NASA Astrophysics Data System (ADS)
Pickett, David F., Jr.
1992-04-01
An evaluation is made of noteworthy trends in the development of advanced electrochemical cells since January 1986. The advancements noted encompass LiAr batteries, spacecraft power supply Ni-H and Li-SO2 batteries, battery-powered biomedical devices, rechargeable Li-ion batteries, and the development of ambient temperature rechargeable lithium polymer solid electrolyte batteries. Attention is given to OSHA regulatory guidelines for recently commercially introduced advanced battery systems.
FY2016 Advanced Batteries R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview;more » the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR)more » part 1.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR)more » part 2, Battery500 Innovation Centers project summaries, and appendices.« less
53rd Annual Fuze Conference - Next Generation Fuzing - Maximum Advantage for the Warfighter
2009-05-21
Time Engineering AB 3:00 pm BREAK 3:20 pm Advances In Thermal Batteries For Fuzing David E. Harney, Advanced Thermal Batteries , Inc...Currently teaming and collaborating with Advanced Thermal Batteries • and Omnitek Partners to develop an improved thermal battery. • Current
State-of-the-art characterization techniques for advanced lithium-ion batteries
NASA Astrophysics Data System (ADS)
Lu, Jun; Wu, Tianpin; Amine, Khalil
2017-03-01
To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Krause, F. C.; Hwang, C.; Westa, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.
2011-01-01
NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions. The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems. At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability). A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 2.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 1.« less
Lessons learned in acquiring new regulations for shipping advanced electric vehicle batteries
NASA Astrophysics Data System (ADS)
Henriksen, Gary; Hammel, Carol; Altemos, Edward A.
1994-12-01
In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy established its ad hoc EV Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced EV battery technologies and facilitate the removal of these barriers. A Shipping Sub-Working Group (SSWG) was formed to address the regulatory issues associated with the domestic and international shipment of these new battery technologies. The SSWG invites major industrial developers of advanced battery technologies to join as members and work closely with appropriate domestic and international regulatory authorities to develop suitable regulations and procedures for the safe transport of these new battery technologies. This paper describes the domestic and international regulatory processes for the transport of dangerous goods; reviews the status of shipping regulations for sodium-beta and lithium batteries; and delineates the lessons learned to date in this process. The sodium-beta battery family was the first category of advanced EV batteries to be addressed by the SSWG. It includes both sodium/sulfur and sodium/metal chloride batteries. Their efforts led to the establishment of a UN number (UN 3292) in the UN Recommendations, for cold cells and batteries, and establishment of a US Department of Transportation general exemption (DOT-E-10917) covering cold and hot batteries, as well as cold cells. The lessons learned for sodium-beta batteries, over the period of 1990--94, are now being applied to the development of regulations for shipping a new generation of lithium battery technologies (lithium-polymer and lithium-aluminum/iron sulfide batteries).
High Efficiency Space Power Systems Project Advanced Space-Rated Batteries
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2011-01-01
Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.
Exploratory technology research program for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, K.
1992-06-01
The U.S. Department of Energy's Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in FY 1991.
A survey of advanced battery systems for space applications
NASA Technical Reports Server (NTRS)
Attia, Alan I.
1989-01-01
The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.
Bipolar Nickel-Metal Hydride Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1998-01-01
The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.
Nickel-metal hydride (Ni-MH) technology evaluation for aircraft battery applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeber, G.; Vukson, S.P.; Erbacher, J.K.
1996-12-31
Available cylindrical and prismatic commercial Ni-MH batteries using AB{sub 5} and AB{sub 2} cathodes were evaluated for possible application to military aircraft batteries. Commercial AB{sub 5} technology is further advanced than AB{sub 2} technology and would require less alloy, electrolyte and single cell/battery development for near term (3--5 years) applications. Tested AB{sub 2} technology appears inadequate to meet the near term military requirements and would require a major development in the alloy to overcome the irreversible capacity loss at temperatures above 49 C. In addition, significant advances in alloy, electrolyte and single cell/battery development would also be needed.
Exploratory Technology Research Program for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1994-09-01
The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.
Exploratory Technology Research Program for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1994-09-01
The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.
Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue
2017-07-01
Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery
NASA Astrophysics Data System (ADS)
1988-06-01
The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.
Battery Calendar Life Estimator Manual Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2012-10-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Battery Life Estimator Manual Linear Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2009-08-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.
2012-01-01
(1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.
2011-07-27
Ion Battery Packs Advanced Chemistry Batteries EM Armor Power Brick 8 UNCLASSIFIED Concepts Platform Simulation Component Development Vehicle...Advanced Turbocharging, Supercharging, OPOC Efficient Powertrain Technologies Electrified Accessories Energy Harvesting SiC Electronics Lithium
Advanced secondary batteries: Their applications, technological status, market and opportunity
NASA Astrophysics Data System (ADS)
Yao, M.
1989-03-01
Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
ABLE project: Development of an advanced lead-acid storage system for autonomous PV installations
NASA Astrophysics Data System (ADS)
Lemaire-Potteau, Elisabeth; Vallvé, Xavier; Pavlov, Detchko; Papazov, G.; Borg, Nico Van der; Sarrau, Jean-François
In the advanced battery for low-cost renewable energy (ABLE) project, the partners have developed an advanced storage system for small and medium-size PV systems. It is composed of an innovative valve-regulated lead-acid (VRLA) battery, optimised for reliability and manufacturing cost, and an integrated regulator, for optimal battery management and anti-fraudulent use. The ABLE battery performances are comparable to flooded tubular batteries, which are the reference in medium-size PV systems. The ABLE regulator has several innovative features regarding energy management and modular series/parallel association. The storage system has been validated by indoor, outdoor and field tests, and it is expected that this concept could be a major improvement for large-scale implementation of PV within the framework of national rural electrification schemes.
Advanced U.S. military aircraft battery systems
NASA Astrophysics Data System (ADS)
Flake, Richard A.; Eskra, Michael D.
1990-04-01
While most USAF aircraft currently use vented Ni-Cd for dc electrical power and emergency power, as well as the powering of lights and instruments prior to engine starting, these batteries have high maintenance requirements, low reliability, and no built-in testing capability with which to check battery health prior to flight. The USAF Wright R&D Center accordingly initiated its Advanced Maintenance-Free NiCd Battery System development program in 1986, in order to develop a sealed Ni-Cd battery which would remain maintenance-free over a period of three years. Attention is being given to a high power bipolar battery design in which there are no individual cell cases or cell interconnects.
The 1982 Goddard Space Flight Center Battery Workshop
NASA Technical Reports Server (NTRS)
Halpert, G. (Editor)
1983-01-01
Various topics concerned with advanced battery technology are addressed including lithium cell and battery safety developments, mathematical modelling, charge control of aerospace power systems, and the application of nickel hydrogen cells/batteries vis-a-vis nickel cadmium cells/batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less
Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte
NASA Technical Reports Server (NTRS)
Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.
2014-01-01
NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.
Advanced vehicle systems assessment. Volume 2: Subsystems assessment
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).
Innovation Meets Performance Demands of Advanced Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less
Performance evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.
1990-01-01
At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).
Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2008-01-01
Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.
New Developments in Nickel-Hydrogen Dependent Pressure Vessel (DPV) Cell and Battery Design
NASA Technical Reports Server (NTRS)
Caldwell, Dwight B.; Fox, Chris L.; Miller, Lee E.
1997-01-01
THe Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2) design is being developed as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced part count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risk.
Advanced Energy Storage for Space Applications
NASA Technical Reports Server (NTRS)
Halpert, G.; Surampudi, S.
1993-01-01
NASA is planning a number of space science and space exploration missions into the early 21st century. The JPL Advanced Battery Program, which has the goal of developing batteries for these missions, is described. Under program consideration are Li-SOCl(sub 2) cells, secondary lithium cells, advanced metal hydride cells, and high-temperature sodium-nickel chloride cells.
NREL Energy Storage Projects. FY2014 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad; Ban, Chunmei; Burton, Evan
2015-03-01
The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Batterymore » Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.« less
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Bennett, William R.
2010-01-01
NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.
Recent Progress in Advanced Materials for Lithium Ion Batteries
Chen, Jiajun
2013-01-01
The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed. PMID:28809300
Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin
2017-10-26
Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.
Batteries at NASA - Today and Beyond
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2015-01-01
NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.
Trends in Cardiac Pacemaker Batteries
Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa
2004-01-01
Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934
A review of recent developments in rechargeable lithium-sulfur batteries.
Kang, Weimin; Deng, Nanping; Ju, Jingge; Li, Quanxiang; Wu, Dayong; Ma, Xiaomin; Li, Lei; Naebe, Minoo; Cheng, Bowen
2016-09-22
The research and development of advanced energy-storage systems must meet a large number of requirements, including high energy density, natural abundance of the raw material, low cost and environmental friendliness, and particularly reasonable safety. As the demands of high-performance batteries are continuously increasing, with large-scale energy storage systems and electric mobility equipment, lithium-sulfur batteries have become an attractive candidate for the new generation of high-performance batteries due to their high theoretical capacity (1675 mA h g -1 ) and energy density (2600 Wh kg -1 ). However, rapid capacity attenuation with poor cycle and rate performances make the batteries far from ideal with respect to real commercial applications. Outstanding breakthroughs and achievements have been made to alleviate these problems in the past ten years. This paper presents an overview of recent advances in lithium-sulfur battery research. We cover the research and development to date on various components of lithium-sulfur batteries, including cathodes, binders, separators, electrolytes, anodes, collectors, and some novel cell configurations. The current trends in materials selection for batteries are reviewed and various choices of cathode, binder, electrolyte, separator, anode, and collector materials are discussed. The current challenges associated with the use of batteries and their materials selection are listed and future perspectives for this class of battery are also discussed.
Lewis Research Center battery overview
NASA Technical Reports Server (NTRS)
Odonnell, Patricia
1993-01-01
The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.
2016-12-22
importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
Space Station Freedom advanced photovoltaics and battery technology development planning
NASA Technical Reports Server (NTRS)
Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.
1993-01-01
Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.
Advanced nickel-hydrogen spacecraft battery development
NASA Technical Reports Server (NTRS)
Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.
1994-01-01
Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.
Research Advances: Paper Batteries, Phototriggered Microcapsules, and Oil-Free Plastic Production
ERIC Educational Resources Information Center
King, Angela G.
2010-01-01
Chemists continue to work at the forefront of materials science research. Recent advances include application of bioengineering to produce plastics from renewable biomass instead of petroleum, generation of paper-based batteries, and development of phototriggerable microcapsules for chemical delivery. In this article, the author provides summaries…
Recycling of Advanced Batteries for Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
JUNGST,RUDOLPH G.
1999-10-06
The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.
Limiting factors to advancing thermal battery technology for naval applications
NASA Astrophysics Data System (ADS)
Davis, Patrick B.; Winchester, Clinton S.
1991-10-01
Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.
Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou
2018-06-01
The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.
Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less
NASA Technical Reports Server (NTRS)
Misra, Ajay
2018-01-01
A workshop on assessment of battery technologies for future aerospace applications was held in Cleveland, OH on August 16-17. The focus of the workshop, hosted by NASA GRC, was to assess (1) the battery needs for future aerospace missions, (2) the state of battery technology and projected technology advances, and (3) the need for additional investments for future aerospace missions. The workshop had 109 attendees that included internationally recognized technology leaders from academia and national laboratories, high level executives from government and industry, small businesses, and startup companies. A significant portion of the workshop was focused on batteries for electrified aircraft. The presentation will summarize the finding on the state of battery technologies for electrified aircraft and will include assessment of current state of battery technology, gaps in battery technology for application in electrified aircraft, and recommended technology development options for meeting near-term and long-term needs of electrified aircraft.
Advanced energy storage for space applications: A follow-up
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Surampudi, Subbarao
1994-01-01
Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.
Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2012-01-01
Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.
An assessment of research and development leadership in advanced batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Bruch, V. L.
1994-02-01
Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles' heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.
Advanced lead acid battery development project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in amore » production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.« less
NASA Astrophysics Data System (ADS)
Pemsler, P.
1981-02-01
Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: nickel/zinc, nickel/iron, zinc/chlorine, zinc/bromine, sodium/sulfur, and lithium-aluminum/iron sulfide. For each battery system, one or more processes were developed which would permit recycling of the major or active materials. Each recycle process was designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs were developed for a recycling plant which processes 100,000 electric vehicle batteries per year.
Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes
NASA Technical Reports Server (NTRS)
Britton, Doris L.; Willis, Bob; Pickett, David F.
2003-01-01
The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William H. Morrison; Jon P. Christophersen; Patrick Bald
With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Batterymore » Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.« less
Exploratory technology research program for electrochemical energy storage, annual report for 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, K.
The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Batterymore » R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.« less
Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries
Cai, Chuan; Wang, Ying
2009-01-01
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.
Ceramics potential in automotive powerplants
NASA Technical Reports Server (NTRS)
Mclean, A. F.
1983-01-01
The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.
Energy Storage for Aerospace Applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.
2001-01-01
The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
An Advanced Battery Management System for Lithium Ion Batteries
2011-08-01
MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN AN ADVANCED BATTERY MANAGEMENT SYSTEM FOR LITHIUM ION BATTERIES Bruce Pilvelait, Ph.D...COVERED - 4. TITLE AND SUBTITLE An Advanced Battery Management System for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Management System for Lithium Ion Batteries Page 2 of 7 Figure 1: BMS architecture for a 24 VDC lithium-ion Silent Watch battery pack
Advances in nickel hydrogen technology at Yardney Battery Division
NASA Technical Reports Server (NTRS)
Bentley, J. G.; Hall, A. M.
1987-01-01
The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.
FY2013 Energy Storage R&D Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.
Polymer Electrolytes for Lithium/Sulfur Batteries
Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu
2012-01-01
This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha; Bennett, William
2009-01-01
NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.
FY2010 Annual Progress Report for Energy Storage Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-28
The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.
A review of nanostructured lithium ion battery materials via low temperature synthesis.
Chen, Jiajun
2013-01-01
Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
1981-06-01
ADVANCED THERMAL BATTERIES NATIONAL UNION ELECTRIC CORPORATION ADVANCE SCIENCE DIVISION 1201 E. BELL STREET BLXXMINGTON, ILLINOIS 61701 JUNE 1981...December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78-114 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force...March 1980 in: " Advanced Thermal Batteries " AFAPL-TR-80-2017 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force
Toxicity of materials used in the manufacture of lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archuleta, M.M.
1994-05-01
The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in currentmore » lithium battery research and development is evaluated and described.« less
Development of a nickel/metal hydride battery (Ni/MH) system for EV application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikoma, M.; Hamada, S.; Morishita, N.
1994-12-31
In order to satisfy basic battery characteristics for electric vehicles (EV) such as specific energy, specific power and cycle life that are required for driving on urban streets, the authors have selected the valve-regulated lead acid battery as a conventional battery and the nickel/metal-hydride battery as an advanced battery, and have been studying their development in order to put them into practical use by 1998. Regarding the nickel/metal-hydride battery, excellent nickel positive electrode with high temperature charge efficiency accomplished with additives such as Ca compounds, and an exceedingly good hydrogen absorbing alloy negative electrode with high capacity and long cyclemore » life, achieved by adjustment of alloy composition, surface treatment, and control of binder and conductive additive have been developed to overcome difficulties in the scale-up of battery size. Modular batteries using this technology possess specific energy twice (70 Wh/kg) that of the lead-acid battery, and have superior specific power (160 Wh/kg) and cycle life. 5 refs.« less
Current developments in electrochemical storage systems for satellites
NASA Technical Reports Server (NTRS)
Gutmann, G.
1986-01-01
The need for batteries with greater power capacity and service life for power satellites is examined. The Ni/Cd and Ni/H batteries now being used must be upgraded to meet advanced space requirements. Improvements in power capacity, service life, and cycle count for various satellites in LEO and GEO orbits are discussed. The Ni/Cd and Ni/H cell reactions are explained, and the solubility and volume changes for various charged and uncharged masses are described. A chart of the energy content and cycle count for various cell systems is presented, and the factors which cause aging and failure in the Ni/Cd and Ni/H cell systems are discussed. The advantages of the Ni/H battery are given and the need for more developed electrochemical storage systems because of an increase in the mass of satellites is explained. The requirements for space batteries and the work currently done by NASA and West Germany on advanced batteries are discussed.
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-04-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
NASA Astrophysics Data System (ADS)
Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar
2018-07-01
In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.
An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.
Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno
2014-08-13
We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.
Advanced lead acid battery development
DOT National Transportation Integrated Search
2001-03-01
Researchers at the University of Idaho have been investigating the possibility of using lead acid batteries in electric and hybrid vehicles for more than ten years, and the funding from the U.S. Department of Transportation's University Transportatio...
NASA Astrophysics Data System (ADS)
Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.
2015-06-01
Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.
NASA Aerospace Flight Battery Systems Program Update
NASA Technical Reports Server (NTRS)
Manzo, Michelle; ODonnell, Patricia
1997-01-01
The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.
Ionic liquids and derived materials for lithium and sodium batteries.
Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng
2018-03-21
The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visco, Steven J
The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated tomore » transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely that the next step will be accomplished through a combination of joint venture partnering and licensing of the technology.« less
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
Transit bus applications of lithium ion batteries : progress and prospects
DOT National Transportation Integrated Search
2012-12-31
This report provides an overview of diverse transit bus applications of advanced Lithium Ion Batteries (LIBs). The report highlights and illustrates several FTA programs that fostered the successful development, demonstration, and deployment of fuel-...
Performance and life evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.
Status of the NASA Space Power Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Holcomb, L.
1977-01-01
The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orendorff, Christopher J.; Nagasubramanian, Ganesan; Fenton, Kyle R.
As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improvemore » lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.« less
Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.
2015-01-01
State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.
Electric Vehicle Charging Station Expansion Plans Under Uncertainty
DOT National Transportation Integrated Search
2016-12-01
With the advancement of battery technologies, more electric vehicles are expected to get introduced in the market. The energy needed to run those batteries is enormous. This calls for developing optimization models that help governments plan for ener...
Room Temperature Sulfur Battery Cathode Design and Processing Techniques
NASA Astrophysics Data System (ADS)
Carter, Rachel
As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will require exploration of chemistries beyond the Li-ion battery for a system consisting of low cost active materials and promising device performance. (Abstract shortened by ProQuest.).
Advanced silver zinc battery development for the SRB and ET range safety subsystems
NASA Technical Reports Server (NTRS)
Adamedes, Zoe
1994-01-01
This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.
Battery Test Manual For Electric Vehicles, Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2015-06-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of themore » procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
Research and Development of High-Power and High-Energy Electrochemical Storage Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
No, author
2014-04-30
The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers tomore » leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applications. The report was developed using information such as program plans, gap analysis charts, quarterly reports and final project reports submitted by the developers. The public benefit served by this USABC program is that it continues the development of critical advanced battery technology that is needed to make electric, hybrid electric, and fuel cell vehicles attractive to a wide segment of the vehicle market. This will allow for a substantial savings in petroleum fuel use as these vehicles are introduced into the nation’s transportation system. It will also allow a sharp reduction in automotive air pollution emissions in critical areas that are currently classified as non-attainment by the Environmental Protection Agency. This program will also help ensure the long term health and viability of the U.S. Battery and Ultracapacitor Manufacturing Industry. The goals of eight categories of projects follow and summarization of each of the project’s accomplishments are in sequence of the list above.« less
Recent advances in lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Chen, Lin; Shaw, Leon L.
2014-12-01
Lithium-sulfur (Li-S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg-1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li-S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li-S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li-S cells, but also we cover some of our proposals for engineering of Li-S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li-S batteries in the near future.
Advancing electric-vehicle development with pure-lead-tin battery technology
NASA Astrophysics Data System (ADS)
O'Brien, W. A.; Stickel, R. B.; May, G. J.
Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.
NASA Astrophysics Data System (ADS)
Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng
2017-04-01
Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).
Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion
NASA Astrophysics Data System (ADS)
1984-06-01
Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.
NASA Technical Reports Server (NTRS)
Bennett, William; Baldwin, Richard
2007-01-01
The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.
Battery and Fuel Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
Battery and Fuel Cell Development for NASA's Exploration Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Reid, Concha M.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
Analysis and Cost Optimization of a USCG Remote Hybrid Power System
2002-06-01
finding a system that can withstand the extreme weather conditions at these two sites is limited. It is recommended that as technology advances the...sites be conducted. 2. Battery Technology There have been significant advances in battery technology during the recent past. As these advancements ...costs associated with advanced technology decrease to more affordable levels to help 98 identify replacement batteries for the VRLA batteries when
Battery technologies for large-scale stationary energy storage.
Soloveichik, Grigorii L
2011-01-01
In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β″-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.
NASA Astrophysics Data System (ADS)
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-02-01
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-06-01
In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-01-01
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104
Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping
2015-02-05
Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.
Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
Xiang, Yinyu; Li, Junsheng; Lei, Jiaheng; Liu, Dan; Xie, Zhizhong; Qu, Deyu; Li, Ke; Deng, Tengfei; Tang, Haolin
2016-11-09
Li-ion and Li-S batteries find enormous applications in different fields, such as electric vehicles and portable electronics. A separator is an indispensable part of the battery design, which functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of the separators directly influence the performance of the batteries. Traditional polyolefin separators showed low thermal stability, poor wettability toward the electrolyte, and inadequate barrier properties to polysulfides. To improve the performance and durability of Li-ion and Li-S batteries, development of advanced separators is required. In this review, we summarize recent progress on the fabrication and application of novel separators, including the functionalized polyolefin separator, polymeric separator, and ceramic separator, for Li-ion and Li-S batteries. The characteristics, advantages, and limitations of these separators are discussed. A brief outlook for the future directions of the research in the separators is also provided. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Results of advanced battery technology evaluations for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1992-10-01
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-06-30
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-01-01
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605
NASA Astrophysics Data System (ADS)
Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook
Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.
Advanced nickel-hydrogen cell configuration study
NASA Technical Reports Server (NTRS)
Adler, E.; Perez, F.
1984-01-01
Three nickel hydrogen battery designs, individual pressure vessel (IPV), common pressure vessel (CPV), and a bipolar battery module were studied. Weight, system complexity and cost were compared for a satellite operating in a 6 hour, 5600 nautical mile orbit. The required energy storage is 52 kWh. A 25% improvement in specific energy is observed by employing a bipolar battery versus a battery comprised of hundreds of IPV's. Further weight benefits are realized by the development of light weight technologies in the bipolar design.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Guzik, Monica; Skierski, Michael
2011-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.
Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials
Luo, Rui; Huang, Yongxin; Li, Li
2016-01-01
Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796
NREL Blows Up Batteries to Make the World Safer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Making lithium-ion batteries safer for earthlings and astronauts is something NREL excels at. In this video you’ll meet Matt Keyser, a senior energy storage engineer who is on a mission to improve the thermal performance of batteries for electric vehicles, consumer gadgets, and technology used by NASA in outer space. Matt and his team study battery failure using innovative technologies, such as the award-winning Battery Internal Short Circuit (ISC) Device that can precisely identify weak spots in battery cells. This cutting-edge research helps battery manufacturers develop advanced materials that can deliver superior results. Who benefits from all of this ingenuitymore » rooted in fundamental science? We all do!« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2014-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of somemore » of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu
2015-05-19
Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future.
Batteries for electric and hybrid-electric vehicles.
Cairns, Elton J; Albertus, Paul
2010-01-01
Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.
1980-03-01
A-AOB 13 EREAC BLONTOdLEUEAAVNESENEDV F 1/ ADVANCED THERMAL BATTERIES .(U) MAR 80 D M RYAN F33615-77-C-317 UNCLASSIFIED AFWAL-TR-80-2017...iii - -.... This report is for the second year of work. The first year of work was reported December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78...work. The first year of work was reported December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78-114 Air Force Aero Propulsion Laboratory Air
In situ methods for Li-ion battery research: A review of recent developments
NASA Astrophysics Data System (ADS)
Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.
2015-08-01
A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.
A Window into Longer Lasting Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-29
There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.
Ionic Liquids in Lithium-Ion Batteries.
Balducci, Andrea
2017-04-01
Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.
NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |
lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across
NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery
Battery Technology News Release: NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery increasingly demanding needs of any battery application. These lithium-ion batteries feature a hybrid solid further customized lithium-ion battery materials for high performance devices by utilizing our patented
High power bipolar lead-acid batteries
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Attia, Alan
1991-01-01
The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Jeremy Diez; Jeffrey Wishart
2013-07-01
The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less
Testing Conducted for Lithium-Ion Cell and Battery Verification
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.
2004-01-01
The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.
Advanced Lithium Batteries for Automobile Applications at ABAA-9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Chun; Cai, Feng; Amine, Khalil
The battery-electrified vehicle industry is booming since the last decade, orientated by consumers’ growing demand for ''green'' cars with zero-emission of the greenhouse gases and the speedy-but-silent driving experience. Aiming for advanced battery technology to support electric vehicles, the International Conference on Advanced Lithium Batteries for Automobile Applications (ABAA) was launched in 2008. This paper describes the activities at ABAA-9.
Advanced Lithium Batteries for Automobile Applications at ABAA-9
Zhan, Chun; Cai, Feng; Amine, Khalil; ...
2017-06-14
The battery-electrified vehicle industry is booming since the last decade, orientated by consumers’ growing demand for ''green'' cars with zero-emission of the greenhouse gases and the speedy-but-silent driving experience. Aiming for advanced battery technology to support electric vehicles, the International Conference on Advanced Lithium Batteries for Automobile Applications (ABAA) was launched in 2008. This paper describes the activities at ABAA-9.
Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunstrom, Joseph; Hendershot, Ron E.
An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. Themore » results are promising for future advanced battery development for vehicles as well as other applications.« less
Commercial nickel-metal hydride (Ni-MH) technology evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbacher, J.K.; Vukson, S.P.
1997-12-01
Available cylindrical and prismatic commercial Ni-MH batteries using AB{sub 5} and AB{sub 2} cathodes were evaluated for possible application to military aircraft batteries. Commercial AB{sub 5} technology is further advanced than AB{sub 2} technology and would require less alloy, electrolyte and single cell/battery development for near term (3--5 years) applications. Tested AB{sub 2} technology appears inadequate to meet the near term military requirements and would require a major development in the alloy to overcome the irreversible capacity loss at temperatures above 49 C.
Computer model for characterizing, screening, and optimizing electrolyte systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.
2015-06-15
Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at themore » INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less
Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi
2014-06-11
Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.
Carbon-based electrocatalysts for advanced energy conversion and storage
Zhang, Jintao; Xia, Zhenhai; Dai, Liming
2015-01-01
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241
7Li MRI of Li batteries reveals location of microstructural lithium.
Chandrashekar, S; Trease, Nicole M; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P; Jerschow, Alexej
2012-02-12
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
7Li MRI of Li batteries reveals location of microstructural lithium
NASA Astrophysics Data System (ADS)
Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P.; Jerschow, Alexej
2012-04-01
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Steele, H. L.; Wen, L.
1981-01-01
The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.
Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Wu, James J.
2015-01-01
NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).
Advanced Materials and Component Development for Lithium-ion Cells for NASA Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2012-01-01
Human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The National Aeronautics and Space Administration is developing advanced High Energy and Ultra High Energy lithium-ion cells to address these needs. In order to meet the performance goals, advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level. This paper will provide an update on the performance of experimental materials through the completion of two years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.
Advanced valve-regulated lead-acid batteries for hybrid vehicle applications
NASA Astrophysics Data System (ADS)
Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.
Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.
Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung; Lu, Jun; Hassoun, Jusef; Scrosati, Bruno; Amine, Khalil; Sun, Yang-Kook
2014-03-12
While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.
Prototype Lithium-Ion Battery Developed for Mars 2001 Lander
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2000-01-01
In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.
NASA Astrophysics Data System (ADS)
Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed
2017-02-01
A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.
Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sally; Tyler Gray; Pattie Hovorka
2012-08-01
The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of amore » battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.« less
Aerospace energy systems laboratory: Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
Lithium-Ion Batteries for Aerospace Applications
NASA Technical Reports Server (NTRS)
Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.
1999-01-01
This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Vertically aligned carbon nanotube electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.
As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.
USABC Development of 12 Volt Battery for Start-Stop Application: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tataria, H.; Gross, O.; Bae, C.
Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortiummore » of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.« less
Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2018-01-01
Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.
Sustainability and in situ monitoring in battery development
NASA Astrophysics Data System (ADS)
Grey, C. P.; Tarascon, J. M.
2017-01-01
The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.
Progress in Modeling and Simulation of Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A
2016-01-01
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilitiesmore » * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.« less
Sustainability and in situ monitoring in battery development.
Grey, C P; Tarascon, J M
2016-12-20
The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.
The NASA research and technology program on batteries
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1990-01-01
The NASA research and technology program on batteries is being carried out within the Propulsion, Power and Energy Division (Code RP) of NASA's Office of Aeronautics, Exploration and Technology (OAET). The program includes development of high-performance, long-life, cost-effective primary and secondary (rechargeable) batteries. The NASA OAET battery program is being carried out at Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). LeRC is focusing primarily on nickel-hydrogen batteries (both individual pressure vessel or IPV and bipolar). LeRC is also involved in a planned flight experiment to test a sodium-sulfur battery design. JPL is focusing primarily on lithium rechargeable batteries, having successfully transferred its lithium primary battery technology to the U.S. Air Force for use on the Centaur upper stage. Both LeRC and JPL are studying advanced battery concepts that offer even higher specific energies. The long-term goal is to achieve 100 Wh/kg.
Testing activities at the National Battery Test Laboratory
NASA Astrophysics Data System (ADS)
Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.
The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.
Lu, Wei; Liang, Longwei; Sun, Xuan; Sun, Xiaofei; Wu, Chen; Hou, Linrui; Sun, Jinfeng
2017-01-01
Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented. PMID:29036916
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2010-01-01
The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.
Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications
NASA Technical Reports Server (NTRS)
Hagedorn, orman H.
1999-01-01
A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.
Advancement of technology towards developing Na-ion batteries
NASA Astrophysics Data System (ADS)
Jamesh, Mohammed Ibrahim; Prakash, A. S.
2018-02-01
The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.
Prospects and Limits of Energy Storage in Batteries.
Abraham, K M
2015-03-05
Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.
On-chip micro-power: three-dimensional structures for micro-batteries and micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid; Wang, Chunlei
2010-04-01
With the miniaturization of portable electronic devices, there is a demand for micro-power source which can be integrated on the semiconductor chips. Various micro-batteries have been developed in recent years to generate or store the energy that is needed by microsystems. Micro-supercapacitors are also developed recently to couple with microbatteries and energy harvesting microsystems and provide the peak power. Increasing the capacity per footprint area of micro-batteries and micro-supercapacitors is a great challenge. One promising route is the manufacturing of three dimensional (3D) structures for these micro-devices. In this paper, the recent advances in fabrication of 3D structure for micro-batteries and micro-supercapacitors are briefly reviewed.
Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2006-01-01
Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing the advanced electrolytes and components have been estimated. Limitations for the achievement of practical performance levels are also discussed, as well as needs for future research and development.
Battery parameterisation based on differential evolution via a boundary evolution strategy
NASA Astrophysics Data System (ADS)
Yang, Guangya
2014-01-01
Attention has been given to the battery modelling in the electric engineering field following the current development of renewable energy and electrification of transportation. The establishment of the equivalent circuit model of the battery requires data preparation and parameterisation. Besides, as the equivalent circuit model is an abstract map of the battery electric characteristics, the determination of the possible ranges of parameters can be a challenging task. In this paper, an efficient yet easy to implement method is proposed to parameterise the equivalent circuit model of batteries utilising the advances of evolutionary algorithms (EAs). Differential evolution (DE) is selected and modified to parameterise an equivalent circuit model of lithium-ion batteries. A boundary evolution strategy (BES) is developed and incorporated into the DE to update the parameter boundaries during the parameterisation. The method can parameterise the model without extensive data preparation. In addition, the approach can also estimate the initial SOC and the available capacity. The efficiency of the approach is verified through two battery packs, one is an 8-cell battery module and one from an electrical vehicle.
Advanced materials for energy storage.
Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming
2010-02-23
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less
2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less
2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less
2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less
2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk
2013-01-01
The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less
Life cycle assessment of lithium sulfur battery for electric vehicles
NASA Astrophysics Data System (ADS)
Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris
2017-03-01
Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.
An improved high-performance lithium-air battery.
Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno
2012-06-10
Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.
Keeping Cool With Solar-Powered Refrigeration
NASA Technical Reports Server (NTRS)
2003-01-01
In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.
Te/C nanocomposites for Li-Te Secondary Batteries
NASA Astrophysics Data System (ADS)
Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min
2015-01-01
New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.
Hybrid battery/supercapacitor energy storage system for the electric vehicles
NASA Astrophysics Data System (ADS)
Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy
2018-01-01
Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.
Battery Thermal Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developedmore » unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.« less
NASA Technical Reports Server (NTRS)
O'Donnell, Patricia M. (Editor)
1990-01-01
Attention is given to topics of advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, nickel electrodes, and advanced rechargeable batteries. Papers are presented on human exploration mission studies, advanced rechargeable sodium batteries with novel cathodes, advanced double-layer capacitors, recent advances in solid-polymer electrolyte fuel cell technology with low platinum loading electrodes, electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications, and the corrosion testing of candidates for the alkaline fuel cell cathode. Other papers are on a structural comparison of nickel electodes and precursor phases, the application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes, advances in lightweight nickel electrode technology, multimission nickel-hydrogen battery cell for the 1990s, a sodium-sulfur battery flight experiment definition study, and advances in ambient-temperature secondary lithium cells.
Key results of battery performance and life tests at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
1991-12-01
Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.
Ovonic nickel metal hydride batteries for space applications
NASA Technical Reports Server (NTRS)
Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.
1993-01-01
Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
2013-05-21
Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.
Advancing Lithium Metal Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Zhang, Ji-Guang; Xu, Wu
Considering the unsatisfied energy density of traditional graphite anode-based lithium (Li)-ion batteries, any alterative high capacity anodes will be highly expected to be practically applied in future high energy battery systems. Li metal is regarded as one of the most promising anodes due to its ultrahigh capacity (3860 mAh g-1), the lowest standard negative electrochemical potential (-3.040 V) and the very low gravimetric density (0.534 g cm-3). However, dendrite growth and high reactivity of Li metal result in low cycling efficiency and severe safety concerns. The revival of research and development on Li metal anode in recent years has broughtmore » new in-depth understandings and key experimental achievements regarding Li metal protection and enhanced performances of Li-metal batteries. In this perspective article, we first concisely review the recent discoveries and then offer possible research directions for further development of Li metal batteries.« less
Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.
Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan
2017-11-01
Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-12-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli
2018-04-17
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
A review on battery thermal management in electric vehicle application
NASA Astrophysics Data System (ADS)
Xia, Guodong; Cao, Lei; Bi, Guanglong
2017-11-01
The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.
Model-Based Battery Management Systems: From Theory to Practice
NASA Astrophysics Data System (ADS)
Pathak, Manan
Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.
Energy Storage Requirements & Challenges for Ground Vehicles
2010-03-18
Titinate Evaluation Cell Evaluation Battery Aging Phenomenon Battery SOC/SOH Determination Modeling ARM 100 LiIon APU Lion Cell Evaluation Cell...Advanced Batteries Fuels Th er m al Ma na ge m en t Radiators Heat Recovery Thermal Interface Materials Phase Change Cooling Advanced Electronics...in all energy storage Energy Storage Team Mission Battery Technology Evaluation Lab Module Test & Eval Cell Test & Eval 6UNCLASSIFIED Pacing Vehicle
NASA Astrophysics Data System (ADS)
Shen, Yanqing
2018-04-01
LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.
He, Bin; Li, Wen-Cui; Yang, Chao; Wang, Si-Qiong; Lu, An-Hui
2016-01-26
We have developed an electrolysis approach that allows effective and uniform incorporation of sulfur inside the micropores of carbon nanosheets for advanced lithium-sulfur batteries. The sulfur-carbon hybrid can be prepared with a 70 wt % sulfur loading, in which no nonconductive sulfur agglomerations are formed. Because the incorporated sulfur is electrically connected to the carbon matrix in nature, the hybrid cathode shows excellent electrochemical performance, including a high reversible capacity, good rate capability, and good cycling stability, as compared to one prepared using the popular melt-diffusion method.
NASA Technical Reports Server (NTRS)
Bladwin, Richard S.
2009-01-01
As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.
Development status of a sealed bipolar lead/acid battery for high-power battery applications
NASA Astrophysics Data System (ADS)
Arias, J. L.; Rowlette, J. J.; Drake, E. D.
A sealed bipolar lead/acid (SBLA) battery is being developed by Arias Research Associates (ARA) which will offer a number of important advantages in applications requiring high power densities. These applications include electric vehicles (EVs) and hybrid electric vehicles, uninterruptable power supplies (UPS), electrically-heated catalysts (EHCs) for automobiles, utility-power peak-shaving, and others. The advantages of the SBLA over other types of batteries will by significantly higher power density, together with good energy density, high cycle life, high voltage density, low production cost and zero maintenance. In addition, the lead/acid battery represents a technology which is familiar and accepted by Society, is recyclable within the existing infrastructure, and does not raise the safety concerns of many other new batteries (e.g., fire, explosion and toxic gases). This paper briefly reviews the basic design concepts and issues of the SBLA battery technology, various quasi-bipolar approaches and the results of ARA's development work during the past four years. Performance data are given based on both in-house and independent testing of ARA laboratory test batteries. In addition, performance projections and other characteristics are given for three ARA SBLA battery designs, which are compared with other batteries in three example applications: UPS, EHCs, and EVs. The most notable advantages of the SBLA battery are substantial reductions in product size and weight for the UPS, smaller packaging and longer life for the EHC, and higher vehicle performance and lower cost for the EV, compared to both existing and advanced EV batteries.
Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...
2017-06-09
Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less
DOT National Transportation Integrated Search
2000-06-22
This report documents the findings of a study undertaken to investigate batteries for use in electric vehicles. Batteries studied include lead-acid batteries, nickel-metal hydride batteries, lithium-ion electric vehicle batteries, and lithium-metal p...
Battery and Fuel Cell Development Goals for the Lunar Surface and Lander
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
2008-01-01
NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.
Special Issue: Materials for Electrochemical Capacitors and Batteries.
Wang, Jian-Gan; Wei, Bingqing
2017-04-22
Electrochemical capacitors and rechargeable batteries have received worldwide attention due to their excellent energy storage capability for a variety of applications. The rapid development of these technologies is propelled by the advanced electrode materials and new energy storage systems. It is believed that research efforts can improve the device performance to meet the ever-increasing requirements of high energy density, high power density and long cycle life. This Special Issue aims to provide readers with a glimpse of different kinds of electrode materials for electrochemical capacitors and batteries.
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
Advances and Future Challenges in Printed Batteries.
Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu
2015-11-01
There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Historical Summary and Prospects for the Future of Spacecraft Batteries
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Surampudi, S.
1998-01-01
Subjects covered in this report include a historical evolution of batteries in space, evolution and status of nickel-cadmium batteries and nickel-hydrogen batteries, present applications, future applications and advanced batteries for future missions.
Safety Characteristics of Non-Lithium Battery Systems. Revision 1
1986-07-01
2» 1978, p. 81. 29. Ryan, D. M., Advanced Thermal Batteries , DTIC No. AD-A085193, Defense Logistics Agency, Alexandria, VA, 1980. 31. Erbacher, J...K., Hussey, C. L., and King, L. A., Proc. Power Sources Symp. 28, 1979, p. 84, 32. Ryan, D. M., Advanced Thermal Batteries , DTIC No. AD-A125581
Batteries for Electric Vehicles
NASA Technical Reports Server (NTRS)
Conover, R. A.
1985-01-01
Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.
Computer Aided Battery Engineering Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less
Laboratory evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Kulaga, J. E.; Hogrefe, R. L.; Tummilo, A. F.; Webster, C. E.
1989-03-01
During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).
In situ, operando measurements of rechargeable batteries
Wang, Howard; Wang, Feng
2016-08-01
This article reviews recent in operando measurements (IOMs) for addressing challenges in advancing rechargeable battery (RB) technologies. As the demands on energy and power density of RBs for broader applications continue to grow, current RB technologies are pushed to their theoretical and engineering limits while new approaches are being extensively investigated. Also, IOMs have become more powerful and effective research tools in recent years; they will play an essential role in developing next generation RBs. This review is organized around outstanding issues in battery science and engineering. Finally, we emphasize the critical need for quantifying the distribution and transport ofmore » active ions in functioning batteries over wide temporal and spatial scales in real time.« less
Anti-Idling Battery for Truck Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith Kelly
2011-09-30
In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will delivermore » test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).« less
2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Grey; Chester Motloch; James Francfort
2010-01-01
The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less
Numerical simulation of coupled electrochemical and transport processes in battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, B.Y.; Gu, W.B.; Wang, C.Y.
1997-12-31
Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less
High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.
Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook
2017-12-01
The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Power Technology Development Activities for Small Satellite Applications
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew;
2017-01-01
NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline
NASA Astrophysics Data System (ADS)
Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng
2018-05-01
Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yanguang; Lu, Jun
Metal-air batteries have much higher theoretical energy density than lithium-ion batteries, and are frequently advocated as the solution toward next-generation electrochemical energy storage for applications including electric vehicles or grid energy storage. Yet they have not fulfilled their full potentials as limited by challenges associated with the metal anode, air cathode and electrolyte. These challenges would have to be properly resolved before metal-air batteries can become a practical reality and be deployed on a large scale. Here we survey the current status and latest advances in metal-air battery research for both aqueous (e.g. Zn-air) and non-aqueous (e.g. Li-air) systems. Themore » general technical issues confronting their developments are overviewed, and our perspective on possible solutions is offered.« less
Li, Yanguang; Lu, Jun
2017-05-05
Metal-air batteries have much higher theoretical energy density than lithium-ion batteries, and are frequently advocated as the solution toward next-generation electrochemical energy storage for applications including electric vehicles or grid energy storage. Yet they have not fulfilled their full potentials as limited by challenges associated with the metal anode, air cathode and electrolyte. These challenges would have to be properly resolved before metal-air batteries can become a practical reality and be deployed on a large scale. Here we survey the current status and latest advances in metal-air battery research for both aqueous (e.g. Zn-air) and non-aqueous (e.g. Li-air) systems. Themore » general technical issues confronting their developments are overviewed, and our perspective on possible solutions is offered.« less
Lightweight, direct-radiating nickel hydrogen batteries
NASA Technical Reports Server (NTRS)
Metcalfe, J. R.
1986-01-01
Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.
The refining of secondary lead for use in advanced lead-acid batteries
NASA Astrophysics Data System (ADS)
Ellis, Timothy W.; Mirza, Abbas H.
Secondary lead, i.e. material produced by the recycling of lead-acid batteries has become the primary source of lead in much of the world. This has been important to the secondary lead industry as other uses have dwindled, e.g. lead based pigments, chemicals, fuel additives, solders and CRT glasses [1]. Presently, battery manufacturing accounts for greater than 80% of lead consumption while recycled lead accounts for approximately the same market share of lead supply. These two facts strongly demonstrate the battery manufacturing and recycled lead are intimately coupled in everyday life. In this paper we will explore how recycled lead has become the material of choice for battery construction through the development of a recovery and refining process that exceeds the industries requirements. Particular focus will be on addressing the results presented by Prengaman [2] on the effects of contaminant or tramp elements on gassing in lead-acid batteries.
Microprocessor controlled advanced battery management systems
NASA Technical Reports Server (NTRS)
Payne, W. T.
1978-01-01
The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.
2014-05-01
Fuel Cells —JP8 Fuel Cells Aerial ResupplyBATMAN Advanced Battery Technologies Conformal Battery Nett Warrior Carried C-IED N at ic k O E C...Advanced Solar Inductive Charging Kinetic Harvesting Fuel Cells JP8 Fuel Cells Aerial ResupplyBATMAN Advanced Battery Technologies Conformal...90 lbs. of some from of energy during the mission Ideally, this would be some expendable fuel , perhaps for fuel cells Otherwise it creates
Near hybrid passenger vehicle development program, phase 1. Appendices C and D, Volume 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of tradeoff studies are presented in summary form. Various aspects of the overall vehicle design discussed include selection of the base vehicle, the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics. The drivetrain design and integration, power conditioning unit, battery subsystem, control system, environmental system are described. Specifications, weight breakdown, and energy consumption measures, and advanced technology components are included.
Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package
NASA Technical Reports Server (NTRS)
1979-01-01
The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.
US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).
Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong
2018-05-23
The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.
Development with quasi-bipolar Horizon{reg_sign} technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craven, W.B.
1997-12-01
Electrosource Inc. (ELSI) is now in production with an Electric Vehicle (EV) battery based on fundamental advances in materials design, manufacturing processes and well understood lead-acid electrochemistry. The production 12V-85Ah module is rated at 45 Whr/kg, 223 W/kg and 400 C/3 cycles. Production test modules have achieved over 50 Whr/kg and 500 cycles. Chrysler has chosen the Electrosource Horizon Battery for their EV Minivan that will be in production next year. Design flexibility has led to a Hybrid electric vehicle battery as well as SLI, UPS and portable power.
Combination of lightweight elements and nanostructured materials for batteries.
Chen, Jun; Cheng, Fangyi
2009-06-16
In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.
Zhao, Jinxiong; Tian, Yuyu; Wang, Zhen; Cong, Shan; Zhou, Di; Zhang, Qingzhu; Yang, Mei; Zhang, Weikun; Geng, Fengxia; Zhao, Zhigang
2016-06-13
A recent technological trend in the field of electrochemical energy storage is to integrate energy storage and electrochromism functions in one smart device, which can establish efficient user-device interactions based on a friendly human-readable output. This type of newly born energy storage technology has drawn tremendous attention. However, there is still plenty of room for technological and material innovation, which would allow advancement of the research field. A prototype Al-tungsten oxide electrochromic battery with interactive color-changing behavior is reported. With the assistance of trace amount of H2 O2 , the battery exhibits a specific capacity almost seven times that for the reported electrochromic batteries, up to 429 mAh g(-1) . Fast decoloration of the reduced tungsten oxide affords a very quick charging time of only eight seconds, which possibly comes from an intricate combination of structure and valence state changes of tungsten oxide. This unique combination of features may further advance the development of smart energy storage devices with suitability for user-device interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...
2017-06-12
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.
2017-09-01
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.
Hybrid energy storage test procedures and high power battery project FY-1995 interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, G.L.
1995-12-01
Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation ofmore » such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.« less
Technology Base Research Project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, K.
1985-06-01
The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.
Advanced batteries for load-leveling - The utility perspective on system integration
NASA Astrophysics Data System (ADS)
Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.
1982-09-01
Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.
Advanced and safer lithium-ion battery based on sustainable electrodes
NASA Astrophysics Data System (ADS)
Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun
2018-03-01
Seeking advanced and safer lithium-ion battery with sustainable characteristic is significant for the development of electronic devices and electric vehicles. Herein, a new porous TiO2 nanobundles (PTNBs) is synthesized though a scalable and green hydrothermal strategy from the TiO2 powders without using any high-cost and harmful organic titanium-based compounds. The PTNBs exhibits an extremely high lithium storage capacity of 296 mAh g-1 at 100 mA g-1, where the capacity can maintain over 146 mAh g-1 even after 500 cycles at 1000 mA g-1. To pursue more reliable Li-ion batteries, full batteries of PTNBs/LiNixMn1-xO4 (x = 0, 0.5) using spinel structured cathode are constructed. The batteries have the features of sustainability and deliver high capacities of 112 mAh gcathode-1 and 102 mAh gcathode-1 with stable capacity retentions of 99% and 90% over 140 cycles. Note that the energy densities can achieve as high as 267 and 270 Wh kgcathode-1 (535 and 540 Wh kganode-1) respectively, which is feasible to satisfy diverse requirements for energy storage products. We believe that the universal synthetic strategy, appealing structure and intriguing properties of PTNBs is applicable for wider applications, while the concept of sustainable strategy seeking reliable and safer Li-ion battery can attract broad interest.
Development and characterization of textile batteries
NASA Astrophysics Data System (ADS)
Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.
2017-02-01
During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.
FY2009 Annual Progress Report for Energy Storage Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2010-01-19
The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).
Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Jia
2011-02-28
This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less
“Elegant Tool” Delivers Genome-Level Science for Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith Arterburn
Now, a ‘disruptive, virtual scientific simulation tool’ delivers a new, genome-level investigation for electrolytes to develop better, more efficient batteries. Dr. Kevin Gering, an Idaho National Laboratory researcher, has developed the Advanced Electrolyte Model (AEM), a copyrighted molecular-based simulation tool that has been scientifically proven and validated using at least a dozen ‘real-world’ physical metrics. Nominated for the 2014 international R&D 100 Award, AEM revolutionizes electrolyte materials selection, optimizing combinations and key design elements to make battery design and experimentation quick, accurate and responsive to specific needs.
Battery testing at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.
Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.
TARDEC Collaboration - Energy Storage
2010-12-07
Lithium - Ion Battery Pack Manufacturing • Advanced battery material scale-up facility • Electromagnetic Armor Power Maturation • Nickel-Zinc 6T...specification focused on 95% accuracy for SoC and SoH. • Lithium - Ion Battery Management Systems – Li-ion Battery OEMs produce BMS for their own battery
Micro-scale thermal imaging of advanced organic and polymeric materials
NASA Astrophysics Data System (ADS)
Morikawa, Junko
2012-10-01
Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.
NASA Astrophysics Data System (ADS)
1985-12-01
Topics related to aerospace power are discussed, taking into account trends and issues of military space power systems technology, space station power system advanced development, the application and use of nuclear power for future spacecraft, the current status of advanced solar array technology development, the application of a parabolic trough concentrator to space station power needs, life test results of the Intelsat-V nickel-cadmium battery, and metal hydride hydrogen storage in nickel hydrogen batteries. Other subjects explored are concerned with alternative fuels, biomass energy, biomedical power, coal gasification, electric power cycles, and electric propulsion. Attention is given to an advanced terrestrial vehicle electric propulsion systems assessment, fuel cells as electric propulsion power plants, a sinewave synthesis for high efficiency dc-ac conversion, steam desulfurization of coal, leadless transfer of energy into the body to power implanted blood pumps, oil production via entrained flow pyrolysis of biomass, and a New Zealand synthetic gasoline plant.
Review on anionic redox for high-capacity lithium- and sodium-ion batteries
NASA Astrophysics Data System (ADS)
Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan
2017-05-01
Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A = Li, Na; M = Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.
Fabrication of Cu2 O-based Materials for Lithium-Ion Batteries.
Zhang, Li; Li, Qinyuan; Xue, Huaiguo; Pang, Huan
2018-05-25
The improvement of the performance of advanced batteries has played a key role in the energy research community since its inception. Therefore, it is necessary to explore high-performance materials for applications in advanced batteries. Among the variety of materials applied in batteries, much research has been dedicated to examine cuprous oxide materials as working electrodes in lithium cells to check their suitability as anodes for Li-ion cells and this has revealed great working capacities because of their specific characteristics (polymorphic forms, controllable structure, high cycling capacity, etc.). Thus, cuprous oxide and its composites will be fully introduced in this Review for their applications in advanced batteries. It is believed that, in the future, both the study and the impact of cuprous oxide and its composites will be much more profound and lasting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An advanced Ni-Cd battery cell design
NASA Technical Reports Server (NTRS)
Miller, L.
1986-01-01
The evolution of an advanced Ni-Cd space battery cell design continues to prove very promising. High oxygen/hydrogen gas recombination rates (currently up to a C/5 charge rate) and increased electrolyte activation level tolerance (currently up to 5.6 grams Ah of positive capacity) were demonstrated by test. A superior performance, extended life battery cell offering advantages should soon be available for mission applications
Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage
2015-10-05
ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could
Nanostructured Mo-based electrode materials for electrochemical energy storage.
Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui
2015-04-21
The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.
High rate partial-state-of-charge operation of VRLA batteries
NASA Astrophysics Data System (ADS)
Moseley, Patrick T.
The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in lead-acid battery technology in response to the challenges of the new duty cycle.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei
2015-09-01
A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j
Recent developments in organic redox flow batteries: A critical review
NASA Astrophysics Data System (ADS)
Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.
2017-08-01
Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.
Advanced electrolyte/additive for lithium-ion batteries with silicon anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuo; He, Meinan; Su, Chi-Cheung
State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. Inmore » this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.« less
Paper‐Based Electrodes for Flexible Energy Storage Devices
Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu
2017-01-01
Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532
Development of a lead-acid battery for a hybrid electric vehicle
NASA Astrophysics Data System (ADS)
Cooper, A.
In September 2000, a project reliable, highly optimized lead-acid battery (RHOLAB) started under the UK Foresight Vehicle Programme with the objective of developing an optimized lead-acid battery solution for hybrid electric vehicles. The work is based on a novel, individual, spirally-wound valve-regulated lead-acid 2 V cell optimized for HEV use and low variability. This cell is being used as a building block for the development of a complete battery pack that is managed at the cell level. Following bench testing, this battery pack is to be thoroughly evaluated by substituting it for the Ni-MH pack in a Honda Insight. The RHOLAB cell is based on the 8 Ah Hawker Cyclon cell which has been modified to have current take-off at both ends—the dual-tab design. In addition, a variant has been produced with modified cell chemistry to help deal with problems that can occur when these valve-regulated lead-acid battery (VRLA) cells operate in a partial-state-of-charge condition. The cells have been cycled to a specially formulated test cycle based on real vehicle data derived from testing the Honda Insight on the various test tracks at the Millbrook Proving Grounds in the UK. These cycling tests have shown that the lead-acid pack can be successfully cycled when subjected to the high current demands from the vehicle, which have been measured at up to 15 C on discharge and 8 C during regenerative recharging, and cycle life is looking very promising under this arduous test regime. Concurrent with this work, battery development has been taking place. It was decided early on to develop the 144 V battery as four 36 V modules. Data collection and control has been built-in and special steps taken to minimize the problems of interconnect in this complex system. Development of the battery modules is now at an advanced stage. The project plan then allows for extensive testing of the vehicle with its lead-acid battery at Millbrook so it can be compared with the benchmark tests which have already been carried out on the vehicle with its Ni-MH batteries.
Silicon clathrates for lithium ion batteries: A perspective
NASA Astrophysics Data System (ADS)
Warrier, Pramod; Koh, Carolyn A.
2016-12-01
Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.
Mechanically refuelable zinc/air electric vehicle cells
NASA Astrophysics Data System (ADS)
Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.
1992-12-01
Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.
Gas Analysis and Control Methods for Thermal Batteries
2013-09-01
THERMAL BATTERIES (PDFS) INC DOUG BRISCOE JEFFREY REINIG 3 ENERSYS ADVANCED SYSTEMS (PDFS) PAUL SCHISSELBAUER ANDREW SEIDEL TIM...MGMT ATTN RDRL CIO LL TECHL LIB 3 SANDIA NATIONAL LABORATORIES (PDFS) DANIEL WESOLOWSKI EDWARD PIEKOS ANNE GRILLET 2 ADVANCED
Graphene and graphene-based materials for energy storage applications.
Zhu, Jixin; Yang, Dan; Yin, Zongyou; Yan, Qingyu; Zhang, Hua
2014-09-10
With the increased demand in energy resources, great efforts have been devoted to developing advanced energy storage and conversion systems. Graphene and graphene-based materials have attracted great attention owing to their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage systems. This Review summarizes the recent progress in graphene and graphene-based materials for four energy storage systems, i.e., lithium-ion batteries, supercapacitors, lithium-sulfur batteries and lithium-air batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Dependent Pressure Vessel (DPV) nickel-hydrogen spacecraft cell and battery design
NASA Technical Reports Server (NTRS)
Coates, Dwaine; Wright, Doug; Repplinger, Ron
1995-01-01
The dependent pressure vessel (DPV) nickel-hydrogen (NiH2) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. Individual pressure vessel (IPV) NiH2 batteries are currently flying on more than 70 Earth orbital satellites and have accumulated more than 140,000,000 cell-hours in actual spacecraft operation. The limitations of standard NiH2 IPV flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher specific energy and reduced cost, while retaining the established IPV NiH2 technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The internal electrode stack is a prismatic flat-plate arrangement. The flat individual cell pressure vessel provides a maximum direct thermal path for removing heat from the electrode stack. The cell geometry also minimizes multiple-cell battery packaging constraints by using an established end-plateltie-rod battery design. A major design advantage is that the battery support structure is efficiently required to restrain only the force applied to a portion of the end cell. As the cells are stacked in series to achieve the desired system voltage, this increment of the total battery weight becomes small. The geometry of the DPV cell promotes compact, minimum volume packaging and places all cell terminals along the length of the battery. The resulting ability to minimize intercell wiring offers additional design simplicity and significant weight savings. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks. Cell and battery level design issues will be addressed including mechanical, electrical and thermal design aspects. A design performance analysis will be presented at both the cell and battery level. The DPV is capable of delivering up to 76 Watt-hours per kilogram (Wh/kg) at the cell level and 70 Wh/kg at the full battery level. This represents a 40 percent increase in specific energy at the cell level and a 60 percent increase in specific energy at the battery level compared to current IPV NiH2 technology.
Perspectives of automotive battery R&D in China, Germany, Japan, and the USA
NASA Astrophysics Data System (ADS)
Bresser, Dominic; Hosoi, Kei; Howell, David; Li, Hong; Zeisel, Herbert; Amine, Khalil; Passerini, Stefano
2018-04-01
Lithium(-ion) batteries are and will be the battery technology of choice for a wide range of applications - including electric vehicles - for several years to come. Nonetheless, to foster the transition from combustion engine vehicles to a fully electrified transportation, further progress is needed. In this regard, the annual International Conference on Advanced Lithium Batteries for Automobile Applications (ABAA) targets the intensive exchange of the involved industrial and research entities to jointly ensure the further progress of this technology. During the past meeting, ABAA-10, held in October 2017 in Chicago, IL, USA, representatives of China, Germany, Japan, and the USA provided a comprehensive overview of the current and future battery R&D activities in their countries, depicting a highly insightful survey about partially concurrent, partially complementary research and funding strategies. The given presentations are provided in the Supplementary Material for this Special Perspective, while this perspective article may serve as brief introduction to the general development in the field concerning the overall EV sales and common considerations regarding future material developments.
Zhang, Kai; Ren, Fang; Wang, Xuelong; Hu, Enyuan; Xu, Yahong; Yang, Xiao-Qing; Li, Hong; Chen, Liquan; Pianetta, Piero; Mehta, Apurva; Yu, Xiqian; Liu, Yijin
2017-12-13
The in-depth understanding of the minority phases' roles in functional materials, e.g., batteries, is critical for optimizing the system performance and the operational efficiency. Although the visualization of battery electrode under operating conditions has been demonstrated, the development of advanced data-mining approaches is still needed in order to identify minority phases and to understand their functionalities. The present study uses nanoscale X-ray spectromicroscopy to study a functional LiCoO 2 /Li battery pouch cell. The data-mining approaches developed herein were used to search through over 10 million X-ray absorption spectra that cover more than 100 active cathode particles. Two particles with unanticipated chemical fingerprints were identified and further analyzed, providing direct evidence and valuable insight into the undesired side reactions involving the cation dissolution and precipitation as well as the local overlithiation-caused subparticle domain deactivation. The data-mining approach described in this work is widely applicable to many other structurally complex and chemically heterogeneous systems, in which the secondary/minority phases could critically affect the overall performance of the system, well beyond battery research.
2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Matthew Shirk; Jeffrey Wishart
2013-07-01
The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on themore » AVTA for the Vehicle Technologies Program of the DOE.« less
Material design and engineering of next-generation flow-battery technologies
NASA Astrophysics Data System (ADS)
Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil
2017-01-01
Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.
Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.
Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan
2016-04-27
Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New Materials for Electric Drive Vehicles - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, J. David
This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by themore » innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy density of 280 Wh/kg and specific density of 600Wh/l. This project delivers factory equipment to produce these advanced battery materials.« less
Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries.
Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang; Xia, Bao Yu
2018-04-01
Zn-air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next-generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn-air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn-air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn-air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn-air batteries with high performance.
Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout
Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar
2018-05-18
PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.
LiCoO2 and SnO2 Thin Film Electrodes for Lithium-Ion Battery Applications
NASA Technical Reports Server (NTRS)
Maranchi, Jeffrey P.; Hepp, Aloysius F.; Kumta, Prashant N.
2004-01-01
There is an increasing need for small dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept paced with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure crystal structure and electrochemical properties of the thin film electrodes are described and discussed.
Advanced vehicle systems assessment. Volume 4: Supporting analyses
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.
Advances in Lithium-Sulfur Rechargeable Batteries Powering the Electronic Future
NASA Technical Reports Server (NTRS)
Skotheim, Terje; Akridge, Jim; Hyland, Bob
2001-01-01
This viewgraph presentation discusses the Moltech Corporation's history and structure, power systems development, product attributes, Li-S adapted products, cell construction, specific energy comparisons, and product requirements necessary for use in spacecraft applications.
Advances in integration of photovoltaic power and energy production in practical systems
NASA Astrophysics Data System (ADS)
Fartaria, Tomas Oliveira
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.
Advanced vehicle systems assessment. Volume 5: Appendices
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.
US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Karner; J.E. Francfort
2005-09-01
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3more » million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).« less
High-voltage positive electrode materials for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Song, Bohang; Manthiram, Arumugam
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. Here, this review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirementsmore » either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. Finally, a concise perspective with respect to plausible strategies for future developments in the field is also provided.« less
High-voltage positive electrode materials for lithium-ion batteries
Li, Wangda; Song, Bohang; Manthiram, Arumugam
2017-04-25
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. Here, this review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirementsmore » either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. Finally, a concise perspective with respect to plausible strategies for future developments in the field is also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
No, author
2013-09-29
The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I &more » II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.« less
The 2004 NASA Aerospace Battery Workshop
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit; Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft; and Evaluation of the Effects of DoD and Charge Rate on a LEO Optimized 50 Ah Li-Ion Aerospace Cell.
Advanced Lithium-Ion Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.
2008-01-01
The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.
ZEBRA battery meets USABC goals
NASA Astrophysics Data System (ADS)
Dustmann, Cord-H.
In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.
A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
2017-08-29
Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.
Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belt, Jeffrey R.
This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
Integration and Control of a Battery Balancing System
2013-12-01
2. Energy storage comparisons. From [2]. • Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni...Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni-Cd Other Advanced Batteries Lead-Acid
Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
Li, Bing; Zheng, Junsheng; Zhang, Hongyou; Jin, Liming; Yang, Daijun; Lv, Hong; Shen, Chao; Shellikeri, Annadanesh; Zheng, Yiran; Gong, Ruiqi; Zheng, Jim P; Zhang, Cunman
2018-04-01
Among the various energy-storage systems, lithium-ion capacitors (LICs) are receiving intensive attention due to their high energy density, high power density, long lifetime, and good stability. As a hybrid of lithium-ion batteries and supercapacitors, LICs are composed of a battery-type electrode and a capacitor-type electrode and can potentially combine the advantages of the high energy density of batteries and the large power density of capacitors. Here, the working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed. The charge-storage mechanisms for intercalative pseudocapacitive behavior, battery behavior, and conventional pseudocapacitive behavior are classified and compared. Finally, the prospects and challenges associated with LICs are discussed. The overall aim is to provide deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
A new paradigm on battery powered embedded system design based on User-Experience-Oriented method
NASA Astrophysics Data System (ADS)
Wang, Zhuoran; Wu, Yue
2014-03-01
The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri
2018-01-01
This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1989-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1990-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.
Advanced hydrogen electrode for hydrogen-bromide battery
NASA Technical Reports Server (NTRS)
Kosek, Jack A.; Laconti, Anthony B.
1987-01-01
Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hua Kun, E-mail: hua@uow.edu.au
2013-12-15
Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithiummore » ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.« less
Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Blaze-Dugala, Gina M.
2009-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.
NASA Astrophysics Data System (ADS)
Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed
2017-02-01
A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.
Fully Coupled Simulation of Lithium Ion Battery Cell Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulatedmore » and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.« less
Review of storage battery system cost estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.R.; Russell, J.A.
1986-04-01
Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.
NASA Aerospace Flight Battery Systems Program: An update
NASA Astrophysics Data System (ADS)
Manzo, Michelle A.
1992-02-01
The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.
NASA Aerospace Flight Battery Systems Program: An Update
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1992-01-01
The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio
2018-02-01
The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.
Silicon clathrates for lithium ion batteries: A perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrier, Pramod, E-mail: pramod.warrier@gmail.com; Koh, Carolyn A.
2016-12-15
Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15–20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si,more » however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.« less
Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
Liu, Yayuan; Zhou, Guangmin; Liu, Kai; Cui, Yi
2017-12-19
The development of next-generation lithium-based rechargeable batteries with high energy density, low cost, and improved safety is a great challenge with profound technological significance for portable electronics, electric vehicles, and grid-scale energy storage. Specifically, advanced lithium battery chemistries call for a paradigm shift to electrodes with high Li to host ratio based on a conversion or alloying mechanism, where the increased capacity is often accompanied by drastic volumetric changes, significant bond breaking, limited electronic/ionic conductivity, and unstable electrode/electrolyte interphase. Fortunately, the rapid progress of nanotechnology over the past decade has been offering battery researchers effective means to tackle some of the most pressing issues for next-generation battery chemistries. The major applications of nanotechnology in batteries can be summarized as follows: First, by reduction of the dimensions of the electrode materials, the cracking threshold of the material upon lithiation can be overcome, at the same time facilitating electron/ion transport within the electrode. Second, nanotechnology also provides powerful methods to generate various surface-coating and functionalization layers on electrode materials, protecting them from side reactions in the battery environment. Finally, nanotechnology gives people the flexibility to engineer each and every single component within a battery (separator, current collector, etc.), bringing novel functions to batteries that are unachievable by conventional methods. Thus, this Account aims to highlight the crucial role of nanotechnology in advanced battery systems. Because of the limited space, we will mainly assess representative examples of rational nanomaterials design with complexity for silicon and lithium metal anodes, which have shown great promise in constraining their large volume changes and the repeated solid-electrolyte interphase formation during cycling. Noticeably, the roadmap delineating the gradual improvement of silicon anodes with a span of 11 generations of materials designs developed in our group is discussed in order to reflect how nanotechnology could guide battery research step by step toward practical applications. Subsequently, we summarize efforts to construct nanostructured composite sulfur cathodes with improved electronic conductivity and effective soluble species encapsulation for maximizing the utilization of active material, cycle life, and system efficiency. We emphasize carbon-based materials and, importantly, materials with polar surfaces for sulfur entrapment. We then briefly discuss nanomaterials strategies to improve the ionic conductivity of solid polymer electrolytes by means of incorporating high-surface-area and, importantly, high-aspect-ratio secondary-phase fillers for continuous, low-tortuosity ionic transport pathways. Finally, critical innovations that have been brought to the area of grid-scale energy storage and battery safety by nanotechnology are also succinctly reviewed.
Fabrication and demonstration of high energy density lithium ion microbatteries
NASA Astrophysics Data System (ADS)
Sun, Ke
Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.
Thermal batteries: A technology review and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidotti, R.A.
Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couplesmore » that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.« less
Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries
Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang
2018-01-01
Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418
Fu, Xuewei; Li, Chunhui; Wang, Yu; Scudiero, Louis; Liu, Jin; Zhong, Wei-Hong
2018-05-17
The diffusion of polysulfides in lithium-sulfur (Li-S) batteries represents a critical issue deteriorating the electrochemical performance. Here, borrowing the concepts from air filtration, we design and fabricate a protein-based nanofilter for effectively trapping polysulfides but facilitating Li + transport. The unique porous structures are formed through a protein-directed self-assembly process, and the surfaces are functionalized by the protein residues. The experiments and molecular simulation results demonstrate that our polysulfide nanofilter can effectively trap the dissolved polysulfides and promote Li + transport in Li-S batteries. When the polysulfide nanofilter is added in a Li-S battery, the electrochemical performance of the battery is significantly improved. Moreover, the contribution of the protein nanofilter to the ion transport is further analyzed by correlating filter properties and battery performance. This study is of universal significance for the understanding, design, and fabrication of advanced battery interlayers that can help realize good management of the ion transport inside advanced energy storage devices.
Multilayer Approach for Advanced Hybrid Lithium Battery.
Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong
2016-06-28
Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode(-1) (vs the total mass of electrode) or 1866 mAh gs(-1) (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs(-1)). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode(-1) at 0.25C and 376 mAh gcathode(-1) at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications.
NASA Astrophysics Data System (ADS)
Ryan, D. M.
1980-03-01
The feasibility of building thermal batteries with cells composed of an anode of LiAl alloy, a cathode of a heavy metal chloride, and a NaAlCl4 electrolyte has been demonstrated. During the further investigation of this system some interesting problems have developed and had to be studied. The particle size growth of the catholyte developed into a major storage problem. MoCl5 was found to form a volatile catholyte which is not suited for thermal battery use. As a result of this problem other catholyte materials were experimented with. CuCl2 is the most successful alternate to MoCl5. Some alternate binder materials have been investigated: kaolin clay, Illinois Mineral Amorphous Silica, and magnesia. Some alternate electrolytes have been investigated including NaAlCl4 (containing 52 m/o AlCl3), LiAlCl4 and KCl-LiCl. This work indicates that each material has unique properties which lend themselves to a particular application. Among the alternate cathode materials experimented with are CrCl3, a number of heavy metal oxides, fluorocarbon, TiS2, TiS3, and sulfur. Some alternate process investigated have been freon blending, adding materials to the anode, cell and battery desiccation and filling batteries with an inert atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Ren, Fang; Wang, Xuelong
The in-depth understanding of the minority phases’ roles in functional materials, e.g., batteries, is critical for optimizing the system performance and the operational efficiency. Although the visualization of battery electrode under operating conditions has been demonstrated, the development of advanced data-mining approaches is still needed in order to identify minority phases and to understand their functionalities. The present study uses nanoscale X-ray spectromicroscopy to study a functional LiCoO 2/Li battery pouch cell. The data-mining approaches developed herein were used to search through over 10 million X-ray absorption spectra that cover more than 100 active cathode particles. Two particles with unanticipatedmore » chemical fingerprints were identified and further analyzed, providing direct evidence and valuable insight into the undesired side reactions involving the cation dissolution and precipitation as well as the local overlithiation-caused subparticle domain deactivation. As a result, the data-mining approach described in this work is widely applicable to many other structurally complex and chemically heterogeneous systems, in which the secondary/minority phases could critically affect the overall performance of the system, well beyond battery research.« less
Zhang, Kai; Ren, Fang; Wang, Xuelong; ...
2017-11-08
The in-depth understanding of the minority phases’ roles in functional materials, e.g., batteries, is critical for optimizing the system performance and the operational efficiency. Although the visualization of battery electrode under operating conditions has been demonstrated, the development of advanced data-mining approaches is still needed in order to identify minority phases and to understand their functionalities. The present study uses nanoscale X-ray spectromicroscopy to study a functional LiCoO 2/Li battery pouch cell. The data-mining approaches developed herein were used to search through over 10 million X-ray absorption spectra that cover more than 100 active cathode particles. Two particles with unanticipatedmore » chemical fingerprints were identified and further analyzed, providing direct evidence and valuable insight into the undesired side reactions involving the cation dissolution and precipitation as well as the local overlithiation-caused subparticle domain deactivation. As a result, the data-mining approach described in this work is widely applicable to many other structurally complex and chemically heterogeneous systems, in which the secondary/minority phases could critically affect the overall performance of the system, well beyond battery research.« less
A review of nickel hydrogen battery technology
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Odonnell, Patricia M.
1995-01-01
This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in manufacturing cost.
Nickel-Hydrogen Batteries - An Overview
NASA Technical Reports Server (NTRS)
Smithrick, John J.; ODonnell, Patricia M.
1996-01-01
This article on nickel-hydrogen batteries is an overview of the various nickel-hydrogen battery design options, technical accomplishments, validation test results, and trends. There is more than one nickel-hydrogen battery design, each having its advantage for specific applications. The major battery designs are Individual Pressure Vessel (IPV), Common Pressure Vessel (CPV), bipolar, and low-pressure metal hydride. State-of-the-art nickel-hydrogen batteries are replacing nickel-cadmium batteries in almost all geosynchronous Earth orbit applications requiring power above 1 kW. However, for the more severe Low-Earth Orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000-10,000 cycles at 60 - 80 % DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel-hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep Depths of Discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low-cost satellites. Hence, the challenge is to reduce battery mass, volume, and cost. A key is to develop a lightweight nickel electrode and alternate battery designs. A CPV nickel-hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume, and manufacturing costs. A 10-A-h CPV battery has successfully provided power on the relatively short-lived Clementine spacecraft. A bipolar nickel -hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 % DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high-pulse power capability. A low-pressure aerospace nickel-metal-hydride battery cell has been developed and is on the market. It is a prismatic design that has the advantage of a significant reduction in volume and a reduction in manufacturing cost.
Nickel hydrogen batteries: An overview
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Odonnell, Patricia M.
1994-01-01
This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A LeRC innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass,volume, and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in manufacturing cost.
The lead and lead-acid battery industries during 2002 and 2007 in China
NASA Astrophysics Data System (ADS)
Chen, H. Y.; Li, A. J.; Finlow, D. E.
In the past 15 years, the center of the international lead market has shifted to China. China has become the largest producer of raw and refined lead, plus the largest consumer. This paper reviews the status of the lead and lead-acid battery industries in China, including lead mining, lead refining, secondary lead production, the lead-acid battery industry, new opportunities for lead-acid batteries, and the environmental problems associated with lead and lead-acid batteries. The output of raw and refined lead has increased annually in China, and now accounts for more than 30% of the world total. As a result of a change in the Chinese government's policy regarding the export of lead, plus an increase in the price of lead, the profits of Chinese lead manufacturers were significantly reduced, the trade deficit of the Chinese lead industry increased, the operating rates of lead smelter enterprises greatly reduced, and some small enterprises were forced to shut down. At the present time, an increasing number of enterprises have begun to produce secondary lead, and the scale of production has expanded from tens of tons to tens of thousands of tons. In 2006, the output of secondary lead in China reached 700,000 tons, but outdated technology and equipment limited development of the secondary lead industry. Because of serious pollution problems, raw material shortages, and fierce price competition in the battery market, changes in the development of the lead-acid battery industry have been dramatic; approximately one thousand medium-sized and small lead-acid battery producers have been closed in the past 3 years. The output of large lead-acid battery enterprises has not been reduced, however, as a result of their manufacturing technology and equipment being comparable to those in other advanced industrial countries. In China, the flourishing development of electric bicycles, electric tricycles, and photovoltaic energy systems should provide ongoing opportunities for the lead-acid battery industry.
Nickel-based rechargeable batteries
NASA Astrophysics Data System (ADS)
Shukla, A. K.; Venugopalan, S.; Hariprakash, B.
Nickel-iron (Ni-Fe), nickel-cadmium (Ni-Cd), nickel-hydrogen (Ni-H 2), nickel-metal hydride (Ni-MH) and nickel-zinc (Ni-Zn) batteries employ nickel oxide electrodes as the positive plates, and are hence, categorised as nickel-based batteries. This article highlights the operating principles and advances made in these battery systems during the recent years. In particular, significant improvements have been made in the Ni-MH batteries which are slowly capturing the market occupied by the ubiquitous Ni-Cd batteries.
Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen
2016-02-01
Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review themore » recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.« less
Phosphate Framework Electrode Materials for Sodium Ion Batteries
Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Yang, Hanxi
2017-01-01
Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li‐ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single‐phosphates, pyrophosphates and mixed‐phosphates. We provide the detailed and comprehensive understanding of structure–composition–performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next‐generation of energy storage devices. PMID:28546907
Phosphate Framework Electrode Materials for Sodium Ion Batteries.
Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi
2017-05-01
Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.
The LiAl/FeS2 battery power source for the future
NASA Technical Reports Server (NTRS)
Briscoe, J. Douglass; Embrey, J.; Oweis, S.; Press, K.
1992-01-01
Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh.
Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple
NASA Astrophysics Data System (ADS)
Gutmann, Günter
In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.
NASA Astrophysics Data System (ADS)
Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.
Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft
NASA Technical Reports Server (NTRS)
Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.
2016-01-01
The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
..., Less Expensive Lithium Ion Batteries (US 7,629,080). 6. ARL 05-18--High Capacity Metal/Air Battery... Resistance in Lithium Ion Batteries. Filed with USPTO on 2/3/2010 (S/N 12/699,182). 11. ARL 09-33--Pure LiBOB... Electrolytes for Lithium/Air Batteries (US 7,585,579). 2. ARL 02-06--Solvent Systems Comprising a Mixture of...
Space Shuttle Upgrades Advanced Hydraulic Power System
NASA Technical Reports Server (NTRS)
2004-01-01
Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.
Annual Industrial Capabilities Report to Congress
2009-03-01
thermal batteries . Military unique, high performance batteries are the only viable power source for many defense systems. The Missile Defense Agency...armor. Thermal Battery Production The objective of this Title III initiative is to strengthen and expand a domestic source for advanced
Advances in repurposing and recycling of post-vehicle-application lithium-ion batteries.
DOT National Transportation Integrated Search
2016-05-01
Increased electrification of vehicles has increased the use of lithium-ion batteries for energy storage, and raised the issue of : what to do with post-vehicle-application batteries. Three possibilities have been identified: 1) remanufacturing for in...
Synthesis of and characterization of lithium ceramic electrolytes
NASA Astrophysics Data System (ADS)
Rangasamy, Ezhiylmurugan
The depleting fossil fuel reserves, rising oil prices and the need for reduction in CO2 emissions have created an unprecedented impetus for vehicle electrification. Lithium batteries have the highest energy density of the various available battery technologies. They are the most promising battery candidate to enable Hybrid Electric Vehicles (HEVs) and Plug-in Electric Vehicles (PEVs). However, current Li-ion current battery technology is costly and requires a significant increase in energy density to achieve range comparable to conventional gasoline-powered vehicles. Advanced lithium battery technologies such as Li-S and Li-O2 could potentially offer significant improvements in energy density to address the limitations with current Li-ion technology. The implementation of these advanced battery technologies, however, has been limited by the lack of electrolyte technology to enable the use of metallic lithium anodes. Thus, there is a clear and compelling need to develop new electrolyte materials that exhibit the unique combination of fast ion conductivity, stability against lithium, air and moisture. Lithium Lanthanum Titanium Oxide (LLTO) and Lithium Lanthanum Zirconium Oxide (LLZO) have been identified as viable candidates for the advanced battery technologies. However, issues concerning phase purity and densification warrant developing new and novel synthetic techniques. A single step procedure has been developed for the synthesis of Lithium Lanthanum Titanium Oxide (LLTO) membranes. The single step procedure combines phase formation and densification of the ceramic electrolyte in a hot pressing technique. The effect of synthetic technique on relative density, grain structure and ionic conductivity of the LLTO membranes has been explored in detail. The critical step of synthesizing cubic Lithium Lanthanum Zirconium Oxide (LLZO) has been systematically studied through the controlled doping of Al, using X-Ray Diffraction (XRD) analysis. Effects of Li and Al concentration on the crystal structure of LLZO were also studied in detail. Critical dopant concentration of Al to stabilize cubic LLZO was established during the course of this study. Systematic doping studies on the 24c site of La3+ in the primary lattice have also been explored in detail using XRD analysis to improve the ionic conductivity by maintaining the Li sub-lattice free of dopants. It is hypothesized that the supervalent substitutions create Li vacancies in the sub-lattice promoting disorder, thereby stabilizing cubic LLZO. While Ce4+ substitution for La3+ proved to be effective in synthesizing cubic LLZO, precipitation of Ce4+ observed under Backscattered electron (BSE) imaging limited its ionic conductivity. In an effort to develop flexible, solution-based synthetic techniques, two novel processes were established to prepare low dimensional, cubic LLZO powders. Hot pressing of the synthesized LLZO samples yielded high relative density (>95%) ceramic electrolyte membranes. Arrhenius studies using EIS to measure activation energy revealed and empirical relationship between the grain size and activation energy for dense LLZO membranes.
Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries
NASA Astrophysics Data System (ADS)
Luo, Chao
To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.
Battery Control Algorithms | Transportation Research | NREL
publications. Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization Advanced Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems Contact Ying Shi Email | 303-275-4240
Rechargeable dual-metal-ion batteries for advanced energy storage.
Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo
2016-04-14
Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.
Understanding and improving lithium ion batteries through mathematical modeling and experiments
NASA Astrophysics Data System (ADS)
Deshpande, Rutooj D.
There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
Heat-transfer optimization of a high-spin thermal battery
NASA Astrophysics Data System (ADS)
Krieger, Frank C.
Recent advancements in thermal battery technology have produced batteries incorporating a fusible material heat reservoir for operating temperature control that operate reliably under the high spin rates often encountered in ordnance applications. Attention is presently given to the heat-transfer optimization of a high-spin thermal battery employing a nonfusible steel heat reservoir, on the basis of a computer code that simulated the effect of an actual fusible material heat reservoir on battery performance. Both heat paper and heat pellet employing thermal battery configurations were considered.
NASA Astrophysics Data System (ADS)
Olszewski, M.; Steele, R. S.
1983-02-01
Electric utility side meter storage options were assessed for the daily 2 h peaking spike application. The storage options considered included compressed air, batteries, and flywheels. The potential role for flywheels in this application was assessed and research and development (R and D) priorities were established for fixed base flywheel systems. Results of the worth cost analysis indicate that where geologic conditions are favorable, compressed air energy storage (CAES) is a strong competitor against combustion turbines. Existing battery and flywheel systems rated about equal, both being, at best, marginally uncompetitive with turbines. Advanced batteries, if existing cost and performance goals are met, could be competitive with CAES. A three task R and D effort for flywheel development appears warranted. The first task, directed at reducing fabrication coss and increasing performance of a chopped fiber, F-glass, solid disk concept, could produce a competitive flywheel system.
Reviving the lithium metal anode for high-energy batteries
NASA Astrophysics Data System (ADS)
Lin, Dingchang; Liu, Yayuan; Cui, Yi
2017-03-01
Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.
Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes
NASA Astrophysics Data System (ADS)
Pang, Quan; Liang, Xiao; Kwok, Chun Yuen; Nazar, Linda F.
2016-09-01
Amid burgeoning environmental concerns, electrochemical energy storage has rapidly gained momentum. Among the contenders in the ‘beyond lithium’ energy storage arena, the lithium-sulfur (Li-S) battery has emerged as particularly promising, owing to its potential to reversibly store considerable electrical energy at low cost. Whether or not Li-S energy storage will be able to fulfil this potential depends on simultaneously solving many aspects of its underlying conversion chemistry. Here, we review recent developments in tackling the dissolution of polysulfides — a fundamental problem in Li-S batteries — focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and polysulfides. We also discuss smart cathode architectures enabled by recent materials engineering, especially for high areal sulfur loading, as well as innovative electrolyte design to control the solubility of polysulfides. Key factors that allow long-life and high-loading Li-S batteries are summarized.
Storage battery aspects of air-electrode research
NASA Astrophysics Data System (ADS)
Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.
The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.
Modelling of an advanced charging system for electric vehicles
NASA Astrophysics Data System (ADS)
Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur
2017-03-01
Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the maximum variation has been found 15%, this closed agreement between the advanced charger prototype, simulation model and conventional charger validate the prototype model. Furthermore, based on the result presented in this report, the battery to be charged up to 85% of its rated capacity by constant current mode only rather than continue with constant voltage, which could shorten the battery charging time by 16% and prolong the battery life by 10%.
Recent advances in zinc-air batteries.
Li, Yanguang; Dai, Hongjie
2014-08-07
Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.
Enabling fast charging - A battery technology gap assessment
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Redox polymer electrodes for advanced batteries
Gregg, Brian A.; Taylor, A. Michael
1998-01-01
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.
Redox polymer electrodes for advanced batteries
Gregg, B.A.; Taylor, A.M.
1998-11-24
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.
Advanced battery technology for electric two-wheelers in the people's Republic of China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, P. G.; Energy Systems
2009-07-22
This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by themore » U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.« less
NASA Astrophysics Data System (ADS)
Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun
2018-03-01
The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.
Eliason, Michael J; Melzer, Jonathan M; Winters, Jessica R; Gallagher, Thomas Q
2016-08-01
To complement a case series review of button battery impactions managed at our single military tertiary care center with a thorough literature review of laboratory research and clinical cases to develop a protocol to optimize patient care. Specifically, to identify predictive factors of long-term complications which can be used by the pediatric otolaryngologist to guide patient management after button battery impactions. A retrospective review of the Department of Defense's electronic medical record systems was conducted to identify patients with button battery ingestions and then characterize their treatment course. A thorough literature review complemented the lessons learned to identify potentially predictive clinical measures for long-term complications. Eight patients were identified as being treated for button battery impaction in the aerodigestive tract with two sustaining long-term complications. The median age of the patients treated was 33 months old and the median estimated time of impaction in the aerodigestive tract prior to removal was 10.5 h. Time of impaction, anatomic direction of the battery's negative pole, and identifying specific battery parameters were identified as factors that may be employed to predict sequelae. Based on case reviews, advancements in battery manufacturing, and laboratory research, there are distinct clinical factors that should be assessed at the time of initial therapy to guide follow-up management to minimize potential catastrophic sequelae of button battery ingestion. Published by Elsevier Ireland Ltd.
Advanced Soldier Wearable Embedded Training System Final Report
2004-10-21
Rechargeable Battery Packs Ø Battery Chemistry: LiIon CONTRACT NO. PART NUMBER REV SHEET N61339-04-C-0051 98-P59921E - 22 Approved For...Electronics Board................................................................................ 24 Figure 12 Sensor Battery Charger...using on the LW-SI program along with the common single battery type being used on the LW-SI program. This also includes the reuse of the actual
Overview of NASA battery technology program
NASA Technical Reports Server (NTRS)
Riebling, R. W.
1980-01-01
Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.
2016 CEC Annual Workshop on Electrochemistry
2016-08-31
Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 electrochemistry, electrolytes, lithium - ion batteries , electron transfer REPORT...the following topics: advanced electrolytes with applications, lithium - ion batteries , and electron transfer through films. CEC faculty members...11:40a-1:20p Lunch break. Lithium - ion Batteries Arumugam “Ram” Manthiram, Moderator 1:20-2:10p Steven J. Visco, PolyPlus Battery Company
Materials for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Simon, Patrice; Gogotsi, Yury
2008-11-01
Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
Materials for electrochemical capacitors.
Simon, Patrice; Gogotsi, Yury
2008-11-01
Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
A survey of advanced battery systems for space applications
NASA Technical Reports Server (NTRS)
Attia, Alan I.
1989-01-01
The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.
Novel Polyimide Battery Separator Imbibed with Room-Temperature Ionic Liquids
NASA Technical Reports Server (NTRS)
Viggiano, Rocco; Nguyen, Baochau; Wu, James; Dai, Liming; Meador, Mary Ann
2017-01-01
The journey to Mars will require advancements in many existing technologies, including space power and energy storage systems. According to the 2015 NASA Technology Roadmaps, energy storage is a critical technology area to develop for both terrestrial as well as future long-term space missions. Currently, batteries represent one of the major areas in need of advancement, both in terms of energy density as well as safety. Recently, concerns regarding the fire safety of commercial lithium-ion batteries have prompted efforts to produce nonflammable battery components, namely the electrolyte and separator. Commercial lithium-ion batteries utilize polyolefin separators imbibed with a lithium salt dissolved in cyclic carbonates. This separator/electrolyte combination imparts good ionic conductivities in the range of 10(exp -2) to 10(exp -3) S/cm. However, the cyclic carbonates and polyolefin separator are inherently flammable. Room-temperature ionic liquids (RTILs) appear to be a safer alternative to cyclic carbonates. They offer good ionic conductivities, similar to those observed in cyclic carbonates, but are inherently nonvolatile and nonflammable giving them a safety advantage. Many promising RTILs for battery electrolytes are not compatible with commercial polyolefin separator materials. Polyimide aerogels possess an open-porous, fibrillar network architecture which offers a high degree of porosity (typically greater than 85 porous), required for lithium ion conduction, as well as good mechanical properties. Furthermore, these materials are compatible with all tested RTILs. By creating a polyimide gel and imbibing the gel with a RTIL containing a lithium salt instead of super critically drying them to form aerogels, a nonflammable separator/electrolyte system with conductivities in the range of 1x10(exp -3) S/cm has been demonstrated.
The Old Jalopy Races into the Future.
ERIC Educational Resources Information Center
Considine, Tim
1993-01-01
Discusses alternative transportation technological advances in speed, range, battery strategies, and safety facilitated by motor car racing. Presents a historical perspective of the development of steam, electric and gas-powered vehicles and modern versions of electric, and mixed power source cars being tested today. (MCO)
NASA Astrophysics Data System (ADS)
Meng, Xiangbo
2015-01-01
Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2012-01-01
This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.
Status of the lead/acid battery industry in Malaysia
NASA Astrophysics Data System (ADS)
Wong, J.
The Malaysian automotive battery industry has an over-capacity and is experiencing a highly competitive situation in the domestic market. In the medium term, therefore, the industry will concentrate on making advances in battery design and technology, and on improving productivity. The manufacture of industrial batteries is similarly under pressure, particularly from foreign products. At present, it is not feasible to produce locally all the various types of industrial batteries required by the home market.
Yu, Xingwen; Manthiram, Arumugam
2017-11-21
Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.
Fabrication of advanced electrochemical energy materials using sol-gel processing techniques
NASA Technical Reports Server (NTRS)
Chu, C. T.; Chu, Jay; Zheng, Haixing
1995-01-01
Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.
2011-01-01
Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J.; Chang, J.; Zumstein, J.
Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array ofmore » sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph
Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J.
Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less
“Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less
NASA Astrophysics Data System (ADS)
Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie
2015-12-01
Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.
O'Dwyer, Colm
2016-07-01
For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flywheel energy storage system focus of display
replacement for batteries For more information contact: e:mail: Public Affairs Golden, Colo., March 20, 1997 environmentally-friendly, advanced electricity storage technology that can replace lead acid batteries. A flywheel technologies for replacing conventional lead acid batteries as energy storage systems for a variety of
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Cheng, Fangyi; Chen, Jun
2012-03-21
Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).
Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries.
Ye, Rachel; Bell, Jeffrey; Patino, Daisy; Ahmed, Kazi; Ozkan, Mihri; Ozkan, Cengiz S
2017-12-08
Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.
Morphological modification of alpha-MnO2 catalyst for use in Li/air batteries.
Park, Min-Sik; Kim, Jae-Hun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun
2013-05-01
Single crystal alpha-MnO2 nanowires and nanopowders have been successfully synthesized in order to facilitate a comparison of their catalytic activity for use in Li-air batteries. The importance of the morphological modification of the alpha-MnO2 catalyst for facilitating electrochemical reactions between Li and O2 is addressed. Distinctive catalytic activity of alpha-MnO2 is observed, which is in line with its different morphologies. The catalytic activity significantly affects the reversible capacity of Li-air batteries. A high aspect ratio, large surface area and good dispersibility of alpha-MnO2 in the nanowire form are advantageous providing larger active surfaces for promoting the fundamental reactions in Li-air batteries. We also introduce a robustly designed air-electrode composed of highly porous carbon and nanostructured alpha-MnO2 catalysts, with employs a metal foam current collector to ensure sufficient air-permeability and to maximize electronic conduction during cycles. Our suggestions should prove helpful in forming a basis for further investigations in developing advanced Li-air batteries.
Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
NASA Astrophysics Data System (ADS)
Howard, Wilmont F.; Spotnitz, Robert M.
Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1989-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.
Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik
2018-05-04
A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Air Force electrochemical power research and technology program for space applications
NASA Technical Reports Server (NTRS)
Allen, Douglas
1987-01-01
An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.
NASA Astrophysics Data System (ADS)
Yang, Wanli; Devereaux, Thomas P.
2018-06-01
Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.
Summary of NASA Aerospace Flight Battery Systems Program activities
NASA Technical Reports Server (NTRS)
Manzo, Michelle; Odonnell, Patricia
1994-01-01
A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.
Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Lu, Shigang
2018-04-01
Ti 3 C 2 T x , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti 3 C 2 T x directly influence its electrochemical performance, e.g., the use of a well-designed 2D Ti 3 C 2 T x as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier/charge-transport kinetics. Some recent progresses of Ti 3 C 2 T x MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti 3 C 2 T x MXene including supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. The current opportunities and future challenges of Ti 3 C 2 T x MXene are addressed for energy-storage devices. This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti 3 C 2 T x , which will promote the further development of 2D MXenes in energy-storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
...,524,579 B1). 5. ARL 04-29--Safer, Less Expensive Lithium Ion Batteries (US 7,629,080). 6. ARL 05-18... Performance by Reducing Resistance in Lithium Ion Batteries. Filed with USPTO on 2/3/2010 (S/N 12/699,182). 11.... ARL 01-37--Choosing Electrolytes for Lithium/Air Batteries (US 7,585,579). 2. ARL 02-06--Solvent...
Shielded battery syndrome: a new hardware complication of deep brain stimulation.
Chelvarajah, Ramesh; Lumsden, Daniel; Kaminska, Margaret; Samuel, Michael; Hulse, Natasha; Selway, Richard P; Lin, Jean-Pierre; Ashkan, Keyoumars
2012-01-01
Deep brain stimulation hardware is constantly advancing. The last few years have seen the introduction of rechargeable cell technology into the implanted pulse generator design, allowing for longer battery life and fewer replacement operations. The Medtronic® system requires an additional pocket adaptor when revising a non-rechargeable battery such as their Kinetra® to their rechargeable Activa® RC. This additional hardware item can, if it migrates superficially, become an impediment to the recharging of the battery and negate the intended technological advance. To report the emergence of the 'shielded battery syndrome', which has not been previously described. We reviewed our deep brain stimulation database to identify cases of recharging difficulties reported by patients with Activa RC implanted pulse generators. Two cases of shielded battery syndrome were identified. The first required surgery to reposition the adaptor to the deep aspect of the subcutaneous pocket. In the second case, it was possible to perform external manual manipulation to restore the adaptor to its original position deep to the battery. We describe strategies to minimise the occurrence of the shielded battery syndrome and advise vigilance in all patients who experience difficulty with recharging after replacement surgery of this type for the implanted pulse generator. Copyright © 2012 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2013-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Corie Lynn
The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries buildsmore » on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells demonstrate the feasibility of the CoEx technology and a path towards higher energy and higher power EV pouch cells.« less
Yadegari, Hossein; Sun, Qian; Sun, Xueliang
2016-09-01
Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Advanced analytical electron microscopy for alkali-ion batteries
Qian, Danna; Ma, Cheng; Meng, Ying Shirley; ...
2015-06-26
Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less
Material review of Li ion battery separators
NASA Astrophysics Data System (ADS)
Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael
2014-06-01
Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.
Novel Strength Test Battery to Permit Evidence-Based Paralympic Classification
Beckman, Emma M.; Newcombe, Peter; Vanlandewijck, Yves; Connick, Mark J.; Tweedy, Sean M.
2014-01-01
Abstract Ordinal-scale strength assessment methods currently used in Paralympic athletics classification prevent the development of evidence-based classification systems. This study evaluated a battery of 7, ratio-scale, isometric tests with the aim of facilitating the development of evidence-based methods of classification. This study aimed to report sex-specific normal performance ranges, evaluate test–retest reliability, and evaluate the relationship between the measures and body mass. Body mass and strength measures were obtained from 118 participants—63 males and 55 females—ages 23.2 years ± 3.7 (mean ± SD). Seventeen participants completed the battery twice to evaluate test–retest reliability. The body mass–strength relationship was evaluated using Pearson correlations and allometric exponents. Conventional patterns of force production were observed. Reliability was acceptable (mean intraclass correlation = 0.85). Eight measures had moderate significant correlations with body size (r = 0.30–61). Allometric exponents were higher in males than in females (mean 0.99 vs 0.30). Results indicate that this comprehensive and parsimonious battery is an important methodological advance because it has psychometric properties critical for the development of evidence-based classification. Measures were interrelated with body size, indicating further research is required to determine whether raw measures require normalization in order to be validly applied in classification. PMID:25068950
Thin film separators with ion transport properties for energy applications
NASA Astrophysics Data System (ADS)
Li, Zhongyuan
2017-09-01
Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-08
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators
NASA Astrophysics Data System (ADS)
Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing
Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.
NASA Astrophysics Data System (ADS)
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-01-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575
Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion
NASA Astrophysics Data System (ADS)
1982-03-01
Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Wu, Feng; Zhan, Chun
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
NASA Astrophysics Data System (ADS)
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.
2015-12-01
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A
2015-12-04
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.
2015-01-01
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644
Hu, Zhe; Liu, Qiannan; Chou, Shu-Lei; Dou, Shi-Xue
2017-12-01
Rechargeable sodium-ion batteries (SIBs), as the most promising alternative to commercial lithium-ion batteries, have received tremendous attention during the last decade. Among all the anode materials for SIBs, metal sulfides/selenides (MXs) have shown inspiring results because of their versatile material species and high theoretical capacity. They suffer from large volume expansion, however, which leads to bad cycling performance. Thus, methods such as carbon modification, nanosize design, electrolyte optimization, and cut-off voltage control are used to obtain enhanced performance. Here, recent progress on MXs is summarized in terms of arranging the crystal structure, synthesis methods, electrochemical performance, mechanisms, and kinetics. Challenges are presented and effective ways to solve the problems are proposed, and a perspective for future material design is also given. It is hoped that light is shed on the development of MXs to help finally find applications for next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design
Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi
2017-01-01
Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964
Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.
Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang
2017-06-01
Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-03-01
68 3. Photovoltaic Effect ..........................69 4. Factors Affecting Cell Efficiency ............69 D. THIN-FILM...resistance. (After [3])...........................................120 xvi Table 21. Average battery capacity (AH) and battery energy capacity (WH...which is directly limited by the on-board battery capacity . The other key drawbacks are the weight and size of the mini- xviii UAV, which restrict the
Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries
NASA Astrophysics Data System (ADS)
Liu, Lehao; Xie, Fan; Lyu, Jing; Zhao, Tingkai; Li, Tiehu; Choi, Bong Gill
2016-07-01
Tin (Sn) has long been considered to be a promising replacement anode material for graphite in next-generation lithium-ion batteries (LIBs), because of its attractive comprehensive advantages of high gravimetric/volumetric capacities, environmental benignity, low cost, high safety, etc. However, Sn-based anodes suffer from severe capacity fading resulting mainly from their large volume expansions/contractions during lithiation/delithiation and subsequent pulverization, coalescence, delamination from current collectors, and poor Li+/electron transport. To circumvent these issues, a number of extraordinary architectures from nanostructures to anchored, layered/sandwich, core-shell, porous and even integrated structures have been exquisitely constructed to enhance the cycling performance. To cater for the rapid development of Sn-based anodes, we summarize the advances made in structural design principles, fabrication methods, morphological features and battery performance with focus on material structures. In addition, we identify the associated challenges and problems presented by recently-developed anodes and offer suggestions and perspectives for facilitating their practical implementations in next-generation LIBs.
Alkaline quinone flow battery.
Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P
2015-09-25
Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.
Aerospace Energy Systems Laboratory - Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
NASA Astrophysics Data System (ADS)
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg-1total electrode while also retaining a high energy density of 225 Wh kg-1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-13
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg(-1)(total electrode) while also retaining a high energy density of 225 Wh kg(-1)(total electrode), which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-01-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290
2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2014-01-01
Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.
Design considerations for advanced battery concepts
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; Thaller, L. H.
1986-01-01
A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stoichastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.
Design considerations for advanced battery concepts
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; Thaller, L. H.
1986-01-01
A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stochastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.
2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Chester Motloch; James Francfort
2010-01-01
The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-01
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-28
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
NASA Astrophysics Data System (ADS)
Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza
2017-08-01
An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium-oxygen, lithium-sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.
Zhou, Limin; Liu, Qi; Zhang, Zihe; Zhang, Kai; Xiong, Fangyu; Tan, Shuangshuang; An, Qinyou; Kang, Yong-Mook; Zhou, Zhen; Mai, Liqiang
2018-06-25
Owing to the low-cost, safety, dendrite-free formation, and two-electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next-generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg 2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO 4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl + ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g -1 at 50 mA g -1 , excellent rate capability, and good cycling stability (192 mAh g -1 at 100 mA g -1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl + migration energy barrier compared with Mg 2+ . This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy storage devices for future hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent
Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.
Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza
2017-01-01
An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.
NASA Astrophysics Data System (ADS)
Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael
2018-06-01
Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.
Zhou, Bin; Guo, Limin; Zhang, Yantao; Wang, Jiawei; Ma, Lipo; Zhang, Wen-Hua; Fu, Zhengwen; Peng, Zhangquan
2017-08-01
The aprotic Li-O 2 battery has attracted a great deal of interest because theoretically it can store more energy than today's Li-ion batteries. However, current Li-O 2 batteries suffer from passivation/clogging of the cathode by discharged Li 2 O 2 , high charging voltage for its subsequent oxidation, and accumulation of side reaction products (particularly Li 2 CO 3 and LiOH) upon cycling. Here, an advanced Li-O 2 battery with a hexamethylphosphoramide (HMPA) electrolyte is reported that can dissolve Li 2 O 2 , Li 2 CO 3 , and LiOH up to 0.35, 0.36, and 1.11 × 10 -3 m, respectively, and a LiPON-protected lithium anode that can be reversibly cycled in the HMPA electrolyte. Compared to the benchmark of ether-based Li-O 2 batteries, improved capacity, rate capability, voltaic efficiency, and cycle life are achieved for the HMPA-based Li-O 2 cells. More importantly, a combination of advanced research techniques provide compelling evidence that operation of the HMPA-based Li-O 2 battery is backed by nearly reversible formation/decomposition of Li 2 O 2 with negligible side reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
Energy Storage Technology Development for Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.
Hybrid Locomotive for Energy Savings and Reduced Emissions
DOT National Transportation Integrated Search
2017-08-01
Norfolk Southern Corporation (NS) and Pennsylvania State University tested several different battery systems in hybrid locomotives. Advanced lithium-ion battery technology was the only kind that displayed the capacity to perform in heavy switching or...
NREL Technologies Honored at R&D 100 Awards Ceremony | News | NREL
Buildings research group. The award in the Analytical/Test category went to the Battery Internal Short -Circuit Device developed by Matthew Keyser and Ahmad Pesaran from NREL's Energy Storage research group Advanced Power Electronics and Electric Machines research group were part of that project. Booten and
ORNL Lightweighting Research Featured on MotorWeek
None
2018-06-06
PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.
Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode
2001-11-01
The LiFePO4 Cathode DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode Shoufeng Yang, Yanning Song, Peter Y. Zavalij and M. Stanley Whittingham...Institute for Materials Research, Binghamton University, Binghamton, NY 13902-1600, U.S.A. ABSTRACT LiFePO4 was successfully synthesized by high temperature
Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
Okubo, Masashi; Yamada, Atsuo
2017-10-25
Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.
Advanced Calcium-Thionyl Chloride High-Power Battery.
1989-02-08
alternative to high-power lithium batteries ( 1 ). The major drawback of this system has been recently solved ( 10 1 4 ) by replacing the Ca(AICl4...897 (1982). 8. W.K. Behlin, Proceedings of the Symposium on Lithium Batteries, A.N. Dey Ed., Electrochem. Soc., Vol. 84-1 (1984). 9. R.J. Staniewicz...R. Cohen, J. Kimel and Y. Lavi, ibid p. 136. 11. C.W. Walker Jr., ibid, p. 129. 12. E. Peled in Lithium Batteries, J.P. Gabano Ed., Academic Press, NY
NASA Technical Reports Server (NTRS)
Dalton, Penni; Cohen, Fred
2004-01-01
The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.
2013-11-30
Rechargeable Lithium-ion Batteries for DOD Including the BB2590 Contract #SP4701-10-C-0032 Submitted by LithChem Energy (Div. of Retriev...Lithium-ion Batteries for DOD Including the BB2590 5a. CONTRACT NUMBER AP4701-10-C-0032 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...automated lithium-ion bi-cell production machine to produce lower cost prismatic lithium-ion batteries for the DOD. This machine was completed and
Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua
2015-11-21
Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.
Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.
Liu, Wei; Song, Min-Sang; Kong, Biao; Cui, Yi
2017-01-01
Energy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large-scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smartphones for cell and biomolecular detection.
Liu, Xiyuan; Lin, Tung-Yi; Lillehoj, Peter B
2014-11-01
Recent advances in biomedical science and technology have played a significant role in the development of new sensors and assays for cell and biomolecular detection. Generally, these efforts are aimed at reducing the complexity and costs associated with diagnostic testing so that it can be performed outside of a laboratory or hospital setting, requiring minimal equipment and user involvement. In particular, point-of-care (POC) testing offers immense potential for many important applications including medical diagnosis, environmental monitoring, food safety, and biosecurity. When coupled with smartphones, POC systems can offer portability, ease of use and enhanced functionality while maintaining performance. This review article focuses on recent advancements and developments in smartphone-based POC systems within the last 6 years with an emphasis on cell and biomolecular detection. These devices typically comprise multiple components, such as detectors, sample processors, disposable chips, batteries, and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. Researchers have demonstrated several promising approaches employing various detection schemes and device configurations, and it is expected that further developments in biosensors, battery technology and miniaturized electronics will enable smartphone-based POC technologies to become more mainstream tools in the scientific and biomedical communities.
Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue
2017-12-01
Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Storage battery aspects of air-electrode research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzzelli, E.S.; Berk, L.B.; Demczyk, B.G.
1983-08-01
The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary batterymore » for an EV application is the development of a bifunctional air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.« less
Negative electrodes for Na-ion batteries.
Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi
2014-08-07
Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.
Lithium-sulfur batteries: electrochemistry, materials, and prospects.
Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun
2013-12-09
With the increasing demand for efficient and economic energy storage, Li-S batteries have become attractive candidates for the next-generation high-energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li-S batteries, this Review introduces the electrochemistry of Li-S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li-S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li-S batteries with a metallic Li-free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S
2015-01-01
To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.
Energy storage deployment and innovation for the clean energy transition
NASA Astrophysics Data System (ADS)
Kittner, Noah; Lill, Felix; Kammen, Daniel M.
2017-09-01
The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.
Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.
2015-09-01
This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.
Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin
2016-06-01
In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasch, Richard T.; Abraham, Daniel A.
2016-12-01
High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haasch, Richard T.; Abraham, Daniel A.
2016-12-01
High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less
Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia
2017-06-14
Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.
Development of the Initial Small Unit Decision Making (SUDM) Assessment Battery
2012-12-21
Anomaly Detection Ambiguity Tolerance Metacognition Change Detection Self-Awareness Attentional Control Situational Assessment Self-Regulation Maneuver...allow the participants to freely write -in their actions or interpretations (Psotka, Streeter, Landaver, 2004). Answers scored as appropriate...Streeter, L. A., Landauer, T. K., Lochbaum, K. E., & Robinson, K. (2004). Augmenting Electronic Environments for Leadership. In Advanced Technologies
The future of automotive lithium-ion battery recycling: Charting a sustainable course
Gaines, Linda
2014-12-01
This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmore » ensure that economical and sustainable options are available at the end of the batteries' useful life.« less
The future of automotive lithium-ion battery recycling: Charting a sustainable course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaines, Linda
This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmore » ensure that economical and sustainable options are available at the end of the batteries' useful life.« less
NASA Astrophysics Data System (ADS)
Xia, Yang; Zhong, Haoyue; Fang, Ruyi; Liang, Chu; Xiao, Zhen; Huang, Hui; Gan, Yongping; Zhang, Jun; Tao, Xinyong; Zhang, Wenkui
2018-02-01
The rational design and controllable synthesis of sulfur cathode with high sulfur content, superior structural stability and fascinating electrochemical properties is a vital step to realize the large-scale application of rechargeable lithium-sulfur (Li-S) batteries. However, the electric insulation of elemental sulfur and the high solubility of lithium polysulfides are two intractable obstacles to hinder the success of Li-S batteries. In order to overcome aforementioned issues, a novel strategy combined supercritical CO2 fluid technology and biotemplating method is developed to fabricate Ni(OH)2 modified porous carbon microspheres as sulfur hosts to ameliorate the electronic conductive of sulfur and enhance simultaneously the physical and chemical absorptions of polysulfides. This elaborately designed Ni(OH)2@PYC/S composite cathode exhibits high reversible discharge capacity (1335 mAh g-1 at 0.1 C), remarkable cyclic stability (602 mAh g-1 after 200 cycles at 0.2 C) and superior rate capability, which is much better than its PYC/S counterpart. These results clearly demonstrate that the advanced porous carbon with good conductivity and the polar Ni(OH)2 coating layer with strong trapping ability of polysulfides are responsible for the enhanced electrochemical performance.
Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou
2017-01-25
The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.
Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei
2015-03-01
Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
Shu, Chaozhu; Li, Bo; Zhang, Bingsen; Su, Dangsheng
2015-12-07
The lithium-oxygen (Li-O2 ) battery is a very appealing candidate for advanced high energy applications owing to its exceptionally high specific energy. However, its poor energy efficiency, rate capability, and cyclability remain key barriers to its practical application. In this work, using a rationally designed cathode based on a bimodal mesoporous nitrogen-doped graphene/carbon nanotube (NGC) composite, we have developed a Li-O2 battery demonstrating enhanced round-trip efficiency (ca. 85 %) and excellent cyclability over 400 cycles under a high current rate of 500 mA g(-1) . The excellent cyclability and rate capability are attributed to improved stability of the aggressive LiO2 intermediate on the nitrogen-doped carbon surface in addition to the favorable hierarchical architecture of NGC. These results demonstrate a valuable research direction to achieve highly stable and reversible Li-O2 batteries through tuning the surface chemistry of the cathode in addition to finding a stable electrolyte solvent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In situ analytical techniques for battery interface analysis.
Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe
2018-02-05
Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.
Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability
NASA Astrophysics Data System (ADS)
Kalaga, Kaushik
Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage lithium batteries, which may be dubbed as the next generation devices. Architectural engineering of battery components to amplify the device performance is also discussed. 3D electrode structures developed using CVD and electrodeposition techniques demonstrated significant enhancement in performance when compared to their 2D analogues. The study has established the prospects of LIBs at high temperatures through material tuning and engineering approaches and envisage a scope for viable devices.
State-of-the-art of alkaline rechargeable batteries
NASA Astrophysics Data System (ADS)
Morioka, Y.; Narukawa, S.; Itou, T.
Alkaline rechargeable batteries represented by Ni-Cd and Ni-MH batteries are expanding their market, continuously meeting an increasing demand. Approximately 30 years have elapsed since the first sealed Ni-Cd battery was commercialized for consumer use, and the production of these alkaline batteries is still expanding. The high power performance and good cost performance of these batteries are the outstanding features, which are leading to new battery applications. Continuous R&D of many researchers and engineers has improved these features. Since first coming to the market in 1990, Ni-MH batteries have been extending their application as power sources for portable advanced information and communication equipment. Improvements in electrode materials and other components have increased the energy density of current Ni-MH batteries to values of 91 Wh/kg and 340 Wh/l. Recently, novel metallic alloys for hydrogen storage have been proposed to increase their capacity further, and further improvement in the performance of these batteries is expected.
Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond
NASA Technical Reports Server (NTRS)
Thompson, Alexander; Lawson, John W.
2014-01-01
NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yingwen; Luo, Langli; Zhong, Li
We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.
Portable, battery-operated, fluorescence field microscope for the developing world
NASA Astrophysics Data System (ADS)
Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca
2010-02-01
In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.
Snigdha, Shikha; Milgram, Norton W; Willis, Sherry L; Albert, Marylin; Weintraub, S; Fortin, Norbert J; Cotman, Carl W
2013-07-01
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Snigdha, Shikha; Milgram, Norton W.; Willis, Sherry L.; Albert, Marylin; Weintraub, S.; Fortin, Norbert J.; Cotman, Carl W.
2013-01-01
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer’s disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer’s disease. PMID:23434040
Microcapsule-based techniques for improving the safety of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Baginska, Marta
Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
Multi-scale computation methods: Their applications in lithium-ion battery research and development
NASA Astrophysics Data System (ADS)
Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao
2016-01-01
Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).
Advanced high-temperature batteries
NASA Technical Reports Server (NTRS)
Nelson, Paul A.
1989-01-01
The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.
Nanostructured materials for advanced energy conversion and storage devices
NASA Astrophysics Data System (ADS)
Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter
2005-05-01
New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
Energy and environmental impacts of electric vehicle battery production and recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaines, L.; Singh, M.
1995-12-31
Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydridemore » electrodes, but the latter may be more difficult to recycle.« less
Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, Vince
Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.
Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab
Battaglia, Vince
2018-02-06
Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.
Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems
NASA Astrophysics Data System (ADS)
Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.
1983-01-01
The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.
Advances of aqueous rechargeable lithium-ion battery: A review
NASA Astrophysics Data System (ADS)
Alias, Nurhaswani; Mohamad, Ahmad Azmin
2015-01-01
The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.
Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less
Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.
2017-01-07
Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
NASA Astrophysics Data System (ADS)
Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.
2016-11-01
Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.
Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries
NASA Technical Reports Server (NTRS)
Reed, L.
1978-01-01
The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... electric motors that get their power from a rechargeable Lithium-ion battery, or, when that is depleted, by... Americans drive each day. The battery can be charged at home overnight. Using gas and electric power, Fisker...
Tsuang, Debby; Esterberg, Michelle; Braff, David; Calkins, Monica; Cadenhead, Kristin; Dobie, Dorcas; Freedman, Robert; Green, Michael F; Greenwood, Tiffany; Gur, Raquel; Gur, Ruben; Horan, William; Lazzeroni, Laura C; Light, Gregory A; Millard, Steven P; Olincy, Ann; Nuechterlein, Keith; Seidman, Larry; Siever, Larry; Silverman, Jeremy; Stone, William; Sprock, Joyce; Sugar, Catherine; Swerdlow, Neal; Tsuang, Ming; Turetsky, Bruce; Radant, Allen
2014-01-01
The children of older fathers have increased risks of developing schizophrenia spectrum disorders, and among those who develop these disorders, those with older fathers present with more severe clinical symptoms. However, the influence of advanced paternal age on other important domains related to schizophrenia, such as quantitative endophenotype deficit levels, remains unknown. This study investigated the associations between paternal age and level of endophenotypic impairment in a well-characterized family-based sample from the Consortium on the Genetics of Schizophrenia (COGS). All families included at least one affected subject and one unaffected sibling. Subjects met criteria for schizophrenia (probands; n = 293) or were unaffected first-degree siblings of those probands (n = 382). Paternal age at the time of subjects' birth was documented. Subjects completed a comprehensive clinical assessment and a battery of tests that measured 16 endophenotypes. After controlling for covariates, potential paternal age-endophenotype associations were analyzed using one model that included probands alone and a second model that included both probands and unaffected siblings. Endophenotype deficits in the Identical Pairs version of the 4-digit Continuous Performance Test and in the Penn Computerized Neurocognitive Battery verbal memory test showed significant associations with paternal age. However, after correcting for multiple comparisons, no endophenotype was significantly associated with paternal age. These findings suggest that factors other than advanced paternal age at birth may account for endophenotypic deficit levels in schizophrenia.
Ultra-Capacitor Energy Storage in a Large Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1997-01-01
The power requirements for inner city transit buses are characterized by power peaks about an order of magnitude larger than the average power usage of the vehicle. For these vehicles, hybrid power trains can offer significantly improved fuel economy and exhaust emissions. A critical design challenge, however, has been developing the energy storage and power management system to respond to these rapid power variations. Most hybrid vehicles today use chemical energy storage batteries to supplement the power from the fuel burning generator unit. Chemical storage batteries however, present several difficulties in power management and control. These difficulties include (1) inadequate life, (2) limited current delivery as well as absorption during regenerative braking, (3) inaccurate measurement of state of charge, and (4) stored energy safety issues. Recent advances in ultra-capacitor technology create an opportunity to address these concerns. The NASA Lewis Research Center, in cooperation with industry and academia, has developed an advanced hybrid electric transit bus using ultra-capacitors as the primary energy storage system. At over 15,000-kg gross weight, this is the largest vehicle of its kind ever built using this advanced energy storage technology. Results of analyses show that the vehicle will match the performance of an equivalent conventionally powered vehicle over typical inner city drive cycles. This paper describes the overall power system architecture, the evolution of the control strategy, and analysis of power flow and vehicle performance.
Diagnosis of power fade mechanisms in high-power lithium-ion cells
NASA Astrophysics Data System (ADS)
Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.
Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.
Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
NASA Astrophysics Data System (ADS)
Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit
2015-07-01
Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.
NASA Technical Reports Server (NTRS)
Zagrodnik, Jeffrey P.; Jones, Kenneth R.
1991-01-01
Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.
Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2018-02-01
Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.
Recent progress in supercapacitors: from materials design to system construction.
Wang, Yonggang; Xia, Yongyao
2013-10-04
Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFENSE PRODUCTION ACT: Agencies Lack Policies and Guidance for Use of Key Authorities
2008-06-01
thermal batteries $11.44 Projects under $10 million Radiation Hardened Cryogenic Read Out Integrated Circuits (ROIC) Establishment of a domestic...performance of polymers $13.73 High Performance Thermal Battery Production Initiative Establish, strengthen, and expand a domestic source for advanced
Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong
2015-06-17
Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less
Sodium-Oxygen Battery: Steps Toward Reality.
Landa-Medrano, Imanol; Li, Chunmei; Ortiz-Vitoriano, Nagore; Ruiz de Larramendi, Idoia; Carrasco, Javier; Rojo, Teófilo
2016-04-07
Rechargeable metal-oxygen batteries are receiving significant interest as a possible alternative to current state of the art lithium ion batteries due to their potential to provide higher gravimetric energies, giving significantly lighter or longer-lasting batteries. Recent advances suggest that the Na-O2 battery, in many ways analogous to Li-O2 yet based on the reversible formation of sodium superoxide (NaO2), has many advantages such as a low charge overpotential (∼100 mV) resulting in improved efficiency. In this Perspective, we discuss the current state of knowledge in Na-O2 battery technology, with an emphasis on the latest experimental studies, as well as theoretical models. We offer special focus on the principle outstanding challenges and issues and address the advantages/disadvantages of the technology when compared with Li-O2 batteries as well as other state-of-the-art battery technologies. We finish by detailing the direction required to make Na-O2 batteries both commercially and technologically viable.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.
2008-01-01
Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.
Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora
2018-04-18
Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.
Design of a 4-seat, general aviation, electric aircraft
NASA Astrophysics Data System (ADS)
Rajagopalan, Arvindhakshan
Range and payload of current electric aircraft is limited primarily due to low energy density of batteries. However, recent advances in battery technology promise storage of more than 1 kWh of energy per kilogram of weight in the near future. This kind of energy storage makes possible the design of an electric aircraft comparable to, if not better than existing state-of-the art general aviation aircraft powered by internal combustion engines. This thesis explores through parametric studies the effect of lift-to-drag ratio, flight speed, and cruise altitude on required thrust power and battery energy and presents the conceptual and preliminary design of a four-seat, general aviation electric aircraft with a takeoff weight of 1750 kg, a range of 800 km, and a cruise speed of 200 km/h. An innovative configuration design will take full advantage of the electric propulsion system, while a Lithium-Polymer battery and a DC brush less motor will provide the power. Advanced aerodynamics will explore the greatest possible extend of laminar flow on the fuselage, the wing, and the empennage surfaces to minimize drag, while advanced composite structures will provide the greatest possible savings on empty weight. The proposed design is intended to be certifiable under current FAR 23 requirements.
Advances in electrode materials for Li-based rechargeable batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hui; Mao, Chengyu; Li, Jianlin
Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and newmore » tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.« less
Recent advances in rechargeable battery materials: a chemist's perspective.
Palacín, M Rosa
2009-09-01
The constant increase in global energy demand, together with the awareness of the finite supply of fossil fuels, has brought about an imperious need to take advantage of renewable energy sources. At the same time, concern over CO(2) emissions and future rises in the cost of gasoline has boosted technological efforts to make hybrid and electric vehicles available to the general public. Energy storage is a vital issue to be addressed within this scenario, and batteries are certainly a key player. In this tutorial review, the most recent and significant scientific advances in the field of rechargeable batteries, whose performance is dependent on their underlying chemistry, are covered. In view of its utmost current significance and future prospects, special emphasis is given to progress in lithium-based technologies.
Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long
2018-01-31
A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues.
NASA Technical Reports Server (NTRS)
Reid, Concha, M.; Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.
NASA Astrophysics Data System (ADS)
Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Lee, Jong-Min; Li, Yang Yang; Zapien, Juan Antonio
2014-09-01
We present a simple polymer-pyrolysis assisted method to prepare vanadium trioxide and carbon nanocomposites as an advanced anode material for lithium-ion batteries. The as-prepared material deliver a superior battery performance with highly retained capacity of ∼780 mAh g-1 over 100 cycles at a current density of 200 mA g-1, showing excellent cyclic stability, and good rate capability. The improved electrochemical performance of vanadium trioxide and carbon nanocomposites electrode makes it promising as a suitable anode material for practical battery applications.
The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or the overall envisioned long-term, program objectives were not met due to funding reductions. The NASA PERS Program provided research opportunities and generated and disseminated a wealth of new scientific knowledge and technical competencies within the polymer electrolyte area.