance of avalanche photodiodes in light detection is typically described by the excessive noise factor, taking into account only the increase of the variance of the output electron count distribution with respect to the input. This approach is attractive since the excessive noise factor, together with the avalanche gain, can easily be included into the signal-to-noise ratio expression of the complete detection chain. For low-light applications down to single-photon counting, that description is typically not sufficient since one is also interested in the higher moments of the output distribution. Analytical derivation of the output electron count distributions of avalanche photodiodes is typically possible only for very simple electric field profile approximations, which is often not a sufficient description of reality. This work presents a Monte Carlo simulator for numerical prediction of the output distribution that can be applied to any arbitrary electric field profile as well as any light absorption profile and therefore serve as a useful tool for device design and optimization. Comparison with the standard McIntyre theory is provided for a constant field profile showing good agreement. Furthermore, the presented method is used to predict the avalanche noise performance of the recently presented pinned avalanche photodiode pixel (PAPD) with the electric field profile extracted from a finite-element simulation. The pixel is aiming for improvements in high-speed and low-light level image detection in minimally-modified CMOS image sensor technology.

  19. III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghosh, Sid

    2015-08-01

    photodiodes and some of the recent results on the work being done at Raytheon on SWIR avalanche photodiodes.

  20. Avalanche characteristics of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Low, L. C.; You, A. H.; Andy, L. L. Y.; Cheang, P. L.

    2010-03-01

    The mean multiplication gain and excess noise factor of thin GaAs/Al 0.6Ga 0.4As heterojunction avalanche photodiodes (HAPDs) are simulated. The ionization coefficients of electron and hole in bulk GaAs and Al 0.6Ga 0.4As are used in this model to study the role of heterojunction in reducing excess noise. The band-edge discontinuities at the conduction and valence bands are included in our model which may influence the number of carrier crossing the heterojunction and hence modifies the dead space in the HAPDs. The mean multiplication gain and excess noise factor with electron- and hole-initiated multiplication for 0.1 and 0.2 μm multiplication lengths in GaAs/Al 0.6Ga 0.4As HAPDs are shown. By considering the dead space effect, our model demonstrated a small noise mainly due to the localization of carrier ionization and the limited carrier feedback ionization at heterointerface. In our model, most of the ionizations occur in the first-initiated multiplication layer which reduces the randomness of carrier ionization and noise.

  1. Micropixel avalanche photodiodes and the possibility for their application in positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Anfimov, N. V.; Selyunin, A. S.

    2012-12-01

    Micropixel avalanche photodiodes (MAPDs) are new instruments for detecting low-intensity light. They consist of many microcounters (pixels integrated on a common silicon wafer). A unique design by the Joint Institute for Nuclear Research (JINR) (Z. Sadygov)—deep-microwell MAPD—provides an order of larger pixel densities without losses in photon-detection efficiency. These instruments are beginning to find use in precision electromagnetic calorimetry. MAPDs can be most widely applied as photodetectors in scanners for positron-emission tomographs (PETs), particularly the time-of-flight PETs becoming popular now. The possibility of using MAPDs in PETs is shown, and the time resolution of a pair of quanta detected by Lutetium Fine Silicate scintillation crystals with MAPD readout is obtained at the level of 400 ps.

  2. Numerical simulation of impact ionization in Ge/AlxGa1-xAs avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Chia, C. K.

    2010-08-01

    Impact ionization in Ge/AlxGa1-xAs p-i-n heterostructures has been studied using the Monte Carlo technique. The thin (<300 nm) Ge/AlxGa1-xAs single heterojunction structure was found to exhibit large hole (β) to electron (α) ionization coefficient ratio, owing to a higher β in the Ge layer and a lower α in the AlxGa1-xAs layer, together with the dead space effects. The Ge/AlxGa1-xAs avalanche photodiodes are attractive for applications where a wide wavelength detection range is required for compatibility with multiple sources such as in the emerging active optical cable and optical interconnect applications, as well as in the established optical fiber telecommunication systems.

  3. Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, S.; Moravvej-Farshi, M. K.; Jalali, M.

    2009-09-01

    In this paper, using a nonlocal analysis we have extracted the temperature dependent ionization coefficients and threshold energies of submicron GaAs avalanche photodiodes (APDs) with multiplication region thicknesses as narrow as 49 nm, from electron and hole injection photo-multiplication processes. These extracted parameters have been used to predict the temperature dependence of APDs characteristics, such as mean gain, 3 dB-bandwidth, gain-bandwidth product, excess noise factor, performance factor, and breakdown field, over a temperature range of 20 K to 290 K. In the nonlocal analysis we have taken the effects of nonuniform electric filed within the multiplication region and its surrounding depletion regions, injected carrier's initial ionization energy, carrier's spatial ionization rate as well as the carrier's dead space and its previous ionization history into account. We have shown that our predicted gain values are in excellent agreement with existing experimental data measured by others.

  4. On the analytical formulation of excess noise in avalanche photodiodes with dead space.

    PubMed

    Jamil, Erum; Cheong, Jeng S; David, J P R; Hayat, Majeed M

    2016-09-19

    Simple, approximate formulas are developed to calculate the mean gain and excess noise factor for avalanche photodiodes using the dead-space multiplication theory in the regime of small multiplication width and high applied electric field. The accuracy of the approximation is investigated by comparing it to the exact numerical method using recursive coupled integral equations and it is found that it works for dead spaces up to 15% of the multiplication width, which is substantial. The approximation is also tested for real materials such as GaAs, InP and Si for various multiplication widths, and the results found are accurate within ∼ 15% of the actual noise, which is a significant improvement over the local-theory noise formula. The results obtained for the mean gain also confirm the recently reported relationship between experimentally determined local ionization coefficients and the enabled non-local ionization coefficients. PMID:27661898

  5. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  6. Application of PN and avalanche silicon photodiodes to low-level optical

    NASA Technical Reports Server (NTRS)

    Eppeldauer, G.; Schaefer, A. R.

    1988-01-01

    New approaches to the discovery of other planetary systems require very sensitive and stable detection techniques in order to succeed. Two methods in particular, the astrometric and the photometric methods, require this. To begin understanding the problems and limitations of solid state detectors regarding this application, preliminary experiments were performed at the National Bureau of Standards and a low light level detector characterization facility was built. This facility is briefly described, and the results of tests conducted in it are outlined. A breadboard photometer that was used to obtain stellar brightness ratio precision data is described. The design principles of PN and avalanche silicon photodiodes based on low light level measuring circuits are discussed.

  7. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  8. A method to precisely identify the afterpulses when using the S9717 avalanche photodiode

    SciTech Connect

    Rusu, Alexandru Rusu, Lucian

    2015-12-07

    The detection ratio of an avalanche photodiode (APD) biased in Geiger-mode increases versus the excess voltage; the afterpulsing rate increases too. The last one can be reduced by inserting an artificial dead time and accepting a lower measuring top rate. So, in order to tune a single-photon detector system, it is necessary to exactly identify afterpulses and measure their rate; the experimental results are presented. When using the S9717 APD in Geiger-mode, the cathode to ground voltage waveform reveals the existence of a particular sequence of pulses: a usual one followed, within 1μs, by a least one appearing to have been generated for negative excess voltage values. All these characteristics are the signature of the afterpulsing generation. Based on this observation, we were able to precisely measure the afterpulsing rate.

  9. Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays

    NASA Astrophysics Data System (ADS)

    Schuette, Daniel R.; Westhoff, Richard C.; Loomis, Andrew H.; Young, Douglas J.; Ciampi, Joseph S.; Aull, Brian F.; Reich, Robert K.

    2010-04-01

    We present a unique hybridization process that permits high-performance back-illuminated silicon Geiger-mode avalanche photodiodes (GM-APDs) to be bonded to custom CMOS readout integrated circuits (ROICs) - a hybridization approach that enables independent optimization of the GM-APD arrays and the ROICs. The process includes oxide bonding of silicon GM-APD arrays to a transparent support substrate followed by indium bump bonding of this layer to a signal-processing ROIC. This hybrid detector approach can be used to fabricate imagers with high-fill-factor pixels and enhanced quantum efficiency in the near infrared as well as large-pixel-count, small-pixel-pitch arrays with pixel-level signal processing. In addition, the oxide bonding is compatible with high-temperature processing steps that can be used to lower dark current and improve optical response in the ultraviolet.

  10. The blocking probability of Geiger-mode avalanche photo-diodes

    NASA Astrophysics Data System (ADS)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-08-01

    When a photon is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Bernoulli modulated or pulse-position-modulated (PPM) Poisson process. We demonstrate how the PPM and Bernoulli cases differ, illustrating that the PPM blocking probability is larger than the Bernoulli. The blocking rates may be decreased by focusing the incident light on an array of detectors. We show that the binomial output statistics of an array of GMAPDs may be modeled as Poisson and measure the error in this approximation via the relative entropies of the two distributions.

  11. Cramer-Rao lower bound on range error for LADARs with Geiger-mode avalanche photodiodes.

    PubMed

    Johnson, Steven E

    2010-08-20

    The Cramer-Rao lower bound (CRLB) on range error is calculated for laser detection and ranging (LADAR) systems using Geiger-mode avalanche photodiodes (GMAPDs) to detect reflected laser pulses. For the cases considered, the GMAPD range error CRLB is greater than the CRLB for a photon-counting device. It is also shown that the GMAPD range error CRLB is minimized when the mean energy in the received laser pulse is finite. Given typical LADAR system parameters, a Gaussian-envelope received pulse, and a noise detection rate of less than 4 MHz, the GMAPD range error CRLB is minimized when the quantum efficiency times the mean number of received laser pulse photons is between 2.2 and 2.3. PMID:20733630

  12. Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA

    NASA Astrophysics Data System (ADS)

    Beck, Jeff; Woodall, Milton; Scritchfield, Richard; Ohlson, Martha; Wood, Lewis; Mitra, Pradip; Robinson, Jim

    2007-04-01

    The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.

  13. Efficient light collection from crystal scintillators using a compound parabolic concentrator coupled to an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Jenke, P. A.; Briggs, M. S.; Bhat, P. N.; Reardon, P.; Connaughton, V.; Wilson-Hodge, C.

    2013-09-01

    In support of improved gamma-ray detectors for astrophysics and observations of Terrestrial Gamma-ray Flashes (TGFs), we have designed a new approach for the collection and detection of optical photons from scintillators such as Sodium Iodide and Lanthanum Bromide using a light concentrator coupled to an Avalanche photodiode (APD). The APD has many advantages over traditional photomultiplier tubes such as their low power consumption, their compact size, their durability, and their very high quantum efficiency. The difficulty in using these devices in gamma-ray astronomy has been coupling their relatively small active area to the large scintillators necessary for gamma-ray science. Our solution is to use an acrylic Compound Parabolic Concentrator (CPC) to match the large output area of the scintillation crystal to the smaller photodiode. These non-imaging light concentrators exceed the light concentration of focused optics and are light and inexpensive to produce. We present our results from the analysis and testing of such a system including gains in light collecting efficiency, energy resolution of nuclear decay lines, as well as our design for a new, fast TGF detector.

  14. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  15. Numerical Examination of Silicon Avalanche Photodiodes Operated in Charge Storage Mode

    NASA Technical Reports Server (NTRS)

    Parks, Joseph W., Jr.; Brennan, Kevin F.

    1998-01-01

    The behavior of silicon-based avalanche photodiodes (APD's) operated in the charge storage mode is examined. In the charge storage mode, the diodes are periodically biased to a sub-breakdown voltage and then open-circuited. During this integration period, photo-excited and thermally generated carriers are accumulated within the structure. The dynamics of this accumulation and its effects upon the avalanching of the diode warrants a detailed, fully numerical analysis. The salient features of this investigation include device sensitivity to the input photo-current including the self-quenching effect of the diode and its limitations in sensing low light levels, the dependence of the response on the bulk lifetime and hence on the generation current within the device, the initial gain, transient response, dependence of the device uniformity upon performance, and the quantity of storable charge within the device. To achieve these tasks our device simulator, STEBS-2D, was utilized. A modified current-controlled boundary condition is employed which allows for the simulation of the isolated diode after the initial reset bias has been applied. With this boundary condition, it is possible to establish a steady-state voltage on the ohmic contact and then effectively remove the device from the external circuit while still including effects from surface recombination, trapped surface charge, and leakage current from the read-out electronics.

  16. Dark-current characteristics of GaN-based UV avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Xu, Jintong; Chang, Chao; Li, Xiangyang

    2015-04-01

    For UV detecting, it needs high ratio of signal to noise, which means high responsibility and low noise. GaN-based avalanche photodiodes can provide a high internal photocurrent gain. In this paper, we report the testing and characterization of GaN based thin film materials, optimization design of device structure, the device etching and passivation technology, and the photoelectric characteristics of the devices. Also, uniformity of the device was obtained. The relationship between dark current and material quality or device processes was the focus of this study. GaN based material with high aluminum components have high density defects. Scanning electron microscope, cathodoluminescence spectra, X-ray double crystal diffraction and transmission spectroscopy testing were employed to evaluate the quality of GaN-based material. It shows that patterned sapphire substrate or thick AlN buffer layer is more effective to get high quality materials. GaN-based materials have larger hole ionization coefficient, so back incident structure were adopted to maximize the hole-derived multiplication course and it was helped to get a smaller multiplication noise. The device with separate absorption and multiplication regions is also prospective to reduce the avalanche noise. According to AlGaN based material characteristics and actual device fabrication, device structure was optimized further. Low physical damage inductively coupled plasma (ICP) etching method was used to etch mesa and wet etching method was employed to treat mesa damage. Silica is passivation material of device mesa. For solar-blind ultraviolet device, it is necessary to adopt a wider bandgap material than AlGaN material. The current-voltage characteristics under reverse bias were measured in darkness and under UV illumination. The distribution of dark current and response of different devices was obtained. In short, for GaN-based UV avalanche photodiode, dark current was related to high density dislocation of

  17. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    NASA Astrophysics Data System (ADS)

    Sadygov, Z.; Ahmadov, F.; Khorev, S.; Sadigov, A.; Suleymanov, S.; Madatov, R.; Mehdiyeva, R.; Zerrouk, F.

    2016-07-01

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  18. Development of photodetection system based on multipixel avalanche Geiger photodiodes with WLS for LXe low-background detectors

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Akindinov, A. V.; Alexandrov, I. S.; Burenkov, A. A.; Danilov, M. V.; Kovalenko, A. G.; Stekhanov, V. N.

    2010-04-01

    A multipixel avalanche Geiger photodiode with a p-terphenyl wavelength shifter in front of it has been tested in the liquid xenon to detect the 175-nm scintillation light. The global detection efficiency of the VUV photons of ~10% is obtained. A photodetection system with sensitivity to sub-keV ionization and few-mm coordinate accuracy is proposed for LXe low-background experiments.

  19. Development of novel technologies to enhance performance and reliability of III-Nitride avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Suvarna, Puneet Harischandra

    Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs. To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices. A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in

  20. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive

  1. HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Marciniec, J. W.; Wong, K. K.; Parodos, T.; Mullarkey, J. D.; Lamarre, P. A.; Tobin, S. P.; Gustavsen, K. A.; Williams, G. M.

    2007-08-01

    This paper reports data for back-illuminated planar n-on-p HgCdTe electron-initiated avalanche photodiode (e-APD) 4 × 4 arrays with large unit cells (250 × 250 μm2). The arrays were fabricated from p-type HgCdTe films grown by liquid phase epitaxy (LPE) on CdZnTe substrates. The arrays were bump-mounted to fanout boards and characterized in the back-illuminated mode. Gain increased exponentially with reverse bias voltage, and the gain versus bias curves were quite uniform from element to element. The maximum gain measured was 648 at -11.7 V for a cutoff wavelength of 4.06 μm at 160 K. For the same reverse-bias voltage, the gains measured at 160 K for elements with two different cutoff wavelengths (3.54 μm and 4.06 μm at 160 K) show an exponential increase with increasing cutoff wavelength, in agreement with Beck’s empirical model for gain versus voltage and cutoff wavelength in HgCdTe e-APDs. Spot scan data show that both the V = 0 response and the gain at V = -5.0 V are spatially uniform over the large junction area. To the best of our knowledge, these are the first spot scan data for avalanche gain ever reported for HgCdTe e-APDs. Capacitance versus voltage data are consistent with an ideal abrupt junction having a donor concentration equal to the indium concentration in the LPE film.

  2. Recent progress in avalanche photodiodes for sensing in the IR spectrum

    NASA Astrophysics Data System (ADS)

    Maddox, S. J.; Ren, M.; Woodson, M. E.; Bank, S. R.; Campbell, J. C.

    2016-05-01

    Abstract—We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, AlxIn1-xAsySb1-y, grown lattice-matched on GaSb substrates. By varying the aluminum content the direct bandgap can be tuned from 0.25 eV (0% aluminum) to 1.24 eV (75% aluminum), corresponding to photon wavelengths from 5000 nm to 1000 nm, with the transition from direct-gap to indirect-gap occurring at ~1.18 eV (~72% aluminum), or 1050 nm. This has been used to fabricate separate absorption, charge, and multiplication (SACM) APDs using Al0.7In0.3As0.3Sb0.7 for the multiplication region and Al0.4In0.6As0.3Sb0.7 for the absorber. Gain values as high as 100 have been achieved and the excess noise factor is characterized by a k value of 0.01, which is comparable to or below that of Si. In addition, since the bandgap of the absorption region is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths.

  3. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  4. Response of large area avalanche photodiodes to low energy x rays

    SciTech Connect

    Gentile, T. R.; Bales, M.; Arp, U.; Dong, B.; Farrell, R.

    2012-05-15

    For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.

  5. The Capacity of Avalanche Photodiode-Detected Pulse-Position Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    1999-04-01

    The capacity is determined for an optical channel employing pulse-position modulation (PPM) and an avalanche photodiode (APD) detector. This channel is different from the usual optical channel in that the detector output is characterized by a Webb-plus-Gaussian distribution, not a Poisson distribution. The capacity is expressed as a function of the PPM order, slot width, laser dead time, average number of incident signal and background photons received, and APD parameters. The capacity also is examined for the ideal photon-counting (Poisson) channel. Based on a system using a laser and detector proposed for X2000 second delivery, numerical results provide upper bounds on the data rate, level of background noise, and code rate that the channel can support while operating at a given bit-error rate. For the particular case studied, the capacity-maximizing PPM order is near 2048 for nighttime reception and 16 for daytime reception. Reed-Solomon codes can handle background levels 2.3 to 7.6 dB below the ultimate level that can be handled by codes operating at the Shannon limit.

  6. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner.

    PubMed

    Mu, Ying; Niedre, Mark

    2015-09-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT.

  7. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    SciTech Connect

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark; Riddle, Reed; Law, Nicholas M.

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  8. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  9. Slot clock recovery in optical PPM communication systems with avalanche photodiode photodetectors

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1989-01-01

    Slot timing recovery in a direct-detection optical PPM communication system can be achieved by processing the photodetector output waveform with a nonlinear device whose output forms the input to a phase-locked loop. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (wavelength = 834 nm) and a silicon avalanche photodiode photodetector. The system used Q = 4 PPM signaling and operated at a source data rate of 25 Mbits/s. The mathematical model developed to compute the rms phase error of the recovered clock is shown to be in good agreement with results of actual measurements of phase errors. The use of the recovered slot clock in the receiver resulted in no significant degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the -6th at a received optical signal energy of 55 detected photons per information bit.

  10. Noise characteristic of AlGaN-based solar-blind UV avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Chang, C.; Xu, J. T.; Li, X. Y.

    2015-04-01

    A particular system for excess noise of avalanche photodiode (APD) measurement was build. Then the signal-noise ratio at different reverse voltage and the noise spectrum are measured and analyzed on different devices. First, the noise measurement system was constructed to fulfill the requirement that a high DC voltage can be applied on, and the measurement system was carefully shielded to protect from disturbance of electromagnetic radiations. Than we measured the noise spectrums of separate absorption and multiplication (SAM) type solar-blind APDs. The noise spectrums of SAM APDs which have different dark current levels were also measured. The results show that the low-frequency noise is dominant across a wide frequency range. And as the dark current goes higher, shot noise and low-frequency noise go higher at the same time. And the low-frequency noise will also takes more proportion in the spectrum when dark current goes higher. On the other hand, noise measurements at different reverse voltage and in either UV illumination or dark show that the excess noise factor increase faster as the gain increase. This leads to a decrease of signal-noise ratio at very high gain. In order to get a higher signal-noise ratio, a proper high gain should be adopted, rather than a gain "higher and better".

  11. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  12. Low-voltage-operation avalanche photodiode based on n-gallium oxide/p-crystalline selenium heterojunction

    SciTech Connect

    Imura, S. Kikuchi, K.; Miyakawa, K.; Ohtake, H.; Kubota, M.

    2014-06-16

    In this study, we demonstrate the avalanche multiplication phenomenon in a crystalline-selenium (c-Se)-based heterojunction photodiode. The carrier injection from an external electrode, which is considered to be the major factor contributing to dark current at a high electric field, was significantly decreased by employing a thin n-type Ga{sub 2}O{sub 3} layer with a high hole-injection barrier. The fabricated Ga{sub 2}O{sub 3}/c-Se diode exhibited extremely high external quantum efficiency of over 100% in the short-wavelength region at a relatively low reverse-bias voltage of ∼20 V. Furthermore, Sn-doping of the Ga{sub 2}O{sub 3} layer increases the carrier concentration; hence, the resulting device has a lower threshold voltage for avalanche multiplication.

  13. Effects of Displacement Damage on the Time-Resolved Gain and Bandwidth of a Low Breakdown Voltage Si Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi

    2006-01-01

    Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.

  14. Linear arrays of InGaAs/InP avalanche photodiodes for 1.0-1.7 micron

    NASA Technical Reports Server (NTRS)

    Ackley, D. E.; Hladky, J.; Lange, M. J.; Mason, S.; Erickson, G.; Olsen, G. H.; Ban, V. S.; Forrest, S. R.; Staller, C.

    1990-01-01

    Separate absorption and multiplication InGaAs/InP avalanche photodiodes (SAM-APDs) with a floating guard ring structure that is well-suited to array applications have been successfully demonstrated. Individual APDs have breakdown voltages greater than 80 V, multiplications over 40 at 100 nA dark current, and uniform spatial gain profiles. Uniform I-V characteristics and gains have been measured over linear dimensions as large as 1.2 cm. Gains over 10 at low multiplied dark currents were measured on 21 consecutive devices at the wafer level.

  15. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  16. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A.; Grimm, O.; von Gunten, H.; Hildebrand, D.; Horisberger, U.; Krähenbühl, T.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.; Neise, D.; Pauss, F.; Renker, D.; Rhode, W.; Rissi, M.; Röser, U.; Rollke, S.; Stark, L. S.; Stucki, J.-P.; Viertel, G.; Vogler, P.; Weitzel, Q.

    2009-10-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  17. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.

    PubMed

    Lawrence, William G; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K

    2008-08-01

    Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes (PMTs) used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes (APDs), which have improved red sensitivity and a working fluorescence detection range beyond 1,000 nm. A comparison of the wavelength-dependent performance of the APD and PMT was carried out using pulsed light-emitting diode sources, calibrated test beads, and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of PMTs and APD detectors. The APD used an additional amplifier stage to match the internal gain of the PMT. The resolution of the APD and PMT was compared for flow cytometry applications using a pulsed light-emitting diode source over the 500-1060 nm spectral range. These measurements showed the relative changes in the signal-to-noise performance of the APD and PMT over a broad spectral range. Both the APD and PMTs were used to measure the signal-to-noise response for a set of six peak calibration beads over the 530-800 nm wavelength range. CD4-positive cells labeled with antibody-conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the APD and the PMT. The ratios of the intensities of the CD4- and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the APD was able to separate these populations at wavelengths above 800 nm. These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal intensity levels. While the APD and PMT show similar signal-to-noise performance in the visible spectral range, the dark noise of the APD detector reduces the sensitivity at low signal levels. At wavelengths longer than 650 nm, the high quantum efficiency

  18. Betabox: a beta particle imaging system based on a position sensitive avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Dooraghi, A. A.; Vu, N. T.; Silverman, R. W.; Farrell, R.; Shah, K. S.; Wang, J.; Heath, J. R.; Chatziioannou, A. F.

    2013-06-01

    A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm2 position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as 18F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for 18F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm-2 at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of 18F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm-2 for 1 min acquisitions and a 62 × 62 µm2 pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm2. We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ˜180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ˜200 µm of additional LDPE film. Lastly

  19. Betabox: a beta particle imaging system based on a position sensitive avalanche photodiode

    PubMed Central

    Dooraghi, AA; Vu, NT; Silverman, RW; Farrell, R; Shah, KS; Wang, J; Heath, JR; Chatziioannou, AF

    2013-01-01

    A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm2 position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as 18F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for 18F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm−2 at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of 18F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm−2 for 1 min acquisitions and a 62 × 62 µm2 pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm2. We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ~180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ~200 µm of additional LDPE film

  20. Conception d'un circuit d'etouffement pour photodiodes a avalanche en mode geiger pour integration heterogene 3d

    NASA Astrophysics Data System (ADS)

    Boisvert, Alexandre

    Le Groupe de Recherche en Appareillage Medical de Sherbrooke (GRAMS) travaille actuellement sur un programme de recherche portant sur des photodiodes a avalanche mono-photoniques (PAMP) operees en mode Geiger en vue d'une application a la tomographie d'emission par positrons (TEP). Pour operer dans ce mode; la PAMP, ou SPAD selon l'acronyme anglais (Single Photon Avalanche Diode), requiert un circuit d'etouffement (CE) pour, d'une part, arreter l'avalanche pouvant causer sa destruction et, d'autre part. la reinitialiser en mode d'attente d'un nouveau photon. Le role de ce CE comprend egalement une electronique de communication vers les etages de traitement avance de signaux. La performance temporelle optimale du CE est realisee lorsqu'il est juxtapose a la PAMP. Cependant, cela entraine une reduction de la surface photosensible ; un element crucial en imagerie. L'integration 3D, a base d'interconnexions verticales, offre une solution elegante et performante a cette problematique par l'empilement de circuits integres possedant differentes fonctions (PAMP, CE et traitement avance de signaux). Dans l'approche proposee, des circuits d'etouffement de 50 pm x 50 pm realises sur une technologie CMOS 130 mn 3D Tezzaron, contenant chacun 112 transistors, sont matrices afin de correspondre a une matrice de PAMP localisee sur une couche electronique superieure. Chaque circuit d'etouffement possede une gigue temporelle de 7,47 ps RMS selon des simulations faites avec le logiciel Cadence. Le CE a la flexibilite d'ajuster les temps d'etouffement et de recharge pour la PAMP tout en presentant une faible consommation de puissance (~ 0,33 mW a 33 Mcps). La conception du PAMP necessite de supporter des tensions superieures aux 3,3 V de la technologie. Pour repondre a ce probleme, des transistors a drain etendu (DEMOS) ont ete realises. En raison de retards de production par Ies fabricants, les circuits n'ont pu etre testes physiquement par des mesures. Les resultats de ce memoire

  1. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    PubMed

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  2. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    NASA Astrophysics Data System (ADS)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  3. Derivation of the sensitivity of a Geiger mode avalanche photodiode detector from a given efficiency for quantum key distribution experiments

    NASA Astrophysics Data System (ADS)

    Hammura, Kiyotaka; Williams, David

    2009-05-01

    The detection sensitivity (DS) of a commercial single-photon receiver based on an InGaAs gate-mode avalanche photodiode is estimated. The installation of a digital-blanking system (DBS) to reduce dark current differentiates between the DS, which is the efficiency of the detector during its open-gate/active state, and the total/overall detection efficiency (DE). Using numerical simulations it is found that the average number of light-pulses blanked by DBS following a registered pulse is 0.333. The DS is estimated at 0.216, which can be used for estimating the DE for an arbitrary photon arrival rate and gating frequency of the receiver.

  4. Active quench and reset integrated circuit with novel hold-off time control logic for Geiger-mode avalanche photodiodes.

    PubMed

    Deng, Shijie; Morrison, Alan P

    2012-09-15

    This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.

  5. Linearity improvement of high-speed avalanche photodiodes using thin depleted absorber operating with higher order modulation format.

    PubMed

    Nada, Masahiro; Hoshi, Takuya; Yamazaki, Hiroshi; Hashimoto, Toshikazu; Matsuzaki, Hideaki

    2015-10-19

    We present an avalanche photodiode (APD) with high-speed, high-responsivity and high-linearity operation to cope with higher order modulation format, such as pulse-amplitude modulation (PAM). A hybrid absorber configuration with thin depleted region which we newly employed successfully eliminates the space charge effect in the APD while maintaining high responsivity and operating speed. The fabricated APD shows an improved optical-input-electrical-output linearity for an optical input power over -8 dBm, and an optical receiver with this APD achieves both an error-free operation with a KP4 FEC and a high sensitivity of -17 dBm against a 28-Gbaud PAM4 signal.

  6. Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced polarity reversal

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Li, Tianxin; Wang, Wenjuan; Hu, Weida; Lin, Le; Lu, Wei

    2009-08-01

    Cross-sectional scanning capacitance microscopy is applied to study the carrier distribution as well as its variation under irradiation in an InGaAs/InP avalanche photodiode. The photocarriers excited by the stray light of atomic force microscope laser beam lead to a dramatic deviation of the dC /dV profile in the unintended-doped absorption layer, and even cause the reversal of signal polarity. The existence of surface potential and its impact on the spreading of photocarriers near the cleaved face are demonstrated as the main origins of the light-induced dC /dV reversal. The effect provides experimental information on the distribution property of photoelectric process in devices.

  7. Single-photon quantum efficiency of Geiger-mode InGaAs/InP avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Forsyth, Keith W.; Dries, J. C.

    2004-06-01

    The single-photon detection efficiency of various commercial InGaAs/InP avalanche photodiodes (APDs) operated in the Geiger mode has been reported previously. These studies showed substantial photon detection efficiency variation between individual devices, but did not indicate what device parameters might be responsible for this variation. We present data on the external single-photon detection efficiency of APDs operated as near-infrared single photon counters, and show how detection efficiency is related to both device design and operating conditions. We have fabricated APDs with near-infrared single-photon detection efficiency exceeding 50% at 10% excess bias, demonstrating that InGaAs/InP APDs of the proper design are well suited to many practical applications of photon counting in the 1.0 to 1.7 micron wavelength band.

  8. Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

    NASA Astrophysics Data System (ADS)

    Jordy, George; Donnelly, Joseph

    2015-05-01

    A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device's space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.

  9. A discrete model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode

    SciTech Connect

    Vanyushin, I. V. Gergel, V. A.; Gontar', V. M.; Zimoglyad, V. A.; Tishin, Yu. I.; Kholodnov, V. A. Shcheleva, I. M.

    2007-06-15

    A new discrete theoretical model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode is developed. It is shown that the spreading resistance in the substrate profoundly affects both the amplitude of a single-photon electrical pulse and the possibility of attaining the steady-state form of the avalanche breakdown excluding the Geiger mode of the photodiode's operation. The model is employed to interpret the experimental data obtained using test single-photon cells of avalanche photodiodes fabricated on the basis of the 0.25-{mu}m silicon technology with the use of deep implantation to form the region of avalanche multiplication for the charge carriers. Excellent functional properties of the studied type of the single-photon (Geiger) cell are noted. A typical amplitude characteristic of the cell for optical radiation with the wavelength {lambda} = 0.56 {mu}m in the irradiance range of 10{sup -3}-10{sup 2} lx is presented; this characteristic indicates that the quantum efficiency of photoconversion is extremely high.

  10. A simple model to determine multiplication and noise in avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Li, K. F.; Rees, G. J.; David, J. P. R.; Robson, P. N.

    1998-03-01

    Avalanche multiplication and noise in 1.0, 0.5, 0.1, and 0.05 μm GaAs p+-i-n+ diodes have been calculated for both electron and hole initiated multiplication using a simple model which incorporates a randomly-generated ionization path length (RPL) and a hard-threshold dead space. We find that the mean multiplication obtained using this RPL model is in excellent agreement, even for the shortest structure, with that obtained from an analytical-band structure Monte Carlo (MC) model, which incorporates soft-threshold effects. However, it predicts slightly lower avalanche noise in the shorter devices. This difference results from the narrower ionization path length probability distribution and larger dead space of the hard-threshold RPL model at high electric fields as compared to the more realistic distribution function associated with the relatively sophisticated MC model.

  11. A 3.3-to-25V all-digital charge pump based system with temperature and load compensation for avalanche photodiode cameras with fixed sensitivity

    NASA Astrophysics Data System (ADS)

    Mandai, S.; Charbon, E.

    2013-03-01

    This paper presents a digitally controlled charge pump (DCP) to supply high voltages, while ensuring temperature and load current independence of excess bias in cameras based on avalanche photodiodes. This is achieved through a single-photon avalanche diode (SPAD) based monitoring mechanism that continuously reconfigures the DCP using a feedback loop to compensate breakdown voltage variations by temperature and load current in real time. The sensitivity of the SPADs, or photon detection probability (PDP), is maintained to within 1.9% when the temperature shifts from 28°C to 65°C and the load current changes from 0 μA to 100 μA.

  12. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy γ-rays with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Braun, I.; Commichau, S. C.; Rissi, M.; Backes, M.; Biland, A.; Bretz, T.; Britvitch, I.; Commichau, V.; von Gunten, H.; Hildebrand, D.; Horisberger, U.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.; Neise, D.; Pauss, F.; Pohl, M.; Renker, D.; Rhode, W.; Röser, U.; Straumann, U.; Viertel, G.

    2009-10-01

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  13. Detection of the Light Produced in Scintillating Tiles by Means of a Wls Fiber and AN Avalanche Photodiode Working in the Geiger Mode

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Mal'Kevich, D.; Martemiyanov, A.; Smirnitsky, A.; Voloshin, K.; Grigoriev, E.; Golovin, V.; Bondarenko, G.

    2004-07-01

    Plates of an organic scintillator BC408, 50 × 50 × 5 mm3, with a wavelength-shifting (WLS) fiber Kuraray Y11, embedded in circular grooves inside the plastic, were used in combination with 1 mm2 avalanche photodiodes working in the Geiger mode (APDg or MRS-APD). Beam tests with minimum ionizing particles (MIP), performed at the ITEP synchrotron, have shown high detection efficiencies (about 13 photo-electrons).

  14. The 1.06 optical receiver. [avalanche photodiodes for laser range finders

    NASA Technical Reports Server (NTRS)

    Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.

    1978-01-01

    High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.

  15. Ultra-fast time-correlated single photon counting avalanche photodiodes for time-domain non-contact fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Robichaud, Vincent; Lapointe, Éric; Bérubé-Lauzière, Yves

    2007-06-01

    Recent advances in the design and fabrication of avalanche photodiodes (APDs) and quenching circuits for timecorrelated single photon counting (TCSPC) have made available detectors with timing resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs). The latter, were until recently the best TCSPC detectors in terms of temporal resolution (<=30ps). Comparable resolutions can now be obtained with TCSPC APDs at a much lower cost. It should also be possible to manufacture APDs with standard electronics fabrication processes in a near future. This will contribute to further decrease their price and ease their integration in complex multi-channel detection systems, as required in diuse optical imaging (DOI) and tomography (DOT). We present, to our knowledge for the first time, results which demonstrate that, despite their small sensitive area, TCSPC APDs can be used in time-domain (TD) DOT and more generally in TD DOI. With appropriate optical design of the detection channel, our experiments show that it is possible to obtain comparable measurements with APDs as with PMTs.

  16. Design and performance testing of an avalanche photodiode receiver with multiplication gain control algorithm for intersatellite laser communication

    NASA Astrophysics Data System (ADS)

    Yu, Xiaonan; Tong, Shoufeng; Dong, Yan; Song, Yansong; Hao, Shicong; Lu, Jing

    2016-06-01

    An avalanche photodiode (APD) receiver for intersatellite laser communication links is proposed and its performance is experimentally demonstrated. In the proposed system, a series of analog circuits are used not only to adjust the temperature and control the bias voltage but also to monitor the current and recover the clock from the communication data. In addition, the temperature compensation and multiplication gain control algorithm are embedded in the microcontroller to improve the performance of the receiver. As shown in the experiment, with the change of communication rate from 10 to 2000 Mbps, the detection sensitivity of the APD receiver varies from -47 to -34 dBm. Moreover, due to the existence of the multiplication gain control algorithm, the dynamic range of the APD receiver is effectively improved, while the dynamic range at 10, 100, and 1000 Mbps is 38.7, 37.7, and 32.8 dB, respectively. As a result, the experimental results agree well with the theoretical predictions, and the receiver will improve the flexibility of the intersatellite links without increasing the cost.

  17. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    NASA Astrophysics Data System (ADS)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  18. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    NASA Astrophysics Data System (ADS)

    Akiba, M.; Tsujino, K.

    2016-08-01

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.

  19. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    NASA Astrophysics Data System (ADS)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  20. Gain and bandwidth analysis and comparison for gallium arsenide and silicon avalanche photodiodes with very thin multiplication layer

    NASA Astrophysics Data System (ADS)

    Majumder, Kanishka; Das, Nikhil Ranjan

    2013-05-01

    We describe the calculation of gain and bandwidth of an n+-i-p+ avalanche photodiode (APD) for a multiplication layer down to tens of nanometers. The computed results are used to make a comparative study of gallium arsenide (GaAs) and silicon (Si) APDs. In the analysis, the depletion region is discretized into equal energy segments to take into account the discontinuous nature of impact ionization in the multiplication layer due to dead-space effect. Also, the carrier diffusion from undepleted regions is considered to study the effect of low bias on the frequency response. Carrier distribution within the structure is obtained by a numerical solution of coupled equations and recurrence relations. The model is verified with some experimental data taken from literature. Results show that gain increases with bias more rapidly for thinner multiplication layer. The Si APD is thinner than GaAs APD for the same gain at a given bias. Diffusion causes significant reduction of bandwidth at a low gain, with the change being sharper for GaAs APD than for Si APD.

  1. Pulse-resolved multi-photon X-ray detection at 31 MHz based on a quadrant avalanche photodiode.

    PubMed

    Reusch, Tobias; Osterhoff, Markus; Agricola, Johannes; Salditt, Tim

    2014-07-01

    The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the synchrotron bunch repetition rate. By a novel multi-photon detection scheme, the exact number of X-ray photons within each X-ray pulse can be recorded. Commissioning experiments at beamlines P08 and P10 of the storage ring PETRA III, at DESY, Hamburg, Germany, have been used to validate the pulse-wise multi-photon counting scheme at bunch frequencies ≥ 31 MHz, enabling pulse-by-pulse readout during the PETRA III 240-bunch mode with single-photon detection capability. An X-ray flux of ≥ 3.7 × 10(9) photons s(-1) can be detected while still resolving individual photons at low count rates.

  2. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    SciTech Connect

    Wang, Xiaodong; Pan, Ming; Hou, Liwei; Xie, Wei; Hu, Weida Xu, Jintong; Li, Xiangyang; Chen, Xiaoshuang Lu, Wei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantum efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.

  3. A Low Noise Planar-Type Avalanche Photodiode using a Single-Diffusion Process in Geiger-Mode Operation

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon; Lee, Byoungwook; Yoon, Sunwoong; Hong, Jung-ho; Yang, Kyounghoon

    2013-07-01

    We report the performances of a planar-type Geiger-mode InGaAs/InP avalanche photodiode (APD) using a single-diffusion process based on a single wet recess-etching technique at a wavelength of 1.55 µm. The recess-etched window region is found to have a smoothly etched sidewall with a large slope width of 0.9 µm. The Geiger-mode characteristics have been measured at 240-280 K for a 20 µm diameter device. The fabricated Geiger-mode APD shows a low dark count probability (DCP) per gate pulse of 2.8×10-3, a high photon detection efficiency (PDE) of 17.4%, and a low noise equivalent power (NEP) of 1.74×10-16 W/Hz1/2 at 240 K. The results are the first demonstration of a planar-type single-diffused Geiger-mode APD using a single wet recess-etching.

  4. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  5. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    NASA Technical Reports Server (NTRS)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  6. Feasibility study to determine correct focus by analyzing photon distributions on Geiger-mode avalanche photodiode focal plane array

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hoon; Kong, Hong Jin; Jo, Sung Eun; Oh, Min Seok

    2011-06-01

    A method to determine correct focus in direct detection laser radar system using Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA) is proposed. It is implemented by laser pulses with controlled beam diameter and energy on a distant target. And the time-of-flight (TOF) of laser pulses are obtained for each pixel in GmAPD-FPA. With multiple laser pulses, time correlated single photon counting (TCSPC) is carried out to obtain target detection probability. Using target detection probabilities of each pixel, the photon distribution on GmAPD-FPA is acquired. The condition to determine correct focus is the minimum photon distribution in GmAPD-FPA. In theory part, the range of laser pulse energy is decided. The experiments are carried out with commercial 1x8 pixel GmAPD-FPA. The experimental results show that the focus position is founded using this method and a spatial resolution of a laser radar system is improved where the 1x8 pixel GmAPD-FPA is located in focus position.

  7. Design and performance testing of an avalanche photodiode receiver with multiplication gain control algorithm for intersatellite laser communication

    NASA Astrophysics Data System (ADS)

    Yu, Xiaonan; Tong, Shoufeng; Dong, Yan; Song, Yansong; Hao, Shicong; Lu, Jing

    2016-06-01

    An avalanche photodiode (APD) receiver for intersatellite laser communication links is proposed and its performance is experimentally demonstrated. In the proposed system, a series of analog circuits are used not only to adjust the temperature and control the bias voltage but also to monitor the current and recover the clock from the communication data. In addition, the temperature compensation and multiplication gain control algorithm are embedded in the microcontroller to improve the performance of the receiver. As shown in the experiment, with the change of communication rate from 10 to 2000 Mbps, the detection sensitivity of the APD receiver varies from -47 to -34 dBm. Moreover, due to the existence of the multiplication gain control algorithm, the dynamic range of the APD receiver is effectively improved, while the dynamic range at 10, 100, and 1000 Mbps is 38.7, 37.7, and 32.8 dB, respectively. As a result, the experimental results agree well with the theoretical predictions, and the receiver will improve the flexibility of the intersatellite links without increasing the cost.

  8. InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Jiang, Xudong; Patel, Ketan; Slomkowski, Krystyna; Koch, Tim; Rangwala, Sabbir; Zalud, Peter F.; Yu, Young; Tower, John; Ferraro, Joseph

    2009-05-01

    We report on the development of 32 x 32 focal plane arrays (FPAs) based on InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) designed for use in three-dimensional (3-D) laser radar imaging systems at 1064 nm. To our knowledge, this is the first realization of FPAs for 3-D imaging that employ a planar-passivated buried-junction InP-based GmAPD device platform. This development also included the design and fabrication of custom readout integrate circuits (ROICs) to perform avalanche detection and time-of-flight measurements on a per-pixel basis. We demonstrate photodiode arrays (PDAs) with a very narrow breakdown voltage distribution width of 0.34 V, corresponding to a breakdown voltage total variation of less than +/- 0.2%. At an excess bias voltage of 3.3 V, which provides 40% pixel-level single photon detection efficiency, we achieve average dark count rates of 2 kHz at an operating temperature of 248 K. We present the characterization of optical crosstalk induced by hot carrier luminescence during avalanche events, where we show that the worst-case crosstalk probability per pixel, which occurs for nearest neighbors, has a value of less than 1.6% and exhibits anisotropy due to isolation trench etch geometry. To demonstrate the FPA response to optical density variations, we show a simple image of a broadened optical beam.

  9. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    NASA Astrophysics Data System (ADS)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-11-01

    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  10. Comparative Performance of the Photomultiplier Tube and the Silicon Avalanche Photodiode When Used as Detectors in Angular Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.

    2014-12-01

    We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science

  11. In Orbit Performance of Si Avalanche Photodiode Single Photon Counting Modules in the Geoscience Laser Altimeter System on ICESat

    NASA Technical Reports Server (NTRS)

    Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.

    2006-01-01

    Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.

  12. Optimization of a guard ring structure in Geiger-mode avalanche photodiodes fabricated at National NanoFab Center

    NASA Astrophysics Data System (ADS)

    Lim, K. T.; Kim, H.; Cho, M.; Kim, Y.; Kim, C.; Kim, M.; Lee, D.; Kang, D.; Yoo, H.; Park, K.; Sul, W. S.; Cho, G.

    2016-01-01

    A typical Geiger-mode avalanche photodiode (G-APD) contains a guard ring that protects the structure from having an edge breakdown due to the lowering of electric fields at junction curvatures. In this contribution, G-APDs with a virtual guard ring (vGR) merged with n-type diffused guard ring (nGR) in various sizes were studied to find the optimal design for G-APDs fabricated at National NanoFab Center (NNFC) . The sensors were fabricated via a customized CMOS process with a micro-cell size of 65× 65 μm2 on a 200 mm p-type epitaxial layer wafer. I-V characteristic curves for proposed structures were measured on a wafer-level with an auto probing system and plotted together to compare their performance. A vGR width of 1.5 μm and a nGR width of 1.5 μm with an overlapping between vGR and nGR of 1.5 μm showed the lowest leakage current before the breakdown voltage while suppressing the edge breakdown. Furthermore, the current level of the lowest-leakage-current structure was as low as that of only vGR with a width of 2.0 μm, indicating that the structure is also area efficient. Based on these results, the design with vGR, nGR, and OL with width of 1.5 μm is determined to be the optimal structure for G-APDs fabricated at NNFC.

  13. Comparison of AlGaN p-i-n ultraviolet avalanche photodiodes grown on free-standing GaN and sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Ryou, Jae-Hyun; Sood, Ashok K.; Dhar, Nibir D.; Lewis, Jay

    2015-12-01

    We compare the performance characteristics of Al0.05Ga0.95N UV avalanche photodiodes (APDs) grown on different substrates. UV-APDs grown on a free-standing GaN substrate show lower dark-current densities for all fabricated mesa sizes than similar UV-APDs grown on a GaN/sapphire template. In addition, a stable avalanche gain higher than 5 × 105 and a significant increase in the responsivity of UV-APDs grown on a free-standing GaN substrate are observed. We believe that the high crystalline quality of Al0.05Ga0.95N UV-APDs grown on a free-standing GaN substrate with low dislocation density is responsible for the observed low leakage currents, high performance characteirstics, and reliability of the devices.

  14. Gain uniformity of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication regions

    SciTech Connect

    Holden, W.S.; Campbell, J.C.; Dental, A.G.

    1985-09-01

    We report on the spatial uniformity of the gain M of InP/ InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication regions (SAGM-APD's). Typically, these APD's exhibit less than 10 percent variation in the gain (for M less than or equal to 10) over the entire photosensitive area. The small nonuniformity which is observed shows a one-to-one correspondence with inhomogeneities in the epitaxial layers of the SAGM-APD structure. We also observe a reduction in the effective photosensitive diameter with increasing bias voltage.

  15. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    PubMed

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively. PMID:26974630

  16. Design of a back-illuminated, crystallographically etched, silicon-on-sapphire avalanche photodiode with monolithically integrated microlens, for dual-mode passive & active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.; Cole, Daniel C.

    2008-12-01

    There is a growing need in space and environmental research applications for dual-mode, passive and active 2D and 3D ladar imaging methods. To fill this need, an advanced back-illuminated avalanche photodiode (APD) design is presented based on crystallographically etched (100) epitaxial silicon on R-plane sapphire (SOS), enabling single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with KOH:IPA:H2O solution through a thermally grown oxide mask, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, Φc = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. Detectors are back-illuminated through light focusing microlenses fabricated in the thinned, AR-coated sapphire substrate. The APDs share a common, front-side anode contact, made locally at the base of each device mesa. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical cross-talk. SOS-APD arrays are indium bump-bonded to CMOS readout ICs to produce hybrid FPAs. The quantum efficiency for the square 27 µm pixels exceeds 50% for 250 nm < λ < 400 nm and exceeds 80% for 400 nm < λ < 700 nm. The sapphire microlenses compensate detector quantum efficiency loss resulting from the mesa geometry and yield 100% sensitive-area-fill-factor arrays, limited in size only by the wafer diameter.

  17. Measured Temperature Dependence of Scintillation Camera Signals Read Out by Geiger-Müller Mode Avalanche Photodiodes.

    PubMed

    Hunter, William C J; Miyaoka, Robert S; Macdonald, L R; Lewellen, Thomas K

    2009-10-24

    We are developing a prototype monolithic scintillation camera with optical sensors on the entrance surface (SES) for use with statistically-estimated depth-of-interaction in a continuous scintillator. We opt to use Geiger-Müller mode avalanche photodiodes (GM-APDs) for the SES camera since they possess many desirable properties; for the intended application (SES and PET/MR imaging), they offer a thin attenuation profile and an operational insensitivity to large magnetic fields. However, one issue that must be addressed in using GM-APDs in an RF environment (as in MR scanners) is the thermal dissipation that can occur in this semiconductor material.Signals of GM-APDs are strongly dependent on junction temperature. Consequently, we are developing a temperature-controlled GM-APD-based PET camera whose monitored temperature can be used to dynamically account for the temperature dependence of the output signals. Presently, we aim to characterize the output-signal dependence on temperature and bias for a GM-APD-based scintillation camera.We've examined two GM-APDs, a Zecotek prototype MAPD-3N, and a SensL commercial SPMArray2. The dominant effect of temperature on gain that we observe results from a linear dependence of breakdown voltage on temperature (0.071 V/°C and 0.024 V/°C, respectively); at 2.3 V excess bias (voltage above breakdown) the resulting change in gain with temperature (without adjusting bias voltage) is -8.5% per °C for the MAPD-3N and -1.5 % per °C for the SPMArray2. For fixed excess bias, change in dark current with temperature varied widely, decreasing by 25% to 40% as temperature was changed from 20 °C to 10 °C and again by 20% to 35% going from 10 °C to 0 °C. Finally, using two MAPD-3N to read out a pair of 3.5-by-3.5-by-20 mm(3) Zecotek LFS-3 scintillators in coincidence, we observe a decrease from 1.7 nsec to 1.5 nsec in coincidence-time resolution as we lowered temperature from 23 °C to 10 °C.

  18. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  19. Impact of a New Highly Sensitive HgCdTe Avalanche Photodiode Detector on Receiver Performance for the CO2 Sounder Lidar for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.

    2013-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing a CO2 lidar as a candidate for the NASA's planned ASCENDS mission under the support of Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). As part of this work we have demonstrated new type of lower noise HgCdTe avalanche photodiode (APD) multi-element detector for the lidar receiver. This significantly improves the receiver sensitivity, lower the laser power, and reduce the receiver telescope size compared to InGaAs photomultiplier tubes (PMT) and APDs currently used. The HgCdTe APD arrays were designed and manufactured by DRS Technologies, Reconnaissance, Surveillance and Target Acquisition (RSTA) Division, which combines their mature HgCdTe APD detector in a hybrid package with a new custom cryogenic silicon preamplifier. The new detectors were specially designed for our airborne CO2 lidar and operate at ~ 77K inside a turn-key closed-cycle cooler. The detector has 80 μm square pixels in a 4x4 array, and >70% fill factor and was custom designed to match the optics of our airborne and eventually space-based CO2 lidar. The initial results of evaluating the detector at NASA GSFC showed the HgCdTe APD assembly has a quantum efficiency of ~90% near 1550-nm, >500 APD gain, 8-10 MHz electrical bandwidth, and an average noise equivalent power of <1fW/Hz1/2. The detector also has a much wider linear dynamic range than PMTs, since it operates in a linear analog mode and has variable gain. Given the wide range of surface reflectivities this is important for ASCENDS. The new detector also greatly improves our CO2 lidar's receiver sensitivity. Calculations show it enables us to reduce the laser transmitter power by half for the space borne instrument while staying with a conventional reasonably sized (~1.2 m) diameter receiver telescope. We will show analysis and laboratory test results of the CO2 lidar performance using a receiver with this new detector. We are also funded by NASA ESTO

  20. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

    PubMed Central

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Li, M. F.; Ni, H. Q.; Niu, Z. C.; Jiang, D. S.; Sun, B. Q.

    2014-01-01

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g(2)(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials. PMID:24407193

  1. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  2. A theory study of the multiplication characteristics of InP/InGaAs avalanche photodiodes with double multiplication layers and double charge layers

    NASA Astrophysics Data System (ADS)

    Liu, Guipeng; Chen, Wenjie; Liu, Linsheng; Jin, Peng; Tian, Yonghui; Yang, Jianhong

    2016-09-01

    An In0.53Ga0.47As/InP avalanche photodiodes (APD) structure with double multiplication layers and double charge layers has been proposed. The calculated results with considering the dead space effect show that a thin 2nd multiplication layer will reduce the excess noise factor F in this structure for a fixed mean gain . And its performances will reach the best when the 2nd multiplication layer is 0.01 μm, which will reduce the excess noise factor 7% compared to a conventional APD for =10. The effects of 1st and 2nd charge layers on the APD have also been studied in this paper.

  3. Count rate studies of a box-shaped PET breast imaging system comprised of position sensitive avalanche photodiodes utilizing monte carlo simulation.

    PubMed

    Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S

    2006-01-01

    We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi). PMID:17645997

  4. Autofocus technique for three-dimensional imaging, direct-detection laser radar using Geiger-mode avalanche photodiode focal-plane array.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun

    2010-12-15

    An autofocus technique is proposed for a three-dimensional imaging, direct-detection laser radar system that uses a Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA). This technique is implemented by pointing laser pulses on a target of interest and observing its scattered photon distribution on a GmAPD-FPA. Measuring the standard deviation of the photon distribution on a GmAPD-FPA enables the best focus condition to be found. The feasibility of this technique is demonstrated experimentally by employing a 1 × 8 pixel GmAPD-FPA. It is shown that the spatial resolution improves when the GmAPD-FPA is located in the best focus position found by the autofocus technique. PMID:21165141

  5. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Li, M. F.; Ni, H. Q.; Niu, Z. C.; Jiang, D. S.; Sun, B. Q.

    2014-01-01

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g(2)(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials.

  6. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  7. In-flight verification of avalanche photodiodes: avenue to a low-cost solution to measure suprathermal particles for future missions

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Bonnell, J. W.; Christian, E. R.; Desai, M. I.; Grubbs, G. A., II; Jahn, J. M.; Livi, S. A.; Kanekal, S. G.; Llera, K.; McComas, D. J.; Michell, R.; Samara, M.; Vines, S. K.

    2014-12-01

    Flight operation results and plans of Avalanche Photodiodes (APDs) to measure suprathermal particles (a ~few keV up to ~100s of keV) are summarized in this presentation. Ions and electrons in this energy range play crucial roles in many fundamental processes of space plasmas including particle heating and acceleration, providing source material for the energetic particles accelerated near the Sun, the heliosphere, and in geospace. Characterizing these populations poses serious technical challenges because this energy region lies between the two most commonly used particle detection techniques, i.e., that used by thermal or plasma instruments and by Solid-State Detector (SSD)-based energetic particle telescopes, which are limited by typical SSD threshold energies of >10s keV. Our previous work has already demonstrated that a new type of low-noise, low-threshold Avalanche Photo-Diode (APD) has an intrinsic noise level of 0.9 keV, and can therefore enable high-energy resolution measurements of suprathermal electrons and ions. In addition, APDs provide suitable solutions for space plasma detectors in low-cost missions/platform because of their light-weight, small-size, power-saving features. This study presents two low-cost missions (a sounding rocket and a CubeSat) that implement APDs as particle detectors: (1) The Medium-energy Electron SPectrometer (MESP) sensor aboard a sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 2 to 200 keV in 100-ms time resolution by using 2 APDs and 1 SSD. We show the overall results and the comparison with an MCP-based instrument results. (2) The Miniaturized Electron and pRoton Telescope (MERiT) on the Compact Radiation bElt Explorer (CeREs) to study charged particle dynamics in the Earth's radiation belts. CeREs will be flown as part of a 3U CubeSat in a

  8. Time-resolved non-contact fluorescence diffuse optical tomography measurements with ultra-fast time-correlated single photon counting avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Bérubé-Lauzière, Yves; Robichaud, Vincent; Lapointe, Éric

    2007-07-01

    The design and fabrication of time-correlated single photon counting (TCSPC) avalanche photodiodes (APDs) and associated quenching circuits have made significant progresses in recent years. APDs with temporal resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs) are now available. MCP-PMTs were until these progresses the best TCSPC detectors with timing resolutions down to 30ps. APDs can now achieve these resolutions at a fraction of the cost. Work is under way to make the manufacturing of TCSPC APDs compatible with standard electronics fabrication practices. This should allow to further reduce their cost and render them easier to integrate in complex multi-channel TCSPC electronics, as needed in diffuse optical tomography (DOT) systems. Even if their sensitive area is much smaller than that of the ubiquitous PMT used in TCSPC, we show that with appropriate selection of optical components, TCSPC APDs can be used in time-domain DOT. To support this, we present experimental data and calculations clearly demonstrating that comparable measurements can be obtained with APDs and PMTs. We are, to our knowledge, the first group using APDs in TD DOT, in particular in non-contact TD fluorescence DOT.

  9. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes.

    PubMed

    Xu, Fan; Wang, Yuanqing; Li, Fenfang

    2016-03-01

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.

  10. Pulse-resolved multi-photon X-ray detection at 31 MHz based on a quadrant avalanche photodiode

    PubMed Central

    Reusch, Tobias; Osterhoff, Markus; Agricola, Johannes; Salditt, Tim

    2014-01-01

    The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the synchrotron bunch repetition rate. By a novel multi-photon detection scheme, the exact number of X-ray photons within each X-ray pulse can be recorded. Commissioning experiments at beamlines P08 and P10 of the storage ring PETRA III, at DESY, Hamburg, Germany, have been used to validate the pulse-wise multi-photon counting scheme at bunch frequencies ≥31 MHz, enabling pulse-by-pulse readout during the PETRA III 240-bunch mode with single-photon detection capability. An X-ray flux of ≥3.7 × 109 photons s−1 can be detected while still resolving individual photons at low count rates. PMID:24971964

  11. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Nishikido, Fumihiko; Inadama, Naoko; Oda, Ichiro; Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga; Kitamura, Keishi; Murayama, Hideo

    2010-09-01

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6×6×4 array of 1.46×1.46 mm 2×4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  12. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation

    NASA Astrophysics Data System (ADS)

    Xiang, Jingjing; Zhao, Yanli

    2014-04-01

    2.5 and 10 Gb/s InP/InGaAs avalanche photodiodes (APDs) have been widely used in optical communication systems. However, the study on InP/InGaAs APDs above 10 Gb/s is insufficient. Recently, high-speed and high-sensitivity APDs for 100 Gb/s or even 400 Gb/s optical communication systems have drawn a lot of attention. On basis of the physical model for frequency response of APD including the dead space effect, a waveguide separate absorption, grading, charge, and multiplication (WG-SAGCM) InP/InGaAs APD has been designed for 25 Gb/s operation. Also, the frequency response of WG InAlAs/InGaAs APD was also simulated, which is perfectly in accordance with the experimental data. The comparison between InP/InGaAs APD and InAlAs/InGaAs APD with the same thickness of multiplication layer shows that the speeds of carriers in the nonionization layers are also important for the gain-bandwidth characteristics of SAGCM WG-APD. The higher drift velocity of carriers returned from multiplication layer and the lower drift velocity of carriers injected into multiplication layer result in a higher gain-bandwidth product and a higher dc gain. This work is helpful for the design of high-speed APDs.

  13. Impact ionization in Al{sub x}Ga{sub 1−x}As{sub y}Sb{sub 1−y} avalanche photodiodes

    SciTech Connect

    Grzesik, M.; Donnelly, J.; Duerr, E.; Manfra, M.; Diagne, M.; Bailey, R.; Turner, G.; Goodhue, W.

    2014-04-21

    Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (α) and holes (β) in Al{sub x}Ga{sub 1−x}As{sub y}Sb{sub 1−y} lattice matched to GaSb for three alloy compositions: (x = 0.40, y = 0.035), (x = 0.55, y = 0.045), and (x = 0. 65, y = 0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77 K to 300 K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that α < β at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for β/α, which is dependent on temperature, alloy composition, and electric-field strength.

  14. Characterization of a CsI(Tl) array coupled to avalanche photodiodes for the Barrel of the CALIFA calorimeter at the NEPTUN tagged gamma beam facility

    NASA Astrophysics Data System (ADS)

    Gascón, M.; Schnorrenberger, L.; Pietras, B.; Álvarez-Pol, H.; Cortina-Gil, D.; Díaz Fernández, P.; Duran, I.; Glorius, J.; González, D.; Perez-Loureiro, D.; Pietralla, N.; Savran, D.; Sonnabend, K.

    2013-10-01

    Among the variety of crystal calorimeters recently designed for several physics facilities, CALIFA (CALorimeter for In-Flight emitted gAmmas and light-charged particles) has especially demanding requirements since it must perform within a very complicated energy domain (gamma-ray energies from 0.1 to 20 MeV and up to 300 MeV protons). As part of the R&D program for the Barrel section of CALIFA, a reduced geometry prototype was constructed. This prototype consisted of a 3 × 5 array of CsI(Tl) crystals of varying dimensions, coupled to large area avalanche photodiodes. Here reported are the details regarding the construction of the prototype and the experimental results obtained at the NEPTUN tagged gamma beam facility, reconstructing gamma energies up to 10 MeV. Dedicated Monte Carlo simulations of the setup were also performed, enabling a deeper understanding of the experimental data. The experimental results demonstrate the effectiveness of the reconstruction method and helped to establish the most suitable crystal geometry to be employed within the forthcoming calorimeter.

  15. Active three-dimensional and thermal imaging with a 30-μm pitch 320×256 HgCdTe avalanche photodiode focal plane array

    NASA Astrophysics Data System (ADS)

    de Borniol, Eric; Rothman, Johan; Guellec, Fabrice; Vojetta, Gautier; Destéfanis, Gérard; Pacaud, Olivier

    2012-06-01

    Three-dimensional (3-D) flash light detection and ranging (LADAR) imaging is based on time of flight (TOF) measurement of a single laser pulse. The laser pulse coming back from the observed object will be detected only if the number of photons received by each pixel generates a signal greater than the pixel noise. In order to extract this weak photonic signal from the noise we use the high gain and low excess noise of the HgCdTe avalanche photodiode (APD) arrays developed at CEA/LETI. The sensor consists of a 30-μm pitch APD detector array hybridized to a 320×256 pixels ROIC for passive and active imaging. In passive mode the focal plane array behaves like a thermal imager and we measured 30 mK of noise-equivalent temperature difference. In active imaging mode, each pixel sensed the time of flight and the intensity two-dimensional (2-D) of a single laser pulse. Laboratory tests show a range noise of 11 cm for 4300 photoelectrons per pixel and detection limit under 100 photoelectrons. The sensor was also used during a field trial to record 2-D and 3-D real-time videos. The quality of the images obtained demonstrates the maturity of HgCdTe-APD-array technology.

  16. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Wang, Yuanqing; Li, Fenfang

    2016-03-01

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ˜15 cm and range accuracy is ˜4 cm root-mean-square error at a distance of ˜40 m.

  17. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    PubMed

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K. PMID:27483891

  18. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes.

    PubMed

    Xu, Fan; Wang, Yuanqing; Li, Fenfang

    2016-03-01

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m. PMID:27036763

  19. Photon counting: Avalanche inspiration

    NASA Astrophysics Data System (ADS)

    Milburn, Gerard

    2008-07-01

    The ability of a customized avalanche-photodiode detector to distinguish the exact number of photons that it receives will simplify the tools required to perform reliable experiments in quantum optics.

  20. Extending the Astronomical Application of Photon Counting HgCdTe Linear Avalanche Photo-Diode Arrays to Low Background Space Observations.

    NASA Astrophysics Data System (ADS)

    Hall, Donald

    The high quantum efficiency and very low dark current, together with the ability to set the wavelength cutoff from one to far beyond 5.5 microns, of large format HAWAII HgCdTe arrays have already made them the workhorse for NASA space astronomy (and related) observations in the 1 to 5.5 micron infrared. They have performed outstandingly on Hubble Wide Field Camera 3 and WISE (and also Deep Impact/EPOXI and OCO-2) and are crucial to the two major NASA Astrophysics missions, JWST and WFIRST, and to Euclid. The proposed investigation seeks to extend these benefits to the most demanding observations those that seek to wring information from only a few photons (starved due to either the intrinsic faintness of the source or the need for high spectral or time resolution) or to discriminate a weak signature against a bright source. We will characterize, and optimize for space astronomy observations, the unique linear avalanche properties of HgCdTe photo-diodes (HgCdTe L-APDs) that allow noiseless (i.e. faithfully preserves the Poisson statistics of the incoming photons) avalanche multiplication of individual photo-electrons. 2.5 micron HgCdTe L-APD technology, developed for infrared eye-safe LIDAR and range gated imaging, is already benefiting infrared wavefront sensing for ground based adaptive optics. In HgCdTe the L-APD gain and the onset voltage for tunneling current are exponential functions of bandgap while also varying with cryogenic operating temperature. The unique HgCdTe bandgap engineering that allows tuning of the cutoff wavelength can be used to critically improve avalanche performance for specific applications. We will thoroughly evaluate avalanche performance at several representative bandgaps so as to allow model prediction of performance over the critical 1 to 5 micron spectral interval. The proposed investigation will hybridize modest 32x32 arrays of HgCdTe L-APDs to photon counting readouts already developed under another award and characterize their

  1. Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.

    2010-08-01

    There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, φ c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 μm emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.

  2. Influence of temperature and bias voltage on the performance of a high resolution PET detector built with position sensitive avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, A.; McLaughlin, T. J.; Levin, C. S.

    2012-08-01

    We evaluate the performance of an 8 × 8 array of 0.9 × 0.9 × 1 mm3 cerium doped lutetium oxyothosilicate (LSO) crystals coupled to a position sensitive avalanche photodiode (PSAPD) as a function of bias voltage and temperature. We use this detector to develop a general methodology to optimize bias voltage, temperature, and gain for PET detectors using semiconductor photodetectors. This detector module will be used in a novel high resolution positron emission tomography (PET) camera dedicated to breast imaging under construction in our lab. Due to the tight packing of many PSAPDs in the system a thermal gradient is expected across the imaging heads. Data were collected for 11 PSAPD temperatures between 5°C and 40°C using a thermo-electric (Peltier) device. At each temperature the bias voltage was varied in steps of 5 V over a 50 V range. We present three methods to predict the optimal bias voltage at every temperature: one based on optimizing the coincidence time resolution, the others based on the relative change in PSAPD gain and leakage current due to the onset of hole multiplication. Optimal gain could also be predicted based on the quality of the flood histogram. At optimal bias voltage, the energy resolution degrades as (10.5±0.1)+((0.038±0.006)/ °C·T)%. Time resolution stays constant at 2.37±0.02 ns below 15°C. Above this temperature, time resolution deteriorates as (1.67±0.06)+((0.042±0.002)/°C·T)ns. Even at high temperatures, all 64 crystal position peaks in the flood histogram are still clearly visible. The width of the peaks in the flood histogram show a quadratic degradation with temperature: (2.6±0.1)·10-2+(1.6±0.2)·10-5/(°C)2·T2. We conclude that both the quality of the flood histogram as well as the coincidence time resolution are better parameters to estimate the optimal bias voltage, than energy resolution. Optimal bias voltage is found to be dependent on the value of k, the ratio between hole and electron multiplication. We

  3. Development of the HgCdTe Avalanche Photodiode Detectors and the Improvement in the CO2 Lidar Performance for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Chen, J. R.; Ramanathan, A. K.; Mao, J.

    2015-12-01

    NASA Goddard Space Flight Center (GSFC) is developing the CO2 lidar as a candidate for the NASA's planned ASCENDS mission under the support of Earth Science Technology Office (ESTO) IIP and ATI-QRS programs. A new type of HgCdTe avalanche photodiode (APD) detector has been developed by the DRS Technologies under the IIP program. The new detectors achieved >70% quantum efficiency, including the effect of the fill factor, over the spectral range from 0.4 to 4.3 μm, which significantly improves the receiver performance of our CO2 lidar and enabled other remote sending measurements. The HgCdTe APD arrays have 80 μm square pixels in a 4x4 array along with a bank of 16 preamplifiers on the same chip carrier. Test results at both DRS and GSFC showed the HgCdTe APD array has achieved, an APD gain of 500-1000, 8-10 MHz electrical bandwidth, and an average noise equivalent power (NEP) of <0.5 fW/Hz1/2. It has demonstrated at least a 3 orders of magnitude dynamic range at a fixed APD gain setting. The gains of the APD and the preamplifier can also be adjusted to further extend the receiver dynamic range. During summer 2014 we successfully demonstrated airborne lidar measurements of column CO2 using one of these detectors. The Aerospace Corporation is currently building a 3U CubeSat with one of these detectors in a small closed-cycle cryocooler as the primary payload under the ESTO In-space Validation of Earth Science Technology (InVEST) program. The CubeSat is scheduled to be launched in late 2016 and will fly in a low Earth orbit and monitor the performance for at least a year. We have also updated the performance analysis of a space-based version of our CO2 lidar with the new HgCdTe APD detector. For the retrievals, a least-square-error method is used to fit the measured transmittances to a predetermined line shape function using 8 to 16 sampling wavelengths. The error in the derived total optical depth and the CO2 mixing ratio are estimated via the standard error

  4. Performance of OOK and low-order PPM modulations in optical communications when using APD-based receivers. [Off-On Keying and Pulse Position Modulation using Avalanche PhotoDiodes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1984-01-01

    The paper computes direct detection laser communications receiver performance when using avalanche photodiode (APD) detectors. The performances are compared in terms of bit error probability vs average signal required per bit when the transmitter uses either on-off keying (OOK) or low-order PPM formats. It is shown that QPPM requires 3 dB less signal than OOK, while BPPM requires the same or slightly more than OOK for the same performance. Optimum APD gain values range from 200 to 400. When using QPPM, k(eff) = 0.006, and optimum gain, 60 signal counts/bit are required at 500 Mbits/s for a 0.000001 bit error probability. It is concluded that QPPM may be an attractive signaling format for some fiber or free space laser communication applications.

  5. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  6. Development of high-speed, low-noise NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Dorn, Reinhold; Eschbaumer, Siegfried; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg

    2010-07-01

    The most promising way to overcome the CMOS noise barrier of infrared AO sensors is the amplification of the photoelectron signal directly at the point of absorption inside the infrared pixel by means of the avalanche gain. HgCdTe eAPD arrays with cut off wavelengths of λc ~2.64 μm produced by SELEX-Galileo have been evaluated at ESO. The arrays were hybridized to an existing non-optimized ROIC developed for laser gated imaging which has a format of 320×256 pixels and four parallel video outputs. The avalanche gain makes it possible to reduce the read noise to < 7 e rms. The dark current requirements of IR wavefront sensing are also met.

  7. Performance of a-Si:H photodiode technology-based advanced CMOS active pixel sensor imagers

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy A.; Haddad, Homayoon; Snyder, Rick D.; Zelman, Mike; Hula, David; Lindahl, Kirk A.

    2001-12-01

    Amorphous silicon photodiode technology is a very attractive option for image array integrated circuits because it enables large die-size reduction and higher light collection efficiency than c-Si arrays. The concept behind the technology is to place the photosensing element directly above the rest of the circuit, thus eliminating the need to make areal tradeoffs between photodiode and pixel circuit. We have developed an photodiode array technology that is fully compatible with a 0.35 um CMOS process to produce image sensors arrays with 10-bit dynamic range that are 30% smaller than comparable c-Si photodiode arrays. The work presented here will discuss performance issues and solutions to lend itself to cost-effective high-volume manufacturing. The various methods of interconnection of the diode to the array and their advantages will be presented. The effect of doped layer thickness and concentration on quantum efficiency, and the effect of a-Si:H defect concentration on diode performance will be discussed. The photodiode dark leakage current density is about 80 pA/cm2, and its absolute quantum efficiency peaks about 85% at 550 nm. These sensors have 50% higher sensitivity, and 2x lower dark current when compared to bulk silicon sensors of the same design. The cell utilizes a 3 FET design, but allows for 100% photodiode area due to the elevated nature of the design. The VGA (640 X 480), array demonstrated here uses common intrinsic and p-type contact layers, and makes reliable contact to those layers by use of a monolithic transparent conductor strap tied to vias in the interconnect.

  8. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  9. Performance assessment of simulated 3D laser images using Geiger-mode avalanche photo-diode: tests on simple synthetic scenarios

    NASA Astrophysics Data System (ADS)

    Coyac, Antoine; Hespel, Laurent; Riviere, Nicolas; Briottet, Xavier

    2015-10-01

    In the past few decades, laser imaging has demonstrated its potential in delivering accurate range images of objects or scenes, even at long range or under bad weather conditions (rain, fog, day and night vision). We note great improvements in the conception and development of single and multi infrared sensors, concerning embedability, circuitry reading capacity, or pixel resolution and sensitivity, allowing a wide diversity of applications (i.e. enhanced vision, long distance target detection and reconnaissance, 3D DSM generation). Unfortunately, it is often difficult to dispose of all the instruments to compare their performance for a given application. Laser imaging simulation has shown to be an interesting alternative to acquire real data, offering a higher flexibility to perform this sensors comparison, plus being time and cost efficient. In this paper, we present a 3D laser imaging end-to-end simulator using a focal plane array with Geiger mode detection, named LANGDOC. This work aims to highlight the interest and capability of this new generation of photo-diodes arrays, especially for airborne mapping and surveillance of high risk areas.

  10. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  11. Advances in InGaAsP-based avalanche diode single photon detectors

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Jiang, Xudong; Entwistle, Mark; Slomkowski, Krystyna; Tosi, Alberto; Acerbi, Fabio; Zappa, Franco; Cova, Sergio

    2011-02-01

    In this Topical Review, we survey the state-of-the-art of single photon detectors based on avalanche diodes fabricated in the InGaAsP materials system for photon counting at near infrared wavelengths in the range from 0.9-1.6 µm. The fundamental trade-off between photon detection efficiency and dark count rate can now be managed with performance that adequately serves many applications, with low dark count rates of ∼1 kHz having been demonstrated at photon detection efficiencies of 20% for 25 µm diameter fiber-coupled devices with thermoelectric cooling. Timing jitter of less than 50 ps has been achieved, although device uniformity is shown to be essential in obtaining good jitter performance. Progress is also reported towards resolving the limitations imposed on photon counting rate by afterpulsing, with at least 50 MHz repetition frequencies demonstrated for 1 ns gated operation with afterpulsing limited to the range of 1-5%. We also present a discussion of future trends and challenges related to these devices organized according to the hierarchy of materials properties, device design concepts, signal processing and electronic circuitry, and multiplexing concepts. Whereas the materials properties of these devices may pose significant challenges for the foreseeable future, there has been considerable progress in device concepts and circuit solutions towards the present imperatives for higher counting rates and simpler device operation.

  12. High-optical-power handling InGaAs photodiodes and balanced receivers for high-spurious free dynamic range (SFDR) analog photonic links

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay M.; Wang, Xinde; Mohr, Dan; Becker, Donald; Patil, Ravikiran

    2004-08-01

    We have developed 20 mA or higher photocurrent handling InGaAs photodiodes with 20 GHz bandwidth, and 10 mA or higher photocurrent handling InGaAs photodiodes with >40 GHz bandwidth. These photodiodes have been thoroughly tested for reliability including Bellcore GR 468 standard and are built to ISO 9001:2000 Quality Management System. These Dual-depletion InGaAs/InP photodiodes are surface illuminated and yet handle such large photocurrent due to advanced band-gap engineering. They have broad wavelength coverage from 800 nm to 1700 nm, and thus can be used at several wavelengths such as 850 nm, 1064 nm, 1310 nm, 1550 nm, and 1620 nm. Furthermore, they exhibit very low Polarization Dependence Loss of 0.05dB typical to 0.1dB maximum. Using above high current handling photodiodes, we have developed classical Push-Pull pair balanced photoreceivers for the 2 to 18 GHz EW system. These balanced photoreceivers boost the Spurious Free Dynamic Range (SFDR) by almost 3 dB by eliminating the laser RIN noise. Future research calls for designing an Avalanche Photodiode Balanced Pair to boost the SFDR even further by additional 3 dB. These devices are a key enabling technology in meeting the SFDR requirements for several DoD systems.

  13. Snow Avalanches

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Over the last century, mountain ranges in Europe and North America have seen substantial development due to the increase in recreational activities, transportation, construction in high altitude areas, etc. In these mountain ranges, avalanches often threaten man's activities and life. Typical examples include recent disasters, such as the avalanche at Val d'Isère in 1970 (39 people were killed in a hostel) or the series of catastrophic avalanches throughout the Northern Alps in February 1999 (62 residents killed). The rising demand for higher safety measures has given new impetus to the development of mitigation technology and has given rise to a new scientific area entirely devoted to snow and avalanches. This paper summarises the paramount features of avalanches (formation and motion) and outlines the main approaches used for describing their movement. We do not tackle specific problems related to snow mechanics and avalanche forecasting. For more information on the subject, the reader is referred to the main textbooks published in Alpine countries [1-8].

  14. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  15. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims. PMID:26983147

  16. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  17. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  18. TOPICAL REVIEW: Nonlocal impact ionization and avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Rees, G. J.; David, J. P. R.

    2010-06-01

    Impact ionization and avalanche multiplication are conventionally described in terms of ionization coefficients which depend only upon the local electric field. Such a description takes no account of the effect of ionization dead space, within which the population distribution, and hence the ionization coefficient of carriers injected cool approach equilibrium with the high electric field, inhibiting ionization and reducing multiplication. This effect, which increases in importance as device dimensions are reduced, clearly benefits such high field devices as transistors by suppressing parasitic avalanche multiplication. It also improves the performance of avalanche photodiodes (APDs) by reducing the spatial randomness of impact ionization, so that the resulting excess multiplication noise is also reduced. It reduces temperature sensitivity and may also further enhance APD speed. This paper reviews these effects and some theoretical models used to describe them. In memory of Peter Robson, who inspired and encouraged scientists and engineers, young and old.

  19. Low-noise photodiode detector for optical fluctuation diagnostics

    SciTech Connect

    Fonck, R.J.; Ashley, R.; Durst, R. ); Paul, S.F.; Renda, G. )

    1992-10-01

    The beam emission spectroscopy optical fluctuation diagnostic requires the highest possible quantum efficiency detector at 656 nm to minimize the photon statistical baseline limit to the detectable fluctuation level. A photoconductive photodiode detector with an extremely low-noise preamplifier and a reactive feedback circuit provides quantum efficiencies up to 70%--80% for a useful frequency range of at least 0--150 kHz with incident powers of {similar to}10 nW. The diodes are chosen for negligible leakage current and hence do not require active cooling. These detectors have provided increase in the sensitivity to plasma fluctuation amplitude by a factor of {similar to}14 over photomultipliers and a factor of 4 over large area avalanche photodiodes.

  20. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  1. Advanced ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometric methods for simultaneous screening and quantification of triterpenoids in Poria cocos.

    PubMed

    Xia, Bing; Zhou, Yan; Tan, Hong Sheng; Ding, Li Sheng; Xu, Hong Xi

    2014-01-01

    A sensitive, precise and accurate method was developed to screen and quantify triterpenoids based on ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS). An exact neutral loss scan of 62.0004 Da (CH2O3) was used to selectively detect triterpenoids in Poria cocos, followed by a survey scan for exact masses of precursor and fragment ions of these triterpenoids. The developed method was applied to quantify seven major triterpenoids in 40 P. cocos samples of different origins within 18 min, and a total of 31 triterpenoids were unequivocally or tentatively identified. Principal component analysis of these samples showed a clear separation of three groups, and ten triterpenoids play key roles in differentiating these samples were obtained from the OPLS-DA variable influence on projection (VIP) plot and then unequivocally or tentatively identified. The developed method can be applied for rapid bitterness evaluation, quality control and authenticity establishment of P. cocos.

  2. Characterization of an advanced harmonic subtraction single-photon detection system based on an InGaAs/InP avalanche diode

    NASA Astrophysics Data System (ADS)

    Bienfang, Joshua C.; Restelli, Alessandro

    2016-05-01

    We discuss the performance of a 1.25 GHz gated single-photon avalanche diode (SPAD) with bias gates of 150 ps FWHM and AC amplitude up to 25 V, a high-efficiency, high-speed SPAD system. This system uses an interferometric readout technique known as harmonic subtraction, and recent development efforts have enabled the use of up to the 4th harmonic of the gate to discriminate avalanche signals from the gate transient. With an improved design of the RF control system we have been able to demonstrate an ultra-low minimum detectable charge. We discuss the performance of this system, particularly its afterpulsing performance when counting at rates > 108 s-1. Systems of this type require unique characterization techniques, and we will discuss the methods we have developed for this purpose.

  3. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  4. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  5. Avalanches in Wood Compression

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Miksic, A.; Ovaska, M.; Alava, Mikko J.

    2015-07-01

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  6. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  7. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  8. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free. PMID:26274428

  9. Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Chen, Wei; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-08-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generation.

  10. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  11. Exclusion processes with avalanches.

    PubMed

    Bhat, Uttam; Krapivsky, P L

    2014-07-01

    In an exclusion process with avalanches, when a particle hops to a neighboring empty site which is adjacent to an island the particle on the other end of the island immediately hops, and if it joins another island this triggers another hop. There are no restrictions on the length of the islands and the duration of the avalanche. This process is well defined in the low-density region ρ < 1/2. We describe the nature of steady states (on a ring) and determine all correlation functions. For the asymmetric version of the process, we compute the steady state current, and we describe shock and rarefaction waves which arise in the evolution of the step-function initial profile. For the symmetric version, we determine the diffusion coefficient and examine the evolution of a tagged particle.

  12. Flares as Avalanches?

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.

    2003-05-01

    In 1991, E.T. Lu and R. Hamilton (ApJ 380, L89) suggested that flares could be interpreted as avalanches of reconnection events in coronal magnetic structures driven to a self-organized critical state. Physical underpinning for the simple cellular automaton model they used to illustrate their idea can be readily found in the nanoflare conjecture for coronal heating championed over the past two decades by E.N. Parker (e.g., ApJ 330, 474 [1988]). In this lecture I will give a brief overview of Lu & Hamilton's avalanche model, and describe how it can be physically interpreted in the context of Parker's nanoflare conjecture. After discussing some illustrative model results, I will focus on recent comparisons of the model's predictions with flare observations. Finally, I will discuss some recent attempts at quantitatively exploring the physical relationship between model components and the physics of magnetic reconnection.

  13. Avalanche photoconductive switching

    SciTech Connect

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  14. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  15. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  17. 10Be cosmic-ray exposure dating of moraines and rock avalanches in the Upper Romanche valley (French Alps): Evidence of two glacial advances during the Late Glacial/Holocene transition

    NASA Astrophysics Data System (ADS)

    Chenet, Marie; Brunstein, Daniel; Jomelli, Vincent; Roussel, Erwan; Rinterknecht, Vincent; Mokadem, Fatima; Biette, Melody; Robert, Vincent; Léanni, Laëtitia

    2016-09-01

    Cosmic-ray exposure (CRE) dating of moraines allow glacier fluctuations and past climate change reconstructions. In the French Alps, there is a lack of moraine dating for the Late Glacial/Holocene transition period. Here we present a chronology of glacier advances in the Upper Romanche valley (French Alps - Massif des Ecrins) based on 10Be CRE dating. CRE ages of moraines of 13.0 ± 1.1 ka and 12.4 ± 1.5 ka provide evidence for two stages of glacial advance or standstill at the end of the Late Glacial. The CRE dating of a rock avalanche deposit at 12.2 ± 1.5 ka is attributed to post-glacial debuttressing and reveals rapid deglaciation at the end of the Late Glacial. A CRE age of 7.1 ± 0.7 ka of a second mass-wasting, whose triggering factor is unidentified so far, indicates that up to an altitude of 2300 m a.s.l., the valley was ice-free as of ∼7 kyr at the latest. The re-evaluation of 21 moraine 10Be CRE ages from nine glacial valleys across the Alps shows multiple glacial advances occurring at the Late Glacial/Holocene transition. These results lead to a re-evaluation of the importance of cooling events during the Allerød and the Younger Dryas in the Alps.

  18. Advances in solid state photon detectors

    NASA Astrophysics Data System (ADS)

    Renker, D.; Lorenz, E.

    2009-04-01

    Semiconductor photodiodes were developed in the early `Forties approximately at the time when the photomultiplier tube became a commercial product (RCA 1939). Only in recent years, with the invention of the Geiger-mode avalanche photodiodes, have the semiconductor photo detectors reached sensitivity comparable to that of photomultiplier tubes. The evolution started in the `Sixties with the p-i-n (PIN) photodiode, a very successful device, which is still used in many detectors for high energy physics and a large number of other applications like radiation detection and medical imaging. The next step was the development of the avalanche photodiode (APD) leading to a substantial reduction of noise but not yet achieving single photon response. The weakest light flashes that can be detected by the PIN diode need to contain several hundreds of photons. An improvement of the sensitivity by 2 orders of magnitude was achieved by the development of the avalanche photodiode, a device with internal gain. At the end of the millennium, the semiconductor detectors evolved with the Geiger-mode avalanche photodiode into highly sensitive devices, which have an internal gain comparable to the gain of photomultiplier tubes and a response to single photons. A review of the semiconductor photo detector design and development, the properties and problems, some applications and a speculative outlook on the future evolution will be presented.

  19. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  20. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Metamaterial selective emitters for photodiodes

    NASA Astrophysics Data System (ADS)

    DeMeo, Dante F.; Pfeister, Nicole A.; Shemelya, Corey M.; Vandervelde, Thomas

    2014-03-01

    This work demonstrates metamaterial (MM) selective thermal emitters for potential use with energy harvesting photodiodes, such as thermophotovoltaic cells. Preliminary structures have been designed, simulated, and fabricated using CST Microwave Studio and microfabrication techniques including electron beam evaporation, atomic layer deposition, and electron beam lithography, respectively. Samples were tested to determine the effect of top layer metal thickness on the absorption of these devices. Preliminary simulation and testing was also performed to design a device for operation at 500°C.

  5. Neuronal avalanches and learning

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  6. Recent advances in cardiac SPECT instrumentation and system design.

    PubMed

    Smith, Mark F

    2013-08-01

    Recent advances in clinical cardiac SPECT instrumentation are reviewed from a systems perspective. New hardware technologies include pixelated scintillator and semiconductor detector elements; photodetectors such as position-sensitive photomultiplier tubes (PSPMT), avalanche photodiodes (APD) and silicon photomultipliers (SiPM); and novel cardiac collimation methods. There are new approaches for positioning detectors and controlling their motion during cardiac imaging. Software technology advances include iterative image reconstruction with modeling of Poisson statistics and depth-dependent collimator response. These new technologies enable faster acquisitions, the lowering of administered activity and radiation dose, and improved image resolution. Higher sensitivity collimators are a significant factor enabling faster acquisitions. Several clinical systems incorporating new technologies are discussed and different system designs can achieve similar performance. With detector elements such as APDs, SiPMs and semiconductors that are insensitive to magnetic fields, the potential for cardiac SPECT imagers that are MRI compatible opens up new frontiers in clinical cardiac research and patient care. PMID:23832650

  7. Avalanches in dry and saturated disordered media at fracture

    NASA Astrophysics Data System (ADS)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  8. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  9. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances. PMID:27176380

  10. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  11. Avalanche effects near nanojunctions

    NASA Astrophysics Data System (ADS)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  12. Avalanche effects near nanojunctions.

    PubMed

    Nandigana, Vishal V R; Aluru, N R

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1/f"-type dynamics for the voltage chaos and "1/f^{2}"-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps. PMID:27575159

  13. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    NASA Astrophysics Data System (ADS)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  14. EEG, temporal correlations, and avalanches.

    PubMed

    Benayoun, Marc; Kohrman, Michael; Cowan, Jack; van Drongelen, Wim

    2010-12-01

    Epileptiform activity in the EEG is frequently characterized by rhythmic, correlated patterns or synchronized bursts. Long-range temporal correlations (LRTC) are described by power law scaling of the autocorrelation function and have been observed in scalp and intracranial EEG recordings. Synchronous large-amplitude bursts (also called neuronal avalanches) have been observed in local field potentials both in vitro and in vivo. This article explores the presence of neuronal avalanches in scalp and intracranial EEG in the context of LRTC. Results indicate that both scalp and intracranial EEG show LRTC, with larger scaling exponents in scalp recordings than intracranial. A subset of analyzed recordings also show avalanche behavior, indicating that avalanches may be associated with LRTC. Artificial test signals reveal a linear relationship between the scaling exponent measured by detrended fluctuation analysis and the exponent of the avalanche size distribution. Analysis and evaluation of simulated data reveal that preprocessing of EEG (squaring the signal or applying a filter) affect the ability of detrended fluctuation analysis to reliably measure LRTC.

  15. X-ray spectroscopy with silicon pin and avalanche photo diodes

    NASA Technical Reports Server (NTRS)

    Desai, U. D.

    1992-01-01

    Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.

  16. Avalanche Collapse of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2012-12-01

    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.

  17. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  18. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  19. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  20. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  1. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  2. Experimental Avalanches in a Rotating Drum

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  3. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array

    NASA Astrophysics Data System (ADS)

    Yang, Li; Sheng-Kai, Liao; Fu-Tian, Liang; Qi, Shen; Hao, Liang; Cheng-Zhi, Peng

    2016-03-01

    Not Available Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, and the National Natural Science Foundation of China under Grant No 11405172.

  4. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  5. Quantitative Scaling of Magnetic Avalanches

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bohn, F.; Corrêa, M. A.; Sommer, R. L.; Le Doussal, P.; Wiese, K. J.

    2016-08-01

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples—which are characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  6. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents. PMID:27588876

  7. The development of structures in analogue and natural debris avalanches

    NASA Astrophysics Data System (ADS)

    Paguican, Engielle Mae; van Wyk de Vries, Benjamin; Mahar Francisco Lagmay, Alfredo; Grosse, Pablo

    2010-05-01

    All types of rockslide-debris avalanches present a plethora of internal structures that are also well observed on the surface. Many of these are seen as faults and folds that can be used to determine deformation history and kinematics. We present two sets of simple and well-constrained experiments of reduced basal friction laboratory rockslides, equivalent to a highly deformed simple shear layer, with plug-flow. These follow the original ramp-slide work of Shea and van Wyk de Vries (Geosphere, 2008). The experiments used a curved ramp where materials accelerate until reaching a gently-sloped depositional surface and a constantly inclined ramp with a more regular slope and longer slides. A detailed description of deposit structures, their sequential formation and morphology is then used to investigate the transport type and deformation chronology from slide initiation to runout stopping of avalanches. Results using a curved ramp show accumulation and thickening at where the slope decreases. The thickened mass then further remobilises and advances by secondary collapse of the mass. Such a stop-start process may be important in many mountainous avalanches where there are rapid changes in slope. The constantly inclined ramp shows shearing and extensional structures at the levees and a set of compression and extension structures in the middle. We noted that frontal accumulation during flow occurs as materials at the front move slower relative to those in the medial and proximal zones. This also leads to secondary frontal collapse, and helps to maintain a thicker mass that can flow further. Descriptions and analyses of these structures are then applied to the kinematics and dynamics of natural examples. We study the 2006 Guinsaugon Rockslide event in the Philippines and find that frontal accumulation and secondary avalanching had also occurred and were important in determining the distribution and runout of the mass. Frontal bulking and collapse may also have occurred at

  8. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  9. GIS-aided avalanche warning in Norway

    NASA Astrophysics Data System (ADS)

    Jaedicke, Christian; Syre, Egil; Sverdrup-Thygeson, Kjetil

    2014-05-01

    Avalanche warning for large areas requires the processing of an extensive amount of data. Information relating to the three basic requirements for avalanche warning - knowledge of terrain, the snow conditions, and the weather - needs to be available for the forecaster. The information is highly variable in time. The form and visualization of the data is often decisive for the use by the avalanche forecasters and therefore also for the quality of the produced forecasts. Avalanche warnings can be issued at different scales from national to regional and down to object specific. Often the same warning service is working at different scales and for different clients requiring a flexible and scalable approach. The workflow for producing avalanche forecasts must be extremely efficient - all the way from acquiring observation data, evaluating the situation, down to publishing the new forecast. In this study it has been an aim to include the entire workflow in a single web application. A Geographic Information Systems (GIS) solution was chosen to include all data needed by the forecaster for the avalanche danger evaluation. This interactive system of maps features background information for the entire country, such as topographic maps, slope steepness, aspect, hill shades and satellite images. In each avalanche warning area, all active avalanche paths are plotted including information on wind exposure. Each avalanche path is linked to a webpage with more details, such as fall height, release area elevation and pictures. The avalanche path webpage also includes information on the object at risk e.g. buildings, roads, or other objects. Thus, the forecaster can easily get an overview on the overall situation and focus on single avalanche paths to generate detailed avalanche warnings for the client.

  10. Snowfall and avalanche synchronization: beyond observational statistics

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Forclaz, Romain; Sovilla, Betty; Corripio, Javier; Perona, Paolo

    2015-04-01

    We present a methodology for quantifying the synchronization between snowfall and avalanches in relation to slope and terrain properties at the detachment zone. Focusing on a particular field situation (SLF study site, Vallée de la Sionne, Valais, Switzerland), we present a dataset consisting of 549 avalanche events and use a stochastic framework (Perona et al., Proceedings of the Royal Society A, 2012) for capturing the avalanche statistics with a minimal number of ingredients. Over the observation period (7 years), meteorological data was collected and pictures of the slope were taken every 30 minutes. For the avalanche events, slope, aspect, coordinates and altitude of the detachment zone are available from georeferenced images, and the timing of the events can be obtained from selecting the images before and after avalanche events. All model parameters can directly be computed from meteorological data (snow depth evolution), except for one parameter: the state-dependent avalanche release rate, which aggregates the influence of slope and terrain properties. From the timing distribution of the precipitation events and of the avalanche events, we calibrate the model and fix the value of the missing parameter by maximizing the likelihood of the field observations, conditional to the value of the model parameter. We carefully discuss confidence intervals for our parameter estimation. The calibrated model allows us to obtain statistical properties of the avalanches in our study site, beyond observational statistics. We compute the synchronization between snowfall and avalanches for low and high slopes, which in turn allows us to derive the return period of avalanche events (dependent and independent on the release depth). We obtain the critical event magnitude above which the return period of avalanche events with release depth h* is shorter than the return period of snowfall with equal deposited snow depth h*. Finally, using the concept of information entropy, we

  11. Avalanche dynamics of elastic interfaces.

    PubMed

    Le Doussal, Pierre; Wiese, Kay Jörg

    2013-08-01

    Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d

  12. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  13. Photodiode scintillation detector for radiac instrumentation

    NASA Astrophysics Data System (ADS)

    Nirschl, Joseph C.

    1984-10-01

    Scintillation detectors have traditionally employed photomultiplier tubes (PMTs), with the attendant drawback of relatively high cost and need for a high voltage supply. This article reviews evaluation of a photodiode type scintillation detector, which exhibits promising features (small size and low power) for radiation survey meter application. Gamma radiation response characteristics, both for pulse and dc-mode of detector operation are presented, along with an example of a simple, high-range digital radiacmeter (breadboard design), utilizing this photodiode scintillation detector in conjunction with a single-chip A/D converter/LCD display driver and featuring low power demand (15 mW).

  14. Stabilization of avalanche processes on dynamical networks

    NASA Astrophysics Data System (ADS)

    Savitskaya, N. E.

    2016-02-01

    The stabilization of avalanches on dynamical networks has been studied. Dynamical networks are networks where the structure of links varies in time owing to the presence of the individual "activity" of each site, which determines the probability of establishing links with other sites per unit time. An interesting case where the times of existence of links in a network are equal to the avalanche development times has been examined. A new mathematical model of a system with the avalanche dynamics has been constructed including changes in the network on which avalanches are developed. A square lattice with a variable structure of links has been considered as a dynamical network within this model. Avalanche processes on it have been simulated using the modified Abelian sandpile model and fixed-energy sandpile model. It has been shown that avalanche processes on the dynamical lattice under study are more stable than a static lattice with respect to the appearance of catastrophic events. In particular, this is manifested in a decrease in the maximum size of an avalanche in the Abelian sandpile model on the dynamical lattice as compared to that on the static lattice. For the fixed-energy sandpile model, it has been shown that, in contrast to the static lattice, where an avalanche process becomes infinite in time, the existence of avalanches finite in time is always possible.

  15. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  16. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events.

  17. Time Directed Avalanches in Invasion Models

    SciTech Connect

    Maslov, S. Department of Physics, SUNY at Stony Brook, Stony Brook, New York 11794 )

    1995-01-23

    We define forward and backward time-directed avalanches for a broad class of self-organized critical models including invasion percolation, interface depinning, and a simple model of evolution. Although the geometrical properties of the avalanches do not change under time reversal, their stationary state statistical distribution does. The overall distribution of forward avalanches [ital P]([ital s])[similar to][ital s][sup [minus]2] is superuniversal in this class of models. The power-law exponent [pi] for the distribution of distances between subsequent active sites is derived from the properties of backward avalanches.

  18. Note: Galvanic isolated voltage source using a single photodiode.

    PubMed

    Stoican, O S

    2010-04-01

    A galvanic isolated voltage source able to provide several volts by using a single photodiode is described. A pulse-modulated laser beam is sent to a photodiode. By using a step-up transformer the amplitude of the variable voltage generated by the photodiode is increased. Adding a rectifier cell the variable voltage is converted back into a dc voltage.

  19. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  20. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  1. A compact gas-filled avalanche counter for DANCE

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-12-01

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ˜2.4×108/s are described.

  2. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  3. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  4. On the temporal organization of neuronal avalanches.

    PubMed

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  5. On the temporal organization of neuronal avalanches

    PubMed Central

    Lombardi, Fabrizio; Herrmann, Hans J.; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified. PMID:25389393

  6. Photodiode and photomultiplier areal sensitivity anomalies

    NASA Technical Reports Server (NTRS)

    Youngbluth, O., Jr.

    1977-01-01

    Several silicon photodiodes and photomultipliers were tested to determine signal variations as a light spot was scanned over the photosensitive surface of these detectors. Qualitative and quantitative data is presented to demonstrate the areal sensitivity anomalies. These anomalies are related back to the fabrication techniques of the manufacturers.

  7. CMOS BDJ photodiode for trichromatic sensing

    NASA Astrophysics Data System (ADS)

    Tu, Lien; Setlur Nagesh, S. V.; Fu, ZhenHong; Titus, Albert H.

    2012-03-01

    A novel method for achieving trichromatic color detection using a single photodetector with less than three p-n junctions is presented. This new method removes the constraints of color sensing in buried-double-junction (BDJ) photodiode, eliminates the need for a priori light source knowledge or for changing color intensity. After using a single visible light optical filter to block irradiance external of visible spectrum, the color detection is achieved by taking the difference in depletion region photocurrent generated by different reverse bias voltages. This "difference output" effectively forms the "third" optical wavelength specific depletion region required for trichromatic color sensing. This method is based on exploiting the relationship between photon absorption and photon penetration depth of silicon, and the basic property of p-n junction photodiode which states that only photons absorbed within depletion region generate current. The theory is validated experimentally using BDJ photodiodes fabricated through MOSIS Inc. in the AMI-ABN 1.5um technology and ON-SEMI 0.5um technology. A commercial p-i-n photodiode is also being investigated for contrast and comparison.

  8. Optical Demonstrations with a Scanning Photodiode Array.

    ERIC Educational Resources Information Center

    Turman, Bobby N.

    1980-01-01

    Describes the photodiode array and the electrical connections necessary for it. Also shows a few of the optical demonstration possibilities-shadowgraphs for measuring small objects, interference and diffraction effects, angular resolution of an optical system, and a simple spectrometer. (Author/DS)

  9. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  10. Field management of avalanche victims.

    PubMed

    Brugger, H; Durrer, B; Adler-Kastner, L; Falk, M; Tschirky, F

    2001-10-01

    The median annual mortality from snow avalanches registered in Europe and North America 1981-1998 was 146 (range 82-226); trend stable in Alpine countries (r=-0.29; P=0.24), increasing in North America (r=0.68; P=0.002). Swiss data over the same period document 1886 avalanche victims, with an overall mortality rate of 52.4% in completely-buried, versus 4.2% in partially-, or non-buried, persons. Survival probability in completely-buried victims in open areas (n=638) plummets from 91% 18 min after burial to 34% at 35 min, then remains fairly constant until a second drop after 90 min. Likewise, survival probability for completely-buried victims in buildings or on roads (n=97) decreases rapidly following burial initially, but as from 35 min it is significantly higher than that for victims in open areas, with a maximum difference in respective survival probability (31% versus 7%) from 130 to 190 min (P<0.001). Standardised guidelines are introduced for the field management of avalanche victims. Strategy by rescuers confronted with the triad hypoxia, hypercapnia and hypothermia is primarily governed by the length of snow burial and victim's core temperature, in the absence of obviously fatal injuries. With a burial time < or =35 min survival depends on preventing asphyxia by rapid extrication and immediate airway management; cardiopulmonary resuscitation for unconscious victims without spontaneous respiration. With a burial time >35 min combating hypothermia becomes of paramount importance. Thus, gentle extrication, ECG and core temperature monitoring and body insulation are mandatory; unresponsive victims should be intubated and pulseless victims with core temperature <32 degrees C (89.6 degrees F) (prerequisites being an air pocket and free airways) transported with continuous cardiopulmonary resuscitation to a specialist hospital for extracorporeal re-warming. PMID:11719168

  11. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  12. Linearity of silicon photodiodes for EUV radiation

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Klein, Roman M.; Mueller, Ralph

    2004-05-01

    Photodiodes are used as easy-to-operate detectors in the extreme ultraviolet spectral range. The Physikalisch-Technische Bundesanstalt calibrates photodiodes with an 0.3% or better relative uncertainty for the spectral responsivity. These calibrations are based on the comparison of the photodiodes to a primary detector standard using monochromatized synchrotron radiation with a rather low radiant power of about 1 μW. At the customer"s, these diodes may be used for strongly pulsed radiation and very different radiant powers. The linearity of the photodiode signal with incident radiant power was studied with EUV radiation. We used quasi-monochromatic direct undulator radiation to achieve high radiant power. The linearity of the photodiodes was tested with quasi-DC illumination for different photon beam spot sizes. A systematic and significant variation of the maximum external photocurrent with the photon beam spot size is shown. The maximum current in linear operation (less than 1% relative saturation) decreased from about 3 mA for 6 mm photon beam diameter to 0.2 mA for 0.25 mm diameter. The corresponding irradiance increased from 30 mW/cm2 for the 6 mm aperture to about 2 W/cm2 for the 0.25 mm aperture. This behaviour is attributed to a change in the effective serial resistance with the photon beam size. The values derived from the saturation measurement vary between 65 Ohm for a 6 mm and 540 Ohm for a 0.25 mm beam. The effect can be explained by the finite conductivity of the thin front contact layer which carries the current to the electrode.

  13. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  14. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  15. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  16. Avalanche!--Teachable Moments in Outdoor Education

    ERIC Educational Resources Information Center

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  17. Updated design for a low-noise, wideband transimpedance photodiode amplifier

    SciTech Connect

    Paul, S. F.; Marsala, R.

    2006-10-15

    The high-speed rotation diagnostic developed for Columbia's HBT-EP tokamak requires a high quantum efficiency, very low drift detector/amplifier combination. An updated version of the circuit developed originally for the beam emission spectroscopy experiment on TFTR is being used. A low dark current (2 nA at 15 V bias), low input source capacitance (2 pF) FFD-040 N-type Si photodiode is operated in photoconductive mode. It has a quantum efficiency of 40% at the 468.6 nm (He II line that is being observed). A low-noise field-effect transistor (InterFET IFN152 with e{sub Na}=1.2 nV/{radical}Hz) is used to reduce the noise in the transimpedance preamplifier (A250 AMPTEK op-amp) and a very high speed (unity-gain bandwidth=200 MHz) voltage feedback amplifier (LM7171) is used to restore the frequency response up to 100 kHz. This type of detector/amplifier is photon-noise limited at this bandwidth for incident light with a power of >{approx}2 nW. The circuit has been optimized using SIMETRIX 4.0 SPICE software and a prototype circuit has been tested successfully. Though photomultipliers and avalanche photodiodes can detect much lower light levels, for light levels >2 nW and a 10 kHz bandwidth, this detector/amplifier combination is more sensitive because of the absence of excess (internally generated) noise.

  18. Avalanche in Adhesion at Metal Interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Good, Brian S.

    1994-01-01

    Simulations have shown that as two metal surfaces approach each other, the surface layers can avalanche together when the rigid interfacial spacing falls below a critical distance. This is accompanied by a discontinuous decrease in the adhesive energy. Here we present an examination of this phenomenon for the body centered cubic (BCC) metals Fe and W using the Equivalent Crystal Theory. In order to identify the circumstances under which avalanche might be inhibited, the effect of loss of registry between the two surfaces is investigated in detail. The avalanche is inhibited when the two surfaces are sufficiently far out of registry and when only a few layers near the surface are allowed to relax. As the relaxing slabs get thicker a sharp avalanche reappears. However, as the loss of registry increases the energy released in the avalanche decreases.

  19. Particle-size segregation in dense granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  20. Preliminary Study on Rock Avalanche in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wen, Y.; Hsieh, M.

    2012-12-01

    Rock avalanche is a kind of rapid (average >100 km/h) granule flow caused by crushing and pulverization of rock materials during catastrophic rock slide. Literature researches show that rock avalanches typically occur on steep, high-relief slopes underlain by hard rocks, and have volumes >10,000,000 m3. Rock avalanches also are characterized by long runout distances, which are 5 to 10 times the total fall heights. Some cases can run up the opposing valley wall. Rock avalanches generally occurred in active mountains (e.g., New Zealand) and were triggered by earthquakes or rainfall (snowmelt), but with exceptions. There were few rock avalanches in historical time in Taiwan. This could reflect: (1) intrinsic instability of hillslopes due to weak rock, frequent earthquakes/heavy rains, which resulted in landslides of high frequency/low magnitude; (2) limited runout space along deeply incised river-valley systems, which increased the likelihood of rock-slope failures to transform to debris flows. However, there are ancient rock-avalanche records, found at Shou-shan coast (SW Taiwan) and Shin-she, Chang-pin, Tu-lan along Hua-tung coast (E Taiwan), which is likely to have undergone coseismic uplift. These places, with steep slopes, underlain by hard rock, and free for materials to run, are most prone to rock avalanches in the future.

  1. Temporal correlations in neuronal avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  2. Statistical properties of avalanches in networks.

    PubMed

    Larremore, Daniel B; Carpenter, Marshall Y; Ott, Edward; Restrepo, Juan G

    2012-06-01

    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust to complex underlying network topologies.

  3. Temporal correlations in neuronal avalanche occurrence

    PubMed Central

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  4. Temporal correlations in neuronal avalanche occurrence.

    PubMed

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  5. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  6. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  7. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.

  8. Avalanche control: Conservation Guide Series No. 5

    SciTech Connect

    Not Available

    1985-01-01

    This book examines different methods for determining the characteristics of snow cover and for localizing avalanche risk. It describes various techniques for temporary defense; for snow stabilization in the starting zone; and for wind deflection.

  9. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  10. Directed avalanche processes with underlying interface dynamics.

    PubMed

    Chen, Chun-Chung; den Nijs, Marcel

    2002-07-01

    We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall. The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the critical exponents of the various avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a detailed study of whether avalanche-correlated Monte Carlo sampling changes the scaling exponents of KPZ interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow convergence seems intrinsic to avalanche dynamics.

  11. Photodiodes for ten micrometer laser communication systems

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1972-01-01

    The performance is discussed of 10-micron mercury-cadmiumtelluride and lead-tin-telluride photodiodes in laser heterodyne communication systems. The dependence of detector quantum efficiency, resistance, frequency response, and signal-to-noise ratio on temperature, bias, and local oscillator power are examined. Included in the discussion is an analysis of the feasibility of high temperature operation, and ability of the detector to dissipate power to a heat sink is explored. Some aspects of direct detection response are considered and figures showing flux levels from a blackbody presented.

  12. Prehistoric rock avalanches in the Olympic Mountains, Washington

    USGS Publications Warehouse

    Schuster, R.L.; Logan, R.L.; Pringle, P.T.

    1992-01-01

    Rock avalanches blocked streams in the Olympic Mountains southwest of Puget Sound during the past few thousand years. Limiting radiocarbon ages indicated that three or four of six avalanches occurred from 1000 to 1300 years ago or shortly thereafter. Most of the dates were from the outer preserved rings of trees drowned behind avalanche dams. These three or four avalanches may be coeval not only with one another but also with abrupt tectonic deformation in western Washington. No rock avalanches in the Olympic Mountains are known to have resulted from storms or earthquakes during the past century. The avalanches strengthen the case that a large prehistoric earthquake occurred in the Puget Sound region.

  13. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  14. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  15. The application of Landsat data to mapping avalanche hazards

    NASA Technical Reports Server (NTRS)

    Waterman, S.

    1979-01-01

    Two test areas, representing a variety of avalanche hazards, were selected in the San Juan Mountains of Colorado. Midwinter Landsat digital data were analyzed using a clustering technique, and the results compared to 1:24,000 scale maps of avalanche hazards derived from air photo interpretation and field surveys. Confined avalanches were readily identified because of the high contrast between the snow covered avalanche track and the adjacent forested slopes. Unconfined avalanches could not be identified without supplementary topographic data. Spatial characteristics were of primary importance in delineating avalanche tracks. Spatial resolution was the limiting factor in avalanche detection. Landsat data should prove useful for rapid reconnaissance mapping of avalanche hazards, particularly in the absence of other data sources.

  16. Predicting extreme avalanches in self-organized critical sandpiles.

    PubMed

    Garber, Anja; Hallerberg, Sarah; Kantz, Holger

    2009-08-01

    In a finite-size Abelian sandpile model, extreme avalanches are repelling each other. Taking a time series of the avalanche size and using a decision variable derived from that, we predict the occurrence of a particularly large avalanche in the next time step. The larger the magnitude of these target avalanches, the better is their predictability. The predictability which is based on a finite-size effect, is discussed as a function of the system size.

  17. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  18. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  19. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  20. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented. PMID:25871044

  1. Definition and Characterization of Potential Avalanche Release Areas

    NASA Astrophysics Data System (ADS)

    Maggioni, M.; Gruber, U.

    The avalanche hazard map zones in Switzerland are defined by the frequency and the impact pressure of a potential avalanche event. Therefore, it is crucial to be able to accurately estimate the release frequency and, related to the frequency, the release ex- tent for a specific avalanche track. In this work a detailed analysis of avalanche release area topographies is performed to find general rules to relate topographic parameters to the avalanche frequency. In the region of Davos, an almost complete database of avalanche events over the last 50 years exists, that covers not only frequent avalanche tracks but the whole area. Using Geographic Information System (GIS) technologies in combination with Digital Elevation Models (DEM), all avalanche release areas have been analysed with respect to topographic characteristics. In a first step, topographic parameters like slope, curvature and aspect are derived from the DEM and used for the automatic definition of the potential release areas. In a second step, every potential re- lease area is characterised by smaller scale geomorphologic parameters. Finally, these geomorphologic parameters are analysed with respect to the avalanche frequencies ob- served in the different potential release areas. The general rules are a valuable aid for the avalanche experts in cases where information about historic avalanche is lacking for a particular track. Furthermore, the probability distributions can be directly used as input for uncertainty modelling of avalanche run-out distances and impact pressure by Monte Carlo methods.

  2. Avalanche mode of motion - Implications from lunar examples.

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as 'efficient' as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  3. Avalanche mode of motion: Implications from lunar examples

    USGS Publications Warehouse

    Howard, K.A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as "efficient" as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  4. A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Le Normand, Jean-Pierre; Zint, Virginie; Dumas, Norbert; Dadouche, Foudil; Malasse, Imane; Scholz, Jeremy

    2012-04-01

    Several works have demonstrated the successfully integration of Single-photon avalanche photodiodes (SPADs) operating in Geiger mode in a standard CMOS circuit for the last 10 years. These devices offer an exceptional temporal resolution as well as a very good optical sensitivity. Nevertheless, it is difficult to predict the expected performances of such a device. Indeed, for a similar structure of SPAD, some parameter values can differ by two orders of magnitude from a technology to another. We proposed here a procedure to identify in just one or two runs the optimal structure of SPAD available for a given technology. A circuit with an array of 64 SPAD has been realized in the Tower-Jazz 0.18 μm CMOS image sensor process. It encompasses an array of 8 different structures of SPAD reproduced in 8 diameters in the range from 5 μm up to 40 μm. According to the SPAD structures, efficient shallow trench insulator and/or P-Well guard ring are used for preventing edge breakdown. Low dark count rate of about 100 Hz are expected thanks to the use of buried n-well layer and a high resistivity substrate. Each photodiode is embedded in a pixel which includes a versatile quenching circuitry and an analog output of its cathode voltage. The quenching system is configurable in four operation modes; the SPAD is disabled, the quenching is completely passive, the reset of the photodiode is active and the quenching is fully active. The architecture of the array makes possible the characterization of every single photodiode individually. The parameters to be measured for a SPAD are the breakdown avalanche voltage, the dark count rate, the dead time, the timing jitter, the photon detection probability and the after-pulsing rate.

  5. Diamond photodiodes for x-ray application

    SciTech Connect

    Distel, James R; Smedley, John; Keister, Jeffrey W; Muller, Erik; Jordan - Sweet, Jean; Bohon, Jen; Dong, Bin

    2009-01-01

    Single crystal high purity CVD diamonds have been metallized and calibrated as photodiodes at the National Synchrotron Light Source (NSLS). Current mode responsivity measurements have been made over a wide range (0.2-28 keV) of photon energies across several beamlines. Linear response has been achieved over ten orders of magnitude of incident flux, along with uniform spatial response. A simple model of responsivity has been used to describe the results, yielding a value of 13.3 {+-} 0.5 eV for the mean pair creation energy. The responsivity vs. photon energy data show a dip for photon energies near the carbon edge (284 eV), indicating incomplete charge collection for carriers created less than one micron from the metallized layer.

  6. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  7. An Atomically Layered InSe Avalanche Photodetector.

    PubMed

    Lei, Sidong; Wen, Fangfang; Ge, Liehui; Najmaei, Sina; George, Antony; Gong, Yongji; Gao, Weilu; Jin, Zehua; Li, Bo; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel; Halas, Naomi J

    2015-05-13

    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices.

  8. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as

  9. The role of thermal coupling on avalanches in manganites.

    PubMed

    Macià, F; Abril, G; Hernandez, J M; Tejada, J

    2009-10-01

    We report here a study on the environmental dependence of the occurrence, at low temperature, of ultra-sharp field induced avalanches in phase separated manganites. Despite the high reproducibility of avalanches, it has already been observed that the critical fields shift with the magnetic field sweep rate and that different sample sizes lead to different ignition fields for the avalanches. Critical growing rates have been suggested to describe the avalanche ignition though the role of thermal coupling has hardly been considered. We qualitatively analyze here a set of experimental data on avalanches in manganites and discuss the role of thermal coupling as a key parameter of the instability in a dynamical system.

  10. Rock avalanches caused by earthquakes: Source characteristics

    USGS Publications Warehouse

    Keefer, D.K.

    1984-01-01

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed ofintensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  11. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  12. Extended kinetic theory applied to snow avalanches

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-04-01

    In this work we apply the extended kinetic theory, a three-dimensional rheological model for rapid granular flows, to the two-dimensional, depth-averaged shallow water framework, used in snow avalanche simulations. Usually, empirical relations are used to determine the basal friction, which represents the material behavior in the avalanche. Here we present an energy equivalent basal friction relation which accounts for energy dissipating processes in the avalanche body as predicted by the extended kinetic theory. The obtained relation is compared to traditional basal friction relations, e.g. the Voellmy model by conducting numerical simulations with both approaches. As reference, field measurements of runout, affected area and velocity are compared to the simulation results. Two avalanche events, that occurred at the Vallée de la Sionne and Ryggfonn test sites, are evaluated with this method. It is shown that the kinetic theory delivers a physically based explanation for the structure of phenomenological friction relations. However, the new form of the frictional terms explicitly takes the flow depth into account. As consequence, improvements in finding unified parameter sets for various observation variables and events of different sizes could be achieved.

  13. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  14. Fractal avalanche ruptures in biological membranes.

    PubMed

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  15. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  16. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. Simulations of avalanche breakdown statistics: probability and timing

    NASA Astrophysics Data System (ADS)

    Ng, Jo Shien; Tan, Chee Hing; David, John P. R.

    2010-04-01

    Important avalanche breakdown statistics for Single Photon Avalanche Diodes (SPADs), such as avalanche breakdown probability, dark count rate, and the distribution of time taken to reach breakdown (providing mean time to breakdown and jitter), were simulated. These simulations enable unambiguous studies on effects of avalanche region width, ionization coefficient ratio and carrier dead space on the avalanche statistics, which are the fundamental limits of the SPADs. The effects of quenching resistor/circuit have been ignored. Due to competing effects between dead spaces, which are significant in modern SPADs with narrow avalanche regions, and converging ionization coefficients, the breakdown probability versus overbias characteristics from different avalanche region widths are fairly close to each other. Concerning avalanche breakdown timing at given value of breakdown probability, using avalanche material with similar ionization coefficients yields fast avalanche breakdowns with small timing jitter (albeit higher operating field), compared to material with dissimilar ionization coefficients. This is the opposite requirement for abrupt breakdown probability versus overbias characteristics. In addition, by taking band-to-band tunneling current (dark carriers) into account, minimum avalanche region width for practical SPADs was found to be 0.3 and 0.2 μm, for InP and InAlAs, respectively.

  18. Are Comet Outbursts the Result of Avalanches?

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H. Jay

    2016-10-01

    Recently, Rosetta became the first spacecraft to make high-resolution observations of a comet outburst (a rapid, ephemeral increase in dust production) emerging from the surface of a comet nucleus. These outbursts occurred near perihelion, lasted only a few minutes, and produced a highly collimated outburst plume without any corresponding increase in H2O or CO2 gas production (See abstract by Rinaldi et al.). These observations cannot be explained by proposed driving outburst mechanisms (such as crystallization of amorphous ice, cryovolcanic gas exsolution, or explosive outgasing of subsurface chambers), all of which are driven by gas, and would therefore lead to an increase in the gas production.We propose instead that the observed outbursts on Comet 67P/Churyumov-Gerasimenko (hereafter 67P) are the result of cometary avalanches. The surface of 67P contains many cliffs and scarps, with dusty surface layers blanketing the shallower slopes above and below these steep surfaces. The Rosetta spacecraft returned clear evidence of mass wasting, which form icy talus fields that are the source of much of 67P's cometary activity. Additionally, Rosetta observed morphological changes over time in the shallower, dusty surface layers above these steep slopes, which suggest that avalanches periodically release dusty materials onto these active talus fields.Here we present the results of a numerical simulation of dusty material avalanching into an active area (active talus field). These simulations show that such avalanches will generate a transient, highly collimated outburst plume that closely matches the observed morphology of the outbursts emanating from the surface of 67P. This mechanism predicts that cometary outbursting should not be directly associated with any increase in gas production, consistent with observations. Additionally, we show that regions of the nucleus that have sourced outburst plumes contain steep surfaces (above the angle of repose), which is required

  19. Three photon absorption detection using polymer photo-diodes

    NASA Astrophysics Data System (ADS)

    Mirzaee, Somayeh M. A.; Rao Bobbara, Sanyasi; Nunzi, Jean-Michel

    2013-10-01

    Nonlinear absorption is investigated in a poly (3-hexylthiophene) (P3HT) PCBM fullerene blend, one of the most popular organic solar cell's materials. We observe three-photon absorption in the bulk hetero junction photodiode configuration. The output photocurrent of the photodiode is interpreted in terms of the three-photon absorption properties of the P3HT:PCBM blend at 1550 nm.

  20. Infrared vertically-illuminated photodiode for chip alignment feedback

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-08-01

    We report on vertically-illuminated photodiodes fabricated in the GlobalFoundries 45nm 12SOI node and on a packaging concept for optically-interconnected chips. The photodiodes are responsive at 1180 nm -a wavelength currently used in chip-to-chip communications. They have further a wide field-of-view which enables chip-to-board positional feedback in chip-board assemblies. Monolithic integration enables on-chip processing of the positional data.

  1. Smartphone applications for communicating avalanche risk information - a review of existing practices

    NASA Astrophysics Data System (ADS)

    Charrière, M. K. M.; Bogaard, T. A.

    2015-11-01

    Every year, in all mountainous regions, people are victims of avalanches. One way to decrease those losses is believed to be informing about danger levels. The paper presents a study on current practices in the development of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of smartphone apps highlights the context of their development, how choices of content and visualization were made as well as how their effectiveness is evaluated. It appears that although the communicators agree on the message to disseminate, its representation triggers debate. Moreover, only simple evaluation processes are conducted but there is a clear awareness that further scientific efforts are needed to analyze the effectiveness of the smartphone apps. Finally, the current or planned possibility for non-experts users to report feedback on the snow and avalanches conditions open the doors to a transition of these apps from one-way communication tools to two-ways communication platforms. This paper also indicates the remaining challenges that avalanche risk communication is facing, although it is disputably the most advanced and standardized practice compared to other natural hazards. Therefore, this research is of interest for the entire field of natural hazards related risk communication.

  2. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  3. Opto-chemical sensors based on integrated ring-shaped organic photodiodes: progress and applications

    NASA Astrophysics Data System (ADS)

    Mayr, Torsten; Abel, Tobias; Ungerböck, Birgit; Sagmeister, Martin; Charwat, Verena; Ertl, Peter; Kraker, Elke; Köstler, Stefan; Tschepp, Andreas; Lamprecht, Bernhard

    2012-10-01

    The recent advances on a monolithically integrated sensor platform based on ring-shaped organic photo detectors are presented. Various sensing chemistries based on luminescence for the detection of a number of parameters such as oxygen, carbon dioxide, humidity and pH in gaseous and/or liquid phase were investigated and optimized to the requirements of the sensor platform. Aiming on practical application, the need and methods to reference luminescence signals are evaluated including two wavelength rationing and lifetime measurements. Finally, we will discuss potential applications of the platform and present a micro-fluidic chip containing an array of integrated sensor spots and organic photodiodes.

  4. The Marocche rock avalanches (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof

    2015-04-01

    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  5. Response of photodiodes in the vacuum ultraviolet

    NASA Astrophysics Data System (ADS)

    Husk, D. E.; Tarrio, C.; Benitez, E. L.; Schnatterly, S. E.

    1991-09-01

    We have measured the responses of four commercial photodiodes in the vacuum ultraviolet from 20 to 600 eV and have also measured the inelastic-electron-scattering spectra of the materials contained in the diodes from 0 to 260 eV. Three of the diodes are silicon: an enhanced channel device, an x-ray-stabilized silicon diode, and a p-i-n diode. The fourth is a gallium arsenide phosphide Schottky diode. The diode response has been modeled by considering absorption through the surface layer and inelastic surface recombination. The model produces an excellent description of the measured responses. From our analysis we have obtained reasonable values for the number of electrons produced per eV of incident radiation, the thicknesses of the surface layers, the surface recombination velocities, and the average diffusion lengths of the minority carriers. The highest efficiency is obtained for a silicon x-ray-stabilized diode followed by the gallium arsenide phosphide diode. We find that both of these diodes make excellent, stable soft-x-ray detectors.

  6. InAlAs avalanche photodiode with type-II absorber for detection beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Goh, Y. L.; Ong, D. S. G.; Zhang, S.; Ng, J. S.; Tan, C. H.; David, J. P. R.

    2009-05-01

    In this work, we present the study on In0.53Ga0.47As/GaAs0.51Sb0.49 type-II heterojunction PIN diodes and Separate Absorption, Charge and Multiplication (SACM) APDs utilising In0.52Al0.48As as the multiplication layer and In0.53Ga0.47As/GaAs0.51Sb0.49 type-II heterostructures as the absorption layer. In0.52Al0.48As lattice matched to InP has been shown to have superior excess noise characteristics and multiplication with relatively low temperature dependence compared to InP. Furthermore, the type-II staggered band line-up leads to a narrower effective bandgap of approximately 0.49 eV corresponding to the APD cut off wavelength of 2.4 μm. The device exhibited low dark current densities near breakdown. The device also exhibited multiplication in excess of 100 at 200 K.

  7. Low-temperature-dependent property in an avalanche photodiode based on GaN/AlN periodically-stacked structure

    PubMed Central

    Zheng, Jiyuan; Wang, Lai; Yang, Di; Yu, Jiadong; Meng, Xiao; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao; Li, Mo; Li, Qian

    2016-01-01

    In ultra-high sensitive APDs, a vibrate of temperature might bring a fatal decline of the multiplication performance. Conventional method to realize a temperature-stable APD focuses on the optimization of device structure, which has limited effects. While in this paper, a solution by reducing the carrier scattering rate based on an GaN/AlN periodically-stacked structure (PSS) APD is brought out to improve temperature stability essentially. Transport property is systematically investigated. Compared with conventional GaN homojunction (HJ) APDs, electron suffers much less phonon scatterings before it achieves ionization threshold energy and more electrons occupy high energy states in PSS APD. The temperature dependence of ionization coefficient and energy distribution is greatly reduced. As a result, temperature stability on gain is significantly improved when the ionization happens with high efficiency. The change of gain for GaN (10 nm)/AlN (10 nm) PSS APD from 300 K to 310 K is about 20% lower than that for HJ APD. Additionally, thicker period length is found favorable to ionization coefficient ratio but a bit harmful to temperature stability, while increasing the proportion of AlN at each period in a specific range is found favorable to both ionization coefficient ratio and temperature stability. PMID:27775088

  8. Characterization and Modeling of Indium Gallium Antimonide Avalanche Photodiode and of Indium Gallium Arsenide Two-band Detector

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A model of the optical properties of Al(x)Ga(1-x)As(y)Sb(1-y) and In(x)Ga(1-x)As(y)Sb(1-y) is presented, including the refractive, extinction, absorption and reflection coefficients in terms of the optical dielectric function of the materials. Energy levels and model parameters for each binary compound are interpolated to obtain the needed ternaries and quaternaries for various compositions. Bowing parameters are considered in the interpolation scheme to take into account the deviation of the calculated ternary and quaternary values from experimental data due to lattice disorders. The inclusion of temperature effects is currently being considered.

  9. First detection of Cherenkov light from cosmic-particle-induced air showers by Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Biland, A.; Britvitch, I.; Lorenz, E.; Otte, N.; Pauss, F.; Renker, D.; Ritt, S.; Roeser, U.; Schneebeli, M.

    2007-10-01

    We report on first tests of Geiger-mode APDs (G-APD) to detect Cherenkov light from cosmic particle induced air showers. The motivation for this study stems from the requirement to improve the sensitivity of large imaging atmospheric Cherenkov telescopes (IACT) by replacing the photomultipliers (PMT) by high detection efficiency G-APDs. Three tests have been carried out, confirming sufficiently high light sensitivity of blue-sensitive G-APDs as future replacement of PMTs in IACTs.

  10. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Butler, David R.

    1988-01-01

    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  11. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography

    PubMed Central

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction. PMID:26321936

  12. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography.

    PubMed

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction.

  13. Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography.

    PubMed

    Rajna, Zalán; Kananen, Janne; Keskinarkaus, Anja; Seppänen, Tapio; Kiviniemi, Vesa

    2015-01-01

    Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data. Co-activation pattern (CAP) analysis can be used to detect single brain volume activity profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG achieves 10 Hz whole brain sampling, allowing the estimation of spatial spread of an avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed a novel computational method to separate avalanche type fast activity spreads from motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain default mode network (DMN). Reproducible and classical DMN sources were identified using spatial ICA prior to advanced noise removal in order to assure that ICA converges to reproducible networks. Brain activity peaks were identified from parts of the DMN, and normalized MREG data around each peak were extracted individually to show dynamic avalanche type spreads as video clips within the DMN. Individual activity spread video clips of specific parts of the DMN were then averaged over the group of subjects. The experiments show that the high BOLD values around the peaks are mostly spreading along the spatial pattern of the particular DMN segment detected with ICA. With also the spread size and lifetime resembling the expected power law distributions, this indicates that the detected peaks are parts of activity avalanches, starting from (or crossing) the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different spread directions within the same DMN framework. The results open possibilities to follow up brain activity avalanches in the hope to understand more about the system wide properties of diseases related to DMN dysfunction. PMID:26321936

  14. Physical models of giant subaqueous rock avalanches

    NASA Astrophysics Data System (ADS)

    De Blasio, F. V.

    2011-12-01

    Large subaqueous rock avalanches are characterized by horizontal run-outs approximately ten times longer than the fall height. It is shown that this mobility is somehow puzzling, as it corresponds to a decrease of the effective friction coefficient by a factor 10-50 compared to bare rock. Two dynamical models are so introduced to explain the observed mobility. In the first model, the fast-moving fragmented rock avalanche is subjected to a lift force that makes it hydroplane, avoiding contact with the sea floor. In a second model the fragmented material ingests water, transforming into a non-Newtonian fluid that progressively reduces its shear strength. Both models give peak velocity of 65-70 m/s, which implies a high potential for tsunami generation.

  15. Olokele rock avalanche, island of Kauai, Hawaii.

    USGS Publications Warehouse

    Jones, B.L.; Chinn, S.S.W.; Brice, J.C.

    1984-01-01

    In October 1981 a mass of rock and soil having an estimated volume of 500 000 m3 fell as a rock fall-avalanche from a steep slope 800 m high near the head of Olokele Canyon. Boulders were launched into the air from a bench on the slope for a downstream distance of about 850 m. The velocity of the avalanche was rapidly diminished by impact against the valley sides, and it became a muddy debris flow that traveled 4.6 km downstream, severely eroding the valley sides. The volume of debris deposited on the canyon bottom is estimated to be 2 500 000 m3, or about four times the volume derived from the slope. -from Authors

  16. Hierarchical networks, power laws, and neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Friedman, Eric J.; Landsberg, Adam S.

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions—even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  17. Stochastic simulation of electron avalanches on supercomputers

    SciTech Connect

    Rogasinsky, S. V.; Marchenko, M. A.

    2014-12-09

    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  18. Hierarchical networks, power laws, and neuronal avalanches.

    PubMed

    Friedman, Eric J; Landsberg, Adam S

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  19. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  20. Time arrival of slab avalanche masses

    NASA Astrophysics Data System (ADS)

    McClung, D. M.

    2003-10-01

    One of three criteria to demonstrate self-organized criticality (SOC) for a critical phenomenon is that time arrival of events displays a frequency dependence which is inversely proportional to frequency (f) to some power. That is, for SOC, the power spectrum in the frequency (f) domain is supposed to fall off as 1/fβ, where β is typically a number between 1 and 2. Avalanche phenomena have been used as prototypes for illustrating SOC, and therefore it is of interest as to whether snow avalanches follow the criterion. In this paper, time series analyses of mass arrivals from 20 years of records constituting ˜10,000 avalanches are presented for Bear Pass and Kootenay Pass, British Columbia. The results suggest that the autocorrelation functions and partial autocorrelation functions of the series fall off in an exponential manner so that the implied power spectra in the frequency domain, given by the Fourier transforms of the autocorrelation functions, decay with frequency in a manner which is not strictly consistent with SOC. In common with SOC, the power spectra are suggested to have most content in the low-frequency events and the spectra do not constitute white noise. However, given the limitations on the data sampling and recording, it cannot be definitively stated that the power spectra fall off with 1/f® as required for SOC.

  1. Unjamming and jamming transitions of granular avalanches

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Ziwei

    2014-03-01

    Study of the jamming transitions of granular materials has become an active field of research in recent years. A closely related inverse process is the unjamming transition, where granular systems may suddenly lose rigidity and start to flow freely. Understanding such a process is of crucial implication towards the understanding of natural disasters such as snow avalanches, landslides and earthquakes. Recent work by Banigan and colleagues (Nature Physics 2013) has provided a new perspective in the study of unjamming and jamming transitions by applying nonlinear dynamical methods. To test their proposition experimentally, we have designed a rotating drum filled with bidisperse photo-elastic disks to create particle avalanches. In unjamming transition, Lyapunov vector and velocity fields are indeed strongly correlated in spatial domain, whereas in jamming transition no such a strong correlation is observed. The Lyapunov exponents are positive in unjamming transition and negative in jamming transition. In addition, the total stress variation, kinetic energy, and non-affine motion of particles all show strong correlations in the time domain during avalanches. Their spatial correlations have also been analyzed.

  2. Reversible Avalanches and Criticality in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles

    2015-03-01

    Despite its importance for basic science and industry, the physical process that causes a solid to change its shape permanently under external deformation is still not well understood. In this paper we use molecular dynamics simulations of amorphous solids under oscillatory shear to study this phenomenon, and show that at a critical strain amplitude, the size of the cooperative atomic motion that allows for a permanent deformation diverges. We compare this non-equilibrium critical behavior to that of a ``front depinning'' transition. This viewpoint, based on fluctuations and statistics, is complementary to the dynamical ``transition to chaos'' which was previously identified at the same strain amplitude. Below this irreversibile-depinning transition, we observe large avalanches which are completely repetitive with each shear strain cycle. This suggests that while avalanches on their own do not cause irreversible deformation, it is likely that the irreversibility transition and the ``depinning-like'' transition are two aspects of the same phenomena. One implication is that the transition could be detected before the onset of irreversible flow by an analysis of the power spectra of avalanches. Work done in collaboration with Ido Regev, Karin Dahmen, John Weber, and Turab Lookman.

  3. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  4. Thermal avalanches near a Mott transition.

    PubMed

    Lashley, J C; Gofryk, K; Mihaila, B; Smith, J L; Salje, E K H

    2014-01-22

    We probe the volume collapse transition (ΔV/Vo ∼ 15%) between the isostructural γ and α phases (T ∼ 100 K) of Ce0.9Th0.1 using the Hall effect, three-terminal capacitive dilatometry, and electrical resistivity measurements. Hall effect measurements confirm the itinerant ground state as the carrier concentration increases by a factor of 7 in the α phase, γ phase (nH = 5.28 × 10(26) m(-3)), and the α phase (nH = 3.76 × 10(27) m(-3)). We were able to detect a noise spectrum consisting of avalanches while slowly varying the temperature through the hysteretic region. We surmise that the avalanches originate from intergranular stresses at the interfaces between partially transformed high-volume and low-volume phases. The statistical distribution of avalanches obey power laws with energy exponent ϵ ≃ 1.5. Hall effect measurements, combined with universal critical exponents, point to short electron mean-free percolation pathways and carrier localization at phase interfaces. Carrier localization was predicted many years ago for elemental cerium by Johansson (1974 Phil. Mag. 30 469).

  5. Neuronal avalanches in spontaneous activity in vivo.

    PubMed

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  6. Mechanisms of evolution of avalanches in regular graphs.

    PubMed

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  7. Edge effect on the power law distribution of granular avalanches.

    PubMed

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  8. Mechanisms of evolution of avalanches in regular graphs

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  9. Avalanche in adhesion. [interfacial separation between two Ni crystals

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Bozzolo, Guillermo; Banerjea, Amitava; Ferrante, John

    1989-01-01

    Consider surfaces being brought into contact. It is proposed that atomic layers can collapse or avalanche together when the interfacial spacing falls below a critical distance. This causes a discontinuous drop in the adhesive binding energy. Avalanche can occur regardless of the stiffness of external supports. A simple understanding of the origin of this phenomenon is provided. A numerical calculation has been carried out for adhesion in Ni. A new wear mechanism due to avalanche is suggested.

  10. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  11. Photodiode arrays having minimized cross-talk between diodes

    DOEpatents

    Guckel, Henry; McNamara, Shamus P.

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  12. Unambiguous reconstruction of network structure using avalanche dynamics.

    PubMed

    Leleu, Timothée; Aihara, Kazuyuki

    2015-02-01

    A robust method for inferring the structure of networks is presented based on the one-to-one correspondence between the expected composition of cascades of bursts of activity, called crackling noise or avalanches, and the weight matrix. Using a model of neuronal avalanches as a paradigmatic example, we derive this correspondence exactly by calculating the closed-form expression of the joint probability distribution of avalanche sizes obtained by counting separately the number of elements active in each subnetwork during avalanches. PMID:25768549

  13. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  14. Measurement of snow particle size and speed in powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Ito, Yoichi; Nishimura, Kouichi; Naaim-Bouvet, Florence; Bellot, Hervé; Thibert, Emmanuel; Ravanat, Xavier; Fontaine, Firmin

    2015-04-01

    Generally snow avalanches consist a dense-flow layer at the bottom and a powder snow cloud on top. Snow particle size and speed are key parameters to describe the turbulent condition in the powder cloud, however, the information on the particles were not well investigated. In this study, we observed powder snow avalanches using a snow particle counter (SPC) to measure the particle size and speed. The SPC is an optical device consisting a laser diode and photodiode; a pulse signal proportional to its diameter is generated resulting from a snow particle passing through the sensing volume. In general use, the signals are sent to a transducer and divided into 32 size classes based on particle diameter to observe the snow particle size distribution and mass flux at 1-s intervals. In this study, the direct output signal from the transducer was also acquired at a high frequency to obtain the original pulse signal produced by each snow particle. Then the speed of each particle can be calculated using the peak of the pulse, which corresponds to particle diameter and the duration over which the particle passes through the sampling area. We also employed an ultrasonic anemometer to measure air flow speed. Both sensors were installed at the Col du Lautaret Pass in the French Alps. The results of the particle size and speed distribution were then compared with airflow movement in the powder cloud. The ratio of the particle and airflow speeds changed by the particle size distribution and the distance from the dense-flow layer.

  15. Analysis of the photodiode boundary layer transition indicator

    SciTech Connect

    Kuntz, D.W.; Wilken, A.C.; Payne, J.L.

    1994-01-01

    The photodiode transition indicator is a device which has been successfully used to determine the onset of boundary layer transition on numerous hypersonic flight vehicles. The exact source of the electromagnetic radiation detected by the photodiode at transition was not understood. In some cases early saturation of the device occurred, and the device failed to detect transition. Analyses have been performed to determine the source of the radiation producing the photodiode signal. The results of these analyses indicate that the most likely source of the radiation is blackbody emission from the heatshield material bordering the quartz window of the device. Good agreement between flight data and calculations based on this radiation source has been obtained. Analyses also indicate that the most probable source of the radiation causing early saturation is blackbody radiation from carbon particles which break away from the nosetip during the ablation process.

  16. Ge-on-Si photodiode with black silicon boosted responsivity

    NASA Astrophysics Data System (ADS)

    Steglich, M.; Oehme, M.; Käsebier, T.; Zilk, M.; Kostecki, K.; Kley, E.-B.; Schulze, J.; Tünnermann, A.

    2015-08-01

    Normal-incidence Ge-on-Si photodiodes with 300 nm thick intrinsic Ge absorber layer and black silicon light-trapping are fabricated and analyzed with regard to their responsivity. Compared to a standard Ge-on-Si photodiode without black silicon, the black silicon device exhibits a 3-times increased responsivity of 0.34 A/W at 1550 nm. By that, the problematic bandwidth-responsivity trade-off in ultrafast Ge-on-Si detectors can be widely overcome. The black silicon light-trapping structure can be applied to the device rear during back-end processing.

  17. Effects of the 9-T magnetic field on MRS photodiode

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Rykalin, V.; /Northern Illinois U.

    2005-10-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 9T, and the possible impact of the quench of the magnet at 9.5T on sensor's operation are reported. The measurement method used is being described. The results of the work agree with the expectations that the MRS photodiode is not exhibiting sensitivity to the magnetic field presence. This result is essential for the design of the future electron-positron linear collider detector.

  18. towards a continuum theory of avalanches

    NASA Astrophysics Data System (ADS)

    Champeaux, Stephanie

    2001-10-01

    Recently there has been increased interest in avalanches and other structures and their role in turbulent transport in confined plasmas. Experimental and computational investigations [1] have provided evidence of avalanche phenomena at work in transport dynamics. Numerical simulations of familiar turbulence models exhibit anisotropic radially extended structures clearly related to mesoscale transport events or bursts [2]. Such structures, also called streamers, may be viewed as radially extended cells of nonlinear nature (as indicated by mounting evidence). Modulational instabilities are explored as a mechanism for avalanche type formation in drift-ITG turbulence. Radially extended streamer cell formation and self-regulation are investigated within both random phase approximation and coherent envelope approaches [3]. The dual roles of the modulated Reynolds stress and nonlinear pressure advection are elucidated. While convection cells are a time-honored topic, a major new theme of this work is the study of the cell saturation mechanisms, which regulate the transport. Both poloidal shearing on the underlying ITG turbulence, Kelvin-Helmholtz type instability and curvature-drift resonant damping are explored as a saturation mechanism. Saturation levels for streamer and underlying turbulence are estimated. Implications for scalings of enhancement factors are discussed. Aspect of streamer structure and dynamics are used to estimate the variance of the drift-wave induced heat flux, which is shown to be proportional to the streamer intensity level. Streamer growth then results in a significant enhancement of the heat flux variance to order unity. [1] B.A. Carreras et al Phys Rev Lett 83 (1999) 3653; P.A. Politzer Phys Rev Lett 84 (2000) 1192 [2] P. Beyer et al Phys Rev Lett 85 (2000) 4892 [3] P.H. Diamond, S. Champeaux et al Nuclear Fusion in press; S. Champeaux & P.H. Diamond Phys Lett A in press

  19. Neuronal Avalanches in Spontaneous Activity In Vivo

    PubMed Central

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N.; Yu, Shan; Singer, Wolf; Plenz, Dietmar

    2010-01-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called “neuronal avalanches,” were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1–32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above –1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of −1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches. PMID:20631221

  20. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  1. Lifetime of bubble rafts: cooperativity and avalanches.

    PubMed

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-15

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes. PMID:17677967

  2. TCAD simulation of Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  3. Bilayer avalanche spin-diode logic

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Fadel, Eric R.; Wessels, Bruce W.; Querlioz, Damien; Sahakian, Alan V.

    2015-11-01

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  4. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  5. Validation of DEM prediction for granular avalanches on irregular terrain

    NASA Astrophysics Data System (ADS)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  6. Avalanches mediate crystallization in a hard-sphere glass.

    PubMed

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-01

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  7. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  8. Smartphone applications for communicating avalanche risk information - a study on how they are developed and evaluated by their providers

    NASA Astrophysics Data System (ADS)

    Charrière, Marie K. M.; Bogaard, Thom A.

    2016-05-01

    Every year, people are victims of avalanches. It is commonly assumed that one way to decrease those losses is to inform about danger levels. This paper presents a study on current practices in the development and evaluation of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of six smartphone apps highlights the context of their development, how choices of content and visualization were made and how their effectiveness is evaluated by the developers themselves. It appears that all these communicators agree on the message to disseminate and the general representation concepts (i.e., use of the international avalanche danger scale and of a tiered approach). However, the specific ways this message is presented (e.g., maps, icons) is not uniform. Moreover, only simple evaluation processes (e.g., usage monitoring) are conducted by the developers. However, they are well aware that further efforts need to be made in order to thoroughly analyze the effectiveness of the smartphone apps in terms of their real impact (e.g., increase in awareness or change in behavior). This work also highlighted that the smartphone applications are in transition from being one-way communication tools to becoming two-way communication platforms, with the possibility for non-experts users to report on snow and avalanche conditions. This paper indicates challenges that avalanche risk communication is facing, although it is indisputably the most advanced and standardized practice compared to communication tools for other natural hazards. In addition to being relevant for the avalanche risk communication community, this research is therefore of interest for scientists and practitioners working on risk communication related to natural hazards.

  9. The mobility of rock avalanches: disintegration, entrainment and deposition - a conceptual approach

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Mamot, Philipp; Krautblatter, Michael

    2015-04-01

    Massive rock slope failures cause more than 60% of all catastrophic landslide disasters. Failures usually progress through three consecutive phases: detachment, disintegration and flow. While significant advances have been achieved in modelling Rock Avalanche Phase 1 "Detachment" and Phase 3 "Flow", the crucial link between both during Phase 2 "Disintegration", is still poorly understood. Disintegration of the detached rock mass is often initiated by its first major impact with the ground surface. This is a preliminary setup of a PhD project in which we aim at understanding the importance of disintegration and on site conditions at the impact site on fluidization and mobilization. The TUM Landslides Group is experienced in near surface geophysics of rockwalls and under Alpine conditions and has also developed laboratory experience in testing resistivity and P-/S-wave velocity of anisotropic and fractured rocks in the laboratory. In addition, there is a more than ten year experience in the analysis of different magnitudes of rock slope failure. Many of these studies took part in the Wetterstein Mountains and close to the Zugspitze. In this project we plan to compare one very small (Steingerümpel, Rein valley, Germany, with 0.003 km³) and two larger test sites (Eibsee, Zugspitze area, Germany, with 0.3 km³ and Flims, Grisons, Switzerland, with 12 km³) situated in limestone rocks. From our preliminary work we know that the Steingerümpel bergsturz shows a low degree of fracturing in spite of a high impact; the latter ones are high-magnitude rock slope failures which both partially collapsed into a lake and were highly disintegrated and fluidized. We intend to use the smaller Eibsee rock avalanche as a training site where we can try to understand the full dynamics of the flow using sedimentology, geophysics and surface geomorphology which indicated compressive and extensional flow, superelevation and runups. Regarding entrainment processes, we will carry out a

  10. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders. PMID:24483518

  11. Similar Hamiltonian Between Avalanche-effect & Sociophysics

    NASA Astrophysics Data System (ADS)

    Maksoed, Ssi, Wh-

    2016-05-01

    Of similar Hamiltonian concerned in ``sociophysics'', there were RandomFieldIsingModel/RFIM in external field retrieved in S. Sabhapandit:``Hysteresis & Avalanche in RandomFieldIsingModel'',2002:'' ..in earthquake, it is an energy release and in case of ferromagnet, it is the size of the domain flips''. Following the extremes & compromises curve in Serge Galam: ``Sociophysics: a Review of Galam Model'', 2008 fig. 12, h 9 whereas it seems similar with ``heating curve''-Prof. Ir. Abdul Kadir: ``Mesin Arus Searah'', h 192 when the heat sources are continuous denote continuous opinion dynamics. Further, hysteresis as duties in ``Kajian Analisis Model Mikromagnetik dari Struktur Magnet Nanokomposit'', 2007 [ UI file no. S29286 ] also sought:'' calculate the probability that `one more site became unstable' causes an avalanche of the spin flips...'' usually found in Per Bak sand-pile fractal characters experiment exhibits. Great acknowledgment to HE. Mr. LieutGen-TNI[rtd]. H. TUK SETYOHADI, +62-21-7220385, Jl. Sriwijaya Raya 3, Kebayoran Baru, South-Jakarta.

  12. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  13. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  14. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  15. Reducing financial avalanches by random investments

    NASA Astrophysics Data System (ADS)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  16. Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons

    NASA Astrophysics Data System (ADS)

    Corbeil Therrien, Audrey

    La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a

  17. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    NASA Astrophysics Data System (ADS)

    Kaminski, Yelena; Shauly, Eitan; Paz, Yaron

    2015-12-01

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  18. Increasing the dynamic range of CMOS photodiode imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor)

    2007-01-01

    A multiple-step reset process and circuit for resetting a voltage stored on a photodiode of an imaging device. A first stage of the reset occurs while a source and a drain of a pixel source-follower transistor are held at ground potential and the photodiode and a gate of the pixel source-follower transistor are charged to an initial reset voltage having potential less that of a supply voltage. A second stage of the reset occurs after the initial reset voltage is stored on the photodiode and the gate of the pixel source-follower transistor and the source and drain voltages of the pixel source-follower transistor are released from ground potential thereby allowing the source and drain voltages of the pixel source-follower transistor to assume ordinary values above ground potential and resulting in a capacitive feed-through effect that increases the voltage on the photodiode to a value greater than the initial reset voltage.

  19. BiCMOS-integrated photodiode exploiting drift enhancement

    NASA Astrophysics Data System (ADS)

    Swoboda, Robert; Schneider-Hornstein, Kerstin; Wille, Holger; Langguth, Gernot; Zimmermann, Horst

    2014-08-01

    A vertical pin photodiode with a thick intrinsic layer is integrated in a 0.5-μm BiCMOS process. The reverse bias of the photodiode can be increased far above the circuit supply voltage, enabling a high-drift velocity. Therefore, a highly efficient and very fast photodiode is achieved. Rise/fall times down to 94 ps/141 ps at a bias of 17 V were measured for a wavelength of 660 nm. The bandwidth was increased from 1.1 GHz at 3 V to 2.9 GHz at 17 V due to the drift enhancement. A quantum efficiency of 85% with a 660-nm light was verified. The technological measures to avoid negative effects on an NPN transistor due to the Kirk effect caused by the low-doped I-layer epitaxy are described. With a high-energy collector implant, the NPN transit frequency is held above 20 GHz. CMOS devices are unaffected. This photodiode is suitable for a wide variety of high-sensitivity optical sensor applications, for optical communications, for fiber-in-the-home applications, and for optical interconnects.

  20. Test of the DEP hybrid photodiode in 5 Tesla Magnet

    SciTech Connect

    Green, D; Freeman, J.; Ronzhin, A.; Cushman, R.; Heering, A.

    1997-10-01

    The CMS detector is designed so that the tile/fiber hadronic calorimeter (HCAL) is immersed in a 4 Tesla magnetic field. The Hybrid Photodiode (HPD) will be used as the photodetector. Below we present the experiment data which we obtained on the HPD behavior in a magnetic field.

  1. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    SciTech Connect

    Kaminski, Yelena; Shauly, Eitan; Paz, Yaron

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  2. Reading a CD-ROM without a photodiode

    NASA Astrophysics Data System (ADS)

    Wishon, Michael J.; Mourozeau, G.; Ng, K.; Sahai, A. A.; Locquet, Alexandre; Citrin, D. S.

    2016-04-01

    We use a laser diode from a commercial CD/DVD-ROM drive to detect changes in the surface of a diffraction grating without a photodiode. Specifically, we exploit the changing terminal voltage in the laser-diode due to changing feedback strength as the laser is rastered across the grating's surface.

  3. [Avalanche emergency. New aspects of the pathophysiology and therapy of buried avalanche victims].

    PubMed

    Brugger, H; Falk, M; Adler-Kastner, L

    1997-03-14

    A series of investigations on the pathophysiology and management of persons buried in an avalanche has been undertaken over the past few years in response to increased awareness of the importance of emergency medical treatment of avalanche victims and the fact that the high mortality rate has not decreased in spite of the improvement in rescue techniques. This paper is the very first review of the problems encountered in avalanche disasters. The developments over the past 20 years, in particular, are summarized and discussed. Furthermore, current opinions and recommendations on optimal rescue procedure, as well as the prevention of such emergencies are presented. Precise assessment of the survival probability after burial under an avalanche and recognition of the prognostic importance of an air pocket, but only limited role of hypothermia, provide the basis for new concepts governing therapy and triage by the emergency doctor. Resulting guidelines have been endorsed by the Emergency Medicine Subdivision of the International Commission of the Alpine Rescue Services (ICAR) and these recommendations are intended for implementation by organised rescue teams in order to reduce secondary deaths following successful extrication of victims from the avalanche masses. However, the chance of being rescued alive depends primarily on the rapidity of extrication, i.e. how quickly the rescue teams are alerted and transported to the disaster area in the first instance, then how quickly the victims are located and extricated. In order to reduce the mortality additional preventive measures must be introduced to avoid complete burial if possible, or appreciably hasten the rescue procedure. The very steep drop ("fatal kink") in survival probability as from 15 minutes after burial underlines the absolute necessity of the mastery of efficient rescue procedure by uninjured companions. Improvement of the technical developments for the avoidance of total burial (avalanche air bag) and

  4. A payload to evaluate photodiodes for the detection of soft and hard x rays in a space environment using a Get Away Special

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Stewart, Amyelizabeth C.

    1992-01-01

    We propose to use the Get Away Special (GAS) facility to evaluate P-intrinsic-N (PIN) detectors and avalanche photodiodes (APD's) for the detection of both solar and nonsolar soft and hard x rays. We would like to fly both types of silicon detectors for the direct detection of the x ray photons in the energy range from 1 to 30 keV with an energy resolution of about 1 keV. We would also like to use both types of photodiodes viewing CsI(Tl) scintillators to extend the energy range up to 1 MeV with -6 percent resolution at 660 keV. Solar flares would be detected with this instrumentation during periods of solar pointing providing high energy resolution spectra with high time resolution. Similar data would be obtained in the scanning mode on nonsolar transient and steady x ray sources with the same instrumentation. A commandable door over the detectors would be required to allow measurements to be made as low as 1 keV.

  5. Avalanche situation in Turkey and back calculation of selected events

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-05-01

    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  6. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  7. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations.

  8. Disordered artificial spin ices: Avalanches and criticality (invited)

    SciTech Connect

    Reichhardt, Cynthia J. Olson Chern, Gia-Wei; Reichhardt, Charles; Libál, Andras

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  9. Indirect flat-panel detector with avalanche gain

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Hunt, Dylan C.; Tanioka, Kenkichi; Rowlands, John A.

    2004-05-01

    A new concept - an indirect flat-panel detector with avalanche gain - for low dose x-ray imaging has been proposed. The detector consists of an amorphous selenium (a-Se) photoconductor optically coupled to a structured cesium iodide (CsI) scintillator. Under an electric field ESe, the a-Se is sensitive to light and converts the optical photons emitted from CsI into electronic signal. These signals can be stored and read out in the same fashion as in existing flat-panel detectors. When ESe is increased to > 90 V/μm, avalanche multiplication occurs. The avalanche gain ranges between 1-800 depending on ESe and the thickness of the a-Se layer dSe. The avalanche a-Se photoconductor is referred to as HARP (High-gain Avalanche Rushing amorphous Photoconductor). A cascaded linear system model for the proposed detector was developed in order to determine the optimal CsI properties and avalanche gain for different x-ray imaging applications. Our results showed that x-ray quantum noise limited performance can be achieved at the lowest exposure level necessary for fluoroscopy (0.1 μR) and mammography (0.1 mR) with a moderate avalanche gain of 20 (d = 1-2 μm). A laboratory test system using an existing HARP tube optically coupled (through a lens) to a CsI layer was built and the advantage of avalanche gain in overcoming electronic noise was demonstrated experimentally. One of the advantages of the avalanche gain is that it will permit the use of high resolution (HR) CsI (which due to its low light output has not previously been used in flat-panel detectors) to improve DQE at high spatial frequencies.

  10. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  11. Comparison at the sub-100 fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique

    NASA Astrophysics Data System (ADS)

    Porrovecchio, G.; Šmid, M.; López, M.; Hofer, H.; Rodiek, B.; Kück, S.

    2016-08-01

    A comparison down to sub-100-fW optical power level was carried out between a low-noise Silicon photodiode and a low optical flux measurement facility based on a double attenuator technique. The comparison was carried out via a silicon single-photon avalanche diode (Si-SPAD), which acted as transfer standard. The measurements were performed at a wavelength of 770 nm using an attenuated laser as a radiation source at optical power levels between approximately 86 fW and approximately 1325 fW, corresponding to approximately 330 000 photons s-1 and approximately 5.2  ×  106 photons s-1, respectively. The mean relative deviation of the detection efficiencies of the Si-SPAD, determined by the Si-photodiode and the low optical flux measurement facility, i.e. between two completely independent traceability routes, was  <  0.2%, thus well within the combined standard uncertainty of the two measurements. To our knowledge, this is the first comparison for the detection efficiency of a single photon detector using a direct optical flux measurement by a conventional Si-photodiode at such low power levels.

  12. Comparison at the sub-100 fW optical power level of calibrating a single-photon detector using a high-sensitive, low-noise silicon photodiode and the double attenuator technique

    NASA Astrophysics Data System (ADS)

    Porrovecchio, G.; Šmid, M.; López, M.; Hofer, H.; Rodiek, B.; Kück, S.

    2016-08-01

    A comparison down to sub-100-fW optical power level was carried out between a low-noise Silicon photodiode and a low optical flux measurement facility based on a double attenuator technique. The comparison was carried out via a silicon single-photon avalanche diode (Si-SPAD), which acted as transfer standard. The measurements were performed at a wavelength of 770 nm using an attenuated laser as a radiation source at optical power levels between approximately 86 fW and approximately 1325 fW, corresponding to approximately 330 000 photons s‑1 and approximately 5.2  ×  106 photons s‑1, respectively. The mean relative deviation of the detection efficiencies of the Si-SPAD, determined by the Si-photodiode and the low optical flux measurement facility, i.e. between two completely independent traceability routes, was  <  0.2%, thus well within the combined standard uncertainty of the two measurements. To our knowledge, this is the first comparison for the detection efficiency of a single photon detector using a direct optical flux measurement by a conventional Si-photodiode at such low power levels.

  13. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    NASA Astrophysics Data System (ADS)

    Simonelli, C.; Valado, M. M.; Masella, G.; Asteria, L.; Arimondo, E.; Ciampini, D.; Morsch, O.

    2016-08-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  14. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    SciTech Connect

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  15. Scaling crossover for the average avalanche shape

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Stefanos; Bohn, Felipe; Sommer, Rubem L.; Durin, Gianfranco; Zapperi, Stefano; Sethna, James P.

    2010-03-01

    Universality and the renormalization group claim to predict all behavior on long length and time scales asymptotically close to critical points. In practice, large simulations and heroic experiments have been needed to unambiguously test and measure the critical exponents and scaling functions. We announce here the measurement and prediction of universal corrections to scaling, applied to the temporal average shape of Barkhausen noise avalanches. We bypass the confounding factors of time-retarded interactions (eddy currents) by measuring thin permalloy films, and bypass thresholding effects and amplifier distortions by applying Wiener deconvolution. We show experimental shapes that are approximately symmetric, and measure the leading corrections to scaling. We solve a mean-field theory for the magnetization dynamics and calculate the relevant demagnetizing-field correction to scaling, showing qualitative agreement with the experiment. In this way, we move toward a quantitative theory useful at smaller time and length scales and farther from the critical point.

  16. DUE AvalRS: Remote Sensing Derive Avalanche Inventory Data for Decision Support and Hind-Cast After Avalanche Events

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Regula; Kronholm, Kalle; Solberg, Rune; Larsen, Siri Oyen; Salberg, Arnt-Borre; Larsen, Jan Otto; Bjordal, Heidi

    2010-12-01

    Each year, snow avalanches hit populated areas and parts of the transport network in the Norwegian mountain regions, leading to loss of lives and the damaging of buildings and infrastructure. We present the results of a feasibility study on the operation of a service providing the National Public Roads Administration (NPRA) with hind-cast avalanche inventory data on a local-to-regional scale during the course of the winter season, and as soon as possible after major avalanche events. We have explored the use of imagery from high-resolution and very-high-resolution space-borne satellites applying manual mapping and automated image segmentation.

  17. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes

    NASA Astrophysics Data System (ADS)

    Kim, Munho; Seo, Jung-Hun; Yu, Zongfu; Zhou, Weidong; Ma, Zhenqiang

    2016-08-01

    We demonstrate flexible Ge nanomembrane (Ge NM) based metal-semiconductor-metal photodiodes. The effect of uniaxial tensile strain on Ge NM based photodiodes was investigated using bending fixtures. Dark current density is decreased from 21.5 to 4.8 mA/cm2 at 3 V by a tensile strain of 0.42% while photon responsivity is increased from 0.2 to 0.45 A/W at the wavelength of 1.5 μm. Enhanced responsivity is also observed at longer wavelengths up to 1.64 μm. The uniaxial tensile strain effectively reduces the direct bandgap energy of the Ge NM, leading to a shift of the absorption edge toward a longer wavelength.

  18. CdZnTe photodiode arrays for medical imaging

    SciTech Connect

    Sudharsanan, R.; Parodos, T.; Karam, N.H.; Ruzin, A.; Nemirovsky, Y.

    1996-08-01

    In this paper, we report on the design, fabrication, and performance of the first CdZnTe Schottky photodiode arrays for radiation detection. High pressure Bridgman-grown CdZnTe substrates with bulk resistivities in the range 10{sup 8} to 10{sup 10} ohm-cm were used. CdZnTe Schottky photodiodes were formed with In and Ti/Au contacts. Diode arrays with pixel sizes from 1000 x 1000 {mu}m to 100 x 100 {mu}m were fabricated. The diode`s I-V characteristics exhibited low leakage current and high bulk resistivity; leakage current decreased as diode pixel size was reduced. Response of these detector arrays to high energy photons was uniform and their energy resolution improved with smaller pixel size. 14 refs., 9 figs.

  19. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  20. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  1. Avalanches and clusters in planar crack front propagation.

    PubMed

    Laurson, Lasse; Santucci, Stephane; Zapperi, Stefano

    2010-04-01

    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent tau{a}=1.5. We derive a scaling relation tau{a}=2tau-1 between the local cluster exponent tau{a} and the global avalanche exponent tau . For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.

  2. Effects of scale-free avalanche walks on anomalous diffusions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2016-07-01

    Effects of scale-free avalanche walks on anomalous diffusions have been studied by introducing simple non-Markovian walk models. The scale-free avalanche walk is realized as a walker goes to one direction consistently in a time interval, the distribution of which follows a power-law. And it is applied to the memory models, in which the entire history of a walk process is memorized or the memory for the latest step is enhanced with time. The power-law avalanche walk with memory effects strengthens the persistence between steps and thus makes the Hurst exponent be larger than the cases without avalanche walks, while does not affect the anti-persistent nature.

  3. Random walk theory applied to electron avalanche formation

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1974-01-01

    Use of microscopic detail in random walk theory describing the initial formations of a large number of avalanches shows that concomitant electron transport coefficients quickly relax to equilibrium values. This enables the use of random walks having step sizes and probabilities based only on local electric field strengths and densities. A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is demonstrated for helium. Avalanche growth retardation followed by an abrupt growth augmentation as time proceeds is shown to be associated with the formation of regions of charge density extrema near the avalanche axis and within the axial distance covered by the electron swarm.

  4. Si(1-x)Ge(x)/Si Infrared Photodiodes

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Cutoff wavelengths depend on x and also adjusted somewhat via reverse bias. Si1-xGex photodiodes with cutoff wavelengths in and beyond practically important range of 8 to 12 micrometers made by molecular-beam epitaxy. Compatible (in terms of fabrication processes) with silicon readout circuitry, exhibit long-term stability, manufactured with sufficient uniformity for use in focal-plane arrays; and operate at temperatures approximately greater than 65 K, for which temperatures small, portable refrigerators available.

  5. Potential for SPECT cameras utilizing photodiode readout of scintillator crystals

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Gruber, G.J.; Huesman, R.H.

    1997-05-01

    We present a conceptual design for a SPECT detector consisting of an array of 3x3x5 mm CsI(Tl) scintillator crystals individually read out by an array of 3 mm square silicon photodiodes. The interaction position is not determined by Anger logic, but by the location of the individual crystal/photodiode element in which the gamma ray is observed. Since the design is modular (each module typically having 64 crystals, photodiodes, and charge amplifiers, and one multiplexer circuit to reduce the number of readout channels), a large variety of camera geometries can be realized. Advantages of this design over conventional cameras (NaI(Tl) scintillator/photomultiplier tube) are lower gain drift (i.e. higher stability), smaller size, significantly higher count rate capability, and potentially lower cost. For the 141 keV emissions of Tc-99m, both CsI(Tl) and NaI(Tl) have 85-90% photoelectric fraction, but CsI(TI) has an attenuation length of 3.0 mm as compared to 4.5 mm for NaI(Tl). Thus, a 5 mm thick CsI(Tl) camera has singular efficiency to a Nal(Tl) camera with a 7.5 mm thickness (between 1/4 and 3/8 inch). The light output of CsI(Tl) is 25% higher than that of Nal(Tl), and while its 565 nm emissions are not efficiently detected with photomultiplier tubes, they are well matched to photodiode detection.

  6. Physical vulnerability of reinforced concrete buildings impacted by snow avalanches

    NASA Astrophysics Data System (ADS)

    Bertrand, D.; Naaim, M.; Brun, M.

    2010-07-01

    This paper deals with the assessment of physical vulnerability of civil engineering structures to snow avalanche loadings. In this case, the vulnerability of the element at risk is defined by its damage level expressed on a scale from 0 (no damage) to 1 (total destruction). The vulnerability of a building depends on its structure and flow features (geometry, mechanical properties, type of avalanche, topography, etc.). This makes it difficult to obtain vulnerability relations. Most existing vulnerability relations have been built from field observations. This approach suffers from the scarcity of well documented events. Moreover, the back analysis is based on both rough descriptions of the avalanche and the structure. To overcome this problem, numerical simulations of reinforced concrete structures loaded by snow avalanches are carried out. Numerical simulations allow to study, in controlled conditions, the structure behavior under snow avalanche loading. The structure is modeled in 3-D by the finite element method (FEM). The elasto-plasticity framework is used to represent the mechanical behavior of both materials (concrete and steel bars) and the transient feature of the avalanche loading is taken into account in the simulation. Considering a reference structure, several simulation campaigns are conducted in order to assess its snow avalanches vulnerability. Thus, a damage index is defined and is based on global and local parameters of the structure. The influence of the geometrical features of the structure, the compressive strength of the concrete, the density of steel inside the composite material and the maximum impact pressure on the damage index are studied and analyzed. These simulations allow establishing the vulnerability as a function of the impact pressure and the structure features. The derived vulnerability functions could be used for risk analysis in a snow avalanche context.

  7. Modeling negative feedback in single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Hayat, Majeed M.; Ramirez, David A.; Rees, Graham J.; Itzler, Mark A.

    2010-04-01

    Recently, considerable attention has been placed upon exploiting the negative-feedback effect in accelerating the quenching time of the avalanche current in passively quenched single-photon avalanche-diode (SPAD) circuits. Reducing the quenching time results in a reduction in the total charge generated in the SPAD, thereby reducing the number of trapped carries; this, in turn, can lead to improved after-pulsing characteristics. A passively quenched SPAD circuit consists of a DC source connected to the SPAD, to provide the reverse bias, and a series load resistor. Upon a photon-generated electron-hole pair triggering an avalanche breakdown, current through the diode and the load resistor rises quickly reaching a steady state value, after which it can collapse (quench) at a stochastic time. In this paper we review recent analytical and Monte-Carlo based models for the quenching time. In addition, results on the statistics of the quenching time and the avalanche pulse duration of SPADs with arbitrary time-variant field across the multiplication region are presented. The calculations of the statistics of the avalanche pulse duration use the dead-space multiplication theory (DSMT) to determine the probability of the avalanche pulse to quench by time t after the instant s at which the electron-hole pair that triggers the avalanche was created. In the analytical and Monte-Carlo based models for the quenching time, the dynamic negative feedback, which is due to the dynamic voltage drop across the load resistor, is taken into account. In addition, in the Monte-Carlo simulations the stochastic nature of the avalanche current is also considered.

  8. Vertically illuminated TW-UTC photodiodes for terahertz generation

    NASA Astrophysics Data System (ADS)

    Barrientos Z., Claudio M.; Calle G., Victor H.; Alvarez, Jaime A.; Mena, F. Patricio; Vukusic, Josip; Stake, Jan; Michael, Ernest A.

    2012-09-01

    More efficient and powerful continuous-wave photonic mixers as terahertz sources are motivated by the need of more versatile local oscillators for submillimeter/terahertz receiver systems. Uni-Travelling Carrier (UTC) photodiodes are very prospective candidates for reaching this objective, but so far only have been reported as lumped-elements or as edge-illuminated optical-waveguide travelling-wave (TW) devices. To overcome the associated power limitations of those implementations, we are developing a novel implementation of the UTC photodiodes which combines a travelingwave photomixer with vertical velocity-matched illumination in a distributed structure. In this implementation called velocity-matched travelling-wave uni-travelling carrier photodiode, it is possible to obtain in-situ velocity matching of the beat-fringes of the two angled laser beams with the submm/THz-wave on the stripline. In this way, minimum frequency roll-off is achieved by tuning the angle between the two laser beams. A first design of these TW-UTC PDs from our Terahertz Photonics Laboratory at University of Chile has been micro-fabricated at the MC2 cleanroom facility at Chalmers Technical University.

  9. Avalanche risk assessment for the link Osh - Bishkek, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Nazarkulova, Kydyr

    2015-04-01

    The Bishkek-Osh road is main North-South ground transportation connection between the two major cities of Kyrgyzstan. One of the causes for frequent interruptions and closures between November and May is the avalanche risk due to local terrain characteristics and orographically induced precipitation maxima during winter. As a first step towards more effective prediction and implementation of mitigating measures the development of a digital avalanche inventory ('avalanche cadastre') has been initiated. This is aiming at modeling regional risk, and prioritizes the implementation of protective infrastructures in the most avalanche-prone zones. In addition, this helps with continuous monitoring of avalanche behaviour and the assessment of potential influence of climate change. For the parameterisation of models and support of decisions, details about avalanche incidences need to be collected. Historical data collected during Soviet time serve as an important baseline, complemented by more recent data. Overall, developing such a geo database shall be useful and effective for future planning at the Ministry of Emergency Services. This paper demonstrates important parameters to be collected and critical role of historical data as a baseline. Geodatabases are being developed on ArcGIS and used locally for planning preventive measures.

  10. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support. PMID:25375434

  11. Avalanches and hysteresis in frustrated superconductors and XY spin glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T =0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  12. Avalanches, plasticity, and ordering in colloidal crystals under compression

    NASA Astrophysics Data System (ADS)

    McDermott, D.; Reichhardt, C. J. Olson; Reichhardt, C.

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  13. A revision of the Haiming rock avalanche (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  14. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  15. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  16. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  17. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  18. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  19. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events. PMID:27415320

  20. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    SciTech Connect

    Kyuregyan, A. S.

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  1. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  2. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lampert, M.; Anda, G.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Réfy, D.; Nam, Y. U.; Zoletnik, S.

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  3. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Lampert, M.; Anda, G.; Réfy, D.; Zoletnik, S.; Czopf, A.; Erdei, G.; Guszejnov, D.; Kovácsik, Á.; Pokol, G. I.; Nam, Y. U.

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  5. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  6. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  7. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  8. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    DOEpatents

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  9. The Use of Self-scanned Silicon Photodiode Arrays for Astronomical Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Cochran, A. L.

    1984-01-01

    The use of a Reticon self scanned silicon photodiode array for precision spectrophotometry is discussed. It is shown that internal errors are + or - 0.003 mag. Observations obtained with a photodiode array are compared with observations obtained with other types of detectors with agreement, from 3500 A to 10500 A, of 1%. The photometric properties of self scanned photodiode arrays are discussed. Potential pitfalls are given.

  10. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  11. Avalanche outbreaks emerging in cooperative contagions

    NASA Astrophysics Data System (ADS)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  12. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  13. OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES

    SciTech Connect

    S. BOETTCHER; A. PERCUS

    2000-08-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only one adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.

  14. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  15. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations. PMID:23767588

  16. Infrasonic monitoring of snow avalanches in the Alps

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  17. Avalanches in a stochastic model of spiking neurons.

    PubMed

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  18. InGaAsP Avalanche Photodetectors for Non-Gated 1.06 micrometer Photon-Counting Receivers

    NASA Technical Reports Server (NTRS)

    Itzler, Mark A.; Jiang, Xudong; Ben-Michael, Rafael; Slomkowski, Krystyna; Krainak, Michael A.

    2007-01-01

    The efficient detection of single photons at 1.06 micron is of considerable interest for lidar/ladar systems designed for remote sensing an d ranging as well as for free-space optical transmission in photon-st arved applications. However, silicon-based single photon avalanche diodes (SPADs) used at shorter wavelengths have very low single photon d etection efficiency (approximately 1 - 2%) at 1.06 micron, and InP/In GaAs SPADs designed for telecommunications wavelengths near 1.5 micro n exhibit high dark count rates that generally inhibit non-gated (free-running) operation. To bridge this "single photon detection gap" for wavelengths just beyond 1 micron, we have developed high performance , large area (80 - 200 micron diameter) InP-based InGaAsP quaternary absorber SPADs optimized for operation at 1.06 micron and based on a highly reliable planar geometry avalanche photodiode structure. We wil l show that dark count rates are sufficiently low to allow for non-ga ted operation while achieving detection efficiencies far surpassing t hose found for Si SPADs. At a detection efficiency of 10%, 80 micron diameter devices exhibit dark count rates below 1000 Hz and count rate s of at least 3 MHz when operated at -40 C. Significantly higher dete ction efficiencies (30 - 50%) are achievable with acceptable tradeoff s in dark count rate. In this paper, we will also discuss performance modeling for these devices and compare their behavior with longer wav elength InP-based InGaAs ternary absorber SPADs fabricated on a relat ed device design platform.

  19. Development of a testbed for flexible a-Si:H photodiode sensing arrays

    NASA Astrophysics Data System (ADS)

    Dominguez, Alfonso; Kunnen, George; Vetrano, Michael; Smith, Joseph; Marrs, Michael; Allee, David R.

    2013-05-01

    Large area, flexible sensing arrays for imaging, biochemical sensing and radiation detection are now possible with the development of flexible active matrix display technology. In particular, large-area flexible imaging arrays can provide considerable advancement in defense and security industries because of their inherent low manufacturing costs and physical plasticity that allows for increased adaptability to non-planar mounting surfaces. For example, a flexible array of photodetectors and lenslets formed into a cylinder could image simultaneously with a 360 degree view without the need for expensive bulky optics or a gimbaled mount. Here we report the design and development of a scalable 16x16 pixel testbed for flexible sensor arrays using commercial-off-the-shelf (COTS) parts and demonstrate the capture of a shadow image with an array of photodiodes and active pixel sensors on a plastic substrate. The image capture system makes use of an array of low-noise, InGaZnO active pixel amplifiers to detect changes in current in 2.4 μm-thick reverse-biased a-Si:H PIN diodes. A thorough characterization of the responsivity, detectivity, and optical gain of an a- Si:H photodiode is also provided. At the back end, analog capture circuitry progressively scans the array and constructs an image based on the electrical activity in each pixel. The use of correlated-double-sampling to remove fixed pattern noise is shown to significantly improve spatial resolution due to process variations. The testbed can be readily adapted for the development of neutron, alpha-particle, or X-ray detection arrays given an appropriate conversion layer.

  20. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  1. Compact multispectral photodiode arrays using micropatterned dichroic filters

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production

  2. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Olcott, Peter D.; Spanoudaki, Virginia; Levin, Craig S.

    2011-06-01

    We investigated the feasibility of designing an Anger-logic PET detector module using large-area high-gain avalanche photodiodes (APDs) for a brain-dedicated PET/MRI system. Using Monte Carlo simulations, we systematically optimized the detector design with regard to the scintillation crystal, optical diffuser, surface treatment, layout of large-area APDs, and signal-to-noise ratio (SNR, defined as the 511 keV photopeak position divided by the standard deviation of noise floor in an energy spectrum) of the APD devices. A detector prototype was built comprising an 8 × 8 array of 2.75 × 3.00 × 20.0 mm3 LYSO (lutetium-yttrium-oxyorthosilicate) crystals and a 22.0 × 24.0 × 9.0 mm3 optical diffuser. From the four designs of the optical diffuser tested, two designs employing a slotted diffuser are able to resolve all 64 crystals within the block with good uniformity and peak-to-valley ratio. Good agreement was found between the simulation and experimental results. For the detector employing a slotted optical diffuser, the energy resolution of the global energy spectrum after normalization is 13.4 ± 0.4%. The energy resolution of individual crystals varies between 11.3 ± 0.3% and 17.3 ± 0.4%. The time resolution varies between 4.85 ± 0.04 (center crystal), 5.17 ± 0.06 (edge crystal), and 5.18 ± 0.07 ns (corner crystal). The generalized framework proposed in this work helps to guide the design of detector modules for selected PET system configurations, including scaling the design down to a preclinical PET system, scaling up to a whole-body clinical scanner, as well as replacing APDs with other novel photodetectors that have higher gain or SNR such as silicon photomultipliers.

  3. The effectiveness of mean-field theory for avalanche distributions

    NASA Astrophysics Data System (ADS)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  4. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  5. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  6. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  7. Debris avalanche deposits: emplacement dynamics, morphology and hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.; Dufresne, A.

    2013-12-01

    Debris avalanches from volcanoes form some of the largest subaerial and submarine landslide deposits on Earth, covering vast areas (10s to 100s km2) and displaying typically hummocky surface topography. Numerical models have been developed that can identify the area threatened by an event of known volume from a known volcano, if the runout mechanics can be understood. Better understanding the hazards from these enormous events requires realistic parameterization of models, which must be able to explain debris avalanche deposit geometries under water, in air, on Mars and in vacuo on the Moon. We have shown that the complex deposit geometry of the 25 km3 Socompa deposit in Chile can be explained by the effects of basal debris fragmenting during runout. The hummocky surface morphology of many debris avalanche deposits again indicates that the emplacement process involved a very mobile basal layer, above which the travelling mass passively extends, leading to lateral and longitudinal disaggregation of the mass into discrete blocks whose dimension reflects the mass depth. Submarine debris avalanches can also be modelled on this basis, because the presence of ambient water does not fundamentally alter the fragmentation process; to assess the additional hazards of debris avalanches entering into water, models are available to simulate the tsunami generated by such events.

  8. Application of photodiodes to the detection of electromagnetic bursts

    NASA Technical Reports Server (NTRS)

    Fukushima, Y.; Saito, T.; Sakata, M.; Shima, M.; Yamamoto, Y.

    1985-01-01

    A new type of photodiode + scintillator (1 m2 x 1 cm) detector is developed to detect the large electro-magnetic burst under an EX-chamber. The threshold burst size is found to be 4.3 x 10 the 5 particles at the center of the scintillator. Therefore a gamma-ray family of 10 TeV is detectable by it, when it is set under 14 r.1. of iron. In addition, a very fast (2.4 nsec width) and very bright (correspond to 10 to the 6 particles) scintillation pulse has become avarable for this study.

  9. Vertically illuminated TW-UTC photodiodes for terahertz generation

    NASA Astrophysics Data System (ADS)

    Barrientos Z., Claudio; Calle, Victor; Diaz, Marcos; Mena, F. Patricio; Vukusic, Josip; Stake, Jan; Michael, Ernest A.

    2010-07-01

    More efficient continuous-wave photonic nearinfrared mixers as terahertz sources are investigated with the motivation to develop a universal photonic local oscillator for astronomical submillimeter/terahertz receiver systems. For this, we develop new concepts for vertically illuminated traveling-wave (TW) photomixers, TW Uni-Travelling Carrier (UTC) photodiodes. Device simulation/modeling and optical/terahertz testing is being done in the new terahertz photonics laboratory at the Electrical Engineering Department of the University of Chile, whereas device fabrication is performed at the MC2 cleanroom facility at Chalmers Technical University. We report on first progress in this direction.

  10. MRS Photodiode, LED and extruded scintillator performance in magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Zutshi, V.; /Northern Illinois U.

    2005-05-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported. In addition, the experimental results on the performance of the extruded scintillator and WLS fiber, and various LEDs in the magnetic fields of 1.8T and 2.3T respectively, are detailed. The measurement method used is being described.

  11. Activity-Dependent Model for Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    Networks of living neurons represent one of the most fascinating systems of modern biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behavior of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behavior is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. This fundamental problem in neurobiology has recently shown a number of features in common to other complex systems. These features mainly concern the morphology of the network, namely the spatial organization of the established connections, and a novel kind of neuronal activity. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. Both features have been found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behavior. In this contribution, we apply a statistical mechanical model to describe the complex activity in a neuronal network. The network is chosen to have a number of connections in long range, as found for neurons in vitro. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. The numerical power spectra for electrical activity reproduces also the power law behavior measured in an EEG of man resting with the eyes closed.

  12. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  13. Universality in the mean spatial shape of avalanches

    NASA Astrophysics Data System (ADS)

    Thiery, Thimothée; Le Doussal, Pierre

    2016-05-01

    Quantifying the universality of avalanche observables beyond critical exponents is of current great interest in theory and experiments. Here, we compute the spatial shape of avalanches in the universality class of the depinning of elastic interfaces in random media. We provide for the first time an analytically tractable definition of the spatial shape, accessible in experiments, and study the mean spatial shape of avalanches at fixed size centered around their starting point (seed). We calculate the associated universal scaling functions, both in a mean-field model and beyond. Notably, they are predicted to exhibit a cusp singularity near the seed. The results are in good agreement with a numerical simulation of an elastic line.

  14. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  15. Avalanche Dynamics of Crackle Sound in the Lung

    SciTech Connect

    Alencar, Adriano M.; Buldyrev, Sergey V.; Majumdar, Arnab; Stanley, H. Eugene; Suki, Bela

    2001-08-20

    We analyze a sequence of short transient sound waves, called 'crackles,' which are associated with explosive openings of airways during lung inflation. The distribution of time intervals between consecutive crackles {Delta}t shows two regimes of power law behavior. We develop an avalanche model which fits the data over five decades of {Delta}t. We find that the regime for large {Delta}t is related to the dynamics of distinct avalanches in a Cayley tree, and the regime for small {Delta}t is determined by the dynamics of crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which provides information about lung inflation.

  16. Erosive granular avalanches : a cross confrontation between theory and experiment.

    SciTech Connect

    Clement, E.; Malloggi, F.; Andreotti, B.; Aranson, I. S.; Materials Science Division; ESPCI-Univ. Paris; Univ. of Twente

    2007-01-01

    Results on two laboratory scale avalanches experiments taking place both in the air and under-water, are presented. In both cases a family of solitary erosion/deposition waves are observed. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagram, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. These experiments are studied theoretically in the framework of the 'partial fluidization' model of dense granular flows. This model identifies a family of propagating solitary waves displaying a behavior similar to the experimental observation. A primary cause for the transverse instability is related to the dependence of avalanche velocity on the granular mass trapped by the flow.

  17. Distribution of maximum velocities in avalanches near the depinning transition.

    PubMed

    LeBlanc, Michael; Angheluta, Luiza; Dahmen, Karin; Goldenfeld, Nigel

    2012-09-01

    We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities v(m) in the mean field theory of the interface depinning transition. We derive the extreme value distribution P(v(m)|T) for the maximum velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, v(m), scales as P(v(m))~v(m)(-2) for large v(m). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

  18. Internal Avalanches in a Growing Pile of Superconducting Vortices

    NASA Astrophysics Data System (ADS)

    Lee, Choong-Seop; Bassler, Kevin E.; Paczuski, Maya

    2002-03-01

    Avalanches of magnetic vortices produced by systematically increasing an external magnetic field applied to a type-II superconductor are studied using a simple ``sandpile'' type cellular model (K. E. Bassler and M. Paczuski, Phys. Rev. Lett. 81), 3761 (1998).. The cellular model describes the over-damped stick-slip dynamics of the vortices, which results in avalanches of vortex motion as the magnetic field increased. Driving the system by very slowly increasing the magnetic field, the system reaches a self-organized critical state in which the average density of vortices is increasing. In that state, the scaling properties and critical exponents describing the avalanche statistics are measured, and compared with recent experiments.

  19. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature. PMID:26548036

  20. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California

    NASA Astrophysics Data System (ADS)

    Crandell, D. R.; Miller, C. D.; Glicken, H. X.; Christiansen, R. L.; Newhall, C. G.

    1984-03-01

    A debris-avalanche deposit extends 43 km northwestward from the base of Mount Shasta across the floor of Shasta Valley, California, where it covers an area of at least 450 km2. The surface of the deposit is dotted with hundreds of mounds, hills, and ridges, all formed of blocks of pyroxene andesite and unconsolidated volcaniclastic deposits derived from an ancestral Mount Shasta. Individual hills are separated by flat-topped laharlike deposits that also form the matrix of the debris avalanche and slope northwestward about 5 m/km. Radiometric ages of rocks in the deposit and of a postavalanche basalt flow indicate that the avalanche occurred between about 300,000 and 360,000 yr ago. An inferred average thickness of the deposit, plus a computed volume of about 4 km3 for the hills and ridges, indicate an estimated volume of about 26 km3, making it the largest known Quaternary landslide on Earth.

  1. Modeling and monitoring avalanches caused by rain-on-snow events

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain

  2. 4H-SiC photodiode model for DC SPICE circuit simulation

    NASA Astrophysics Data System (ADS)

    Kociubiński, Andrzej; Duk, Mariusz; Korona, Mateusz; Muzyka, Krzysztof

    2015-09-01

    Technology, characterization and in particularly modeling of 4H-SiC photodiode have been presented in this paper. Modeling and simulation has been performed using PSPICE environment. Comparison of simulation with real results for electrical characteristic (I-V) of circular SiC photodiodes has been also presented.

  3. Effect of volume fraction on granular avalanche dynamics.

    PubMed

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches. PMID:25314432

  4. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  5. Effect of volume fraction on granular avalanche dynamics

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Goldman, Daniel I.

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ0. We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45∘ angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ0∈[0.58-0.63] and differed above or below the granular critical state, ϕc, defined as the onset of dilation as a function of increasing volume fraction. For ϕ0-ϕc<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ0=7.7±1.4∘ and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θm=28.5±1.0∘. Granular material at ϕ0-ϕc>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ0=32.1±1.5∘ prior to the onset of an avalanche at θm=35.9±0.7∘. Both θ0 and θm increased with ϕ0 and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θR=22±2∘, was independent of ϕ0. From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ0, with ϕ0-ϕc<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ0-ϕc>0. Our study elucidates how initial conditions—including volume fraction—are important determinants of granular slope stability and the onset of avalanches.

  6. Avalanches in strained amorphous solids: does inertia destroy critical behavior?

    PubMed

    Salerno, K Michael; Maloney, Craig E; Robbins, Mark O

    2012-09-01

    Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.

  7. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  8. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  9. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  10. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2011-12-01

    Practitioners working in avalanche terrain may never witness an extreme event, but understanding extreme events is important for categorizing avalanches that occur within a given season. Historical records of avalanche incidents and direct observations are the most reliable evidence of avalanche activity, but patterns in vegetation can be used to further quantify and map the frequency and magnitude of past events. We surveyed published literature to synthesize approaches for using vegetation sampling to characterize avalanche terrain, and developed examples to identify the benefits and caveats of using different practical field methods to estimate avalanche frequency and magnitude. Powerful avalanches can deposit massive piles of snow, rocks, and woody debris in runout zones. Large avalanches (relative to the path) can cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking trees. Discs and cores can be collected from downed trees to detect signals of past avalanche disturbance recorded in woody plant tissue. Signals of disturbance events recorded in tree rings can include direct impact scars from the moving snow and wind blast, development of reaction wood in response to tilting, and abrupt variation in the relative width of annual growth rings. The relative ages of trees in avalanche paths and the surrounding landscape can be an indicator of the area impacted by past avalanches. Repeat photography can also be useful to track changes in vegetation over time. For Colorado, and perhaps elsewhere, several vegetation ecology methods can be used in combination to accurately characterize local avalanche frequency and magnitude.

  11. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  12. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  13. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  14. Si/Ge photodiodes for coherent and analog communication

    NASA Astrophysics Data System (ADS)

    Piels, Molly

    High-speed photodiodes have diverse applications in wireless and fiber communications. They can be used as output stages for antenna systems as well as receivers for fiber optic networks. Silicon is an attractive substrate material for photonic components for a number of reasons. Low cost manufacturing in CMOS fabrication facilities, low material loss at telecommunications wavelengths, and relatively simple co-packaging with electronics are all driving interest in silicon photonic devices. Since silicon does not absorb light at telecommunications wavelengths, photodetector fabrication requires the integration of either III-V materials or germanium. Recent work on germanium photodetectors has focused on low-capacitance devices suitable for integration with silicon electronics. These devices have excellent bandwidth and efficiency, but have not been designed for the levels of photocurrent required by coherent and analog systems. This thesis explores the design, fabrication, and measurement of photodetectors fabricated on silicon with germanium absorbing regions for high speed and high power performance. There are numerous design trade-offs between speed, efficiency, and output power. Designing for high bandwidth favors small devices for low capacitance. Small devices require abrupt absorption profiles for good efficiency, but design for high output power favors large devices with dilute absorption. The absorption profile can be controlled by the absorber layer thickness, but this will also affect the bandwidth and power handling. This work quantifies the trade-offs between high speed, high efficiency, and high power design. Intrinsic region thickness and absorption profile are identified as the most important design variables. For PIN structures, the absorption profile and intrinsic region thickness are both functions of the Ge thickness, but in uni-traveling carrier (UTC) structures the absorption profile and intrinsic region can be designed independently. This

  15. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  16. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  17. Gridded snow maps supporting avalanche forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  18. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  19. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    ERIC Educational Resources Information Center

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  20. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

    PubMed

    Petermann, Thomas; Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A L; Chialvo, Dante R; Plenz, Dietmar

    2009-09-15

    Spontaneous neuronal activity is an important property of the cerebral cortex but its spatiotemporal organization and dynamical framework remain poorly understood. Studies in reduced systems--tissue cultures, acute slices, and anesthetized rats--show that spontaneous activity forms characteristic clusters in space and time, called neuronal avalanches. Modeling studies suggest that networks with this property are poised at a critical state that optimizes input processing, information storage, and transfer, but the relevance of avalanches for fully functional cerebral systems has been controversial. Here we show that ongoing cortical synchronization in awake rhesus monkeys carries the signature of neuronal avalanches. Negative LFP deflections (nLFPs) correlate with neuronal spiking and increase in amplitude with increases in local population spike rate and synchrony. These nLFPs form neuronal avalanches that are scale-invariant in space and time and with respect to the threshold of nLFP detection. This dimension, threshold invariance, describes a fractal organization: smaller nLFPs are embedded in clusters of larger ones without destroying the spatial and temporal scale-invariance of the dynamics. These findings suggest an organization of ongoing cortical synchronization that is scale-invariant in its three fundamental dimensions--time, space, and local neuronal group size. Such scale-invariance has ontogenetic and phylogenetic implications because it allows large increases in network capacity without a fundamental reorganization of the system.