Science.gov

Sample records for advanced biochemistry laboratory

  1. Glycobiology, How to Sugar-Coat an Undergraduate Advanced Biochemistry Laboratory

    ERIC Educational Resources Information Center

    McReynolds, Katherine D.

    2006-01-01

    A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through…

  2. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  3. A Project-Oriented Biochemistry Laboratory Course.

    ERIC Educational Resources Information Center

    Craig, Paul A.

    1999-01-01

    Describes a biochemistry laboratory course in which the curriculum revolves around a single theme: the purification, characterization, and molecular biology of threonine dehydrogenase (TDH) from Escherechia coli. Lists examples of related class research projects. Contains 41 references. (WRM)

  4. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  5. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  6. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  7. A Project-Oriented Biochemistry Laboratory Course

    NASA Astrophysics Data System (ADS)

    Craig, Paul A.

    1999-08-01

    A project-oriented laboratory course has been designed to introduce students to the study of biochemistry as it is practiced. The course is designed to be a capstone experience for students enrolled in a variety of majors at the Rochester Institute of Technology, including those who enter our new B.S. Biochemistry program. The experiments in this course enable the students to explore the protein chemistry, enzymology, and molecular biology of a single enzyme, threonine dehydrogenase, in a series of integrated experiments. The laboratory incorporates both traditional methods (centrifugation, UV-vis spectroscopy, gel electrophoresis, and chromatography) and more recent developments in the field (polymerase chain reaction). Students use a small computer network to prepare for experiments (using simulation software developed at RIT), to evaluate data, to access sequence homology databases over the Internet, and to visualize and model proteins and nucleic acids. The change in the biochemistry teaching lab from a sequence of unrelated experiments to an integrated series of experiments is a model that can be readily adapted by other educators, who can change their courses to focus on a single enzyme with which they are most familiar.

  8. Probing Changes in the Conformation of tRNA[superscript Phe]: An Integrated Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.; Taylor, Buck L. H.

    2008-01-01

    We have designed a new guided-inquiry laboratory for an advanced biochemistry course. This integrated laboratory focuses on the biomolecule tRNA[superscript Phe] and combines elements of bioorganic and bioinorganic chemistry with biochemistry. Throughout the semester students work together to study tRNA[superscript Phe] structure and ligand…

  9. Immobilized Lactase in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Allison, Matthew J.; Bering, C. Larry

    1998-10-01

    Immobilized enzymes have many practical applications. They may be used in clinical, industrial, and biotechnological laboratories and in many clinical diagnostic kits. For educational purposes, use of immobilized enzymes can easily be taught at the undergraduate or even secondary level. We have developed an immobilized enzyme experiment that combines many practical techniques used in the biochemistry laboratory and fits within a three-hour time frame. In this experiment, lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit. We have determined the optimal conditions to give the greatest turnover of lactose while allowing the immobilized enzymes to be active for long periods at room temperature.

  10. Immobilized alpha-Galactosidase in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Dhananjay, K.

    2007-01-01

    This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…

  11. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  12. Recent advances in the biochemistry of spinosyns.

    PubMed

    Huang, Ke-xue; Xia, Liqiu; Zhang, Youming; Ding, Xuezhi; Zahn, James A

    2009-02-01

    Spinosyn and its analogs, produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. They are macrolides with a 21-carbon, 12-membered tetracyclic lactones that are attached to two deoxysugars, tri-O-methylrhamnose and forosamine. Labeling studies, analysis of the biosynthetically blocked mutants, and the genetic identification of the spinosyn gene cluster have provided detailed information concerning the mechanism of spinosyn biosynthesis and have enabled combinatorial biosynthesis of a large group of new spinosyns. The following developments have recently impacted the field of spinosyn biology: (1) A second-generation spinosyn called spinetoram (XDE-175) was launched in late 2007; it is a semisynthesized spinosyn derivative produced through the modification of 3'-O-methyl group of rhamnose and the double bond between C5 and C6 of spinosyn J and L. This molecule was shown to have improved insecticidal activity, enhanced duration of control, and an expanded pest spectrum. (2) A new class of spinosyns, the butenyl-spinosyns, was discovered from Saccharopolyspora pogona. The butenyl-spinosyns are similar to spinosyns, but differ in the length of the side chain at C-21. In addition to structural similarities with the spinosyns, the butenyl-spinosyns exhibit a high level of similarity in insecticidal activity to spinetoram. (3) Spinosyn analogs, 21-cyclobutyl-spinosyn A and 21-cyclobutyl-spinosyn D were generated by metabolic engineering of the spinosyn biosynthetic gene cluster. They showed better insecticidal activities against cotton aphid and tobacco budworm than that of spinosyn A and D. Future progress toward the development of more potent spinosad analogs, as well as enhancements in production yields will likely result from these recent advances in the genetics and biochemistry of spinosyns. PMID:19082588

  13. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    ERIC Educational Resources Information Center

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  14. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  15. Forensic Analysis of Canine DNA Samples in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Carson, Tobin M.; Bradley, Sharonda Q.; Fekete, Brenda L.; Millard, Julie T.; LaRiviere, Frederick J.

    2009-01-01

    Recent advances in canine genomics have allowed the development of highly distinguishing methods of analysis for both nuclear and mitochondrial DNA. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify hypervariable regions of DNA from dog hair and saliva…

  16. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  17. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  18. Cytochrome C: A Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Vincent, John B.; Woski, Stephen A.

    2005-01-01

    A laboratory course called cytochrome c that focuses on the theme of biochemical research is presented. The students follow this course by incorporating team-investigation and self-directed experimentation that provides them an opportunity to experience the excitement of research.

  19. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  20. Myoglobin structure and function: A multiweek biochemistry laboratory project.

    PubMed

    Silverstein, Todd P; Kirk, Sarah R; Meyer, Scott C; Holman, Karen L McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure, students work with computer modeling and visualization of myoglobin and its homologues, after which they spectroscopically characterize its thermal denaturation. Students also study protein function (ligand binding equilibrium) and are instructed on topics in data analysis (calibration curves, nonlinear vs. linear regression). This upper division biochemistry laboratory project is a challenging and rewarding one that not only exposes students to a wide variety of important biochemical laboratory techniques but also ties those techniques together to work with a single readily available and easily characterized protein, myoglobin. PMID:25726810

  1. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    ERIC Educational Resources Information Center

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  2. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  3. Preparing the Biochemistry Laboratory for the Next Outbreak: Lessons from SARS in Singapore

    PubMed Central

    2005-01-01

    Severe acute respiratory syndrome (SARS) is an emerging disease characterised by fever and atypical pneumonia and caused by a novel coronavirus. Singapore was affected by the global pandemic in early 2003, with 238 cases and 33 deaths. Samples sent to the biochemistry laboratory made up the majority (69%) of all SARS samples, yet remained a minority (29%) of total biochemistry workload. This paper describes the problems encountered and solutions adopted by the biochemistry laboratory at the designated SARS hospital in coping with this epidemic. It provides practical advice for laboratories planning for the handling of samples from future outbreaks. PMID:16450013

  4. Structure Leads To Function: An Integrated Biophysical Approach To Teaching a Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    And Others; deLannoy, Peter

    1996-01-01

    Describes an integrated approach to teaching a biochemistry laboratory focusing on the relationship between the three-dimensional structure of a macromolecule and its function. RNA is chosen as the model system. Discusses curriculum and student assessment. (AIM)

  5. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  6. Known Structure, Unknown Function: An Inquiry-Based Undergraduate Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…

  7. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    PubMed Central

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  8. A Semester-Long Project-Oriented Biochemistry Laboratory Based on "Helicobacter pylori" Urease

    ERIC Educational Resources Information Center

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically…

  9. Automation in clinical biochemistry: core, peripheral, STAT, and specialist laboratories in Australia.

    PubMed

    Streitberg, George S; Angel, Lyndall; Sikaris, Kenneth A; Bwititi, Phillip T

    2012-10-01

    Pathology has developed substantially since the 1990s with the introduction of total laboratory automation (TLA), in response to workloads and the need to improve quality. TLA has enhanced core laboratories, which evolved from discipline-based laboratories. Work practices have changed, with central reception now loading samples onto the Inlet module of the TLA. It is important to continually appraise technology. This study looked at the impact of technology using a self-administered survey to seniors in clinical biochemistry in NATA GX/GY-classified laboratories in Australia. The responses were yes, no, or not applicable and are expressed as percentages of responses. Some of the questions sourced for descriptive answers. Eighty-one laboratories responded, and the locations were 63%, 33%, and 4% in capital cities, regional cities, and country towns, respectively. Forty-two percent were public and 58% private. Clinical biochemistry was in all core laboratories of various sizes, and most performed up to 20 tests per sample. Thirty percent of the 121 surveyed laboratories had plans to install an automated line. Fifty-eight percent had hematology and biochemistry instrumentations in their peripheral laboratory, and 16% had a STAT laboratory on the same site as the core laboratory. There were varied instruments in specialist laboratories, and analyzers with embedded computers were in all laboratories. Medium and large laboratories had workstations with integrated instruments, and some large laboratories had TLA. Technology evolution and rising demand for pathology services make it imperative for laboratories to embrace such changes and reorganize the laboratories to take into account point-of-care testing and the efficiencies of core laboratories and TLA. PMID:22661200

  10. The Guided Design Strategy in the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Adams, A. Birk

    1983-01-01

    A nontraditional laboratory course for first-year medical students is described, consisting of two laboratory exercises adapted to the guided design strategy and a short research project. Student learning and attitudes were shown to improve, but curriculum preparation time was a major disadvantage. (MSE)

  11. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  12. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  13. An SDS-PAGE Examination of Protein Quaternary Structure and Disulfide Bonding for a Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Andrews, Carla S.; St. Antoine, Caroline C.; Jain, Swapan S.; Bevilacqua, Vicky L. H.

    2005-01-01

    Electrophoresis is a valuable tool for biochemists, yet this technique is often not included in biochemistry laboratory curricula owing to time constraints or lack of equipment. Protein structure is also a topic of interest in many disciplines, yet most undergraduate lab experiments focus only on primary structure. In this experiment, students use…

  14. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  15. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  16. Integrating Internet Assignments into a Biochemistry/Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Kaspar, Roger L.

    2002-01-01

    A main challenge in educating undergraduate students is to introduce them to the Internet and to teach them how to effectively use it in research. To this end, an Internet assignment was developed that introduces students to websites related to biomedical research at the beginning of a biochemistry/molecular biology laboratory course. The basic…

  17. Web Camera Use in Developing Biology, Molecular Biology and Biochemistry Laboratories

    ERIC Educational Resources Information Center

    Ogren, Paul J.; Deibel, Michael; Kelly, Ian; Mulnix, Amy B.; Peck, Charlie

    2004-01-01

    The use of a network-ready color camera is described which is primarily marketed as a security device and is used for experiments in developmental biology, genetics and biochemistry laboratories and in special student research projects. Acquiring and analyzing project and archiving images is very important in microscopy, electrophoresis and…

  18. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  19. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  20. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  1. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  2. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  3. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  4. Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd

    1998-06-01

    At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.

  5. Reinforcing Constructivist Teaching in Advanced Level Biochemistry through the Introduction of Case-Based Learning Activities

    ERIC Educational Resources Information Center

    Hartfield, Perry J.

    2010-01-01

    In the process of curriculum development, I have integrated a constructivist teaching strategy into an advanced-level biochemistry teaching unit. Specifically, I have introduced case-based learning activities into the teaching/learning framework. These case-based learning activities were designed to develop problem-solving skills, consolidate…

  6. Tagging and Purifying Proteins to Teach Molecular Biology and Advanced Biochemistry

    ERIC Educational Resources Information Center

    Roecklein-Canfield, Jennifer A.; Lopilato, Jane

    2004-01-01

    Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a…

  7. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  8. Dishonesty in the biochemistry classroom laboratory: A synthesis of causes and prevention.

    PubMed

    Del Carlo, Dawn; Bodner, George

    2006-09-01

    Although reports of academic cheating are abundant, there are relatively few papers in the literature that focus on cheating in the context of science courses and even fewer that address dishonest practices, such as "cooking" or fudging data, within the classroom laboratory. This paper briefly reviews the existing literature on academic dishonesty and explores two theories that can be used to explain why cheating occurs: (1) classroom goal structure and (2) attitudes of neutralization. We conclude with a discussion of the implications of these theories within the context of a biochemistry and molecular biology teaching laboratory. PMID:21638711

  9. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. PMID:25752808

  10. Protein Biomarker Research in UK Hospital Clinical Biochemistry Laboratories: A Survey of Current Practice and Views

    PubMed Central

    Hepburn, Sophie; Banks, Rosamonde E; Thompson, Douglas

    2014-01-01

    Background: With the increasing drive for more and better disease biomarkers to underpin the stratified or personalised medicine agenda, clinical biochemistry laboratories should be ideally placed to play a major role in their translation into clinical practice. However, little is known about the current extent of biomarker-related research activity in UK National Health Service clinical biochemistry departments. Methods: In December 2010, an online questionnaire was sent to active UK members of the Association for Clinical Biochemistry (ACB) to determine the extent of their current research activity and involvement in protein biomarker discovery and translation, including an assessment of the awareness of proteomics. Results: A total of 198 eligible responses (19% response rate) was received from across the UK. Of a further 50 eligible people who responded to a follow-up for initial non-responders, most cited insufficient knowledge about the topic as the reason for non-response (24% total response rate). The results illustrate the highly skilled nature of the workforce with many having experience in a research environment (75%) with postgraduate qualifications. However, more than half spend <10% of their time undertaking research in their current role, and many (61%) would like to be more research active. Encouragingly, approximately a third were involved in biomarker discovery activities, even though for <10% of their time, with slightly more reporting involvement in biomarker translation. Conclusions: Although there are people with the necessary skills and desire to be involved in biomarker research in clinical biochemistry departments, their involvement is small, predominantly due to issues with capacity and resources. It is likely that the majority of biomarker programmes will therefore continue to be carried out by a small number of academic groups, hopefully with collaborative input from hospital laboratories. PMID:25210209

  11. Nanoscale membrane organization: where biochemistry meets advanced microscopy

    PubMed Central

    Cambi, Alessandra; Lidke, Diane S.

    2011-01-01

    Understanding the molecular mechanisms that shape an effective cellular response is a fundamental question in biology. Biochemical measurements have revealed critical information about the order of protein-protein interactions along signaling cascades, but lack the resolution to determine kinetics and localization of interactions on the plasma membrane. Furthermore, the local membrane environment influences membrane receptor distributions and dynamics, which in turn influences signal transduction. To measure dynamic protein interactions and elucidate the consequences of membrane architecture interplay, direct measurements at high spatiotemporal resolution are needed. In this review, we discuss the biochemical principles regulating membrane nanodomain formation and protein function, ranging from the lipid nanoenvironment to the cortical cytoskeleton. We also discuss recent advances in fluorescence microscopy that are making it possible to quantify protein organization and biochemical events at the nanoscale in the living cell membrane. PMID:22004174

  12. The Most Proficient Enzyme as the Central Theme in an Integrated, Research-based Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Smiley, Jeffrey A.

    2002-01-01

    The enzyme orotidine-5'-monophosphate decarboxylase is an attractive choice for the central theme of an integrated, research-based biochemistry laboratory course. A series of laboratory exercises common to most instructional laboratories, including enzyme assays, protein purification, enzymatic characterization, elementary kinetics, and…

  13. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  14. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment.

    PubMed

    Millard, Julie T; Chuang, Edward; Lucas, James S; Nagy, Erzsebet E; Davis, Griffin T

    2013-11-12

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  15. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  16. Croatian Society of Medical Biochemistry and Laboratory Medicine: national recommendations for venous blood sampling

    PubMed Central

    Nikolac, Nora; Šupak-Smolčić, Vesna; Šimundić, Ana-Maria; Ćelap, Ivana

    2013-01-01

    Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60–80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations. The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information. PMID:24266294

  17. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    ERIC Educational Resources Information Center

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  18. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  19. Equilibrium Gel Filtration Chromatography for the Measurement of Protein-Ligand Binding in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Craig, Douglas B.

    2005-01-01

    A laboratory exercise used in the senior biochemistry course at the University of Winnipeg for three years is discussed. It combines liquid chromatography and absorbance spectroscopy and also allows the students to produce a quantitative result within a single three-hour period.

  20. The Determination of Vitamin D-Dependent Calcium Binding Protein in Chick Intesting: An Undergraduate Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Lessard, George M.

    1980-01-01

    Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)

  1. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  2. Purification of Bovine Carbonic Anhydrase by Affinity Chromatography: An Undergraduate Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bering, C. Larry; Kuhns, Jennifer J.; Rowlett, Roger

    1998-08-01

    We have developed a rapid and inexpensive experiment utilizing affinity chromatography to isolate carbonic anhydrase (CA) from bovine blood. The more specific an affinity gel is the better the purification, but the greater the cost. Some costs would be prohibitive in the undergraduate biochemistry laboratory. Less specific resins may be more affordable but may bind a number of closely related proteins. One alternative would be to couple a specific ligand to an inexpensive resin such as an ion exchanger. We describe a simple procedure for preparing a sulfonamide-coupled resin which specifically binds CA from a blood hemolysate. The CA is eluted and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that only a single band of 31 kD was obtained. The instructor can readily prepare the affinity gel prior to the lab, and the students, beginning with packed red blood cells can carry out the lysis, binding to the gel, elution, enzymatic assays, and electrophoresis.

  3. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  4. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    ERIC Educational Resources Information Center

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  5. Doing That Thing That Scientists Do: A Discovery-Driven Module on Protein Purification and Characterization for the Undergraduate Biochemistry Laboratory Classroom

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module,…

  6. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana; Maradin, Miljenka

    2015-01-01

    Capillary blood sampling is a medical procedure aimed at assisting in patient diagnosis, management and treatment, and is increasingly used worldwide, in part because of the increasing availability of point-of-care testing. It is also frequently used to obtain small blood volumes for laboratory testing because it minimizes pain. The capillary blood sampling procedure can influence the quality of the sample as well as the accuracy of test results, highlighting the need for immediate, widespread standardization. A recent nationwide survey of policies and practices related to capillary blood sampling in medical laboratories in Croatia has shown that capillary sampling procedures are not standardized and that only a small proportion of Croatian laboratories comply with guidelines from the Clinical Laboratory Standards Institute (CLSI) or the World Health Organization (WHO). The aim of this document is to provide recommendations for capillary blood sampling. This document has been produced by the Working Group for Capillary Blood Sampling within the Croatian Society of Medical Biochemistry and Laboratory Medicine. Our recommendations are based on existing available standards and recommendations (WHO Best Practices in Phlebotomy, CLSI GP42-A6 and CLSI C46-A2), which have been modified based on local logistical, cultural, legal and regulatory requirements. We hope that these recommendations will be a useful contribution to the standardization of capillary blood sampling in Croatia. PMID:26524965

  7. Prepare, Do, Review: A skills-based approach for laboratory practical classes in biochemistry and molecular biology.

    PubMed

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-05-01

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and a post-lab session in which students make oral presentations on different aspects of the practical. Each part of the module is assessed with the aim of providing rapid feedback to staff and students. Each laboratory practical is the responsibility of a single staff member and through this "ownership," continual review and updating is promoted. Examples of changes made by staff to modules as a result of student feedback are detailed. A survey of students who had experienced both the old-style laboratory course and the new one provided evidence of increased satisfaction with the new program. The assessment of acquired shills in the new program showed that it was much more effective than the old course. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:276-287, 2016. PMID:27161811

  8. An Inexpensive, Relatively Green, and Rapid Method to Purify Genomic DNA from "Escherichia Coli": An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; Branscum, Katie M.; Kao, Lydia; Keaveny, Virginia R.

    2010-01-01

    A method to purify genomic DNA from "Escherichia coli" is presented. The method is an amalgam of published methods but has been modified and optimized for use in the undergraduate biochemistry laboratory. Specifically, the method uses Tide Free 2x Ultra laundry detergent, which contains unspecified proteases and lipases, "n"-butanol, 2-propanol,…

  9. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  10. An Undergraduate Investigation into the 10-23 DNA Enzyme that Cleaves RNA: DNA Can Cut It in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Flynn-Charlebois, Amber; Burns, Jamie; Chapelliquen, Stephanie; Sanmartino, Holly

    2011-01-01

    A low-cost biochemistry experiment is described that demonstrates current techniques in the use of catalytic DNA molecules and introduces a nonradioactive, nonfluorescent, inexpensive, fast, and safe method for monitoring these nucleic acid reactions. The laboratory involves the exploration of the 10-23 DNA enzyme as it cleaves a specific RNA…

  11. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  12. A Metabolic Murder Mystery: A Case-Based Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Childs-Disney, Jessica L.; Kauffmann, Andrew D.; Poplawski, Shane G.; Lysiak, Daniel R.; Stewart, Robert J.; Arcadi, Jane K.; Dinan, Frank J.

    2010-01-01

    In 1990, a woman was wrongly convicted of poisoning her infant son and was sentenced to life in prison. Her conviction was based on laboratory work that wrongly identified ethylene glycol as present in her son's blood and in the formula he drank prior to his death. The actual cause of the infant's death, a metabolic disease, was eventually…

  13. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  14. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  15. Dishonesty in the Biochemistry Classroom Laboratory: A Synthesis of Causes and Prevention

    ERIC Educational Resources Information Center

    Del Carlo, Dawn; Bodner, George

    2006-01-01

    Although reports of academic cheating are abundant, there are relatively few papers in the literature that focus on cheating in the context of science courses and even fewer that address dishonest practices, such as "cooking" or fudging data, within the classroom laboratory. This paper briefly reviews the existing literature on academic dishonesty…

  16. Clinical biochemistry laboratory rejection rates due to various types of preanalytical errors

    PubMed Central

    Atay, Aysenur; Demir, Leyla; Cuhadar, Serap; Saglam, Gulcan; Unal, Hulya; Aksun, Saliha; Arslan, Banu; Ozkan, Asuman; Sutcu, Recep

    2014-01-01

    Introduction: Preanalytical errors, along the process from the beginning of test requests to the admissions of the specimens to the laboratory, cause the rejection of samples. The aim of this study was to better explain the reasons of rejected samples, regarding to their rates in certain test groups in our laboratory. Materials and methods: This preliminary study was designed on the rejected samples in one-year period, based on the rates and types of inappropriateness. Test requests and blood samples of clinical chemistry, immunoassay, hematology, glycated hemoglobin, coagulation and erythrocyte sedimentation rate test units were evaluated. Types of inappropriateness were evaluated as follows: improperly labelled samples, hemolysed, clotted specimen, insufficient volume of specimen and total request errors. Results: A total of 5,183,582 test requests from 1,035,743 blood collection tubes were considered. The total rejection rate was 0.65 %. The rejection rate of coagulation group was significantly higher (2.28%) than the other test groups (P < 0.001) including insufficient volume of specimen error rate as 1.38%. Rejection rates of hemolysis, clotted specimen and insufficient volume of sample error were found to be 8%, 24% and 34%, respectively. Total request errors, particularly, for unintelligible requests were 32% of the total for inpatients. Conclusions: The errors were especially attributable to unintelligible requests of inappropriate test requests, improperly labelled samples for inpatients and blood drawing errors especially due to insufficient volume of specimens in a coagulation test group. Further studies should be performed after corrective and preventive actions to detect a possible decrease in rejecting samples. PMID:25351356

  17. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  18. Comparison of the microbial dynamics and biochemistry of laboratory sourdoughs prepared with grape, apple and yogurt.

    PubMed

    Gordún, Elena; del Valle, Luis J; Ginovart, Marta; Carbó, Rosa

    2015-09-01

    The microbiological culture-dependent characterization and physicochemical characteristics of laboratory sourdough prepared with grape (GS) were evaluated and compared with apple (AS) and yogurt (YS), which are the usual Spanish sourdough ingredients. Ripe GS took longer than AS and YS to reach the appropriate acidity and achieved lower values of lactic acid. In all sourdoughs, the lactic acid bacteria (LAB) increased during processing and were the dominant microorganisms (>1E+8 CFU/g). GS, as well as AS, had high diversity of LAB species. In ripe YS, Pediococcus pentosaceus was the only species identified; in GS and AS, several Lactobacilli were also found, Lb. plantarum, Lb. brevis, and Lb. sakei; in addition, in GS Weisella cibaria also appeared. Regarding the yeast population, non-Saccharomyces yeasts from GS and AS showed a very high specific population (>1E+7 CFU/g), but this was reduced in ripe sourdough (<1E+4 CFU/g). Finally, the Saccharomyces group dominated in all sourdoughs. Starting ingredients or raw material provided microbiological specificity to sourdoughs, and grape could be considered one of them. PMID:25008077

  19. Biochemistry and metabolism of lake trout: laboratory and field studies on the effects of contaminants

    USGS Publications Warehouse

    Passino, Dora R. May

    1981-01-01

    To evaluate the effects of ambient and higher concentrations of PCB's (Aroclor 1254) and DDE in food and water on fry of lake trout (Salvelinus namaycush) from Lake Michigan, I measured several biochemical indicators of stress in exposed and unexposed (control) fry. No differences between treatments were observed in oxygen consumption rates or lactate concentrations of unexercised fry, but apparent differences in specific swimming speed and lactate response in fry that swam to exhaustion suggested that exposed fry had lower stamina. Observed differences between biochemical profiles of 1-day-old sac fry reared from eggs originating from lake trout collected off Saugatuck and those originating from eggs of brood stock at the Marquette (Michigan) hatchery may have been caused by organochlorine contamination or by genetic and dietary differences between the parental stocks. Activity of the enzyme allantoinase was measured in juvenile and adult lake trout as an indicator of sublethal effects of Great Lakes contaminants. The 50% inhibition of allantoinase in vitro occurred at 6.0 mg/L Cu++, 6.7 mg/L Cd++, 34 mg/L Hg++, and 52 mg/L Pb++. Allantoinase was not affected by in vitro exposure to PCB's up to 7 μg/g, or DDE or DDT up to 10 μg/g; however, in vivo exposure resulting in 2.6 μg/g PCB's in the whole fish activated allantoinase slightly (10% significance level). Allantoinase activity was negatively correlated with total length for fish from Lake Michigan but not for fish from Lake Superior or from laboratory stocks. Mercury, PCB's, and DDT, possibly acting in combination with each other and with additional contaminants, may be the cause of the negative correlation of allantoinase activity with size in Lake Michigan lake trout.

  20. The Advanced Manufacturing Laboratory at RPI.

    ERIC Educational Resources Information Center

    Desrochers, A.; DeRusso, P. M.

    1984-01-01

    An Advanced Manufacturing Laboratory (AML) has been established at Rensselaer Polytechnic Institute (RPI). AML courses, course objectives, instructional strategies, student experiences in design and manufacturing, and AML equipment are discussed. Overall recommendations based on student and instructor experiences are also presented. (JN)

  1. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  2. CLINICAL BIOCHEMISTRY

    EPA Science Inventory

    Assessment of the health status of animals through measurement of cellular, biochemical, and macromolecular constituents in blood, secretions, and excretions has been variously referred to as clinical chemistry, clinical biochemistry, or clinical pathology. he genesis of this dis...

  3. A Freshman Biochemistry Course.

    ERIC Educational Resources Information Center

    De Toma, Francis J.; Campbell, Mary K.

    1982-01-01

    A one-semester biochemistry course was developed as an alternative to traditional freshman chemistry. Lecture topics and laboratory exercises focus on the course's unifying theme of the origin and early stages of the evolution of life on earth. (Author/SK)

  4. Nutritional Biochemistry

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2010-01-01

    This slide presentation reviews some of the effects that space flight has on humans nutritional biochemistry. Particular attention is devoted to the study of protein breakdown, inflammation, hypercatabolism, omega 3 fatty acids, vitamin D, calcium, urine, folate and nutrient stability of certain vitamins, the fluid shift and renal stone risk, acidosis, iron/hematology, and the effects on bone of dietary protein, potassium. inflammation, and omega-3 fatty acids

  5. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  6. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  7. Laboratory Diagnosis of Human Rabies: Recent Advances

    PubMed Central

    Mani, Reeta Subramaniam; Madhusudana, Shampur Narayan

    2013-01-01

    Rabies, an acute progressive, fatal encephalomyelitis, transmitted most commonly through the bite of a rabid animal, is responsible for an estimated 61,000 human deaths worldwide. The true disease burden and public health impact due to rabies remain underestimated due to lack of sensitive laboratory diagnostic methods. Rapid diagnosis of rabies can help initiate prompt infection control and public health measures, obviate the need for unnecessary treatment/medical tests, and assist in timely administration of pre- or postexposure prophylactic vaccination to family members and medical staff. Antemortem diagnosis of human rabies provides an impetus for clinicians to attempt experimental therapeutic approaches in some patients, especially after the reported survival of a few cases of human rabies. Traditional methods for antemortem and postmortem rabies diagnosis have several limitations. Recent advances in technology have led to the improvement or development of several diagnostic assays which include methods for rabies viral antigen and antibody detection and assays for viral nucleic acid detection and identification of specific biomarkers. These assays which complement traditional methods have the potential to revolutionize rabies diagnosis in future. PMID:24348170

  8. Prepare, Do, Review: A Skills-Based Approach for Laboratory Practical Classes in Biochemistry and Molecular Biology

    ERIC Educational Resources Information Center

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-01-01

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and…

  9. Using an ePortfolio System as an Electronic Laboratory Notebook in Undergraduate Biochemistry and Molecular Biology Practical Classes

    ERIC Educational Resources Information Center

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and…

  10. Expression, purification, and characterization of a carbohydrate-active enzyme: A research-inspired methods optimization experiment for the biochemistry laboratory.

    PubMed

    Willbur, Jaime F; Vail, Justin D; Mitchell, Lindsey N; Jakeman, David L; Timmons, Shannon C

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a pre-determined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor. PMID:26710673

  11. An inquiry-based biochemistry laboratory structure emphasizing competency in the scientific process: a guided approach with an electronic notebook format.

    PubMed

    L Hall, Mona; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement. PMID:24376181

  12. Detection of an ABCA1 Variant Associated with Type 2 Diabetes Mellitus Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Legorreta-Herrera, M.; Mosqueda-Romo, N. A.; Hernández-Clemente, F.; Soto-Cruz, I.

    2013-01-01

    We selected diabetes mellitus for this laboratory exercise to provide students with an explicit model for scientific research concerning the association between the R230C polymorphism and susceptibility to type 2 diabetes mellitus, which is highly prevalent in the Mexican population. We used a collaborative project-based learning to engage…

  13. Effects of Various Dental Materials on Alkaline Phosphatase Extracted from Pulp: An Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Thompson, Lorin R.

    1980-01-01

    A laboratory experiment that demonstrates the effects of various dental materials on a representative enzyme from the pulp is outlined. The experiment encourages students to consider the effects that various restorative materials and techniques might have on enzymes in the living pulp. (Author/MLW)

  14. The Biochemistry of the Muscle Contraction Process: An Undergraduate Laboratory Experiment Using Viscosity to Follow the Progress of a Reaction.

    ERIC Educational Resources Information Center

    Belliveau, James F.; And Others

    1981-01-01

    Describes an undergraduate laboratory experiment using viscosity to follow the progress of the contractile process in muscles. This simple, short experiment illustrates the action of ATP as the source of energy in the contractile process and the catalytic effect of calcium ions as a control in the energy producing process. (CS)

  15. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    ERIC Educational Resources Information Center

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  16. Application of sigma metrics for the assessment of quality assurance in clinical biochemistry laboratory in India: a pilot study.

    PubMed

    Singh, Bhawna; Goswami, Binita; Gupta, Vinod Kumar; Chawla, Ranjna; Mallika, Venkatesan

    2011-04-01

    Ensuring quality of laboratory services is the need of the hour in the field of health care. Keeping in mind the revolution ushered by six sigma concept in corporate world, health care sector may reap the benefits of the same. Six sigma provides a general methodology to describe performance on sigma scale. We aimed to gauge our laboratory performance by sigma metrics. Internal quality control (QC) data was analyzed retrospectively over a period of 6 months from July 2009 to December 2009. Laboratory mean, standard deviation and coefficient of variation were calculated for all the parameters. Sigma was calculated for both the levels of internal QC. Satisfactory sigma values (>6) were elicited for creatinine, triglycerides, SGOT, CPK-Total and Amylase. Blood urea performed poorly on the sigma scale with sigma <3. The findings of our exercise emphasize the need for detailed evaluation and adoption of ameliorative measures in order to effectuate six sigma standards for all the analytical processes. PMID:22468038

  17. A Novel Laboratory Course on Advanced ChE Experiments.

    ERIC Educational Resources Information Center

    Lauterbach, J.; White, S.; Liu, Z.; Bodner, G. M.; Delgass, W. N.

    1997-01-01

    Describes a novel approach to laboratory teaching that provides students with a learning environment which allows them to develop advanced experimental skills that are necessary for success in research and development environments. (DKM)

  18. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  19. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  20. Teachers as Learners in a Cooperative Learning Biochemistry Class

    ERIC Educational Resources Information Center

    Osgood, Marcy P.; Mitchell, Steve M.; Anderson, William L.

    2005-01-01

    Upper level college students majoring in biochemistry at the University of New Mexico have the opportunity to participate in an advanced biochemistry course entitled "Biochemistry Education." This course introduces theories of teaching and learning, provides opportunities for participation in course organization, design, and assessment strategies,…

  1. Clinical biochemistry

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Leach, C. S.; Fischer, C. L.

    1975-01-01

    The objectives of the biochemical studies conducted for the Apollo program were (1) to provide routine laboratory data for assessment of preflight crew physical status and for postflight comparisons; (2) to detect clinical or pathological abnormalities which might have required remedial action preflight; (3) to discover as early as possible any infectious disease process during the postflight quarantine periods following certain missions; and (4) to obtain fundamental medical knowledge relative to man's adjustment to and return from the space flight environment. The accumulated data presented suggest that these requirements were met by the program described. All changes ascribed to the space flight environment were subtle, whereas clinically significant changes were consistent with infrequent illnesses unrelated to the space flight exposure.

  2. Glycoprotein Biochemistry--Some Clinical Aspects of Interest to Biochemistry Students.

    ERIC Educational Resources Information Center

    Smith, Christopher A.; And Others

    1991-01-01

    Authors describe some clinical features of glycoprotein biochemistry, including recognition, selected blood glycoproteins, glycated proteins, histochemistry, and cancer. The material presented has largely been taught to medical laboratory students; however, it can be used to teach premedical students and pure biochemistry students. Includes two…

  3. The Advanced Controls Program at Oak Ridge National Laboratory

    SciTech Connect

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor (ALWR) and high temperature gas-cooled reactor (HTGR) designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs.

  4. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  5. Mentoring for retention and advancement in the multigenerational clinical laboratory.

    PubMed

    Laudicina, R J

    2001-01-01

    Retention of recent graduates and other laboratory practitioners in the workplace will play a key role in addressing current and projected shortages of clinical laboratory scientists (CLS) and technicians (CLT). In addition, with overrepresentation of the aging Baby Boomer generation in laboratory supervisory and management positions, it is crucial not only to retain younger practitioners, but to prepare them for assuming these important functions in the future. Mentoring, a practice commonly employed in other professions, is widely considered to be useful in employee retention and career advancement. Mentoring has probably been used in the clinical laboratory profession, but has not been well documented. In the clinical laboratory environment, potential mentors are in the Veteran and Baby Boomer generations, and new practitioners who could benefit from mentoring are in Generation X. Generational differences among these groups may present challenges to the use of mentoring. This article will attempt to provide a better understanding of generational differences and show how mentoring can be applied in the setting of the clinical laboratory in order to increase retention and promote career advancement of younger practitioners. A panel of five laboratory managers provided examples of mentoring strategies. Definitions, benefits, and examples of mentoring are addressed in the accompanying article, "Passing the Torch: Mentoring the Next Generation of Laboratory Professionals". PMID:15633495

  6. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  7. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  8. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  9. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  10. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  11. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  12. Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory

    ERIC Educational Resources Information Center

    Thompson, Robert Q.

    2008-01-01

    An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…

  13. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  14. Preparation, Purification, and Secondary Structure Determination of Bacillus Circulans Xylanase. A Molecular Laboratory Incorporating Aspects of Molecular Biology, Biochemistry, and Biophysical Chemistry

    ERIC Educational Resources Information Center

    Russo, Sal; Gentile, Lisa

    2006-01-01

    A project module designed for biochemistry or cellular and molecular biology student which involves determining the secondary structure of Bacillus circulans xylanase (BCX) by circular dichroism (CD) spectroscopy under conditions that compromise its stabilizing intramolecular forces is described. The lab model enhanced students knowledge of the…

  15. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part II--Research-Based Laboratory--A Semester-Long Research Approach Using Malate Dehydrogenase as a Research Model

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments…

  16. Curricular Guidelines in Biochemistry.

    ERIC Educational Resources Information Center

    Adams, A. Birk; And Others

    1981-01-01

    Curricular guidelines for biochemistry are presented, developed by the Section on Biochemistry and Nutrition and the Section on Oral Diagnosis and Oral Medicine of the American Association of Dental Schools for use by individual educational institutions as curriculum development aids. (MLW)

  17. Reproduction, Physiology and Biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on the reproduction, physiology, and biochemistry of the root-knot nematodes. The extensive amount of information on the reproduction and cytogenetics of species of Meloidogyne contrasts with the limited information on physiology, biochemistry, and biochemical pathways. In commo...

  18. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  19. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  20. Reproduction, physiology and biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  1. [Advanced data analysis and visualization for clinical laboratory].

    PubMed

    Inada, Masanori; Yoneyama, Akiko

    2011-01-01

    This paper describes visualization techniques that help identify hidden structures in clinical laboratory data. The visualization of data is helpful for a rapid and better understanding of the characteristics of data sets. Various charts help the user identify trends in data. Scatter plots help prevent misinterpretations due to invalid data by identifying outliers. The representation of experimental data in figures is always useful for communicating results to others. Currently, flexible methods such as smoothing methods and latent structure analysis are available owing to the presence of advanced hardware and software. Principle component analysis, which is a well-known technique used to reduce multidimensional data sets, can be carried out on a personal computer. These methods could lead to advanced visualization with regard to exploratory data analysis. In this paper, we present 3 examples in order to introduce advanced data analysis. In the first example, a smoothing spline was fitted to a time-series from the control chart which is not in a state of statistical control. The trend line was clearly extracted from the daily measurements of the control samples. In the second example, principal component analysis was used to identify a new diagnostic indicator for Graves' disease. The multi-dimensional data obtained from patients were reduced to lower dimensions, and the principle components thus obtained summarized the variation in the data set. In the final example, a latent structure analysis for a Gaussian mixture model was used to draw complex density functions suitable for actual laboratory data. As a result, 5 clusters were extracted. The mixed density function of these clusters represented the data distribution graphically. The methods used in the above examples make the creation of complicated models for clinical laboratories more simple and flexible. PMID:21404582

  2. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  3. Incorporation of Advanced Laboratory Equipment into Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Gilbert, John; Bellis, Matt; Cummings, John

    2015-04-01

    Siena College recently completed construction of the Stewart's Advanced Instrumentation and Technology Center (SAInt Center) which includes both a scanning electron microscope (SEM) and an atomic force microscope (AFM). The goal of this project is to design laboratory exercises for introductory physics courses that make use of this equipment. Early involvement with the SAInt center aims to increase undergraduate lab skills and expand research possibilities. These lab exercises are tested on select students and evaluated as to their effectiveness in contributing to the learning goals.The current status of this work is presented here.

  4. Using Pamphlets to Teach Biochemistry: A Service-Learning Project

    ERIC Educational Resources Information Center

    Harrison, Melinda A.; Dunbar, David; Lopatto, David

    2013-01-01

    A service-learning project appropriate for a biochemistry or advanced biochemistry course was designed and implemented. The project involved students partnering with a homeless shelter to design informational pamphlets to be displayed at the shelter for the clients' use. The pamphlet topics were based on diseases studied within the course.…

  5. A Streamlined Molecular Biology Module for Undergraduate Biochemistry Labs

    ERIC Educational Resources Information Center

    Muth, Gregory W.; Chihade, Joseph W.

    2008-01-01

    Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here,…

  6. Assessment of Molecular Construction in Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Booth, Deborah; Bateman, Robert C., Jr.; Sirochman, Rudy; Richardson, David C.; Richardson, Jane S.; Weiner, Steven W.; Farwell, Mary; Putnam-Evans, Cindy

    2005-01-01

    White and group used a two question, open-ended tests to separately evaluate students' learning of specific biochemical concepts in the general biology lecture and laboratory, in the first performance assessment of molecular visualization in teaching biochemistry. Two studies were devoted to protein structure using globins followed by one…

  7. BOREAS TE-9 NSA Canopy Biochemistry

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  9. Biochemistry Off the Shelf.

    ERIC Educational Resources Information Center

    Wilson, Jerry L.

    1985-01-01

    Provides sources of nonanimal biochemical materials (which are relatively inexpensive, readily available, and require no special storage) suitable for use in biochemistry experiments. They are presented under these headings: (1) enzymes and other proteins; (2) carbohydrates; (3) lipids; (4) nucleic acids; and (5) metabolism. (JN)

  10. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  11. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    ERIC Educational Resources Information Center

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  12. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  13. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part I--Guided Inquiry--Purification and Characterization of a Fusion Protein--Histidine Tag, Malate Dehydrogenase, and Green Fluorescent Protein

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a…

  14. Laboratory Diagnosis of Lyme Disease - Advances and Challenges

    PubMed Central

    Marques, Adriana R.

    2015-01-01

    Synopsis Lyme disease is the most common tick-borne illness in the United States and Europe. Culture for B. burgdorferi is not routinely available. PCR can be helpful in synovial fluid of patients with Lyme arthritis. The majority of laboratory tests performed for the diagnosis of Lyme disease are based on detection of the antibody responses against B. burgdorferi in serum. The sensitivity of antibody-based tests increases with the duration of the infection, and patients who present very early in their illness are more likely to have a negative result. Patients with erythema migrans should receive treatment based on the clinical diagnosis. The current Centers for Disease Control and Prevention recommendations for serodiagnosis of Lyme disease is a 2-tiered algorithm, an initial enzyme immunoassay (EIA) followed by separate IgM and IgG Western blots if the first EIA test result is positive or borderline. The IgM result is only relevant for patients with illness duration of less than a month. While the 2-tier algorithm works well for later stages of the infection, it has low sensitivity during early infection. A major advance has been the discovery of VlsE and its C6 peptide as markers of antibody response in Lyme disease. Specificity is extremely important in Lyme disease testing, as the majority of tests are being performed in situations with low likelihood of the disease, a situation where a positive result is more likely to be a false positive. Current assays do not distinguish between active and inactive infection, and patients may continue to be seropositive for years. There is a need to simplify the testing algorithm for Lyme disease, improving sensitivity in early disease while still maintaining high specificity and providing information about the stage of infection. The development of a point of care assay and biomarkers for active infection would be major advances for the field. PMID:25999225

  15. Biochemistry and endocrinology results

    SciTech Connect

    Leach, C.S.

    1981-12-01

    Blood (plasma or serum) biochemistry findings show postflight decreases below preflight findings for uric acid triglycerides, and AST. Postflight increases above preflight values were observed in glucose, cholesterol, BUN, calcium phosphate, angiotensin I, aldosterone, insulin, T3, T4, HGH, ACTH and GGTP. It is suggested that special attention should be given to the fluid and electrolyte intake in the astronauts so that homeostatic perturbations are not consequential.

  16. The Advanced Labs Website: resources for upper-level laboratories

    NASA Astrophysics Data System (ADS)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  17. Laboratory markers in ulcerative colitis: Current insights and future advances

    PubMed Central

    Cioffi, Michele; Rosa, Antonella De; Serao, Rosalba; Picone, Ilaria; Vietri, Maria Teresa

    2015-01-01

    Ulcerative colitis (UC) and Crohn’s disease (CD) are the major forms of inflammatory bowel diseases (IBD) in man. Despite some common features, these forms can be distinguished by different genetic predisposition, risk factors and clinical, endoscopic and histological characteristics. The aetiology of both CD and UC remains unknown, but several evidences suggest that CD and perhaps UC are due to an excessive immune response directed against normal constituents of the intestinal bacterial flora. Tests sometimes invasive are routine for the diagnosis and care of patients with IBD. Diagnosis of UC is based on clinical symptoms combined with radiological and endoscopic investigations. The employment of non-invasive biomarkers is needed. These biomarkers have the potential to avoid invasive diagnostic tests that may result in discomfort and potential complications. The ability to determine the type, severity, prognosis and response to therapy of UC, using biomarkers has long been a goal of clinical researchers. We describe the biomarkers assessed in UC, with special reference to acute-phase proteins and serologic markers and thereafter, we describe the new biological markers and the biological markers could be developed in the future: (1) serum markers of acute phase response: The laboratory tests most used to measure the acute-phase proteins in clinical practice are the serum concentration of C-reactive protein and the erythrocyte sedimentation rate. Other biomarkers of inflammation in UC include platelet count, leukocyte count, and serum albumin and serum orosomucoid concentrations; (2) serologic markers/antibodies: In the last decades serological and immunologic biomarkers have been studied extensively in immunology and have been used in clinical practice to detect specific pathologies. In UC, the presence of these antibodies can aid as surrogate markers for the aberrant host immune response; and (3) future biomarkers: The development of biomarkers in UC will be

  18. [superscript 1]H NMR Spectroscopy-Based Configurational Analysis of Mono- and Disaccharides and Detection of ß-Glucosidase Activity: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.

    2015-01-01

    A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…

  19. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  20. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  1. STRUCTURED LEARNING AND TRAINING ENVIRONMENTS--A PREPARATION LABORATORY FOR ADVANCED MAMMALIAN PHYSIOLOGY.

    ERIC Educational Resources Information Center

    FIEL, NICHOLAS J.; JOHNSTON, RAYMOND F.

    A PREPARATION LABORATORY WAS DESIGNED TO FAMILIARIZE STUDENTS IN ADVANCED MAMMALIAN PHYSIOLOGY WITH LABORATORY SKILLS AND TECHNIQUES AND THUS SHORTEN THE TIME THEY SPEND IN SETTING UP ACTUAL EXPERIMENTS. THE LABORATORY LASTS 30 MINUTES, IS FLEXIBLE AND SIMPLE OF OPERATION, AND DOES NOT REQUIRE A PROFESSOR'S PRESENCE. THE BASIC TRAINING UNIT IS THE…

  2. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  3. Recent advances in laboratory procedures for pathogenic mycobacteria.

    PubMed

    Cooksey, Robert C

    2003-12-01

    Just as tuberculosis has persisted for many centuries as one of most serious and deadly infectious diseases in many parts of the world, so has the motivation to develop improved laboratory methods for characterizing M. tuberculosis isolates. Modern technology has lead to great improvements in mycobacteriology laboratory procedures, particularly in detection, identification, epidemiologic strain typing, and drug susceptibility testing. Although the usefulness of some of these newer methods is under evaluation, many already are showing potential as adjuncts to clinical diagnostic procedures. PMID:14711093

  4. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  5. Frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2002-01-01

    The Jet Propulsion Laboratory's Advanced Multi-Mission Operations System system processes data received from deep-space spacecraft, where error rates can be high, bit rates are low, and data is unique precious.

  6. The biochemistry of methane oxidation.

    PubMed

    Hakemian, Amanda S; Rosenzweig, Amy C

    2007-01-01

    Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolic pathway. Two forms of methane monooxygenase (MMO) enzymes catalyze this reaction: soluble MMO (sMMO) and membrane-bound or particulate MMO (pMMO). pMMO is expressed when copper is available, and its active site is believed to contain copper. Whereas sMMO is well characterized, most aspects of pMMO biochemistry remain unknown and somewhat controversial. This review emphasizes advances in the past two to three years related to pMMO and to copper uptake and copper-dependent regulation in methanotrophs. The pMMO metal centers have been characterized spectroscopically, and the first pMMO crystal structure has been determined. Significant effort has been devoted to improving in vitro pMMO activity. Proteins involved in sMMO regulation and additional copper-regulated proteins have been identified, and the Methylococcus capsulatus (Bath) genome has been sequenced. Finally, methanobactin (mb), a small copper chelator proposed to facilitate copper uptake, has been characterized. PMID:17328677

  7. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  8. A Simple Photochemical Experiment for the Advanced Laboratory.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart M.

    1986-01-01

    Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…

  9. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  10. Advances in data exchange for the clinical laboratory.

    PubMed

    Dolin, R H

    1999-06-01

    The focus of the article is on the nuts and bolts of those standards relevant to the exchange of data between a clinical laboratory and an electronic health record. These include: Health Level 7 (HL7), Logical Observation Identifier Names and Codes (LOINC), Systematized Nomenclature of Human and Veterinary Medicine (SNOMED), and, most recently, the Extensible Markup Language (XML). PMID:10421962

  11. Advances in adaptive structures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Garba, John A.

    1993-01-01

    Future proposed NASA missions with the need for large deployable or erectable precision structures will require solutions to many technical problems. The Jet Propulsion Laboratory (JPL) is developing new technologies in Adaptive Structures to meet these challenges. The technology requirements, approaches to meet the requirements using Adaptive Structures, and the recent JPL research results in Adaptive Structures are described.

  12. Conformational Analysis in an Advanced Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Ball, David B.; Miller, Randy M.

    2004-01-01

    A series of sophisticated, combined laboratory experiments are developed involving the use of various spectroscopic and other techniques in the conformational analysis of cyclohexane mechanisms. The multi-system approach enables the students to transcend the one-dimensional procedure, and develops their synthetic and diagnostic skills.

  13. A STUDY OF THE EFFECTIVENESS OF THE STENOGRAPHIC LABORATORY IN TEACHING BEGINNING AND ADVANCED SHORTHAND.

    ERIC Educational Resources Information Center

    DUNN, GEORGE F.; KIRK, BEVERLY CLEM

    THE ACHIEVEMENT OF ALL BEGINNING AND ADVANCED SHORTHAND STUDENTS USING TRADITIONAL SHORTHAND TEACHING DURING 1964-65 WAS COMPARED WITH THAT OF ALL BEGINNING AND ADVANCED SHORTHAND STUDENTS USING THE FOUR-CHANNEL STENOGRAPHIC LABORATORIES AND A LOCALLY DEVELOPED 440-TAPE LIBRARY DURING 1965-66. IN BEGINNING SHORTHAND, 1,596 STUDENTS STARTED AND…

  14. Advanced coordinate measuring machine at Sandia National Laboratories/California

    SciTech Connect

    Pilkey, R.D.; Klevgard, P.A.

    1993-03-01

    Sandia National Laboratories/California has acquired a new Moore M-48V CNC five-axis universal coordinate measuring machine (CMM). Site preparation, acceptance testing, and initial performance results are discussed. Unique features of the machine include a ceramic ram and vacuum evacuated laser pathways (VELPS). The implementation of a VELPS system on the machine imposed certain design requirements and entailed certain start-up problems. The machine's projected capabilities, workload, and research possibilities are outlined.

  15. Advanced coordinate measuring machine at Sandia National Laboratories/California

    SciTech Connect

    Pilkey, R.D.; Klevgard, P.A.

    1993-03-01

    Sandia National Laboratories/California has acquired a new Moore M-48V CNC five-axis universal coordinate measuring machine (CMM). Site preparation, acceptance testing, and initial performance results are discussed. Unique features of the machine include a ceramic ram and vacuum evacuated laser pathways (VELPS). The implementation of a VELPS system on the machine imposed certain design requirements and entailed certain start-up problems. The machine`s projected capabilities, workload, and research possibilities are outlined.

  16. Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

    SciTech Connect

    Mathew, Paul A.; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho; Hoyt, Tyler

    2010-08-01

    Complex buildings such as laboratories, data centers and cleanrooms present particular challenges for energy benchmarking because it is difficult to normalize special requirements such as health and safety in laboratories and reliability (i.e., system redundancy to maintain uptime) in data centers which significantly impact energy use. For example, air change requirements vary widely based on the type of work being performed in each laboratory space. We present methods and tools for energy benchmarking in laboratories, as an exemplar of a complex building type. First, we address whole building energy metrics and normalization parameters. We present empirical methods based on simple data filtering as well as multivariate regression analysis on the Labs21 database. The regression analysis showed lab type, lab-area ratio and occupancy hours to be significant variables. Yet the dataset did not allow analysis of factors such as plug loads and air change rates, both of which are critical to lab energy use. The simulation-based method uses an EnergyPlus model to generate a benchmark energy intensity normalized for a wider range of parameters. We suggest that both these methods have complementary strengths and limitations. Second, we present"action-oriented" benchmarking, which extends whole-building benchmarking by utilizing system-level features and metrics such as airflow W/cfm to quickly identify a list of potential efficiency actions which can then be used as the basis for a more detailed audit. While action-oriented benchmarking is not an"audit in a box" and is not intended to provide the same degree of accuracy afforded by an energy audit, we demonstrate how it can be used to focus and prioritize audit activity and track performance at the system level. We conclude with key principles that are more broadly applicable to other complex building types.

  17. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  18. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  19. Advances in the laboratory culture of octopuses for biomedical research.

    PubMed

    Hanlon, R T; Forsythe, J W

    1985-02-01

    Five species of Octopus were cultured in pilot, large-scale 2,600 liter circulating seawater systems. Improvements in system design, water management and culture methodology were described. These five species all produced large eggs and correspondingly large hatchlings that had no planktonic or larval stage and thus were easier to culture. Octopuses grew well only when fed live marine crustaceans, fishes and other molluscs. Growth occurred as a 4-7% increase in body weight per day during the early exponential growth phase and 2-4% during the latter 1/2 to 3/4 of the life cycle, which ranged from 6-15 months depending upon species. All species reproduced in captivity. Survival was 70-80% when octopuses were reared in individual containers, but in group culture survival dropped to as low as 40% by the adult stage. Causes of mortality were species-specific and included hatchling abnormalities, escapes, aggression, cannibalism, disease, senescence and laboratory accidents. Octopus bimaculoides showed superior qualities for laboratory culture. The future potential of providing American scientists with laboratory-cultured octopuses was discussed along with their uses in biomedical research. PMID:3981958

  20. Biochemistry of Statins.

    PubMed

    Egom, Emmanuel Eroume A; Hafeez, Hafsa

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Elevated blood lipids may be a major risk factor for CVD. Due to consistent and robust association of higher low-density lipoprotein (LDL)-cholesterol levels with CVD across experimental and epidemiologic studies, therapeutic strategies to decrease risk have focused on LDL-cholesterol reduction as the primary goal. Current medication options for lipid-lowering therapy include statins, bile acid sequestrants, a cholesterol-absorption inhibitor, fibrates, nicotinic acid, and omega-3 fatty acids, which all have various mechanisms of action and pharmacokinetic properties. The most widely prescribed lipid-lowering agents are the HMG-CoA reductase inhibitors, or statins. Since their introduction in the 1980s, statins have emerged as the one of the best-selling medication classes to date, with numerous trials demonstrating powerful efficacy in preventing cardiovascular outcomes (Kapur and Musunuru, 2008 [1]). The statins are commonly used in the treatment of hypercholesterolemia and mixed hyperlipidemia. This chapter focuses on the biochemistry of statins including their structures, pharmacokinetics, and mechanism of actions as well as the potential adverse reactions linked to their clinical uses. PMID:26975972

  1. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  2. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    SciTech Connect

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These nonlinear resonances

  3. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  4. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    SciTech Connect

    Carpenter, John

    2014-04-24

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  5. Land plant biochemistry.

    PubMed Central

    Raven, J A

    2000-01-01

    Biochemical studies have complemented ultrastructural and, subsequently molecular genetic evidence consistent with the Charophyceae being the closest extant algal relatives of the embryophytes. Among the genes used in such molecular phylogenetic studies is that rbcL) for the large subunit of ribulose bisphosphate carboxylase-oxygenase (RUBISCO). The RUBISCO of the embryophytes is derived, via the Chlorophyta. from that of the cyanobacteria. This clade of the molecular phylogeny of RUBISCO shows a range of kinetic characteristics, especially of CO2 affinities and of CO2/O2 selectivities. The range of these kinetic values within the bryophytes is no greater than in the rest of the embryophytes; this has implications for the evolution of the embryophytes in the high atmospheric CO2 environment of the late Lower Palaeozoic. The differences in biochemistry between charophycean algae and embryophytes can to some extent be related functionally to the structure and physiology of embryophytes. Examples of components of embryophytes, which are qualitatively or quantitatively different from those of charophytes, are the water repellent/water resistant extracellular lipids, the rigid phenolic polymers functional in water-conducting elements and mechanical support in air, and in UV-B absorption, flavonoid phenolics involved in UV-B absorption and in interactions with other organisms, and the greater emphasis on low Mr organic acids. retained in the plant as free acids or salts, or secreted to the rhizosphere. The roles of these components are discussed in relation to the environmental conditions at the time of evolution of the terrestrial embryophytes. A significant point about embryophytes is the predominance of nitrogen-free extracellular structural material (a trait shared by most algae) and UV-B screening components, by contrast with analogous components in many other organisms. An important question, which has thus far been incompletely addressed, is the extent to which

  6. Land plant biochemistry.

    PubMed

    Raven, J A

    2000-06-29

    Biochemical studies have complemented ultrastructural and, subsequently molecular genetic evidence consistent with the Charophyceae being the closest extant algal relatives of the embryophytes. Among the genes used in such molecular phylogenetic studies is that rbcL) for the large subunit of ribulose bisphosphate carboxylase-oxygenase (RUBISCO). The RUBISCO of the embryophytes is derived, via the Chlorophyta. from that of the cyanobacteria. This clade of the molecular phylogeny of RUBISCO shows a range of kinetic characteristics, especially of CO2 affinities and of CO2/O2 selectivities. The range of these kinetic values within the bryophytes is no greater than in the rest of the embryophytes; this has implications for the evolution of the embryophytes in the high atmospheric CO2 environment of the late Lower Palaeozoic. The differences in biochemistry between charophycean algae and embryophytes can to some extent be related functionally to the structure and physiology of embryophytes. Examples of components of embryophytes, which are qualitatively or quantitatively different from those of charophytes, are the water repellent/water resistant extracellular lipids, the rigid phenolic polymers functional in water-conducting elements and mechanical support in air, and in UV-B absorption, flavonoid phenolics involved in UV-B absorption and in interactions with other organisms, and the greater emphasis on low Mr organic acids. retained in the plant as free acids or salts, or secreted to the rhizosphere. The roles of these components are discussed in relation to the environmental conditions at the time of evolution of the terrestrial embryophytes. A significant point about embryophytes is the predominance of nitrogen-free extracellular structural material (a trait shared by most algae) and UV-B screening components, by contrast with analogous components in many other organisms. An important question, which has thus far been incompletely addressed, is the extent to which

  7. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    SciTech Connect

    DePhillips M. P.

    2014-06-06

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  8. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics.

    PubMed

    Julve, Josep; Martín-Campos, Jesús M; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-04-01

    The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs. PMID:26868089

  9. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummilo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery RandD programs, a comparison of battery technologies, and a source of basic data for modeling and continuing RandD. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air). 4 figs., 1 tab.

  10. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummillo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. the results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).

  11. A field emission microscope in an advanced students' laboratory

    NASA Astrophysics Data System (ADS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2006-03-01

    This paper describes a university level experiment during which students can observe the surface structure and determine the work function of a clean single tungsten crystal and a crystal covered with barium. The authors used a commercial field emission microscope offered by Leybold Didactic and designed an experiment which can be easily reproduced and performed in a students' laboratory. The use of a digital camera and computer allowed simultaneous observation and imaging of the surface of the body-centred cubic structure of the single tungsten crystal. Some interesting results about the changes in tungsten work function with time and with barium coverage are presented and discussed. The data help to improve knowledge and skills in the calculation of measurement uncertainty.

  12. Combining Content and Elements of Communication into an Upper-Level Biochemistry Course

    ERIC Educational Resources Information Center

    Whittington, Carli P.; Pellock, Samuel J.; Cunningham, Rebecca L.; Cox, James R.

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established…

  13. Incorporation of Ethical and Societal Issues in Biochemistry into a Senior Seminar Course

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their senior year, biochemistry majors at the University of Detroit Mercy take a senior seminar course entitled "Recent Advances in Biochemistry Related to Societal Issues." Students read papers selected from the current literature and take turns presenting these papers to the class. Papers are grouped into units dealing with molecular biology,…

  14. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  15. Nutritional Biochemistry of Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  16. Advancements toward matter-antimatter pair plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stanja, J.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.; Vohburger, S.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2015-11-01

    APEX/PAX (A Positron Electron Experiment/Positron Accumulation Experiment) has as its overarching goal the creation and magnetic confinement of a laboratory electron-positron pair plasma, thereby enabling experimental investigations of a topic that has already been the subject of hundreds of analytical and computational studies. This goal involves several interdependent challenges: design and construction of a suitable magnetic confinement device, access to a sufficient number of sufficiently cool positrons, and refinement of methods for the transfer of the positrons (and an equal number of electrons) into the device. The latest results of the subprojects addressing these challenges will be summarized here. Highlights include efficient (40 percent) injection of the NEPOMUC (Neutron-Inducted Positron Source Munich) positron beam into the confinement region of a dipole magnetic field, characterization of the beam at energies from 5 eV to 1 keV, and hour-long electron plasma confinement in a high-field (2.3 Telsa) Penning-Malmberg trap. on behalf of the APEX/PAX team and collaborators.

  17. Advanced robotic technologies for transfer at Sandia National Laboratories

    SciTech Connect

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  18. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  19. Biochemistry (by Jochanan Stenesh)

    NASA Astrophysics Data System (ADS)

    Glasfeld, Arthur

    1999-06-01

    Plenum: New York, 1998. Hardcover, ISBN 0 306-45732-6. 95. Paperback, ISBN 0 306 45733 4. 55 (set of 3). Solutions manual and transparencies available. According to the promotional materials accompanying this text, its intended audience is students in one-semester undergraduate biochemistry courses. At just over 500 pages, the book is shorter than the norm of well over 1000 pages. The challenge, then, is to present the subject in a coherent and compelling fashion while necessarily omitting a large fraction of the material that one normally finds in more inclusive texts. That kind of editing is obviously going to lead to squawking from some quarters, so I should put my prejudices on the table. I teach a one-semester course in biochemical structure, and I have a long-standing interest in using molecular models to explain biochemical behavior, both in research and in teaching. The editing performed by Professor Stenesh is likely to trouble someone with a structural or mechanistic background. Rather than selectively excluding some topics, Stenesh has created a table of contents that looks like it's from a much longer text. The usual chapters on biochemical structure, catalysis, metabolism and molecular genetics are included here. The ax fell elsewhere, and most obvious to my eye are the omissions of structure and chemical mechanism beyond those few chapters that are dedicated to them. A brief presentation on the structure and function of hemoglobin is given in the chapter on proteins, and the catalytic mechanism of chymotrypsin is briefly presented in the chapter on catalysis. But in chapters on metabolism, the structures of substrates and products are shown while mechanisms of conversion are omitted. For example, in the description of aldolase, we're informed that the enzyme catalyzes a reverse aldol condensation, but the reader isn't shown how the aldol condensation relates to the chemical conversion we see in the figure. (Part of the problem may be that the text

  20. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  1. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  2. Precious bits: frame synchronization in Jet Propulsion Laboratory's Advanced Multi-Mission Operations System (AMMOS)

    NASA Technical Reports Server (NTRS)

    Wilson, E.

    2001-01-01

    The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.

  3. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  4. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  5. The Uses of the Language Laboratory in Teaching Intermediate and Advanced Russian.

    ERIC Educational Resources Information Center

    Chvany, Catherine V.

    The language laboratory can be effective as an extension of the intermediate or advanced classroom in Russian provided that the techniques used save the students enough time and improve their performance enough to justify making the trip to the lab. Six devices that have proven successful are (1) Review and warm up via dialogues, (2) remedial…

  6. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  7. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  8. Promising New Directions in Biochemistry

    ERIC Educational Resources Information Center

    Olivera, Baldomero M.

    2003-01-01

    "Biochemistry," by Lubert Stryer, has become one of the standard textbooks for the field. The Fifth Edition has two new authors: Jeremy Berg, Professor and Director of Biophysics and Biophysical Chemistry at Johns Hopkins University School of Medicine; and John Tymoczko, the Towsley Professor of Biology at Carleton College. The new edition does,…

  9. Soil Microbiology, Ecology, and Biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 4th edition of Soil Microbiology, Ecology, and Biochemistry Edited by Eldor Paul continues in the vein of the 3rd edition by providing an excellent, broad-reaching introduction to soil biology. The new edition improves on the previous by providing extensive supplementary materials, links to outs...

  10. New challenges in computational biochemistry

    SciTech Connect

    Honig, B.

    1996-12-31

    The new challenges in computational biochemistry to which the title refers include the prediction of the relative binding free energy of different substrates to the same protein, conformational sampling, and other examples of theoretical predictions matching known protein structure and behavior.

  11. Commentary: Biochemistry Re-Natured

    ERIC Educational Resources Information Center

    White, Harold B.

    2010-01-01

    In his last commentary on "Biochemistry Denatured," this author dealt with his perception that college students today have spent too little of their childhood years playing outside in nature and as a consequence have not learned basic things about the world from personal experience. This "nature-deficit disorder" removes many opportunities for…

  12. Essays in biochemistry. Volume 20

    SciTech Connect

    Campbell, P.W.; Marshall, R.D.

    1985-01-01

    This book contains four papers. The titles of the papers are: The Mechanism of Action of Oestrogens; Mucous Glycoproteins: A Gel of a Problem; Actin and Myosin Multigene Families: Their Expression During the Formation of Skeletal Muscle; and The Biochemistry of an Inefficient Tissue: Brown Adipose Tissue.

  13. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-01-01

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  14. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-12-31

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  15. New Edition of Chinese Biochemistry Textbook.

    ERIC Educational Resources Information Center

    Jian-Chuan, Ma

    1988-01-01

    Discusses the four previous editions of the biochemistry medical textbooks called the "Nationwide Unified Textbooks." Notes the new (1989) edition is much smaller, is organized differently, has new material, has a reorganized Dynamic Biochemistry core, and shows great importance to clinical biochemistry. (MVL)

  16. Wanderings in Biochemistry

    PubMed Central

    Lengyel, Peter

    2014-01-01

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. PMID:24867946

  17. The use of multiple tools for teaching medical biochemistry.

    PubMed

    Sé, Alexandre B; Passos, Renato M; Ono, André H; Hermes-Lima, Marcelo

    2008-03-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using topics of applied biochemistry); 2) a true/false applied biochemistry exam (written by peer tutors); 3) a 9-h exam on metabolism (based in real publications); 4) the Advanced Biochemistry course (directed to peer tutors, where students learn how to read and criticize real medical papers); 5) experiments about nutrition and metabolism, using students as volunteers, and about free radicals (real science for students); 6) the BioBio blog (taking advantage of the "web age," this enhances out of class exchanges of information between the professor, students, and peer tutors); 7) student lectures on public health issues and metabolic disorders directed to the community and lay people; and 8) the BioBio quiz show. The main objective of these activities is to provide students with a more practical and interesting approach to biochemistry, such as the application of theoretical knowledge to real situations (diseases, experiments, media information, and scientific discoveries). In addition, we emphasize the importance of peer tutor activities for optimized learning of both students and peer tutors, the importance of a closer interaction between students and teaching staff, and the necessity to initiate students precociously in two broad fields of medical activity: "real" basic science and contact with the public (also helping students--future doctors and nutritionists--to be able to communicate with lay people). Most activities were evaluated by the students through written questionnaires and informal conversations, along various semesters, indicating good acceptance and approval of these methods. Good student scores in the

  18. Bone Biochemistry on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Heer, Martina; Zwart, Sara R.

    2016-01-01

    Bone biochemical measures provide valuable insight into the nature and time course of microgravity effects on bone during space flight, where imaging technology cannot be employed. Increased bone resorption is a hallmark of space flight, while markers of bone formation are typically unchanged or decreased. Recent studies (after the deployment to ISS of the advanced resistive exercise device, ARED), have documented that astronauts with good nutritional intake (e.g., maintenance of body mass), good vitamin D status, and exercise maintained bone mineral density. These data are encouraging, but crewmembers exercising on the ARED do have alterations in bone biochemistry, specifically, bone resorption is still increased above preflight levels, but bone formation is also significantly increased. While this bone remodeling raises questions about the strength of the resulting bone, however documents beneficial effects of nutrition and exercise in counteracting bone loss of space flight.

  19. Metabolism and biochemistry in hypogravity

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.

    1991-01-01

    The headward shift of body fluid and increase in stress-related hormones that occur in hypogravity bring about a number of changes in metabolism and biochemistry of the human body. Such alterations may have important effects on health during flight and during a recovery period after return to earth. Body fluid and electrolytes are lost, and blood levels of several hormones that control metabolism are altered during space flight. Increased serum calcium may lead to an increased risk of renal stone formation during flight, and altered drug metabolism could influence the efficacy of therapeutic agents. Orthostatic intolerance and an increased risk of fracturing weakened bones are concerns at landing. It is important to understand biochemistry and metabolism in hypogravity so that clinically important developments can be anticipated and prevented or ameliorated.

  20. Gender Performance Differences in Biochemistry

    ERIC Educational Resources Information Center

    Rauschenberger, Matthew M.; Sweeder, Ryan D.

    2010-01-01

    This study examined the historical performance of students at Michigan State University in a two-part biochemistry series Biochem I (n = 5,900) and Biochem II (n = 5,214) for students enrolled from 1997 to 2009. Multiple linear regressions predicted 54.9-87.5% of the variance in student from Biochem I grade and 53.8-76.1% of the variance in…

  1. Jonathan F. Reichert and Barbara Wolff-Reichert Award for Excellence in Advanced Laboratory Instruction: Advanced Instructional Labs: Why Bother?

    NASA Astrophysics Data System (ADS)

    Bistrow, Van

    What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.

  2. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    SciTech Connect

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  3. Precision laser range finder system design for Advanced Technology Laboratory applications

    NASA Technical Reports Server (NTRS)

    Golden, K. E.; Kohn, R. L.; Seib, D. H.

    1974-01-01

    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible.

  4. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  5. Advances in deep-space telecommunications technology at the Applied Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Bokulic, R. S.; Reinhart, M. J.; Willey, C. E.; Stilwell, R. K.; Penn, J. E.; Norton, J. R.; Cheng, S.; DeCicco, D. J.; Schulze, R. C.

    2003-01-01

    This paper reviews recent advances in RF telecommunications technology at the Applied Physics Laboratory. These advances, which address the miniaturization and high data rate needs of NASA, fall into three major areas: (1) transceiver-based systems, (2) antennas, and (3) solid-state power amplifiers. In the transceiver area, a deep-space transceiver system being developed for the Comet Nucleus Tour (CONTOUR) spacecraft is described. In addition, the development progress of a low-power S/X-band digital receiver and an advanced ultrastable oscillator quartz resonator are described. In the antenna area, an X-band phased array system being developed for the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft is described, along with the concept for a K a-band hybrid inflatable antenna. In the solid-state power amplifier area, the development of X- and K a-band amplifiers suitable for phased array applications is described.

  6. A Two-Week Guided Inquiry Protein Separation and Detection Experiment for Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Carolan, James P.; Nolta, Kathleen V.

    2016-01-01

    A laboratory experiment for teaching protein separation and detection in an undergraduate biochemistry laboratory course is described. This experiment, performed in two, 4 h laboratory periods, incorporates guided inquiry principles to introduce students to the concepts behind and difficulties of protein purification. After using size-exclusion…

  7. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  8. Cattle Uterus: A Novel Animal Laboratory Model for Advanced Hysteroscopic Surgery Training

    PubMed Central

    Ewies, Ayman A. A.; Khan, Zahid R.

    2015-01-01

    In recent years, due to reduced training opportunities, the major shift in surgical training is towards the use of simulation and animal laboratories. Despite the merits of Virtual Reality Simulators, they are far from representing the real challenges encountered in theatres. We introduce the “Cattle Uterus Model” in the hope that it will be adopted in training courses as a low cost and easy-to-set-up tool. It adds new dimensions to the advanced hysteroscopic surgery training experience by providing tactile sensation and simulating intraoperative difficulties. It complements conventional surgical training, aiming to maximise clinical exposure and minimise patients' harm. PMID:26265918

  9. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  10. Genesis of "Biochemistry: A Problems Approach"

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    When the author began teaching as a young assistant professor at Caltech in 1966, his assignment was to take over the undergraduate biochemistry course taught for many years by Henry Borsook, who was about to retire. Students dreaded this course. Having delighted in biochemistry during his graduate training at Stanford, he was determined to put…

  11. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  12. Advanced Laboratory at Texas State University: Error Analysis, Experimental Design, and Research Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Ventrice, Carl

    2009-04-01

    Physics is an experimental science. In other words, all physical laws are based on experimentally observable phenomena. Therefore, it is important that all physics students have an understanding of the limitations of certain experimental techniques and the associated errors associated with a particular measurement. The students in the Advanced Laboratory class at Texas State perform three detailed laboratory experiments during the semester and give an oral presentation at the end of the semester on a scientific topic of their choosing. The laboratory reports are written in the format of a ``Physical Review'' journal article. The experiments are chosen to give the students a detailed background in error analysis and experimental design. For instance, the first experiment performed in the spring 2009 semester is entitled Measurement of the local acceleration due to gravity in the RFM Technology and Physics Building. The goal of this experiment is to design and construct an instrument that is to be used to measure the local gravitational field in the Physics Building to an accuracy of ±0.005 m/s^2. In addition, at least one of the experiments chosen each semester involves the use of the research facilities within the physics department (e.g., microfabrication clean room, surface science lab, thin films lab, etc.), which gives the students experience working in a research environment.

  13. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  14. Utilizing Isolation, Purification, and Characterization of Enzymes as Project-Oriented Labs for Undergraduate Biochemistry

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Hurst, Michael O.

    1997-02-01

    Senior-level biochemistry labs are mostly verification-type laboratories with little chance for exploration. We have developed a project-based biochemistry laboratory which gives them a chance to carry out a major biochemistry project. In the first quarter it is based on the purification of the enzyme lysozyme. The students are given some basic information, and then work out the details of their own procedures, make up their own solutions, and work at their own pace. Students use centrifugation, ion-exchange chromatography, spectral enzyme assays, and SDS-gel electrophoresis to purify and characterize the protein. In the second quarter students are given acid phosphatase and the basic assay for the enzyme, and then develop and carry out a method for determining the kinetic parameters of the enzyme. These experiments continue the development of laboratory independence of the students which steadily progresses in most curriculum

  15. Searching for Alien Life Having Unearthly Biochemistry

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The search for alien life in the solar system should include exploring unearth-like environments for life having an unearthly biochemistry. We expect alien life to conform to the same basic chemical and ecological constraints as terrestrial life, since inorganic chemistry and the laws of ecosystems appear to be universal. Astrobiologists usually assume alien life will use familiar terrestrial biochemistry and therefore hope to find alien life by searching near water or by supplying hydrocarbons. The assumption that alien life is likely to be based on carbon and water is traditional and plausible. It justifies high priority for missions to search for alien life on Mars and Europa, but it unduly restricts the search for alien life. Terrestrial carbon-water biochemistry is not possible on most of the bodies of our solar system, but all alien life is not necessarily based on terrestrial biochemistry. If alien life has a separate origin from Earth life, and if can survive in an environment extremely different from Earth's, then alien life may have unearthly biochemistry. There may be other solvents than water that support alien life and other elements than carbon that form complex life enabling chain molecules. Rather than making the exploration-restricting assumption that all life requires carbon, water, and terrestrial biochemistry, we should make the exploration-friendly assumption that indigenous, environmentally adapted, alien life forms might flourish using unearthly biochemistry in many places in the solar system. Alien life might be found wherever there is free energy and a physical/chemical system capable of using that energy to build living structures. Alien life may be discovered by the detection of some general non-equilibrium chemistry rather than of terrestrial biochemistry. We should explore all the potential abodes of life in the solar system, including those where life based on terrestrial biochemistry can not exist.

  16. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  17. Lipid membranes and single ion channel recording for the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Klapper, Yvonne; Nienhaus, Karin; Röcker, Carlheinz; Ulrich Nienhaus, G.

    2014-05-01

    We present an easy-to-handle, low-cost, and reliable setup to study various physical phenomena on a nanometer-thin lipid bilayer using the so-called black lipid membrane technique. The apparatus allows us to precisely measure optical and electrical properties of free-standing lipid membranes, to study the formation of single ion channels, and to gain detailed information on the ion conduction properties of these channels using statistical physics and autocorrelation analysis. The experiments are well suited as part of an advanced physics or biophysics laboratory course; they interconnect physics, chemistry, and biology and will be appealing to students of the natural sciences who are interested in quantitative experimentation.

  18. Temperature monitoring options available at the Idaho national laboratory advanced test reactor

    NASA Astrophysics Data System (ADS)

    Daw, J. E.; Rempe, J. L.; Knudson, D. L.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.

    2013-09-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Clearly, temperature sensor selection for irradiation tests will be determined based on the irradiation environment and budget. However, temperature sensors now offered by INL include a wide array of melt wires in small capsules, silicon carbide monitors, commercially available thermocouples, and specialized high temperature irradiation resistant thermocouples containing doped molybdenum and niobium alloy thermoelements. In addition, efforts have been initiated to develop and evaluate ultrasonic thermometers for irradiation testing. This array of temperature monitoring options now available to ATR and other Material and Test Reactor (MTR) users fulfills recent customer requests.

  19. The restructured "advanced laboratory" at Hope College—A step toward independence

    NASA Astrophysics Data System (ADS)

    Mader, Catherine M.; Jolivette, Peter L.; DeYoung, Paul A.; Peaslee, Graham F.

    1999-06-01

    The advanced physics laboratory at Hope College is a majors course focusing on experimental physics. This course teaches not only experimental techniques, but also experimental design, implementation and analysis. The students are asked to design experiments using existing equipment (such as the Hope College 2MV Van de Graaff accelerator) to address a physical question posed by the instructors. Their experimental plan is reviewed by a program advisory committee (the instructors for the course). Students learn that the planning state can be as important as the actual experiment. They learn how to write a report about an unexpected or less than perfect result. The challenge for the instructors has been finding a way to help the students to become "independent" without frustrating them in their early attempts. This paper will discuss the structure of the course and give examples of the accelerator-based experiments used to help build independent research skills.

  20. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  1. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  2. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory: Part I-guided inquiry-purification and characterization of a fusion protein: Histidine tag, malate dehydrogenase, and green fluorescent protein.

    PubMed

    Knutson, Kristopher; Smith, Jennifer; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a novel fusion protein within a guided research experience. Throughout the semester, students gradually acquire skills as they are allowed to work independently. A fusion protein, malate dehydrogenase-green fluorescent protein with a histidine affinity tag (MGH), is used throughout the semester. The fusion protein allows for a high throughput analysis and is stable for duration of the semester. Students start with the purification and analysis of the plasmid DNA and end with an enzymatic analysis of MGH. As students take ownership of their experiments and choose two different chromatographic resins, they make many choices throughout the semester. Skills, motivation, confidence levels, and attitudes were assessed before and after the semester. Students achieved high levels of critical biochemical laboratory skills and critical thinking while increasing their confidence and motivation for working in a biochemical research setting. PMID:21567851

  3. Annual review of biochemistry. Volume 59

    SciTech Connect

    Richardson, C.C. ); Abelson, J.N. ); Meister, A. ); Walsh, C.T. )

    1990-01-01

    This book contains articles reviewing significant developments in the field of biochemistry. Topics covered include: How to Succeed in Research Without Being a Genius, Pgruvagl-Dependent Enzymes, and Phytochelatins.

  4. Useful Demonstrations for a Medial Biochemistry Course.

    ERIC Educational Resources Information Center

    Ragatz, Barth H.; Modrak, Gina

    1986-01-01

    Describes six demonstrations used in a medical biochemistry course. These demonstrations focus on: (1) platelet aggregometry; (2) ion-transporting antibiotics; (3) glycosylated hemoglobin; (4) molecular models; (5) serum preparation; and (6) bioluminescence. (JN)

  5. Identification of Threshold Concepts for Biochemistry

    PubMed Central

    Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed. PMID:25185234

  6. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    ERIC Educational Resources Information Center

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  7. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  8. The Biochemistry Tetrahedron and the Development of the Taxonomy of Biochemistry External Representations (TOBER)

    ERIC Educational Resources Information Center

    Towns, Marcy H.; Raker, Jeffrey R.; Becker, Nicole; Harle, Marissa; Sutcliffe, Jonathan

    2012-01-01

    Visual literacy, the ability to interpret and create external representations (ERs), is essential to success in biochemistry. Studies have been conducted that describe students' abilities to use and interpret specific types of ERs. However, a framework for describing ERs derived through a naturalistic inquiry of biochemistry classrooms has not…

  9. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  10. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  11. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  12. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  13. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  14. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was

  15. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  16. The entrance system laboratory prototype for an advanced mass and ionic charge composition experiment

    SciTech Connect

    Allegrini, F.; Desai, M. I.; Livi, R.; Livi, S.; McComas, D. J.; Randol, B.

    2009-10-15

    Electrostatic analyzers (ESA) have been used extensively for the characterization of plasmas in a variety of space environments. They vary in shape, geometry, and size and are adapted to the specific particle population to be measured and the configuration of the spacecraft. Their main function is to select the energy per charge of the particles within a passband. An energy-per-charge range larger than that of the passband can be sampled by varying the voltage difference between the ESA electrodes. The voltage sweep takes time and reduces the duty cycle for a particular energy-per-charge passband. Our design approach for an advanced mass and ionic charge composition experiment (AMICCE) has a novel electrostatic analyzer that essentially serves as a spectrograph and selects ions simultaneously over a broad range of energy-per-charge (E/q). Only three voltage settings are required to cover the entire range from {approx}10 to 270 keV/q, thus dramatically increasing the product of the geometric factor times the duty cycle when compared with other instruments. In this paper, we describe the AMICCE concept with particular emphasis on the prototype of the entrance system (ESA and collimator), which we designed, developed, and tested. We also present comparisons of the laboratory results with electrostatic simulations.

  17. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

  18. Student Estimates of Probability and Uncertainty in Advanced Laboratory and Statistical Physics Courses

    NASA Astrophysics Data System (ADS)

    Mountcastle, Donald B.; Bucy, Brandon R.; Thompson, John R.

    2007-11-01

    Equilibrium properties of macroscopic systems are highly predictable as n, the number of particles approaches and exceeds Avogadro's number; theories of statistical physics depend on these results. Typical pedagogical devices used in statistical physics textbooks to introduce entropy (S) and multiplicity (ω) (where S = k ln(ω)) include flipping coins and/or other equivalent binary events, repeated n times. Prior to instruction, our statistical mechanics students usually gave reasonable answers about the probabilities, but not the relative uncertainties, of the predicted outcomes of such events. However, they reliably predicted that the uncertainty in a measured continuous quantity (e.g., the amount of rainfall) does decrease as the number of measurements increases. Typical textbook presentations assume that students understand that the relative uncertainty of binary outcomes will similarly decrease as the number of events increases. This is at odds with our findings, even though most of our students had previously completed mathematics courses in statistics, as well as an advanced electronics laboratory course that included statistical analysis of distributions of dart scores as n increased.

  19. Liverpool: the early years of biochemistry.

    PubMed

    Pitt, G A

    2003-02-01

    The first Chair and department of biochemistry in the U.K. were founded at the University of Liverpool in 1902, thanks to a generous donation by William Johnston, a Liverpool shipowner. The first holder of the Johnston Chair, Benjamin Moore, was a dynamic man, who set up an active research centre. In 1906, he and Edward Whitley founded The Bio-Chemical Journal as a private venture, and in 1912, they sold it to the Biochemical Society. Moore also initiated the first Honours School of Biochemistry in the country before moving to London in 1914 and being succeeded by Walter Ramsden. The development of the department was stopped by World War I, and there was little expansion in the 1920s. After Ramsden's retirement in 1931, the third Johnston Professor, Harold Channon, increased staff numbers, ran a successful research school and re-established the Honours course. World War II brought that to an end, and Channon moved into industry. After the war, biochemistry expanded from a niche subject in a small number of British universities into one that was strongly represented in most universities, but the penetration of biochemistry into wide areas of functional biology has blurred conventional subject boundaries, so in many universities (including the University of Liverpool), departments of biochemistry have been incorporated into large more general schools. PMID:12546645

  20. A Course Designed for Undergraduate Biochemistry Students to Learn about Cultural Diversity Issues

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee

    2006-01-01

    Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science…

  1. Use of Molecular Models for Active Learning in Biochemistry Lecture Courses

    ERIC Educational Resources Information Center

    Hageman, James H.

    2010-01-01

    The pedagogical value of having biochemistry and organic chemistry students build and manipulate physical models of chemical species is well established in the literature. Nevertheless, for the most part, the use of molecular models is generally limited to several laboratory exercises or to demonstrations in the classroom setting. A simple…

  2. Physical Models Enhance Molecular Three-Dimensional Literacy in an Introductory Biochemistry Course

    ERIC Educational Resources Information Center

    Roberts, Jacqueline R.; Hagedorn, Eric; Dillenburg, Paul; Patrick, Michael; Herman, Timothy

    2005-01-01

    This article reports the results of a recent study to evaluate the usefulness of physical models of molecular structures as a new tool with which to teach concepts of molecular structure and function. Of seven different learning tools used by students in this introductory biochemistry class, the use of the physical models in a laboratory was rated…

  3. Comprehensive Experiment--Clinical Biochemistry: Determination of Blood Glucose and Triglycerides in Normal and Diabetic Rats

    ERIC Educational Resources Information Center

    Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu

    2015-01-01

    For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a…

  4. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    ERIC Educational Resources Information Center

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from "Escherichia coli" inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This 7-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies,…

  5. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    SciTech Connect

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten

  6. A focused assignment encouraging deep reading in undergraduate biochemistry.

    PubMed

    Spiegelberg, Bryan D

    2014-01-01

    Encouraging undergraduate students to access, read, and analyze current primary literature can positively impact learning, especially in advanced courses. The incorporation of literature into coursework typically involves reading and responding to full research reports. Such exercises have clear value as students make connections between experiments and are able to probe and critique scientific logic. The exclusive use of full papers, though, may reinforce certain students' tendencies to rely on textual clues rather than a critical analysis of the actual data presented. I propose that structured activities requiring students to focus on individual parts of research papers, even on a single figure, are beneficial in a literature-centered advanced undergraduate course, because they promote the deep reading that is critical to scientific discourse. In addition, I describe how one such focused assignment boosted learning and was well received by students in a second-semester biochemistry course. PMID:24243802

  7. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  8. Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research

    SciTech Connect

    Not Available

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

  9. Laboratory Techniques for the Blind

    ERIC Educational Resources Information Center

    Tombaugh, Dorothy

    1972-01-01

    Describes modifications of laboratory procedures for the BSCS Green Version biology, including dissection, microbiology, animal behavior, physiology, biochemistry, and genetics that make the methods suitable for direct experimentation by blind students. Discusses models as substitutes for microscopy. (AL)

  10. Commentary: PhDs in Biochemistry Education--5 Years Later

    ERIC Educational Resources Information Center

    Offerdahl, Erika G.; Momsen, Jennifer L.; Osgood, Marcy

    2014-01-01

    In this commentary, the discussion of PhDs in biochemistry education research is expanded to explore a number of diverse pathways leading to a competitive research program in biochemistry education research.

  11. The Physiology and Biochemistry of Receptors.

    ERIC Educational Resources Information Center

    Spitzer, Judy A., Ed.

    1983-01-01

    The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…

  12. Teaching Receptor Theory to Biochemistry Undergraduates

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee; Sufka, Kenneth J.

    2003-01-01

    Receptor:ligand interactions account for numerous reactions critical to biochemistry and molecular biology. While students are typically exposed to some examples, such as hemoglobin binding of oxygen and signal transduction pathways, the topic could easily be expanded. Theory and kinetic analysis, types of receptors, and the experimental assay…

  13. Rhetorical Structure of Biochemistry Research Articles

    ERIC Educational Resources Information Center

    Kanoksilapatham, Budsaba

    2005-01-01

    This paper reports on the results of a move analysis [Swales, J. (1990). "Genre analysis." Cambridge: Cambridge University Press] of 60 biochemistry research articles. First, a corpus was systematically compiled to ensure that it represents core journals in the focused discipline. Then, coding reliability analysis was conducted to demonstrate…

  14. Identification of Threshold Concepts for Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer; Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for…

  15. Jmol-Enhanced Biochemistry Research Projects

    ERIC Educational Resources Information Center

    Saderholm, Matthew; Reynolds, Anthony

    2011-01-01

    We developed a protein research project for a one-semester biochemistry lecture class to enhance learning and more effectively train students to understand protein structure and function. During this semester-long process, students select a protein with known structure and then research its structure, sequence, and function. This project…

  16. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1995-01-01

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at

  17. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Astrophysics Data System (ADS)

    Summers, Geoffrey P.

    1995-10-01

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at

  18. Active Learning of Biochemistry Made Easy (for the Teacher)

    NASA Astrophysics Data System (ADS)

    Bobich, Joseph A.

    2008-02-01

    This active learning pedagogical technique aims to improve students' learning in a two-semester, upper-division biochemistry course sequence in which the vast majority of students enrolled will continue on to medical or graduate schools. Instead of lecturing, the Instructor moves to the side of the room, thereby becoming "the guide on the side". Students take turns being the "Discussion Leader" (DL, instructor for the day) and administer an oral quiz that requires answering questions of the DL's own devising. The remaining students, knowing they must learn the assigned material in advance, come prepared for every class. They prepare by creating written work abstracting the most important things they have learned on the given topic. Students use their prior writing and learning to answer the questions asked by the Discussion Leader; they also annotate these abstracts as they learn more during class. At the end of each class, the annotated writing is turned in to the Instructor for grading: that grade combined with points for oral performance yields the day's grade for each student. The students appear to learn biochemistry better using these procedures compared to the previous lecture-based approach.

  19. A Biochemistry and Molecular Biology Course for Secondary School Teachers

    ERIC Educational Resources Information Center

    Fernandez-Novell, J. M.; Cid, E.; Gomis, R.; Barbera, A.; Guinovart, J. J.

    2004-01-01

    This article describes a course for reinforcing the knowledge of biochemistry in secondary school science teachers. The Department of Biochemistry and Molecular Biology of the University of Barcelona designed a course to bring these teachers up to date with this discipline. In addition to updating their knowledge of biochemistry and molecular…

  20. Television Medical Dramas as Case Studies in Biochemistry

    ERIC Educational Resources Information Center

    Millard, Julie T.

    2009-01-01

    Several case studies from popular television medical dramas are described for use in an undergraduate biochemistry course. These cases, which illustrate fundamental principles of biochemistry, are used as the basis for problems that can be discussed further in small groups. Medical cases provide an interesting context for biochemistry with video…

  1. Determining the hydraulic properties of saturated, low-permeability geological materials in the laboratory: Advances in theory and practice

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Endo, H.; Esaki, T.

    2002-01-01

    The accurate hydraulic characterization of low-permeability subsurface environments has important practical significance. In order to examine this issue from the perspective of laboratory-based approaches, we review some recent advancements in the theoretical analyses of three different laboratory techniques specifically applied to low-permeability geologic materials: constant-head, constant flow-rate and transient-pulse permeability tests. Some potential strategies for effectively decreasing the time required to confidently estimate the permeability of these materials are presented. In addition, a new and versatile laboratory system is introduced that can implement any of these three test methods while simultaneously subjecting a specimen to high confining pressures and pore pressures, thereby simulating in situ conditions at great depths. The capabilities and advantages of this innovative system are demonstrated using experimental data derived from Shirahama sandstone and Inada granite, two rock types widely encountered in Japan.

  2. The Advancement in Using Remote Laboratories in Electrical Engineering Education: A Review

    ERIC Educational Resources Information Center

    Almarshoud, A. F.

    2011-01-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based,…

  3. Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project

    ERIC Educational Resources Information Center

    Farrell, John J.

    1977-01-01

    An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…

  4. The advancement in using remote laboratories in electrical engineering education: a review

    NASA Astrophysics Data System (ADS)

    Almarshoud, A. F.

    2011-10-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based, real-time laboratories that enable students to measure and control the measurements remotely in their own time. The survey highlights the features of many recent remote laboratories and demonstrates the software and networking technologies used. The paper provides a comprehensive overview on several aspects related to remote laboratories development. The paper concentrates on the publications appearing during the last decade. The review is arranged according to the area of specialisation, then chronologically.

  5. [beta]-Lactamases in the Biochemistry and Molecular Biology Laboratory

    ERIC Educational Resources Information Center

    Amador, Paula; Prudencio, Cristina; Vieira, Monica; Ferraz, Ricardo; Fonte, Rosalia; Silva, Nuno; Coelho, Pedro; Fernandes, Ruben

    2009-01-01

    [beta]-lactamases are hydrolytic enzymes that inactivate the [beta]-lactam ring of antibiotics such as penicillins and cephalosporins. The major diversity of studies carried out until now have mainly focused on the characterization of [beta]-lactamases recovered among clinical isolates of Gram-positive staphylococci and Gram-negative…

  6. Label-free analysis of cellular biochemistry by Raman spectroscopy and microscopy.

    PubMed

    Schie, Iwan W; Huser, Thomas

    2013-04-01

    We review the biomedical applications of Raman spectroscopy at the single cell and tissue level. Raman scattering is the inelastic scattering of light by molecular bonds resulting in a wealth of spectral bands, which enable the identification of biological materials and the nondestructive analysis of dynamic changes in their biochemistry. We briefly review the basics behind highly sensitive Raman spectroscopy and highlight recent applications to biomedical research. We discuss advanced chemometrics methods that are utilized to analyze Raman spectral data and which permit one, for example, to distinguish between normal and diseased cells or which enable one to follow the differentiation of stem cells without perturbing the cellular biochemistry. We also discuss advanced coherent Raman scattering techniques, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, which allow for the molecularly specific imaging of cells, tissues, and entire organisms in vitro and in vivo. PMID:23720335

  7. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  8. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  9. Conditions for Building a Community of Practice in an Advanced Physics Laboratory

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2014-01-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation…

  10. Recent advances in the laboratory detection of carbapenemase-producing Enterobacteriaceae.

    PubMed

    Matsumura, Yasufumi; Pitout, Johann D

    2016-07-01

    Carbapenemase-producing Enterobacteriaceae (CPE), mainly Klebsiella pneumoniae and Escherichia coli, have been increasing rapidly on a global scale and are considered to be significant health threats. The most common carbapenemases are KPCs, NDMs, OXA-48-like, IMPs and VIMs but their distribution and prevalence differs between countries. The accurate, simple, cost effective and rapid detection of carbapenemases in clinical laboratories is an important initial step to control the spread of CPE within institutions. The diversity of carbapenemases in general, has challenged a simple approach for the detection of most types of CPE. This article summarizes the current and describes newer techniques available for the detection of carbapenemases among Enterobacteriaceae. The authors also provide a simplified approach for the accurate and rapid detection of CPEs that can easily be implemented in a clinical diagnostic laboratory. PMID:27042955

  11. Advanced Yellow Fever Virus Genome Detection in Point-of-Care Facilities and Reference Laboratories

    PubMed Central

    Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A.; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-01-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories. PMID:23052311

  12. Conditions for building a community of practice in an advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  13. Writing throughout the Biochemistry Curriculum: Synergistic Inquiry-Based Writing Projects for Biochemistry Students

    ERIC Educational Resources Information Center

    Mertz, Pamela; Streu, Craig

    2015-01-01

    This article describes a synergistic two-semester writing sequence for biochemistry courses. In the first semester, students select a putative protein and are tasked with researching their protein largely through bioinformatics resources. In the second semester, students develop original ideas and present them in the form of a research grant…

  14. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  15. Rotational spectra of N2 + : An advanced undergraduate laboratory in atomic and molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Bayram, S. B.; Arndt, P. T.; Freamat, M. V.

    2015-10-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial ac capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  16. Two-Dimensional Nuclear Magnetic Resonance Structure Determination Module for Introductory Biochemistry: Synthesis and Structural Characterization of Lyso-Glycerophospholipids

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Rose, Rebecca L.; Bell, Sidney M.

    2013-01-01

    In this laboratory module, introductory biochemistry students are exposed to two-dimensional [superscript 1]H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using [superscript…

  17. A Phytase Enzyme-Based Biochemistry Practical Particularly Suited to Students Undertaking Courses in Biotechnology and Environmental Science

    ERIC Educational Resources Information Center

    Boyce, Angela; Casey, Anne; Walsh, Gary

    2004-01-01

    Courses in introductory biochemistry invariably encompass basic principles of enzymology, with reinforcement of lecture-based material in appropriate laboratory practicals. Students undertaking practical classes are more enthusiastic, and generally display improved performance, when the specific experiments undertaken show direct relevance to…

  18. Design and Implementation of a Laboratory-Based Drug Design and Synthesis Advanced Pharmacy Practice Experience

    PubMed Central

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L.

    2015-01-01

    Objective. To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. Design. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Assessment. Students were evaluated based on their commitment to the project’s success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. Conclusion. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences. PMID:25995518

  19. New Perspectives for Advanced Science at the Brazilian Synchrotron Light Laboratory

    SciTech Connect

    Tolentino, Helio C.N.

    2003-01-24

    The LNLS (Laboratorio Nacional de Luz Sincrotron) is a national laboratory in Brazil that operates a 1.37 GeV storage ring for synchrotron light users since July 1997. Eleven bending magnet beamlines are open to a wide range of possibilities for research in ultra-violet and X-ray spectroscopy, single crystal and powder diffraction, magnetic and anomalous scattering, protein crystallography, X-ray fluorescence, X-ray lithography and small angle X-ray scattering. The recent conclusion of the booster injector opened the way for insertion devices to be accommodated in the four straight sections available. A multipolar wiggler, for protein crystallography using the MAD technique, is the first planned to be installed during 2003. The construction of the first LNLS undulator, for the vaccum ultra-violet and soft X-ray domain, has already started and will expand the possibilities in atomic, molecular and surface physics, as well as in catalysis and magnetism. LNLS has expanded its infra-structure as an open multidisciplinary research laboratory into complementary areas, such as electron and scanning probe microscopy, nanostructure synthesis and molecular biology. Many technological and scientific achievements have been attained in these last five years. Some of them will be highlighted here, with emphasis in the area of nanostructured and magnetic materials.

  20. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation

    SciTech Connect

    Panaccione, G.; Vobornik, I.; Fujii, J.; Krizmancic, D.; Annese, E.; Giovanelli, L.; Maccherozzi, F.; Salvador, F.; De Luisa, A.; Benedetti, D.; Gruden, A.; Bertoch, P.; Rossi, G.; Polack, F.; Cocco, D.; Sostero, G.; Diviacco, B.; Hochstrasser, M.; Maier, U.; Pescia, D.; and others

    2009-04-15

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  1. Fifty Years of Diazeniumdiolate Research. From Laboratory Curiosity to Broad-Spectrum Biomedical Advances

    PubMed Central

    2011-01-01

    Here I show that a “pure” research project, seemingly totally lacking in practical application when it was first published, can years later spark a whole new scientific field with the potential to revolutionize clinical practice. A 1961 publication describing adducts of nitric oxide (NO) with certain nucleophiles attracted little notice at the time, but later work showing that the adducts could be hydrolyzed to regenerate the NO in bioactive form has provided the foundation for a host of biomedical applications. Crucial to the discovery of widely used tools for studying NO’s chemical biology as well as for the design of a variety of promising therapeutic advances has been the increasingly detailed understanding of the physicochemical properties of these “diazeniumdiolates” (also known as NONOates). PMID:21932836

  2. Designing Ratchets in Ultra-cold Atoms for the Advanced Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Hachtel, Andrew; Gillette, Matthew; Clements, Ethan; Zhong, Shan; Ducay, Rey; Bali, Samir

    2014-05-01

    We propose to perform ratchet experiments in cold Rubidium atoms using state-of-the-art home-built tapered amplifier and imaging systems. Our tapered amplifier system amplifies the output from home-built external cavity tunable diode lasers up to a factor 100 and costs less than 5,000, in contrast to commercial tapered amplifier systems, which cost upward of 20,000. We have developed an imaging system with LabVIEW integration, which allows for approximately 2 millisecond exposures and microsecond control of experimental parameters. Our imaging system also costs less than 5,000 in comparison to commercial options, which cost between 40-50,000. Progress toward implementation of a one-dimensional rocking ratchet is described. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  3. Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray Aerosol Using the Microbial Loop.

    PubMed

    Lee, Christopher; Sultana, Camille M; Collins, Douglas B; Santander, Mitchell V; Axson, Jessica L; Malfatti, Francesca; Cornwell, Gavin C; Grandquist, Joshua R; Deane, Grant B; Stokes, M Dale; Azam, Farooq; Grassian, Vicki H; Prather, Kimberly A

    2015-08-20

    Sea spray aerosol (SSA) particles represent one of the most abundant surfaces available for heterogeneous reactions to occur upon and thus profoundly alter the composition of the troposphere. In an effort to better understand tropospheric heterogeneous reaction processes, fundamental laboratory studies must be able to accurately reproduce the chemical complexity of SSA. Here we describe a new approach that uses microbial processes to control the composition of seawater and SSA particle composition. By inducing a phytoplankton bloom, we are able to create dynamic ecosystem interactions between marine microorganisms, which serve to alter the organic mixtures present in seawater. Using this controlled approach, changes in seawater composition become reflected in the chemical composition of SSA particles 4 to 10 d after the peak in chlorophyll-a. This approach for producing and varying the chemical complexity of a dominant tropospheric aerosol provides the foundation for further investigations of the physical and chemical properties of realistic SSA particles under controlled conditions. PMID:26196268

  4. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    SciTech Connect

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  5. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  6. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    ERIC Educational Resources Information Center

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  7. The Biochemistry of Bereavement: Possible Basis for Chemotherapy?

    ERIC Educational Resources Information Center

    Fredrick, Jerome F.

    1982-01-01

    Reviews the physiological effect of acute grief and explores the increased susceptibility to infectious disease agents in terms of the altered biochemistry of the bereaved individual. Until basic reactions of grief are defined and the altered biochemistry established, psychological methods appear to offer the best therapy. (Author/JAC)

  8. Biochemistry for Nutrition/Dietetics Students: Course Content.

    ERIC Educational Resources Information Center

    Sirota, Lorraine Handler

    1984-01-01

    Surveyed dietetics directors (N=186) and biochemistry instructors (N=153) on topics emphasized in biochemistry courses for dietetics and nutrition students. Results indicate a consistent pattern of variation in topics emphasized and that this variation is influenced by whether students in other major fields are also in a course. (JN)

  9. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    ERIC Educational Resources Information Center

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  10. News from Online: WWW Sites for Biochemistry Teachers

    NASA Astrophysics Data System (ADS)

    Hicks, Barry W.

    2002-05-01

    With so many biochemistry sites to choose from, searching the Web for biochemistry topics is like being a "kid in a candy shop." However, to reap the benefits, you must put in a bit of time and have a bit of patience. Good hunting.

  11. Blended Learning in Biochemistry Education: Analysis of Medical Students' Perceptions

    ERIC Educational Resources Information Center

    Wardenski, Rosilaine de Fatima; de Espindola, Marina Bazzo; Struchiner, Miriam; Giannella, Tais Rabetti

    2012-01-01

    The objective of this study was to analyze first-year UFRJ medical students' perceptions about the implementation of a blended learning (BL) experience in their Biochemistry I course. During the first semester of 2009, three Biochemistry professors used the Constructore course management system to develop virtual learning environments (VLEs) for…

  12. Incorporation of Bioinformatics Exercises into the Undergraduate Biochemistry Curriculum

    ERIC Educational Resources Information Center

    Feig, Andrew L.; Jabri, Evelyn

    2002-01-01

    The field of bioinformatics is developing faster than most biochemistry textbooks can adapt. Supplementing the undergraduate biochemistry curriculum with data-mining exercises is an ideal way to expose the students to the common databases and tools that take advantage of this vast repository of biochemical information. An integrated collection of…

  13. Enhanced Podcasts for Teaching Biochemistry to Veterinary Students

    ERIC Educational Resources Information Center

    Gough, Kevin C.

    2011-01-01

    The teaching of biochemistry within medical disciplines presents certain challenges; firstly to relay a large body of complex facts and abstract concepts, and secondly to motivate students that this relatively difficult topic is worth their time to study. Here, nutrient biochemistry was taught within a multidisciplinary module as part of an…

  14. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  15. The Sweetness of Aspartame: A Biochemistry Lab for Health Science Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Stein, Paul J.

    1997-09-01

    A laboratory exercise for Health Science Biochemistry students to study the effect of aspartame concentration on sweetness has been developed. The concentration dependence of the absorbance of aspartame at 257 nm is also studied. Data from all members of the class are averaged and plotted on the same graph as absorbance and taste rating vs. [aspartame]. The absorbance plot follows Beer's law while the taste rating plot displays the typical hyperbolic response of protein-ligand binding plots. This laboratory exercise illustrates the concept of binding saturation to students.

  16. [Observations on pe-eclampsia-eclampsia and the advances in the evolution of some laboratory tests].

    PubMed

    Noguera Sánchez, M F; Ayala Barahona, T; Arredondo Soberón, F; Morgan, M A

    1997-07-01

    The preeclampsia-eclampsia syndrome is a vasospastic disorder and probably has a placental origin. Once the hypertensive syndrome is established the uteroplacental blood flow is reduced as well as the intervillous blood flow. Since 18-24 weeks of gestation and before the symptoms of preeclampsia become overt, changes in placental flow velocity can be detected with Doppler technics. The placental theories for the etiology of preeclampsia are focused on the hypoxic effect in the trophoblastic tissue of second trimester. The placental ischemic changes are evident and seen in the uteroplacental bed. They are interrelated with the stages of trophoblastic invasion of the spiral arteries during the 14 and 20 weeks. When the trophoblastic invasion is over, the spiral arteries become a high resistance system. The defect observed in preeclampsia is the lack of invasion of the trophoblast to the maternal arteries. The diminished placental perfusion probably creates endothelial damage. This damage has several effects: decreased prostaglandin production, activated coagulation cascade, stimulated fibrin aggregation, and increased vascular permeability. The ideal laboratory test for preeclampsia shall predict the onset of this entity. Recent findings seem promising. The fibronectin concentration increases 2-3 wks. prior to the clinical manifestation of preeclampsia. Severe hypertension shows an abnormal decrease in fibronectin levels. Hypocalciuria has been described as an early predictor in the development of preeclampsia. Other agents undergoing extensive evaluation as predictors are: uric acid, b-thromboglobin, prolactin and atrial natriuretic peptide. Recently high levels of b-HCG (human corionic gonadotrophin) have been linked to a lack of trophoblastic invasion during the second trimester, therefore this is a potential marker for those patients that will eventually develop preeclampsia. PMID:9312519

  17. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  18. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1996-01-01

    The Naval Research Laboratory (NRL) has been involved in the development of solar cells for space applications since the 1960s. It quickly became apparent in this work that radiation damage caused to solar cells by electrons and protons trapped by the earth's magnetic field would seriously degrade the power output of photovoltaic arrays in extended missions. Techniques were therefore developed to harden the cells by shielding them with coverglass, etc. Ultimately, however, there is a limit to such approaches, which is determined by the radiation response of the semiconductor material employed. A desire for high efficiency and radiation resistance led to the development of alternative cell technologies such as GaAs, which has since become the technology of choice for many applications. InP cells are currently the most radiation resistant, high efficiency, planar cells known. NRL first sponsored InP solar cell technology in 1986, when Arizona State University was contracted to grow p/n cells by liquid phase epitaxy. NRL's interest in InP cells was generated by the results presented by Yamaguchi and his co-workers in the early 1980s on the remarkable radiation resistance of cells grown by diffusion of S into Zn doped p-type InP substrates. These cells also had beginning of life (BOL) efficiencies approximately 16%(AM0). Related to the radiation resistance of the cells was the fact that radiation-induced damage could be optically annealed by sunlight. Relatively large quantities of 1 x 2 cm(exp 2) diffused junction cells were made and were used on the MUSES-A and the EXOS-D satellites. These cells were also available in the U.S. through NIMCO, and were studied at NRL and elsewhere. Workers at NASA Lewis became involved in research in InP cells about the same time as NRL.

  19. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  20. Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    NASA Technical Reports Server (NTRS)

    Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.

    1989-01-01

    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.

  1. BAND-LIMITED CORONAGRAPHS USING A HALFTONE-DOT PROCESS. II. ADVANCES AND LABORATORY RESULTS FOR ARBITRARY TELESCOPE APERTURES

    SciTech Connect

    Martinez, P.; Kasper, M.

    2012-01-01

    The band-limited coronagraph is a nearly ideal concept that theoretically enables perfect cancellation of all the light of an on-axis source. Over the past several years, several prototypes have been developed and tested in the laboratory, and more emphasis is now on developing optimal technologies that can efficiently deliver the expected high-contrast levels of such a concept. Following the development of an early near-IR demonstrator, we present and discuss the results of a second-generation prototype using halftone-dot technology. We report improvement in the accuracy of the control of the local transmission of the manufactured prototype, which was measured to be less than 1%. This advanced H-band band-limited device demonstrated excellent contrast levels in the laboratory, down to {approx}10{sup -6} at farther angular separations than 3{lambda}/D over 24% spectral bandwidth. These performances outperform the ones of our former prototype by more than an order of magnitude and confirm the maturity of the manufacturing process. Current and next-generation high-contrast instruments can directly benefit from such capabilities. In this context, we experimentally examine the ability of the band-limited coronagraph to withstand various complex telescope apertures.

  2. Update on the biochemistry of chlorophyll breakdown.

    PubMed

    Hörtensteiner, Stefan

    2013-08-01

    In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the 'PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the past. PMID:22790503

  3. A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyannate

    NASA Astrophysics Data System (ADS)

    Clark, Charles R.

    1997-10-01

    A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).

  4. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    NASA Astrophysics Data System (ADS)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  5. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    NASA Astrophysics Data System (ADS)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  6. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    NASA Astrophysics Data System (ADS)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  7. Thalidomide Makes a Comeback: A Case Discussion Exercise That Integrates Biochemistry and Organic Chemistry

    NASA Astrophysics Data System (ADS)

    Bennett, Nicole; Cornely, Kathleen

    2001-06-01

    The case discussion method, which involves teaching scientific theory in a framework that students can relate to their own world, is an interdisciplinary pedagogical tool. Therefore, case study exercises can be used to integrate biochemistry with other advanced chemistry courses. The case presented here can be used at the end of a second-semester organic chemistry course or in an introductory biochemistry course. The case is a fact-based, fictional story in which an FDA official must decide whether to carry out the agency's threat to shut down several buyers clubs that import thalidomide from overseas and dispense it to their members for the treatment of AIDS. Students are required to read the body of the case, analyze data, and search for information using limited leads. Using well-considered arguments based on their research, they are asked to come to conclusions about how the element of risk involved in thalidomide distribution is assessed. They apply their knowledge of biochemistry to assess how thalidomide acts at the cellular level and they apply their knowledge of organic chemistry in writing mechanisms of thalidomide hydrolysis and in the design of thalidomide analogs. Students are assessed on their ability to work in groups, to critically analyze scientific data, and to develop public policies based on risk-benefit analysis.

  8. Cellular Biochemistry Methods for Investigating Protein Tyrosine Phosphatases

    PubMed Central

    Stanford, Stephanie M.; Ahmed, Vanessa

    2014-01-01

    Abstract Significance: The protein tyrosine phosphatases (PTPs) are a family of proteins that play critical roles in cellular signaling and influence many aspects of human health and disease. Although a wealth of information has been collected about PTPs since their discovery, many questions regarding their regulation and function still remain. Critical Issues: Of particular importance are the elucidation of the biological substrates of individual PTPs and understanding of the chemical and biological basis for temporal and spatial resolution of PTP activity within a cell. Recent Advances: Drawing from recent advances in both biology and chemistry, innovative approaches have been developed to study the intracellular biochemistry and physiology of PTPs. We provide a summary of PTP-tailored techniques and approaches, emphasizing methodologies to study PTP activity within a cellular context. We first provide a discussion of methods for identifying PTP substrates, including substrate-trapping mutants and synthetic peptide libraries for substrate selectivity profiling. We next provide an overview of approaches for monitoring intracellular PTP activity, including a discussion of mechanistic-based probes, gel-based assays, substrates that can be used intracellularly, and assays tied to cell growth. Finally, we review approaches used for monitoring PTP oxidation, a key regulatory pathway for these enzymes, discussing the biotin switch method and variants of this approach, along with affinity trapping techniques and probes designed to detect PTP oxidation. Future Directions: Further development of approaches to investigate the intracellular PTP activity and functions will provide specific insight into their mechanisms of action and control of diverse signaling pathways. Antioxid. Redox Signal. 20, 2160–2178. PMID:24294920

  9. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  10. Use of a Laboratory Exercise on Molar Absorptivity to Help Students Understand the Authority of the Primary Literature

    ERIC Educational Resources Information Center

    Soundararajan, Madhavan; Bailey, Cheryl P.; Markwell, John

    2008-01-01

    To promote understanding of the authority of the primary literature in students taking our biochemistry laboratory courses, a biochemistry laboratory exercise on the determination of an acceptable molar absorptivity value of 2-nitrophenol (2-NP) was developed. This made the laboratory course much more relevant by linking to a thematic thread,…

  11. Research Advances: Pacific Northwest National Laboratory Finds New Way to Detect Destructive Enzyme Activity--Hair Dye Relies on Nanotechnology--Ways to Increase Shelf Life of Milk

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…

  12. NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)

    SciTech Connect

    Not Available

    2005-09-01

    This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

  13. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    SciTech Connect

    Basdogan, I.; Shu, Deming; Kuzay, T.M.; Royston, T.J.; Shabana, A.A.

    1996-08-01

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  15. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  17. Advances in the design, development, and deployment of the U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly; Robertson, James

    2011-06-01

    Recent advances in the design, development, and deployment of U.S. Army Research Laboratory's (ARL) Multimodal Signature Database (MMSDB) create a state-of-the-art database system with Web-based access through a Web interface designed specifically for research and development. Tens of thousands of signatures are currently available for researchers to support their algorithm development and refinement for sensors and other security systems. Each dataset is stored in (Hierarchical Data Format 5 (HDF5) format for easy modeling and storing of signatures and archived sensor data, ground truth, calibration information, algorithms, and other documentation. Archived HDF5 formatted data provides the basis for computational interoperability across a variety of tools including MATLAB, Octave, and Python. The database has a Web-based front-end with public and restricted access interfaces, along with 24/7 availability and support. This paper describes the overall design of the system, and the recent enhancements and future vision, including the ability for researchers to share algorithms, data, and documentation in the cloud, and providing an ability to run algorithms and software for testing and evaluation purposes remotely across multiple domains and computational tools. The paper will also describe in detail the HDF5 format for several multimodal sensor types.

  18. International Environmental Law and Biochemistry: An Innovative Teaching Opportunity.

    ERIC Educational Resources Information Center

    Candlish, John

    1998-01-01

    Explores the ties between international environmental law and biochemistry with respect to genetically modified organisms, biodiversity, marine pollution, cancer biology, and pesticide contamination of food. Contains 30 references. (DDR)

  19. Curriculum Guidelines on Biochemistry and Nutrition for Dental Hygienists.

    ERIC Educational Resources Information Center

    Journal of Dental Education, 1984

    1984-01-01

    Guidelines developed by the Sections of Biochemistry and Nutrition and Dental Hygiene Education of the American Association of Dental Schools are intended for use by individual educational institutions as curriculum development aids. (MLW)

  20. A Continuing Education Project for Updating Women in Biochemistry.

    ERIC Educational Resources Information Center

    Mary Kieran, McElroy, Sister

    1978-01-01

    Describes an interdisciplinary program in the areas of biochemistry, biology, and computer science offered at Chestnut Hill College, Philadelphia, Pennsylvania, to update 30 women in order to prepare them to return to the job market in chemistry. (HM)

  1. An integrated strategy for teaching biochemistry to biotechnology specialty students.

    PubMed

    Ouyang, Liming; Ou, Ling; Zhang, Yuanxing

    2007-07-01

    The faculty of biochemistry established an integrated teaching strategy for biotechnology specialty students, by intermeshing the case-study method, web-assistant teaching, and improved lecture format with a brief content and multimedia courseware. Teaching practice showed that the integrated teaching strategy could retain the best features of each pedagogy and better solve the main difficulties that lay in the teaching of biochemistry to biotechnology specialty students in the East China University of Science and Technology. PMID:21591104

  2. Physical models enhance molecular three-dimensional literacy in an introductory biochemistry course*.

    PubMed

    Roberts, Jacqueline R; Hagedorn, Eric; Dillenburg, Paul; Patrick, Michael; Herman, Timothy

    2005-03-01

    This article reports the results of a recent study to evaluate the usefulness of physical models of molecular structures as a new tool with which to teach concepts of molecular structure and function. Of seven different learning tools used by students in this introductory biochemistry class, the use of the physical models in a laboratory was rated as most useful. These results suggest that physical models can play an important role in capturing the interest of students in the subject of molecular structure and function. These physical models often stimulate more sophisticated questions in the minds of students, which can then be more appropriately explored using computer visualization tools. PMID:21638554

  3. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  4. Geobiochemistry: Placing Biochemistry in Its Geochemical Context

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.

    2014-12-01

    Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.

  5. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

    PubMed Central

    Fetzner, S; Lingens, F

    1994-01-01

    This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial

  6. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  7. Synthesis and Application of Ratiometric and "Turn-On" Fluorescent pH Sensors: An Advanced Organic Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hutt, Johnathon T.; Aron, Zachary D.

    2014-01-01

    An upper-division organic chemistry laboratory experiment exploring fluorescent sensing over two laboratory periods and part of a third is described. Two functionally distinct pH-responsive sensors are prepared through a dehydrative three-component coupling reaction. During the abbreviated (<1 h) first laboratory period, students set up…

  8. Integrated Laboratories: Crossing Traditional Boundaries

    ERIC Educational Resources Information Center

    Dillner, Debra K.; Ferrante, Robert F.; Fitzgerald, Jeffrey P.; Heuer, William B.; Schroeder, Maria J.

    2007-01-01

    A new, integrated laboratory curriculum was recently developed at the U.S. Naval Academy in response to the 1999 ACS Committee on Professional Training guidelines that required inclusion of biochemistry and a stronger emphasis on student research. To meet these ACS requirements and to introduce more student choice in the major, we embarked on a…

  9. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  10. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  11. NRCL-70, Review of the Activities of the Laboratories 1970.

    ERIC Educational Resources Information Center

    National Research Council of Canada, Ottawa (Ontario).

    Included are descriptions of activities of each of the 12 laboratories in the National Research Council of Canada, including background information and a summary of the studies (research) and results. The 12 laboratories in the NRCL are the following: Atlantic Regional Laboratory, Biochemistry Laboratory, Division of Biology, Division of Building…

  12. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS (Lawrence Berkeley Laboratory Advanced Light Source) Booster Dipole Magnets

    SciTech Connect

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs.

  13. Introduction to the Minireview Series on Modern Technologies for In-cell Biochemistry.

    PubMed

    Lutsenko, Svetlana

    2016-02-19

    The last decade has seen enormous progress in the exploration and understanding of the behavior of molecules in their natural cellular environments at increasingly high spatial and temporal resolution. Advances in microscopy and the development of new fluorescent reagents as well as genetic editing techniques have enabled quantitative analysis of protein interactions, intracellular trafficking, metabolic changes, and signaling. Modern biochemistry now faces new and exciting challenges. Can traditionally "in vitro" experiments, e.g. analysis of protein folding and conformational transitions, be done in cells? Can the structure and behavior of endogenous and/or non-tagged recombinant proteins be analyzed and altered within the cell or in cellular compartments? How can molecules and their actions be studied mechanistically in tissues and organs? Is personalized cellular biochemistry a reality? This thematic series summarizes recent studies that illustrate some first steps toward successfully answering these modern biochemical questions. The first minireview focuses on utilization of three-dimensional primary enteroids and organoids for mechanistic studies of intestinal biology with molecular resolution. The second minireview describes application of single chain antibodies (nanobodies) for monitoring and regulating protein dynamics in vitro and in cells. The third minireview highlights advances in using NMR spectroscopy for analysis of protein folding and assembly in cells. PMID:26677225

  14. Environmental Assessment for Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

    SciTech Connect

    N /A

    2003-06-27

    This environmental assessment (EA) has been prepared by the U.S. Department of Energy (DOE) in compliance with the National Environmental Policy Act of 1969 (NEPA) to evaluate the potential environmental impacts associated with continued and enhanced operation of the Advanced Photon Source (APS), including modifications, upgrades, and new facilities, at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois. This proposed action is needed to meet DOE's mission of sponsoring cutting-edge science and technology. Continued operation would include existing research activities. In 2002, 23 user teams had beamlines in use in 28 sectors of the experiment hall, and approximately 2,000 individual users visited annually (see Section 3.1.1). Enhanced scientific capabilities would include research on Biosafety Level-3 (BSL-3) materials in an existing area originally constructed for such work, and would not require new construction or workforce (see Section 3.1.2). A new experimental unit, the Center for Nanoscale Materials (CNM), would be constructed along the west side of the APS facility and would be used for bench-scale research in nanoscience (see Section 3.1.3). Under the No Action Alternative, current APS operations would continue. However, initiation of BSL-3 research would not occur, and the proposed CNM research facility would not be constructed. The environmental consequences of the Proposed Action are minor. Potential effects to the environment are primarily related to ecological effects during construction and operation of the proposed CNM and human health effects during BSL-3 activities. The potential ecological effects of construction and operation of the CNM would be impacts of stormwater runoff into a restored wetland to the north of the CNM. DOE would minimize stormwater impacts during construction of the CNM by ensuring adequate erosion control before and during construction. Stormwater impacts would be minimized during operation of the CNM by

  15. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    PubMed Central

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  16. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science.

    PubMed

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-03-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  17. Biochemistry, Science (Experimental): 5317.66.

    ERIC Educational Resources Information Center

    Rasmussen, Ray S.

    This unit of instruction provides a laboratory oriented study of the chemical reaction involved in the life processes. Students enrolling in this course should have successfully completed the units on Scientific Mathematics, Introduction to Chemistry, Reactions of Atoms and Molecules, and Chemistry of Carbon and Its Compounds. The booklet lists…

  18. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  19. Development and Implementation of a Series of Laboratory Field Trips for Advanced High School Students to Connect Chemistry to Sustainability

    ERIC Educational Resources Information Center

    Aubrecht, Katherine B.; Padwa, Linda; Shen, Xiaoqi; Bazargan, Gloria

    2015-01-01

    We describe the content and organization of a series of day-long field trips to a university for high school students that connect chemistry content to issues of sustainability. The seven laboratory activities are in the areas of environmental degradation, energy production, and green chemistry. The laboratory procedures have been modified from…

  20. Post-remedial-action radiological survey of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania, October 1-8, 1981

    SciTech Connect

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The post-remedial-action radiological assessment conducted by the ANL Radiological Survey Group in October 1981, following decommissioning and decontamination efforts by Westinghouse personnel, indicated that except for the Advanced Fuels Laboratory exhaust ductwork and north wall, the interior surfaces of the Plutonium Laboratory and associated areas within Building 7 and the Advanced Fuels Laboratory within Building 8 were below both the ANSI Draft Standard N13.12 and NRC Guideline criteria for acceptable surface contamination levels. Hence, with the exceptions noted above, the interior surfaces of those areas within Buildings 7 and 8 that were included in the assessment are suitable for unrestricted use. Air samples collected at the involved areas within Buildings 7 and 8 indicated that the radon, thoron, and progeny concentrations within the air were well below the limits prescribed by the US Surgeon General, the Environmental Protection Agency, and the Department of Energy. The Building 7 drain lines are contaminated with uranium, plutonium, and americium. Radiochemical analysis of water and dirt/sludge samples collected from accessible Low-Bay, High-Bay, Shower Room, and Sodium laboratory drains revealed uranium, plutonium, and americium contaminants. The Building 7 drain lines hence are unsuitable for release for unrestricted use in their present condition. Low levels of enriched uranium, plutonium, and americium were detected in an environmental soil coring near Building 8, indicating release or spillage due to Advanced Reactors Division activities or Nuclear Fuel Division activities undr NRC licensure. /sup 60/Co contamination was detected within the Building 7 Shower Room and in soil corings from the environs of Building 7. All other radionuclide concentrations measured in soil corings and the storm sewer outfall sample collected from the environs about Buildings 7 and 8 were within the range of normally expected background concentrations.

  1. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  2. Maltose Biochemistry and Transport in Plant Leaves

    SciTech Connect

    Thomas D. Sharkey

    2010-01-28

    Final Technical Report for DOE grant DE-FG02-04ER15565 Maltose Biochemistry and Transport in Plant Leaves PI Thomas D. Sharkey University of Wisconsin-Madison Starch is a desirable plant product for both food and biofuel. Leaf starch is ideal for use in biofuels because it does not compete with grain starch, which is used for food. Starch is accumulated in plant leaves during the day and broken down at night. If we can manipulate leaf starch breakdown it may be possible to design a plant that provides both grain starch for food and leaf starch for biofuel. The pathway of leaf starch breakdown was not known when this work started. Preliminary evidence had shown that maltose was the primary product of leaf starch breakdown (Weise, Weber & Sharkey, 2004) and that it was metabolized by a disproportionating enzyme called amylomaltase but given the initials DPE2 (Lu & Sharkey, 2004). In this work we showed that only one form of maltose was metabolically active (Weise et al., 2005a) and that maltose was located in two different places when the amylomaltase was knocked out but only inside the chloroplast when the maltose transporter was knocked out (Lu et al., 2006a). This allowed us to estimate the energetics of maltose export and to show that maltose export is more efficient than glucose export (Weise et al., 2005b). We examined how daylength affected starch breakdown rate and found that starch breakdown rate could respond to changes in daylength within one day (Lu, Gehan & Sharkey, 2005). We also were able to show a second starch breakdown pathway by chloroplastic starch phosphorylase (Weise et al., 2006). Work to this point was summarized in a review (Lu & Sharkey, 2006). We were able to show that the amylomaltase in plants could substitute for the amylomaltase in bacteria (Lu et al., 2006b). In this paper we also showed the importance of a second enzyme called alpha-glucan phosphorylase in starch breakdown. Finally, we were able to determine the enzymatic mechanism of

  3. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  4. Concepts and Skills in the Biochemistry/Molecular Biology Lab

    ERIC Educational Resources Information Center

    Boyer, Rodney

    2003-01-01

    Most colleges and universities throughout the world now offer a Biochemistry/Molecular Biology (BMB) lab course that is designed for undergraduate students in the molecular life sciences, chemistry, and related fields. To best serve our students, we must introduce them to the most current concepts, skills, and methods available. Suggestions for…

  5. A Biochemistry Course for High-Ability Secondary Students.

    ERIC Educational Resources Information Center

    Sherman, Marie

    1984-01-01

    Describes a one-semester biochemistry course designed for students who have completed courses in biology, CHEMStudy chemistry, and physical science. Course goals include presenting biochemical concepts (in preparation for college courses), challenging students considering science-related careers, and serving as a springboard for science fairs. (JN)

  6. A Problem-Based Learning Design for Teaching Biochemistry.

    ERIC Educational Resources Information Center

    Dods, Richard F.

    1996-01-01

    Describes the design of a biochemistry course that uses problem-based learning. Provides opportunities for students to question, dispute, confirm, and disconfirm their understanding of basic concepts. Emphasizes self-correction through dialogue. Topics covered include amino acids, metabolic pathways and inherited disease, proteins, enzymes and…

  7. Biochemistry in Undergraduate Health Courses: Structure and Organization

    ERIC Educational Resources Information Center

    Silva, Irani F.; Batista, Nildo A.

    2003-01-01

    This article describes the following aspects of teaching biochemistry in undergraduate health courses: objectives, number of hours, time in which the subject is studied, selection of content, teaching strategies, and evaluation methodologies used. Fifty-three courses distributed in 13 areas within the health field and offered by 12 institutions…

  8. An Integrated Strategy for Teaching Biochemistry to Biotechnology Specialty Students

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ou, Ling; Zhang, Yuanxing

    2007-01-01

    The faculty of biochemistry established an integrated teaching strategy for biotechnology specialty students, by intermeshing the case-study method, web-assistant teaching, and improved lecture format with a brief content and multimedia courseware. Teaching practice showed that the integrated teaching strategy could retain the best features of…

  9. Lecture-Free Biochemistry: A Process Oriented Guided Inquiry Approach

    ERIC Educational Resources Information Center

    Minderhout, Vicky; Loertscher, Jennifer

    2007-01-01

    Biochemistry courses at Seattle University have been taught exclusively using process oriented guided inquiry learning (POGIL) without any traditional lecture component since 1997. In these courses, students participate in a structured learning environment, which includes a preparatory assignment, an in-class activity, and a follow-up skill…

  10. Assessment of Learning Gains in a Flipped Biochemistry Classroom

    ERIC Educational Resources Information Center

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of…

  11. Active Learning of Biochemistry Made Easy (for the Teacher)

    ERIC Educational Resources Information Center

    Bobich, Joseph A.

    2008-01-01

    This active learning pedagogical technique aims to improve students' learning in a two-semester, upper-division biochemistry course sequence in which the vast majority of students enrolled will continue on to medical or graduate schools. Instead of lecturing, the Instructor moves to the side of the room, thereby becoming "the guide on the side".…

  12. Development of Student Writing in Biochemistry Using Calibrated Peer Review

    ERIC Educational Resources Information Center

    Hartberg, Yasha; Gunersel, Adalet Baris; Simspon, Nancy J.; Balester, Valerie

    2008-01-01

    This study investigating the effectiveness of Calibrated Peer Review (CPR )[TM] in a senior-level biochemistry class had three purposes: to (a) compare the CPR process for feedback with TA-generated feedback in improving students' ability to write scientific abstracts; (b) compare CPR results for males and females; and (c) observe whether CPR…

  13. Teaching of Biochemistry in Integrated Curricula: Experiences in Hungary.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1997-01-01

    Presents an historical perspective on the teaching of biochemistry in Hungary starting during the Austrian-Hungarian Empire. Discusses integration and interdisciplinarity in terms of what should be included in the lecture material and what can be borrowed from other closely related subjects without excessive overlapping. Highlights differences…

  14. Biochemistry Instructors' Perceptions of Analogies and Their Classroom Use

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Bussey, Thomas J.; Bodner, George M.

    2015-01-01

    Biochemistry education relies heavily on students' abilities to conceptualize abstract cellular and molecular processes, mechanisms, and components. From a constructivist standpoint, students build their understandings of these abstract processes by connecting, expanding, or revising their prior conceptions and experiences. As such, biochemistry…

  15. The Use of Multiple Tools for Teaching Medical Biochemistry

    ERIC Educational Resources Information Center

    Se, Alexandre B.; Passos, Renato M.; Ono, Andre H.; Hermes-Lima, Marcelo

    2008-01-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using…

  16. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings suggesting…

  17. Synthesis of Vitamin K Expoxide: An Undergraduate Biochemistry Experiment.

    ERIC Educational Resources Information Center

    Thierry-Palmer, M.

    1984-01-01

    Provides procedures for synthesizing and purifying a vitamin K metabolite (2,3-epoxide) to introduce many of the techniques used in lipid biochemistry. Includes typical results obtained as well as an optional experiment designed to test the purity of the epoxide obtained. (JM)

  18. Remote sensing of foliar biochemistry with a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Eitel, J.; Vierling, L. A.; Long, D. S.

    2011-12-01

    Foliar biochemistry provides important information about the physiological status of plants. Several different tools and techniques have been developed to infer plant biochemistry (such as state and change of foliar nitrogen (N) and chlorophyll) using remote sensing. However, few techniques allow accurate mapping of foliar biochemistry in 3-dimensions at a sub-cm level. Scanning laser technology is available that measures the x,y,z location of each reflected laser pulse in addition to the intensity of the reflected laser light within a mm-scale ground instantaneous field of view at a very high sampling rate (up to 50,000 points sec-1 in this study). We examined the ability to quantify foliar N of spring wheat (Triticum aestivum L.) and chlorophyll content of two broadleaf tree species saplings (Quercus macrocarpa and Acer saccharum) using a green (532 nm) terrestrial laser scanner. The return intensity of the reflected green laser light was significantly correlated with foliar N concentration of wheat (r2 = 0.68) and the foliar chlorophyll content (r2 = 0.77) of the broadleaf saplings. The results indicate that laser scanners are useful to obtain spatially explicit estimates of foliar biochemistry.

  19. Audio Podcasting in a Tablet PC-Enhanced Biochemistry Course

    ERIC Educational Resources Information Center

    Lyles, Heather; Robertson, Brian; Mangino, Michael; Cox, James R.

    2007-01-01

    This report describes the effects of making audio podcasts of all lectures in a large, basic biochemistry course promptly available to students. The audio podcasts complement a previously described approach in which a tablet PC is used to annotate PowerPoint slides with digital ink to produce electronic notes that can be archived. The fundamentals…

  20. Uncovering Students' Incorrect Ideas about Foundational Concepts for Biochemistry

    ERIC Educational Resources Information Center

    Villafane, Sachel M.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.

    2011-01-01

    This paper presents preliminary data on how an assessment instrument with a unique structure can be used to identify common incorrect ideas from prior coursework at the beginning of a biochemistry course, and to determine whether these ideas have changed by the end of the course. The twenty-one multiple-choice items address seven different…

  1. Using Assessment to Improve Learning in the Biochemistry Classroom

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2010-01-01

    In recent years, major drivers of undergraduate science education reform including the National Science Foundation (NSF) and the Howard Hughes Medical Institute (HHMI) have called on college and university instructors to take a more scientific approach to their teaching. Although many biochemistry instructors are gaining confidence in using…

  2. Serum haptoglobin in clinical biochemistry: change of a paradigm.

    PubMed

    Robert, L

    2013-12-01

    Serum haptoglobin (Hp) was discovered by Max Fernand Jayle as a young assistant professor in the Department of Biochemistry of the Paris Medical Faculty, headed by Professor Michel Polonovski. Jayle showed that Hp was an acute phase glycoprotein and worked out its routine determination in the blood-serum, based on its complex formation with hemoglobin, using the increased peroxidase activity of the hemoglobin-haptoglobin (Hb-Hp) complex, for routine determination in clinical biochemistry for the characterisation of inflammatory processes, together with other acute phase glycoproteins as orosomucoide. Later Smithies described the genetic control of human Hp-isoforms and quite recently Andersen et al. reported the elucidation of the crystal structure of the porcine Hb-Hp complex. In that article there was no mention of the discovery of Hp, neither of its determination in clinical biochemistry as an inflammatory marker. The only biologically significant role assigned to Hp by Andersen et al. is its (hypothetical) role to prevent or minimize the harmful effects of Hb during intravascular hemolysis, by the generation of reactive oxygen species (ROS) and complexing it. This shift of paradigm, not at all exceptional in medical biochemistry, will be described and discussed with its pitfalls and consequences. PMID:24011966

  3. Playing with a double-edged sword: Analogies in biochemistry

    NASA Astrophysics Data System (ADS)

    Orgill, Marykay

    Analogy pervades our everyday reasoning. No situation we encounter is exactly like a situation we have encountered previously, and our ability to learn and survive in the world is based on our ability to find similarities between past and present situations and use the knowledge we have gained from past situations to manage current situations. Analogies can be powerful teaching tools because they can make new material intelligible to students by comparing it to material that is already familiar. It is clear, though, that not all analogies are good and that not all good analogies are useful to all students. In this study, I have used textbook analysis, classroom observations, student interviews and instructor interviews to determine the role that analogies play in biochemistry learning. Analogies are an important teaching technique in biochemistry classes, being used more often in both biochemistry classes and textbooks than they are in high school chemistry classes and textbooks. Most biochemistry students like, pay particular attention to, and remember the analogies their instructors provide; and they use these analogies to understand, visualize, and recall information from class. Even though students like and use analogies, they do not understand what analogies are or the mechanism by which they improve learning. For the students, analogies are simply any teaching technique that eases understanding, visualization, or recall. Instructors, on the other hand, have a good understanding of what analogies are and of how they should be presented in class; but they do not use analogies as effectively as they should. They do not plan, explain or identify the limitations of the analogies they use in class. However, regardless of how effectively instructors present analogies in class, this study indicates that, in general, analogies are useful in promoting understanding, visualization, recall, and motivation in biochemistry students at all levels. They would be even more

  4. [Biochemistry for the benefit of humanity (practical achievements of my scientific work)].

    PubMed

    Huliĭ, M F

    2005-01-01

    Science unites theory and practice, but theory is always in advance. Even our works (mentioned above) which are also important for practice and were awarded the State prizes could not be made without preliminary theoretical investigations. It should be said that our works with elaborated methods of therapy and drugs to treat chronic alcoholism, drug addiction, leucosis are rather of theoretical than of practical importance. Some our works which proved that carbon dioxide is the basis of life are also of especially great theoretical value. The paper deals with the investigations devoted to the problems of biochemistry in cattle breeding (the raising of fat content in milk; elaboration of the efficient method of fodder ensilage; raising of milk yield using the drug "Karboxilin"; development of the methods of isolation of crystalline glucose-oxidase and catalase used for clarifying blood) as well as to the problems of biochemistry in medicine (creation of the drug "Microcid", antileucosis drug "Corectin", drugs "Medichronal" and "Medicit" for treating alcoholism and drug addiction, drug "Namacit" for hindering the organism aging). Great attention is given to the problem of relations between the theoretical conception concerning the importance of CO2 in vital activity of human and animal organism and production of new drugs. PMID:16335264

  5. Biochemistry Students' Ideas about Shape and Charge in Enzyme-Substrate Interactions

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2014-01-01

    Biochemistry is a visual discipline that requires students to develop an understanding of numerous representations. However, there is very little known about what students actually understand about the representations that are used to communicate ideas in biochemistry. This study investigated biochemistry students' understanding of multiple…

  6. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  7. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  8. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  9. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    SciTech Connect

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  10. Synthesis of Di- and Trisubstituted Azulenes Using a Danheiser Annulation as the Key Step: An Advanced Organic Laboratory Experiment

    ERIC Educational Resources Information Center

    Thomas, Rebecca M.; Shea, Kevin M.

    2013-01-01

    This three-week advanced-level organic experiment provides students with an inquiry-based approach focused on learning traditional skills such as primary literature interpretation, reaction design, flash column chromatography, and NMR analysis. Additionally, students address higher-order concepts such as the origin of azulene's blue color,…

  11. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt

  12. Genomics and Bioinformatics in Undergraduate Curricula: Contexts for Hybrid Laboratory/Lecture Courses for Entering and Advanced Science Students

    ERIC Educational Resources Information Center

    Temple, Louise; Cresawn, Steven G.; Monroe, Jonathan D.

    2010-01-01

    Emerging interest in genomics in the scientific community prompted biologists at James Madison University to create two courses at different levels to modernize the biology curriculum. The courses are hybrids of classroom and laboratory experiences. An upper level class uses raw sequence of a genome (plasmid or virus) as the subject on which to…

  13. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  14. Development of an Interdisciplinary Experimental Series for the Laboratory Courses of Cell and Molecular Biology and Advance Inorganic Chemistry

    ERIC Educational Resources Information Center

    Smith, Montserrat Rabago; McAllister, Robert; Newkirk, Kiera; Basing, Alexander; Wang, Lihua

    2012-01-01

    An interdisciplinary approach to education has become more important in the development of science and technology, which requires universities to have graduates with broad knowledge and skills and to apply these skills in solving real-world problems. An interdisciplinary experimental series has been developed for the laboratories in cell and…

  15. Synthesis and Multinuclear Lanthanide Shift Reagent NMR Analysis of 1- and 2-Adamantanol: An Advanced Undergraduate Laboratory Project.

    ERIC Educational Resources Information Center

    Schaeffer, Charles D., Jr.; Yoder, Claude H.

    1985-01-01

    Reports on a project used in a junior-level laboratory in which students prepare two alcohols, characterize these compounds, and use a shift reagent for structure determination and peak assignment. Background information, materials needed, procedures used, and typical results obtained are included. (JN)

  16. Synthesis of a Photoluminescent and Triboluminescent Copper(I) Compound: An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Marchetti, Fabio; Di Nicola, Corrado; Pettinari, Riccardo; Timokhin, Ivan; Pettinari, Claudio

    2012-01-01

    A simple synthesis is proposed from inexpensive reactants of a copper(I) derivative that exhibits strong photoluminescence and, in the crystalline form, exhibits strong triboluminescence. This laboratory provides an opportunity for introducing students to the phenomenon of triboluminescence. (Contains 1 scheme and 4 figures.)

  17. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  18. Biochemistry of microbial itaconic acid production

    PubMed Central

    Steiger, Matthias G.; Blumhoff, Marzena L.; Mattanovich, Diethard; Sauer, Michael

    2013-01-01

    Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid. PMID:23420787

  19. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  20. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  1. The Maillard reaction--illicite (bio)chemistry in tissues and food.

    PubMed

    Robert, L; Robert, A-M; Labat-Robert, J

    2011-12-01

    We present a review of our early work on the Maillard reaction, at the interface of food chemistry and tissue biochemistry, as well as the reinterpretation of our early findings in the light of recent advances in the chemistry of the involved reactions. These concern specifically the role of lower aldehydes, produced during the glycolytic pathways and especially acetaldehyde. We also review some of our recent findings on the cytotoxic and genotoxic aspect of these "illicit" organic reactions, taking place in tissues (and also in food products) besides the genetically "programmed" metabolic pathways. Some recent results in organic-pharmaceutical chemistry confirm the potential importance of the reviewed reactions both in food chemistry and in tissues as well as the pathological importance of reactions taking place in tissues. PMID:21640521

  2. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  3. Biochemistry and evolutionary biology: two disciplines that need each other?

    PubMed

    Cornish-Bowden, Athel; Pereto, Juli; Cardenas, Maria Luz

    2014-03-01

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the mechanisms that make evolution possible. Less well recognized, but just as important, understanding evolutionary biology is essential for understanding many details of biochemistry that would otherwise be mysterious, such as why the structures of NAD and other coenzymes are far more complicated than their functions would seem to require. Courses of biochemistry should thus pay attention to the essential role of evolution in selecting the molecules of life. PMID:24499786

  4. Alien Biochemistries and Their Metabolic By-Products. Lessons from Synthetic Biology

    NASA Astrophysics Data System (ADS)

    Benner, S.

    2014-03-01

    While the metabolisms of terran organisms are accessible for study and their byproducts are, for the most part, well known, the "diversity" of terran biology arises (as far as we know) from a single common ancestor, represents only a small fraction of possible chemical difersity, and may reflect only a fraction of the possible chemical diversity that might support Darwinian evolution [1]. This talk will consider laboratory experiments on origins [2] and synthetic biology [3], asking how they might inform us about alternative biochemistries, and whether we have any chance of observing remotely their by-products, recognizing the uncertanties in both our models for "weird life" and our models of abiotic processes in incompletely defined planetary environments.

  5. Assessment of learning gains in a flipped biochemistry classroom.

    PubMed

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of learning gains did differ and indicates a higher level of satisfaction with the flipped lecture format. PMID:26593859

  6. Enhanced podcasts for teaching biochemistry to veterinary students.

    PubMed

    Gough, Kevin C

    2011-01-01

    The teaching of biochemistry within medical disciplines presents certain challenges; firstly to relay a large body of complex facts and abstract concepts, and secondly to motivate students that this relatively difficult topic is worth their time to study. Here, nutrient biochemistry was taught within a multidisciplinary module as part of an undergraduate veterinary curriculum. The teaching approach was initially focussed on a mixture of didactic lectures and student-centred activities such as directed group/self learning. In subsequent years the core didactic lectures were replaced with enhanced podcasts covering the same material, along with the introduction of student presentations delivered within groups with both peer and facilitator assessment. These changes were accompanied by an increase in the time dedicated to this topic to allow sufficient time for students to work through podcasts and prepare presentations. The combination of these changes resulted in significant improvements in student performance within an in-course biochemistry long essay. These changes in the teaching approach, and particularly the introduction of extensive podcasts, was well received by students who perceived the process of going through the podcasts as time consuming but allowing them flexibility in both the pace that they studied this topic as well as the location and times that they studied it. PMID:22081546

  7. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  8. The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update

    SciTech Connect

    Epperly, T W

    2008-12-03

    This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

  9. Field and laboratory evaluations of commercial and next–generation alumina-forming austenitic foil for advanced recuperators

    DOE PAGESBeta

    Pint, Bruce A.; Dryepondt, Sebastien N.; Brady, Michael P.; Yamamoto, Yukinori; Ruan, Bo; Robert D. McKeirnan, Jr.

    2016-07-19

    Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. Furthermore, to reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testingmore » at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.« less

  10. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    ERIC Educational Resources Information Center

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  12. Recent advances in high pressure neutron scattering at the Spallation Neutron Source at Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Tulk, C.; dos Santos, A.; Klug, D.; Guthrie, M.; Machida, S.; Molaison, J.

    2012-12-01

    There have been significant improvements in the operation of the high pressure diffractometer, SNAP, at the Spallation Neutron Source over the past two years. This talk will highlight the current capacities which include low temperature systems, high temperature systems, and the introduction of new pressure cell technology that is based on supported diamond anvils and, with advances in software, is particularly suited for powder diffraction. Specific examples of our recent research will focus on high pressure transitions in hydrogen bonded systems such as methane and CO2 hydrate. The high pressure hexagonal phase of methane hydrate is studied to determine the nature of the hydrate cage loading, this provides detailed experimental data that will lead to better intermolecular potentials for methane - methane interactions, particularly when methane molecules are in close contact and strongly repelling. The high pressure structural systematics of carbon dioxide hydrate is reported. While the structural transformation sequence of most hydrates progress from sI (or sII) to the hexagonal form then to a flied ice structure, CO2 hydrate is an example of a system that skips the hexagonal phase and transforms directly into the filled ice structure. Finally examples of using SNAP to study disorder in amorphous systems will be given. Particularly amorphous vapor co-deposits of water, known as amorphous solid water, and clathrate forming molecules such as CO2, and the structural response of these systems to increased pressure at low temperature.

  13. Evaluation of advanced materials in laboratory tests and pilot-plant service for use in liquefaction letdown valves. Final report

    SciTech Connect

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Peterson, J.H.; Merz, W.E.

    1981-05-01

    The aim of this program was to obtain erosion data on a number of candidate valve materials under a range of slurry erosion conditions which would be useful to valve and process engineers involved in materials selection and valve design. The Battelle slurry erosion rig was used with reconstituted coal-derived slurries to erode candidate materials under a range of slurry velocity and impingement angle conditions. The materials studied were the cemented tungsten carbides: K 701, KZ 701 and K 703; and the ceramics silicon carbide (in the reaction-bonded, CVD and sintered alpha forms) and hot-pressed boron carbide. The erosive nature of slurries from two processes, SRC-1, and H-Coal were also investigated. The size distribution of insoluble solid particles in the slurries examined showed fairly close similarity between different coals processed in one plant, and for a given coal slurry from the two processes. Service trials with a reaction-bonded silicon carbide valve stem in a cemented tungsten carbide seat resulted in what was classified as a premature failure, but provided quite revealing data. The two materials had eroded in the same mode and at the same relative rates as observed in the laboratory rig tests. Analysis of the parts suggested that, in fact, the failure may have resulted from the contour to which the stem was machined rather than from poor materials erosion performance.

  14. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil

    NASA Astrophysics Data System (ADS)

    Macario, Kita D.; Oliveira, Fabiana M.; Carvalho, Carla; Santos, Guaciara M.; Xu, Xiaomei; Chanca, Ingrid S.; Alves, Eduardo Q.; Jou, Renata M.; Oliveira, Maria Isabela; Pereira, Bruna B.; Moreira, Vinicius; Muniz, Marcelo C.; Linares, Roberto; Gomes, Paulo Roberto Silveira; dos Anjos, Roberto Meigikos; Castro, Maikel D.; dos Anjos, Leandro; Marques, Aguinaldo N.; Rodrigues, Luiz Frederico

    2015-10-01

    In this paper, we summarize the sample preparation methods currently used at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. We also report on a series of results with regards to the graphitization protocol. Tests with different temperatures and baking times were performed, and carbon stable isotope ratios of graphite were measured by an EA-IRMS (elemental analyzer coupled with an isotopic ratio mass spectrometer) to infer the completeness of the graphitization reaction. We monitored the muffle furnace temperature using an independent thermocouple and found a -60 °C offset, which may have caused the lower graphitization yields (detected from the large isotopic fractionation on several reference materials targets). At a temperature of 520 °C, the isotopic fractionation in the graphitization reaction was systematically lower (-5‰ in average) and the overall scattering was reduced. As long as isotopic fractionation corrections are made using the online stable isotopes ratios provided by the AMS system, the accuracy of the 14C results should be maintained.

  15. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  16. Tackling diversity challenges in Geoscience with the "Advancing Space Science Undergraduate Research Experience" (ASSURE) program at UC Berkeley's Space Sciences Laboratory.

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Paglierani, R.; Shackelford, R. L., III; Peticolas, L. M.; Frappier, R.; Mendez, B.

    2014-12-01

    The Space Sciences Laboratory (SSL) has a long history of undergraduates working within the various research groups that range from theoretical astrophysics through to mechanical engineering. This year, we have established for the first time, a formal summer program for the undergraduate students, focusing on students traditionally underserved in Geosciences. This program, called the Advancing Space Science through Undergraduate Research Experiences program brings best-practiced methods to the development of a cohort, academic achievement, and research methodologies to the summer interns, with emphasis on the needs of underrepresented students who have not been exposed to a research environment before. In addition, specific care was given when recruiting for the program. Community College students recommend to us by faculty partners within the Colleges were recruited in order to provide them with hands on experience in a laboratory setting that they would not otherwise have had. In addition, we selected a number of pre- and in-service teachers from the STEM Teacher and Researcher Program (STAR) program. The combination of these two demographics of students has provided a unique and supportive environment for all involved.

  17. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  18. Hematological and Biochemistry Profile and Risk Factors Associated with Pulmonary Tuberculosis Patients in Guyana

    PubMed Central

    Kurup, Rajini; Flemming, Keon; Daniram, Sudish; Marks-James, Shenika; Roberts Martin, Roberta

    2016-01-01

    Objective. To evaluate the hematological and biochemistry profile of patients with or without HIV-TB at the Georgetown Chest Clinic, Guyana. Methods. An observational, laboratory based study was designed to assess the relationship of PTB and HIV with patients routine biochemical and hematological values. The study was conducted during the period January 2013 to December 2014; a total sample size of 316 patients was enrolled following exclusion and inclusion criteria. Results. Mean age of study population was 40.1 ± 13.8 (95% CI 38.6–41.7) and most were between 40 and 49 age group (27.8%, 95% CI 23.2–33.0). More males were in the study 74.4% (95% CI 69.3–78.8) than females 81% (95% CI 21.1–30.7). 30% (95% CI 25.3–35.3) had a sputum smear grade of 3+ and 62.5% (95% CI 47.0–75.7) showed a CD4 count <200. The study demonstrated significantly low hemoglobin (Hb) 91.7% (95% CI 78.2–97.1), low WBC 27.8% (95% CI 15.8–44.0), high indirect bilirubin 7.4% (95% CI 2.1–23.3), ALT 41.8% (95% CI 28.4–56.7), and AST 72.2% (95% CI 57.3–83.3) among TB-HIV patients. Homelessness RR (relative risk) 2.2 (95% CI 0.48–12.3), smoking RR 1.09 (95% CI 1.01–1.19), and gender (male) RR 1.2 (95% CI 0.61–2.26) were main associated risk factors. Conclusions. There is slight variation among PTB and PTB-HIV coinfected patients in some hematological and biochemistry parameters. PMID:27190646

  19. Serum biochemistry and electrophoretic patterns in the Eurasian Buzzard (Buteo buteo): reference values.

    PubMed

    Gelli, D; Ferrari, V; Franceschini, F; Lai, O; Laricchiuta, P; Zanella, A; Bernardini, D; Romagnoli, S

    2009-07-01

    In avian medicine, hematologic and biochemical laboratory investigations are still in their infancy, because of the difficulty involved in collecting data. This has led to a lack of reference values and a nonstandardized approach to specimens obtained in critical conditions. The Eurasian Buzzard (Buteo buteo) is one of the most common raptors in Italy, yet little is known about the physiologic blood parameters of this species. Serum biochemistry and electrophoretic investigations were performed in 40 healthy Eurasian Buzzards in different Italian wildlife rescue centers waiting to be released after recovering from trauma injuries. Mean values for biochemistry parameters were pancreatic amylase 626.9 IU/l, uric acid 7.5 mg/dl, aspartate aminotransferase 330.9 IU/l, glucose 375.1 mg/dl, lipase 26.3 IU/ l, total protein 38.4 g/l, total bilirubin 0.04 mg/ dl, lactate dehydrogenase 2,008.4 IU/l, creatinine kinase 1,604.1 IU/l, alanine aminotransferase 40.4 IU/l, alkaline phosphatase 89.8 IU/l, magnesium 2.3 mg/dl, calcium 10.2 mg/dl, phosphorus 2.02 mg/dl, cholesterol 192.2 mg/ dl, triglyceride 116.4 mg/dl, albumin 14.5 g/l, creatinine 0.1 mg/dl. Mean electrophoretic values were prealbumin 1.4 g/l, albumin 14.2 g/l, alpha 1 globulin 5.9 g/l, alpha 2 globulin 4.7 g/l, beta globulin 7.5 g/l, gamma globulin 3.6 g/l, albumin/globulins ratio 0.8 g/l. PMID:19617496

  20. Postprandial biochemistry changes in penguins (Spheniscus demersus) including hyperuricemia.

    PubMed

    Cray, Carolyn; Stremme, Donald W; Arheart, Kristopher L

    2010-06-01

    In a clinical setting, it is important to differentiate abnormal values that may be a normal change resulting from feeding and those that may be disease related. Such postprandial changes have been identified in mammalian and avian species. In the current study, pre- and postvalues for several routine biochemical analytes from penguins (Spheniscus demersus) were examined. Significant increases were found in uric acid, triglycerides, and bile acids (P < 0.001). Uric acid levels increased more than threefold. These data indicate that postprandial changes should be considered when interpreting abnormal biochemistry values in penguins. PMID:20597226

  1. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  2. Potential impact of the VITEK 2 system and the Advanced Expert System on the clinical laboratory of a university-based hospital.

    PubMed

    Sanders, C C; Peyret, M; Moland, E S; Cavalieri, S J; Shubert, C; Thomson, K S; Boeufgras, J M; Sanders, W E

    2001-07-01

    A study was designed to assess the impact of the VITEK 2 automated system and the Advanced Expert System (AES) on the clinical laboratory of a typical university-based hospital. A total of 259 consecutive, nonduplicate isolates of Enterobacteriaceae members, Pseudomonas aeruginosa, and Staphylococcus aureus were collected and tested by the VITEK 2 system for identification and antimicrobial susceptibility testing, and the results were analyzed by the AES. The results were also analyzed by a human expert and compared to the AES analyses. Among the 259 isolates included in this study, 245 (94.6%) were definitively identified by VITEK 2, requiring little input from laboratory staff. For 194 (74.9%) isolates, no inconsistencies between the identification of the strain and the antimicrobial susceptibility determined by VITEK 2 were detected by the AES. Thus, no input from laboratory staff was required for these strains. The AES suggested one or more corrections to results obtained with 65 strains to remove inconsistencies. The human expert thought that most of these corrections were appropriate and that some resulted from a failure of the VITEK 2 system to detect certain forms of resistance. Antimicrobial phenotypes assigned to the strains by the AES for beta-lactams, aminoglycosides, quinolones, macrolides, tetracyclines, and glycopeptides were similar to those assigned by the human expert for 95.7 to 100% of strains. These results indicate that the VITEK 2 system and AES can provide accurate information in tests for most of the clinical isolates examined and remove the need for human analysis of results for many. Certain problems were identified in the study that should be remediable with further work on the software supporting the AES. PMID:11427542

  3. Understanding Titan's Atmospheric Isotope Inventory through Laboratory Photolysis Experiments using Vacuum Ultraviolet Photons from Advanced Light Source Synchrotron

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.

    2015-12-01

    Titan, Saturn's planet-like moon with a thick atmosphere consists mainly of N2 (98.4 %) and CH4 (1.4%). It is debated whether the N2 is primordial, or the NH3, which later converted to N2 by physic-chemical processes and, if NH3 is primordial, what is the source of that material: Saturnian-subnebula or the comets? N2 is enriched in 15N (14N/15N = 160 compared to 272 for Earth) and in geochemical terminology, d15Nair = 700 ‰ (parts per thousand with respect to ambient air). On the same scale the solar wind and Jupiter's atmosphere are ~ -400 ‰ (depleted in 15N). The comets (NH3 and HCN) and insoluble organic matter in meteorites are also enriched in 15N in the range up to a few thousand ‰. On the contrary, the carbon isotopic ratio in CH4 in Titan is similar to the other solar system bodies (12C/13C~ 89). We have performed extensive low temperature (80 K) photodissociation of N2 and CO (in presence of H2) at VUV wavelengths to measure the isotopic fractionation in the products. The integrated instantaneous fractionation in the product NH3 is about 1000 ‰ over the N2 dissociation regime (80-100 nm), which arise due to quantum mechanical selection rules. CO2 and CH4, the products of CO photodissociation, show contradictory results for two elements. While product O (trapped in CO2) is enriched by few thousand ‰, there is no significant C isotopic enrichment in CH4. These laboratory measurements along with the measurements by Cassini-Huygens spacecraft constrain the origin of volatiles in Titan's atmosphere and indicate that Titan accreted comet-like NH3 and CH4, which are the 1st generation photolysis products (of the remaining materials after the formation of gas giants) in the solar nebula. Later, NH3 converted to N2 in a bulk fashion (within Titan) and retained mostly identical isotopic composition. 15N enrichment measured in HCN in the present day atmosphere (d15Nair > 1500 ‰), is possibly from the 2nd generation N2 photolysis in Titan's modern

  4. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation.

    PubMed

    Mascolo, Giuseppe; Ciannarella, Ruggero; Balest, Lydia; Lopez, Antonio

    2008-04-15

    The effectiveness of advanced oxidation processes in a batch and a flow reactor was investigated for the remediation of hydrocarbon pollution in the groundwater underlying a petrochemical industrial site. The main organic contaminants present in the groundwater were MTBE, benzene, alkyl-benzenes and alkyl-naphthalenes. Experimental results with a batch reactor showed that for all the organic contaminants the removal efficiency order is UV/TiO2 approximately UV/H2O2>UV (medium-pressure) in a synthetic aqueous solution, compared to UV/H2O2>UV (medium-pressure)>UV/TiO2 for the real polluted groundwater. The much lower performance of UV/TiO2 with respect to UV/H2O2 was inferred to the matrix of the groundwater, i.e. the salt content, as well as the organic and particulate matter. In fact, it is likely that the salts and dissolved organic matter quench the superoxide anion O2(-) and hydroxyl radicals just formed at the surface of the TiO2 catalyst. MTBE was the hardest compound to remove with each of the investigated treatments. UV and UV/TiO2 treatments were not able to reach a residual concentration of 10 microg/L (set by Italian legislation) even after 180 min. As for the UV/H2O2 process, only the MTBE degradation rate resulted affected by the initial H2O2 concentration, while for other compounds a complete removal was obtained within 20 min even with the lowest H2O2 concentration used (0.13 g/L). Only after 120 min of treatment, with an initial H2O2 concentration of 0.13 g/L, did the residual MTBE concentration fall below the above reported maximum admissible concentration. Instead, by using an initial concentration of 2g/L a residual concentration lower than 5 microg/L was obtained after just 30 min of reaction. The UV/H2O2 process was also investigated with a flow reactor. Results showed that it was more efficient than the batch reactor for removing MTBE, in terms of reaction time and initial H2O2 concentration required. This is consistent with the higher power of

  5. Ethanol Metabolism and the Transition from Organic Chemistry to Biochemistry

    NASA Astrophysics Data System (ADS)

    Feinman, Richard D.

    2001-09-01

    To ease the transition from organic chemistry at the beginning of a biochemistry course or at the beginning of the metabolism section of the organic course, an early presentation of the oxidation of ethanol is proposed. Alcohol dehydrogenase and aldehyde dehydrogenase reactions can smooth the introduction to biochemistry, since they involve three of the simplest compounds: ethanol, acetaldehyde, and acetic acid. Using these reactions as a model encourages the study of metabolic pathways by a systematic approach rather than by rote memorization. Reactions that can be presented as variations on a theme include methanol poisoning, the polyol reaction, and, most important, the sequence glycerol-3-phosphate to glyceraldehyde-3-phosphate to 3-phosphoglyceric acid. This last sequence integrates lipid and carbohydrate metabolism and, by comparison with the model reaction, brings out the principles of substrate-level phosphorylation. The method has evoked favorable verbal feedback from students and, in addition to medical and graduate courses, has been successfully used in the biochemical section of an undergraduate organic course.

  6. Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation

    PubMed Central

    Lal, Rup; Pandey, Gunjan; Sharma, Pooja; Kumari, Kirti; Malhotra, Shweta; Pandey, Rinku; Raina, Vishakha; Kohler, Hans-Peter E.; Holliger, Christof; Jackson, Colin; Oakeshott, John G.

    2010-01-01

    Summary: Lindane, the γ-isomer of hexachlorocyclohexane (HCH), is a potent insecticide. Purified lindane or unpurified mixtures of this and α-, β-, and δ-isomers of HCH were widely used as commercial insecticides in the last half of the 20th century. Large dumps of unused HCH isomers now constitute a major hazard because of their long residence times in soil and high nontarget toxicities. The major pathway for the aerobic degradation of HCH isomers in soil is the Lin pathway, and variants of this pathway will degrade all four of the HCH isomers although only slowly. Sequence differences in the primary LinA and LinB enzymes in the pathway play a key role in determining their ability to degrade the different isomers. LinA is a dehydrochlorinase, but little is known of its biochemistry. LinB is a hydrolytic dechlorinase that has been heterologously expressed and crystallized, and there is some understanding of the sequence-structure-function relationships underlying its substrate specificity and kinetics, although there are also some significant anomalies. The kinetics of some LinB variants are reported to be slow even for their preferred isomers. It is important to develop a better understanding of the biochemistries of the LinA and LinB variants and to use that knowledge to build better variants, because field trials of some bioremediation strategies based on the Lin pathway have yielded promising results but would not yet achieve economic levels of remediation. PMID:20197499

  7. The Use of Case Studies in an Undergraduate Biochemistry Course

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen

    1998-04-01

    Most college biochemistry courses are taught in a format in which the professor lectures and the student memorizes. Although this is the best method for conveying large amounts of material, it puts the student in the position of passive learner. The lecture-based format has not been abandoned, but has been supplemented with case study projects assigned to the students upon completion of the intermediary metabolism unit. The case study assignment is modeled on similar exercises carried out in medical school biochemistry courses in the US and around the world. A description of the assignment follows: a group of 4-5 students is given a case study which gives the medical history of a patient with an inherited metabolic disease. The group is asked to provide biochemical explanations for the patient's symptoms and to suggest an effective course of treatment. The evaluation consists of a short paper that the students write as a group. The assignment provides the opportunity for small group interaction within a larger class and emphasizes cooperative-collaborative learning. Students learn by researching the topic on their own and debating it in small group discussions, and in so doing, gain a sense of confidence in themselves and the material they have learned over the course of the semester. Solving a "real-life" problem helps develop analytical and higher-order thinking skills and allows the students to see how biochemical concepts they have learned apply to a clinical situation.

  8. The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.

    PubMed

    Boison, Detlev

    2016-01-01

    Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epileptic seizures. However, the current armamentarium of antiepileptic drugs is not effective in over 30% of patients, does not affect the comorbidities of epilepsy, and does not prevent the development and progression of epilepsy (epileptogenesis). Prevention of epilepsy and its progression remains the Holy Grail for epilepsy research and therapy development, requiring novel conceptual advances to find a solution to this urgent medical need. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In particular, global DNA hypermethylation appears to be associated with chronic epilepsy. Clinical as well as experimental evidence demonstrates that epilepsy and its progression can be prevented by biochemical manipulations and those that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This mini-review will discuss, epigenetic mechanisms implicated in epileptogenesis and biochemical interactions between adenosine and glycine as a conceptual advance to understand the contribution of maladaptive changes in biochemistry as a major contributing factor to the development of epilepsy. New findings based on biochemical manipulation of the DNA methylome suggest that: (i) epigenetic mechanisms play a functional role in epileptogenesis; and (ii) therapeutic reconstruction of the epigenome is an effective antiepileptogenic therapy. PMID:27147960

  9. The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine

    PubMed Central

    Boison, Detlev

    2016-01-01

    Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epileptic seizures. However, the current armamentarium of antiepileptic drugs is not effective in over 30% of patients, does not affect the comorbidities of epilepsy, and does not prevent the development and progression of epilepsy (epileptogenesis). Prevention of epilepsy and its progression remains the Holy Grail for epilepsy research and therapy development, requiring novel conceptual advances to find a solution to this urgent medical need. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In particular, global DNA hypermethylation appears to be associated with chronic epilepsy. Clinical as well as experimental evidence demonstrates that epilepsy and its progression can be prevented by biochemical manipulations and those that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This mini-review will discuss, epigenetic mechanisms implicated in epileptogenesis and biochemical interactions between adenosine and glycine as a conceptual advance to understand the contribution of maladaptive changes in biochemistry as a major contributing factor to the development of epilepsy. New findings based on biochemical manipulation of the DNA methylome suggest that: (i) epigenetic mechanisms play a functional role in epileptogenesis; and (ii) therapeutic reconstruction of the epigenome is an effective antiepileptogenic therapy. PMID:27147960

  10. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  11. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  12. [Development of biochemistry in the Biology Department of Kharkhov State University. Formation of a new direction--physiology and biochemistry of aging].

    PubMed

    Kalyman, P A; Chernyshenko, A A

    2000-01-01

    The article presents some data on teaching Biochemistry at the Nature Department of Kharkiv Imperial University Physico-Mathematical Faculty, as well as restoration of biochemical education and scientific researches as a result of the University reorganization in the Soviet period and foundation of the Biochemistry Chair at the Biological Faculty in the renovated Kharkiv State University. The analysis of scientific biochemical investigations conducted in the Kharkiv University till now is revealed. The special attention is paid to development of such a scientific trend as age physiology and biochemistry. The article deals with the comprehensive information on scientific and pedagogical activity of the outstanding scientists such as O. V. Nagorny and I. M. Bulankin as founders of the Kharkiv school of age physiology and biochemistry. The work has utilized some archive data. PMID:11200470

  13. Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM

    SciTech Connect

    Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

    2005-02-15

    At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

  14. Biochemistry Students' Ideas about How an Enzyme Interacts with a Substrate

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an…

  15. Suitable Class Experiments in Biochemistry for High-school Chemistry and Biology Courses.

    ERIC Educational Resources Information Center

    Myers, A.

    1987-01-01

    Illustrates the scope of experimental investigations for biochemistry education in high school biology and chemistry courses. Gives a brief overview of biochemistry experiments with proteins, enzymes, carbohydrates, lipids, nucleic acids, vitamins, metabolism, electron transport, and photosynthesis including materials, procedures, and outcomes.…

  16. What Are the Appropriate Curriculum Contents for Biochemistry Courses in Veterinary Medicine?

    ERIC Educational Resources Information Center

    Correia, A. A. D.; Correia, J. H. R. D.

    1995-01-01

    Presents an overview of the important items that the author's suggest should be included in a biochemistry course given to students in veterinary medicine. Presents a broad range of specific topics in biochemistry and strategies for covering as many topics as possible in one course. (LZ)

  17. Biochemistry Instructors' Views toward Developing and Assessing Visual Literacy in Their Courses

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Holme, Thomas A.

    2015-01-01

    Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students' visual literacy. However, visual literacy has…

  18. An Analysis of the Effectiveness of Analogy Use in College-Level Biochemistry Textbooks

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Bodner, George M.

    2006-01-01

    Science instructors and textbook authors often use analogies to help their students use information they already understand to develop an understanding of new concepts. This study reports the results of an analysis of the use of analogies in eight biochemistry textbooks, which included textbooks written for one-semester survey biochemistry courses…

  19. Case Study of How Turkish University Students Improve Their Biochemistry Achievement

    ERIC Educational Resources Information Center

    Sadi, Özlem

    2013-01-01

    Biochemistry courses have an important place as a common subject in faculties of medicine, food engineering, biology and chemistry. MSLQ, Metacognitive Awareness Inventory and Learning Approach Questionnaire were used. The study also involves repeated observations of the same instructor in a biochemistry class over eight weeks to describe…

  20. The Use of Contextual Learning to Teach Biochemistry to Dietetic Students

    ERIC Educational Resources Information Center

    Macaulay, J. O.; Van Damme, M. -P.; Walker, K. Z.

    2009-01-01

    This article describes the use of contextualized and "blended" learning to teach biochemistry to dietetic students during the second year of their professional training in a 4-year undergraduate degree (Bachelor of Nutrition and Dietetics). Contextualized content was used to engage students and motivate them to learn biochemistry, which many…

  1. Teaching Structure: Student Use of Software Tools for Understanding Macromolecular Structure in an Undergraduate Biochemistry Course

    ERIC Educational Resources Information Center

    Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…

  2. Teaching Arrangements of Carbohydrate Metabolism in Biochemistry Curriculum in Peking University Health Science Center

    ERIC Educational Resources Information Center

    Chen, Hao; Ni, Ju-Hua

    2013-01-01

    Biochemistry occupies a unique place in the medical school curricula, but the teaching of biochemistry presents certain challenges. One of these challenges is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach…

  3. Microburger Biochemistry: Extraction and Spectral Characterization of Myoglyobin from Hamburger

    NASA Astrophysics Data System (ADS)

    Bylkas, Sheri A.; Andersson, Laura A.

    1997-04-01

    This experiment provides a demonstration of useful biochemical methods at a Basic or Advanced Level, depending upon the available spectrophotometric equipment. The protocol combines protein extraction, ox-i-dation and reduction, and simple spectroscopic analysis, as well as gel filtration chromatography and generation/analysis of spectral scans. Mammalian myoglobin (Mb) is a monomeric O2-binding protein that functions in muscle to store oxygen. The single iron protoporphyrin IX (heme) group is bound to protein by the amino acid Histidine93. The common, stable forms, Met-Mb and Oxy-Mb are studied because in a non-living system, red Oxy-Mb is converted to brown Met-Mb as bound O2 molecule is released. Mb is easily extracted from steak, to illustrate and address why fresh meat is red and aged meat is brown; the protein has unique spectral properties that are diagnostic for characterization of sample identity. After application of heme redox chemical methods, the MetMb or OxyMb samples can be studied spectroscopically. The color change between Oxy-Mb and Met-Mb is dramatic (illustrating bright red fresh meat vs. brown older meat), and method(s) used in this laboratory are simple, inexpensive, and non-harmful to the student.

  4. The Marine Biological Laboratory (Woods Hole) and the scientific advancement of women in the early 20th century: the example of Mary Jane Hogue (1883-1962).

    PubMed

    Zottoli, Steven J; Seyfarth, Ernst-August

    2015-01-01

    The Marine Biological Laboratory (MBL) in Woods Hole, MA provided opportunities for women to conduct research in the late 19th and early 20th century at a time when many barriers existed to their pursuit of a scientific career. One woman who benefited from the welcoming environment at the MBL was Mary Jane Hogue. Her remarkable career as an experimental biologist spanned over 55 years. Hogue was born into a Quaker family in 1883 and received her undergraduate degree from Goucher College. She went to Germany to obtain an advanced degree, and her research at the University of Würzburg with Theodor Boveri resulted in her Ph.D. (1909). Although her research interests included experimental embryology, and the use of tissue culture to study a variety of cell types, she is considered foremost a protozoologist. Her extraordinary demonstration of chromidia (multiple fission) in the life history of a new species of Flabellula associated with diseased oyster beds is as important as it is ignored. We discuss Hogue's career path and her science to highlight the importance of an informal network of teachers, research advisors, and other women scientists at the MBL all of whom contributed to her success as a woman scientist. PMID:25103622

  5. Rasburicase in the prevention of laboratory/clinical tumour lysis syndrome in children with advanced mature B-NHL: a Children's Oncology Group Report.

    PubMed

    Galardy, Paul J; Hochberg, Jessica; Perkins, Sherrie L; Harrison, Lauren; Goldman, Stanton; Cairo, Mitchell S

    2013-11-01

    Laboratory (LTLS) and clinical (CTLS) tumour lysis syndrome (TLS) are frequent complications in newly diagnosed children with advanced mature B cell non-Hodgkin lymphoma (B-NHL). Rasburicase, compared to allopurinol, results in more rapid reduction of uric acid in paediatric patients at risk for TLS. However, the safety and efficacy of rasburicase for the treatment or or prevention of TLS has not been prospectively evaluated. Children with newly diagnosed stage III-IV, bone marrow(+) and/or central nervous system(+) mature B-NHL received hydration and rasburicase prior to cytoreductive therapy. Rasburicase was safe and well-tolerated and there were no grade III-IV toxicities probably or directly related to rasburicase. Patients with an initial lactate dehydrogenase ≥2× upper limit of normal had a significantly elevated uric acid level (P = 0·005), increased incidence of TLS (P-0·005) and lower glomerular filtration rate (GFR; P < 0·001). Following rasburicase, there was only a 9% and 5% incidence of LTLS and CTLS, respectively. Furthermore, there was a significant improvement in estimated GFR from Day 0 to Day 7 following rasburicase (P = 0·0007) and only 1·3% of patients required new onset renal assisted support after rasburicase administration. A TLS strategy incorporating rasburicase prior to cytoreductive chemotherapy proved safe and effective in preventing new onset renal failure and was associated with a significant improvement in GFR. PMID:24032600

  6. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  7. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  8. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.

  9. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  10. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  11. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  13. Whither life? Conjectures on the future evolution of biochemistry.

    PubMed

    Brewster, Jodi L; Finn, Thomas J; Ramirez, Miguel A; Patrick, Wayne M

    2016-08-01

    Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented. PMID:27555646

  14. The biochemistry and biology of the atypical chemokine receptors.

    PubMed

    Graham, G J; Locati, M; Mantovani, A; Rot, A; Thelen, M

    2012-07-30

    A subset of chemokine receptors, initially called "silent" on the basis of their apparent failure to activate conventional signalling events, has recently attracted growing interest due to their ability to internalize, degrade, or transport ligands and thus modify gradients and create functional chemokine patterns in tissues. These receptors recognize distinct and complementary sets of ligands with high affinity, are strategically expressed in different cellular contexts, and lack structural determinants supporting Gα(i) activation, a key signalling event in cell migration. This is in keeping with the hypothesis that they have evolved to fulfil fundamentally different functions to the classical signalling chemokine receptors. Based on these considerations, these receptors (D6, Duffy antigen receptor for chemokines (DARC), CCX-CKR1 and CXCR7) are now collectively considered as an emerging class of 'atypical' chemokine receptors. In this article, we review the biochemistry and biology of this emerging chemokine receptor subfamily. PMID:22698181

  15. Hallmarks of a new era in mitochondrial biochemistry

    PubMed Central

    Pagliarini, David J.; Rutter, Jared

    2013-01-01

    Stemming from the pioneering studies of bioenergetics in the 1950s, 1960s, and 1970s, mitochondria have become ingrained in the collective psyche of scientists as the “powerhouses” of the cell. While this remains a worthy moniker, more recent efforts have revealed that these organelles are home to a vast array of metabolic and signaling processes and possess a proteomic landscape that is both highly varied and largely uncharted. As mitochondrial dysfunction is increasingly being implicated in a spectrum of human diseases, it is imperative that we construct a more complete framework of these organelles by systematically defining the functions of their component parts. Powerful new approaches in biochemistry and systems biology are helping to fill in the gaps. PMID:24352419

  16. [Foundation and development of biochemistry at the Imperial Kharkov University].

    PubMed

    Kaliman, P A; Chernyshenko, A A

    2000-01-01

    The article summarizes the biochemical researches carried out at Kharkiv Imperial University from the middle of XIX century up to the cessation of its existence in 1920 as a result of transformation into the Kharkiv Institute of National Education. Scientific activity at the Chair of Medical Chemistry at Medical Department is described in details. Information on professors who led the chair and their researches are represented. Among them a great attention is spared to the Kharkiv works of such famous scientists as A. Danilevsky and V. Gulevich, who made a great contribution to the development of Russian and world biochemistry. There are also some resordes about researches of biological and physiological chemistry carried out at other chairs of Medical Department and Department of Physics and Mathematics of the Kharkiv University. In particular, the article presents the works of well-known plant physiologists and biochemists prof. V. Palladin and V. Zalessky, and the endocrinological researches led by prof. A. Reprev. PMID:10979572

  17. Whither life? Conjectures on the future evolution of biochemistry

    PubMed Central

    Brewster, Jodi L.; Finn, Thomas J.; Ramirez, Miguel A.

    2016-01-01

    Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented. PMID:27555646

  18. Reflections on my career in analytical chemistry and biochemistry

    PubMed Central

    SWEELEY, Charles C.

    2010-01-01

    My career has been focused in two major areas, analytical chemistry and biochemistry of complex lipids and glycoconjugates. Included here are the pioneering work on the gas chromatography of long-chain sphingolipid bases, carbohydrates, steroids and urinary organic acids. Mass spectrometry was utilized extensively in structural studies of sphingolipids, fatty acids, carbohydrates, steroids, urinary organic acids, polyisoprenoid alcohols, and juvenile hormone. Computer systems were developed for the acquisition and analysis of mass spectra, and were used for development of automated metabolic profiling of complex mixtures of metabolites. Fabry’s disease was discovered to be a glycosphingolipidosis. Enzymes of lysosomal metabolism of glycosphingolipids were purified, characterized, and used in one of the first demonstrations of the feasibility of enzyme replacement therapy in a lysosomal storage disorder (Fabry’s disease). Extracellular sialidases were studied to evaluate the hypothesis that they might be involved in the regulation of membrane growth factor receptors. The enzyme for hematoside synthesis was purified and characterized. PMID:20948176

  19. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  20. Biochemistry and physiological functions of ADAMTS7 metalloprotease

    PubMed Central

    Hanby, Hayley A.; Zheng, X. Long

    2013-01-01

    Here, we provide a comprehensive review of current findings concerning the biochemistry and physiological functions of ADAMTS7, a metalloprotease that is known to interact with cartilage oligomeric matrix protein, progranulin, and alpha2-macroglobulin. Such broad substrate specificity and potentially diverse physiological functions make ADAMTS7 an interesting enzyme to study. ADAMTS7 has been shown to play a role in the pathogenesis of arthritis and disc disorders. More recently, the ADAMTS7 locus is identified to have a strong association with coronary atherosclerotic disease. However, the role of ADAMTS7 in the development of atherosclerosis is yet to be determined. The development of an easy and high throughput assay for ADAMTS7 activity and appropriate animal models will allow us to uncover the novel mechanisms of coronary arterial disease. PMID:24222922

  1. Probing RNA–protein networks: biochemistry meets genomics

    PubMed Central

    Campbell, Zachary T.; Wickens, Marvin

    2015-01-01

    RNA–protein interactions are pervasive. The specificity of these interactions dictates which RNAs are controlled by what protein. Here we describe a class of revolutionary new methods that enable global views of RNA-binding specificity in vitro, for both single proteins and multiprotein complexes. In vitro methods provide insight into central issues in RNA regulation in living cells, including understanding the balance between free and bound components in cells, the basis for exclusion of binding sites in vivo, detection of binding events in the absence of discernible regulatory elements, and new approaches to targeting specific cellular RNAs by design. Comparisons of in vitro and in vivo binding provide a foundation for comprehensive understanding of the biochemistry of protein-mediated RNA regulatory networks. PMID:25636997

  2. [V.N. Karazin Kharkov National University as the foundation of biochemistry in Ukraine].

    PubMed

    Kaliman, P A

    2007-01-01

    The paper deals with the data on foundation and development of physiological chemistry (biochemistry) as independent science and education subject in the V. N. Karazin Kharkov National University before and after the organization of the Department of Physiological Chemistry. Studying the chemistry of natural compounds, their qualitative and quantitative content and transformations in living organisms both by foreign and home researchers made the basis for the appearance of physiological chemistry as static biochemistry. The improvement of the investigation methods and further discoveries caused the appearing of new branches--dynamic and functional biochemistry. The attention is paid to the fact that biochemistry arised at the Kharkov University as the education subject (A. I. Khodnev) and then developed as independent science due to efforts of A. Ya. Danilevskiy as well as biochemical school created by him. The Kazan' and Kharkov periods of scientific activity of A.Ya. Danilevskiy are described. The leading role of A. Ya. Danilevskiy in development of the home school of biochemistry is considered. Important role of A. V. Palladin in the foundation of Kharkov biochemists' school and organization of the Scientific-research Institute of Biochemistry in Kharkov is considered as well. It is stated that the Institute of Biochemistry after its arrival to Kiev and joining the Academy of Sciences became the center of Ukrainian biochemistry. The role of A. V. Nagorny and I. N. Bulankin in further development of biochemistry and foundation of a new scientific branch--age-related physiology and biochemistry--at the Kharkov University after its re-organization is discussed. PMID:18030743

  3. Integrating Responsible Conduct of Research Education into Undergraduate Biochemistry and Molecular Biology Laboratory Curricula

    ERIC Educational Resources Information Center

    Hendrickson, Tamara L.

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…

  4. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  5. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    PubMed

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. PMID:24556245

  6. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies

    USGS Publications Warehouse

    Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A.

    2009-01-01

    For two decades, remotely sensed data from imaging spectrometers have been used to estimate non-pigment biochemical constituents of vegetation, including water, nitrogen, cellulose, and lignin. This interest has been motivated by the important role that these substances play in physiological processes such as photosynthesis, their relationships with ecosystem processes such as litter decomposition and nutrient cycling, and their use in identifying key plant species and functional groups. This paper reviews three areas of research to improve the application of imaging spectrometers to quantify non-pigment biochemical constituents of plants. First, we examine recent empirical and modeling studies that have advanced our understanding of leaf and canopy reflectance spectra in relation to plant biochemistry. Next, we present recent examples of how spectroscopic remote sensing methods are applied to characterize vegetation canopies, communities and ecosystems. Third, we highlight the latest developments in using imaging spectrometer data to quantify net primary production (NPP) over large geographic areas. Finally, we discuss the major challenges in quantifying non-pigment biochemical constituents of plant canopies from remotely sensed spectra.

  7. A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(e) and Its Derivatives

    PubMed Central

    Lonsdale, Derrick

    2006-01-01

    Thiamin(e), also known as vitamin B1, is now known to play a fundamental role in energy metabolism. Its discovery followed from the original early research on the ‘anti-beriberi factor’ found in rice polishings. After its synthesis in 1936, it led to many years of research to find its action in treating beriberi, a lethal scourge known for thousands of years, particularly in cultures dependent on rice as a staple. This paper refers to the previously described symptomatology of beriberi, emphasizing that it differs from that in pure, experimentally induced thiamine deficiency in human subjects. Emphasis is placed on some of the more unusual manifestations of thiamine deficiency and its potential role in modern nutrition. Its biochemistry and pathophysiology are discussed and some of the less common conditions associated with thiamine deficiency are reviewed. An understanding of the role of thiamine in modern nutrition is crucial in the rapidly advancing knowledge applicable to Complementary Alternative Medicine. References are given that provide insight into the use of this vitamin in clinical conditions that are not usually associated with nutritional deficiency. The role of allithiamine and its synthetic derivatives is discussed. Thiamine plays a vital role in metabolism of glucose. Thus, emphasis is placed on the fact that ingestion of excessive simple carbohydrates automatically increases the need for this vitamin. This is referred to as high calorie malnutrition. PMID:16550223

  8. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    PubMed Central

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  9. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  10. Propaganda and Philanthropy: The Institute Bento da Rocha Cabral, the Lisbon Site of Biochemistry (1925-1953).

    PubMed

    Carneiro, Ana; Amaral, Isabel

    2015-05-01

    This paper focuses on the internal organization and dynamics of the Institute Bento da Rocha Cabral (IRC) in Lisbon, a privately-funded institution devoted to biomedical research, from the particular vantage point of its laboratory of biochemistry; in particular, the process through which the institution turned from medically-related to chemically-related research in the period spanning from 1925 to 1953. The history of the IRC raises interesting questions regarding the social politics of science as it materialized the desire of leading physicians of the Faculty of Medicine of Lisbon to create proper physical facilities for medically-related scientific research. We argue that the process which led to the creation of the IRC coincided with the gradual professional and political ascendance of physicians in Portuguese society initiated in the late nineteenth century, and is closely associated with Portuguese republicanism and the process of Lisbon becoming the scientific capital. PMID:26309197

  11. Engagement of students with lectures in biochemistry and pharmacology.

    PubMed

    Davis, Elizabeth Ann; Hodgson, Yvonne; Macaulay, Janet Olwyn

    2012-01-01

    Academic staff at universities have become concerned about the decrease in student attendance at lectures and the implication of this on student achievement and learning. Few studies have measured actual lecture attendance in a coherent or comprehensive way. The aim of this study was to measure actual lecture attendance of students over two year levels enrolled in two separate science disciplines, biochemistry and pharmacology. The study further sought to determine the factors that influence lecture attendance. Attendance at lectures in four units of study was monitored over a 12-week semester. Attendance at lectures decreased over the semester and was lower at early morning lectures (8 A.M.; 9 A.M.). A questionnaire surveying students about their preparation for lectures, their compensation for missed lectures and the factors influencing their nonattendance was administered at the end of the semester. Students reported that the major factors influencing their attendance at lectures related to timetable issues and the quality of lecturing. If students missed lectures, the majority read the lecture notes and listened to the online recordings. The availability of online recordings of lectures was not a major influence on attendance at lectures. In three of the four units studied there was no correlation between self-reported lecture attendance and exam performance. The results of the study indicate that universities should dedicate more resources to timetabling and to supporting staff to improve the quality of their lectures. PMID:22987551

  12. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans

    PubMed Central

    Palego, Lionella; Betti, Laura; Rossi, Alessandra; Giannaccini, Gino

    2016-01-01

    L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the “kynurenine shunt” which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD+). This review aims therefore at tracing a “map” of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field. PMID:26881063

  13. Contributions of nuclear magnetic resonance to renal biochemistry

    SciTech Connect

    Ross, B.; Freeman, D.; Chan, L.

    1986-01-01

    /sup 31/P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of /sup 31/P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure of either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique /sup 31/P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references.

  14. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans.

    PubMed

    Palego, Lionella; Betti, Laura; Rossi, Alessandra; Giannaccini, Gino

    2016-01-01

    L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field. PMID:26881063

  15. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Zernicke, R. F.; Grindeland, R. E.; Kaplansky, A.; Durnova, G. N.; Li, K. C.; Martinez, D. A.

    1990-01-01

    The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.

  16. Learning Biochemistry through Manga--Helping Students Learn and Remember, and Making Lectures More Exciting.

    ERIC Educational Resources Information Center

    Nagata, Ryoichi

    1999-01-01

    Uses panels taken from manga, Japanese comics and cartoons, to supplement explanations of biochemical terms and topics in biochemistry classes. Results indicate that the use of manga helped students remember what they had learned. (Author/CCM)

  17. Commentary: Why Abandoning Undergraduate Laboratories Is Not an Option

    ERIC Educational Resources Information Center

    Costa, Manuel Joao

    2010-01-01

    Laboratory exercises (labs) are sometimes regarded as dispensable in biochemistry and molecular biology (BMB) education for various reasons including a combination of increased class costs and small budget allocations, pressing demands for more time to lecture to fit in new BMB discoveries within constant time span of courses, and the fact that…

  18. Development of a Green Fluorescent Protein-Based Laboratory Curriculum

    ERIC Educational Resources Information Center

    Larkin, Patrick D.; Hartberg, Yasha

    2005-01-01

    A laboratory curriculum has been designed for an undergraduate biochemistry course that focuses on the investigation of the green fluorescent protein (GFP). The sequence of procedures extends from analysis of the DNA sequence through PCR amplification, recombinant plasmid DNA synthesis, bacterial transformation, expression, isolation, and…

  19. Seeding the Physical and Analytical Laboratory Curriculum with Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Reutt-Robey, Janice; Blough, Neil; Rebbert, Richard

    1999-02-01

    For the past five years, the Department of Chemistry and Biochemistry at the University of Maryland at College Park has worked to modernize all facets of the undergraduate laboratory experience. Students in the first-year biochemistry laboratory now utilize modern techniques in biochemistry and molecular biology to isolate and characterize the bacterial enzyme alkaline phosphatase. Organic chemistry laboratories are now conducted exclusively with microware. New laboratory-intensive introductory chemistry courses have been developed for out chemistry majors. This Highlight describes innovations in three upper-division laboratories, Physical Chemistry Laboratories I and II and Instrumental Methods of Analysis. Beyond serving as an experimental practicum, an important goal of these laboratories is that students begin to gain an appreciation for the power of chemical measurements to probe the properties of more complex chemical systems. Since physical and analytical methods are increasingly applied to biochemical systems in research, in industrial processes, and in health and environmental regulation, it is appropriate to introduce experiments involving biochemical, environmental, and materials systems to these upper-division laboratories.

  20. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    PubMed

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative. PMID:27065234

  1. Need assessment of enhancing the weightage of applied biochemistry in the undergraduate curriculum at MGIMS, sevagram.

    PubMed

    Kumar, Satish; Jena, Lingaraja; Vagha, Jayant

    2016-05-01

    In order to review the need assessment of enhancing the weightage of Applied Biochemistry in the undergraduate curriculum at Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sevagram, a validated questionnaire was sent to 453 participants which include 387 undergraduate students, 11 interns, 23 postgraduate students, and 32 faculty members. A web-based data collection and analysis tool was designed for online questionnaire distribution, data collection, and analysis. Response rate was 100%. Most of the respondents agreed that the subject Biochemistry has relevance in clinical practice (81.24%) and applied based learning of Biochemistry by medical undergraduates would help in overall improvement in the health standards/patients care (83.44%). According to 65.12% respondents, most of the medical undergraduates read Biochemistry just for examination purpose only. Nearly half of the respondents agreed that minute details of biochemical reactions were not much useful in clinical practice (53.86%) and the vast majority of diagrammatic cycles memorized by the medical undergraduates had no relevance in clinical practice (51.21%), the decreased interest in learning the Applied Biochemistry was due to more amount of clinically irrelevant information taught to medical undergraduates (73.51%), there was a need to rethink for removing the diagrammatic biochemical cycles from curriculum for medical undergraduates (48.12%), the less learning of Applied Biochemistry or competencies would affect the clinical skills and knowledge of medical undergraduates (70.42%). The result of this study suggests that there is need for restructuring the Biochemistry curriculum with more clinical relevance. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:230-240, 2016. PMID:26900873

  2. ASVCP guidelines: allowable total error guidelines for biochemistry.

    PubMed

    Harr, Kendal E; Flatland, Bente; Nabity, Mary; Freeman, Kathleen P

    2013-12-01

    As all laboratory equipment ages and contains components that may degrade with time, initial and periodically scheduled performance assessment is required to verify accurate and precise results over the life of the instrument. As veterinary patients may present to general practitioners and then to referral hospitals (both of which may each perform in-clinic laboratory analyses using different instruments), and given that general practitioners may send samples to reference laboratories, there is a need for comparability of results across instruments and methods. Allowable total error (TEa ) is a simple comparative quality concept used to define acceptable analytical performance. These guidelines are recommendations for determination and interpretation of TEa for commonly measured biochemical analytes in cats, dogs, and horses for equipment commonly used in veterinary diagnostic medicine. TEa values recommended herein are aimed at all veterinary settings, both private in-clinic laboratories using point-of-care analyzers and larger reference laboratories using more complex equipment. They represent the largest TEa possible without generating laboratory variation that would impact clinical decision making. TEa can be used for (1) assessment of an individual instrument's analytical performance, which is of benefit if one uses this information during instrument selection or assessment of in-clinic instrument performance, (2) Quality Control validation, and (3) as a measure of agreement or comparability of results from different laboratories (eg, between the in-clinic analyzer and the reference laboratory). These guidelines define a straightforward approach to assessment of instrument analytical performance. PMID:24320779

  3. Advancing our knowledge in biochemistry, genetics, and microbiology through studies on tryptophan metabolism.

    PubMed

    Yanofsky, C

    2001-01-01

    I was fortunate to practice science during the last half of the previous century, when many basic biological and biochemical concepts could be experimentally addressed for the first time. My introduction to research involved isolating and identifying intermediates in the niacin biosynthetic pathway. These studies were followed by investigations focused on determining the properties of genes and enzymes essential to metabolism and examining how they were alterable by mutation. The most challenging problem I initially attacked was establishing the colinear relationship between gene and protein. Subsequent research emphasized identification and characterization of regulatory mechanisms that microorganisms use to control gene expression. An elaborate regulatory strategy, transcription attenuation, was discovered that is often based on selection between alternative RNA structures. Throughout my career I enjoyed the excitement of solving basic scientific problems. Most rewarding, however, was the feeling that I was helping young scientists experience the pleasure of performing creative research. PMID:11395401

  4. Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives.

    PubMed

    Ghimire, Gopal Prasad; Thuan, Nguyen Huy; Koirala, Niranjan; Sohng, Jae Kyung

    2016-03-01

    Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented. PMID:26643964

  5. Interdisciplinary Explorations: Promoting Critical Thinking via Problem-Based Learning in an Advanced Biochemistry Class

    ERIC Educational Resources Information Center

    Cowden, Chapel D.; Santiago, Manuel F.

    2016-01-01

    Interdisciplinary approaches to research in the sciences have become increasingly important in solving a wide range of pressing problems at both global and local levels. It is imperative then that science majors in higher education understand the need for exploring information from a wide array of disciplines. With this in mind, interdisciplinary…

  6. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  7. Assessment for learning with Objectively Structured Practical Examination in Biochemistry

    PubMed Central

    Jaswal, Shivani; Chattwal, Jugesh; Kaur, Jasbinder; Gupta, Seema; Singh, Tejinder

    2015-01-01

    Context: Despite a radical shift in assessment methodologies over the last decade, the majority of medical colleges still follow the Traditional Practical Examination (TPE). TPE raises concerns about examiner variability, standardization, and uniformity of assessment. To address these issues and in line with the notion of assessments as motivating what and how students learn, Objectively Structured Practical Examination (OSPE) was introduced, as an assessment modality. Despite its usefulness, awareness and motivation to use the same, still needs to be probed. Aims: To implement OSPE in the assessment of practical skills in biochemistry, and to know student and faculty perspectives regarding OSPE. Settings and Design: OSPE was introduced at the stage of formative assessment of practical skills, for 94 year one MBBS students. Subjects and Methods: Students were divided into two groups; the first group was evaluated by the traditional method and the second by OSPE. Students were crossed over on a second examination. The mean score obtained by both the methods was compared statistically. Students and faculty perspectives regarding OSPE were obtained by a questionnaire. Student performance was compared using “Bland–Altman technique,” and Student's t-test. Results: The mean scores of students was found to be significantly higher (P < 0.0001) when assessed with OSPE as compared to TPE. Number of students achieving >70% marks was also significantly higher with OSPE. Validity was supported by a significant correlation coefficient of comparison of marks by the two methods. Feedback from students and faculty indicated that they endorsed OSPE. Conclusions: This evaluation demonstrated the need for a structured approach to assessment. Going in line with the notion that assessment drives learning, introducing OSPE would help tailoring teaching-learning to optimize student satisfaction and learning. PMID:26380217

  8. Bridging the Gap between Theory, Research and Practice: The Role of Child Development Laboratory Programs in Early Childhood Education. Advances in Early Education and Day Care, Volume 12.

    ERIC Educational Resources Information Center

    McBride, Brent A., Ed.; Barbour, Nancy E., Ed.

    The three-fold mission of facilitating and supporting teaching, research, and outreach activities has guided the actions of university-based child development laboratory programs since their inception. In recent years, campuses have reconsidered, reconceptualized, and restructured the ways in which these laboratory programs fit within the agendas…

  9. Teaching Biochemistry at Lisbon University--Facing the Challenge of the Bologna Declaration in the 25th Anniversary of the Biochemistry Course

    ERIC Educational Resources Information Center

    Farinha, Carlos M.; Freire, Ana Ponces

    2007-01-01

    The biochemistry degree has been taught at Lisbon University for 25 years. Since its creation, the curriculum is characterized for being widely eclectic and multidisciplinary. The adoption of the concepts proposed in Europe by the Declaration of Bologna and incorporation of these ideas at Lisbon University is discussed here for the biochemistry…

  10. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    ERIC Educational Resources Information Center

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  11. A Streamlined Western Blot Exercise: An Efficient and Greener Approach in the Laboratory Classroom

    ERIC Educational Resources Information Center

    Ness, Traci L.; Robinson, Rebekah L.; Mojadedi, Wais; Peavy, Lydia; Weiland, Mitch H.

    2015-01-01

    SDS-PAGE and western blotting are two commonly taught protein detection techniques in biochemistry and molecular biology laboratory classrooms. A pitfall associated with incorporating these techniques into the laboratory is the significant wait times that do not allow students to obtain timely results. The waiting associated with SDS-PAGE comes…

  12. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  13. Brewing Beer in the Laboratory: Grain Amylases and Yeast's Sweet Tooth

    ERIC Educational Resources Information Center

    Gillespie, Blake; Deutschman, William A.

    2010-01-01

    Brewing beer provides a straightforward and robust laboratory counterpart to classroom discussions of fermentation, a staple of the biochemistry curriculum. An exercise is described that provides several connections between lecture and laboratory content. Students first extract fermentable carbohydrates from whole grains, then ferment these with…

  14. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  15. Medical biochemistry in Macedonia: a profession for physicians and natural scientists.

    PubMed

    Traikovska, S; Dzhekova-Stojkova, S

    2001-06-01

    Medical biochemistry or clinical chemistry in its roots is an interdisciplinary science between natural sciences and medicine. The largest part of medical biochemistry is natural science (chemistry, biochemistry, biology, physics, mathematics), which is very well integrated in deduction of medical problems. Medical biochemistry throughout the world, including Macedonia, should be a professional field open to both physicians and natural scientists, according to its historical development, theoretical characteristics and applied practice. Physicians and natural scientists follow the same route in clinical chemistry during the postgraduate training of specialization in medical biochemistry/clinical chemistry. However, in Macedonia the specialization in medical biochemistry/clinical chemistry is today regulated by law only for physicians and pharmacists. The study of clinical chemistry in Europe has shown its interdisciplinary character. In most European countries different professions, such as physicians, chemists/biochemists, pharmacists, biologists and others could specialize in clinical chemistry. The question for the next generation of specialists in Macedonia is whether to accept the present conditions or to attempt to change the law to include chemists/biochemists and biologists as well. The latter used to be a practice in Macedonia 20 years ago, and still is in many European countries. Such change in law would also result in changes in the postgraduate educational program in medical biochemistry in Macedonia. The new postgraduate program has to follow the European Syllabus, recommended by EC4. To obtain sufficient knowledge in clinical chemistry, the duration of vocational training (undergraduate and postgraduate) for all trainees (physicians, pharmaceutics, chemists/biochemists and biologists) should be 8 years. PMID:11506455

  16. Predictors of performance of students in biochemistry in a doctor of chiropractic curriculum

    PubMed Central

    Shaw, Kathy; Rabatsky, Ali; Dishman, Veronica; Meseke, Christopher

    2014-01-01

    Objective This study investigated the effect of completion of course prerequisites, undergraduate grade point average (GPA), undergraduate degree, and study habits on the performance of students in the biochemistry course at Palmer College of Chiropractic Florida. Methods Students self-reported information regarding academic preparation at the beginning of the semester using a questionnaire. Final exam grade and final course grade were noted and used as measures of performance. Multivariate analysis of variance was used to determine if number of prerequisites completed, undergraduate GPA, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program were associated significantly with the biochemistry final exam grade or the final grade for the biochemistry course. Results The number of prerequisites completed, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program did not significantly affect the biochemistry final exam grade or the final grade for the biochemistry course, but undergraduate GPA did. Subsequent univariate analysis and Tukey's post hoc comparisons revealed that students with an undergraduate GPA in the 3.5 to 3.99 range earned significantly higher final course grades than students with an undergraduate GPA in the 2.5 to 2.99 range. Conclusion No single variable was determined to be a factor that determines student success in biochemistry. The interrelationship between the factors examined warrants further investigation to understand fully how to predict the success of a student in the biochemistry course. PMID:24295362

  17. The macromolecular crystallography facility at the advanced light source

    NASA Astrophysics Data System (ADS)

    Earnest, Thomas; Padmore, Howard; Cork, Carl; Behrsing, Rolf; Kim, Sung-Hou

    1996-10-01

    Synchrotron radiation offers several advantages over the use of rotating anode sources for biological crystallography, which allow for the collection of higher-resolution data, substantially more rapid data collection, phasing by multiwavelength anomalous diffraction (MAD) techniques, and time-resolved experiments using polychromatic radiation (Laue diffraction). The use of synchrotron radiation is often necessary to record useful data from crystals which diffract weakly or have very large unit cells. The high brightness and stability characteristics of the advanced light source (ALS) at Lawrence Berkeley National Laboratory, along with the low emittance and long straight sections to accommodate insertion devices present in third generation synchrotrons like the ALS, lead to several advantages in the field of macromolecular crystallography. We are presently constructing a macromolecular crystallography facility at the ALS which is optimized for user-friendliness and high-throughput data collection, with advanced capabilities for MAD and Laue experiments. The X-rays will be directed to three branchlines. A well-equipped support lab will be available for biochemistry, crystal mounting and sample storage, as well as computer hardware and software available, along with staff support, allowing for the complete processing of data on site.

  18. A Focused Assignment Encouraging Deep Reading in Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Spiegelberg, Bryan D.

    2014-01-01

    Encouraging undergraduate students to access, read, and analyze current primary literature can positively impact learning, especially in advanced courses. The incorporation of literature into coursework typically involves reading and responding to full research reports. Such exercises have clear value as students make connections between…

  19. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  20. A synthetic biochemistry molecular purge valve module that maintains redox balance.

    PubMed

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2014-01-01

    The greatest potential environmental benefit of metabolic engineering would be the production of high-volume commodity chemicals, such as biofuels. Yet, the high yields required for the economic viability of low-value chemicals is particularly hard to achieve in microbes owing to the myriad competing biochemical pathways. An alternative approach, which we call synthetic biochemistry, is to eliminate the organism by constructing biochemical pathways in vitro. Viable synthetic biochemistry, however, will require simple methods to replace the cellular circuitry that maintains cofactor balance. Here we design a simple purge valve module for maintaining NADP(+)/NADPH balance. We test the purge valve in the production of polyhydroxybutyryl bioplastic and isoprene--pathways where cofactor generation and utilization are unbalanced. We find that the regulatory system is highly robust to variations in cofactor levels and readily transportable. The molecular purge valve provides a step towards developing continuously operating, sustainable synthetic biochemistry systems. PMID:24936528

  1. The biochemistry of blister fluid from pediatric burn injuries: proteomics and metabolomics aspects.

    PubMed

    Zang, Tuo; Broszczak, Daniel A; Broadbent, James A; Cuttle, Leila; Lu, Haitao; Parker, Tony J

    2016-01-01

    Burn injury is a prevalent and traumatic event for pediatric patients. At present, the diagnosis of burn injury severity is subjective and lacks a clinically relevant quantitative measure. This is due in part to a lack of knowledge surrounding the biochemistry of burn injuries and that of blister fluid. A more complete understanding of the blister fluid biochemistry may open new avenues for diagnostic and prognostic development. Burn insult induces a highly complex network of signaling processes and numerous changes within various biochemical systems, which can ultimately be examined using proteome and metabolome measurements. This review reports on the current understanding of burn wound biochemistry and outlines a technical approach for 'omics' profiling of blister fluid from burn wounds of differing severity. PMID:26581649

  2. Final Report for DE-SC0002298 Agency Number: DE-PS02-09ER09-01 An Advanced Network and distributed Storage Laboratory (ANDSL) for Data Intensive Science

    SciTech Connect

    Livny, Miron

    2014-08-17

    The original intent of this project was to build and operate an Advanced Network and Distributed Storage Laboratory (ANDSL) for Data Intensive Science that will prepare the Open Science Grid (OSG) community for a new generation of wide area communication capabilities operating at a 100Gb rate. Given the significant cut in our proposed budget we changed the scope of the ANDSL to focus on the software aspects of the laboratory – workload generators and monitoring tools and on the offering of experimental data to the ANI project. The main contributions of our work are twofold: early end-user input and experimental data to the ANI project and software tools for conducting large scale end-to-end data placement experiments.

  3. FY2001 Final Report Laboratory Directed Research and Development (LDRD) on Advanced Nuclear Fuel Design in the Future Nuclear Energy Market

    SciTech Connect

    Christensen, D.; Choi, J.-S.; DiSabatino, A.; Wirth, B.

    2001-09-30

    This study is to research the maturity of advanced nuclear fuel and cladding technology and to explore the suitability of existing technology for addressing the emerging requirements for Generation IV reactors and emerging thermal/fast spectrum reactors, while simultaneously addressing nuclear waste management, and proliferation resistance concerns.

  4. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  5. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    ERIC Educational Resources Information Center

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  6. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  7. Diverse Assessment and Active Student Engagement Sustain Deep Learning: A Comparative Study of Outcomes in Two Parallel Introductory Biochemistry Courses

    ERIC Educational Resources Information Center

    Bevan, Samantha J.; Chan, Cecilia W. L.; Tanner, Julian A.

    2014-01-01

    Although there is increasing evidence for a relationship between courses that emphasize student engagement and achievement of student deep learning, there is a paucity of quantitative comparative studies in a biochemistry and molecular biology context. Here, we present a pedagogical study in two contrasting parallel biochemistry introductory…

  8. Students' Ability to Organize Biochemical and Biochemistry-Related Terms Correlates with Their Performance in a Biochemical Examination

    ERIC Educational Resources Information Center

    Nagata, Ryoichi

    2007-01-01

    Organization is believed to be related to understanding and memory. Whether this belief was applicable in biochemical education was examined about two years after students had experienced biochemistry classes in their first year. The ability of organizing information in biochemistry was judged from the number of correct links of 886 biochemical…

  9. Teaching Technical and Professional Skills Using a Laboratory Exercise: A Comparison of Two Methods of Plasmid Preparation

    ERIC Educational Resources Information Center

    Brown, Lesley R.

    2006-01-01

    This laboratory exercise encourages upper level biochemistry students to build and expand upon previously developed laboratory skills and knowledge as they conduct a comparison of two methods of plasmid preparation based upon cost, quality of product, production time, and environmental impact. Besides creating an environment that mimics a more…

  10. Teaching foundational topics and scientific skills in biochemistry within the conceptual framework of HIV protease.

    PubMed

    Johnson, R Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a perfect framework for integrating foundational topics in biochemistry around a big picture scientific and societal issue. Herein, I describe a series of classroom exercises that integrate foundational topics in biochemistry around the structure, biology, and therapeutic inhibition of HIV protease. These exercises center on foundational topics in biochemistry including thermodynamics, acid/base properties, protein structure, ligand binding, and enzymatic catalysis. The exercises also incorporate regular student practice of scientific skills including analysis of primary literature, evaluation of scientific data, and presentation of technical scientific arguments. Through the exercises, students also gain experience accessing computational biochemical resources such as the protein data bank, Proteopedia, and protein visualization software. As these HIV centered exercises cover foundational topics common to all first semester biochemistry courses, these exercises should appeal to a broad audience of undergraduate students and should be readily integrated into a variety of teaching styles and classroom sizes. PMID:24652697

  11. Improving Student Understanding of Lipids Concepts in a Biochemistry Course Using Test-Enhanced Learning

    ERIC Educational Resources Information Center

    Horn, Savannah; Hernick, Marcy

    2015-01-01

    Test-enhanced learning has successfully been used as a means to enhance learning and promote knowledge retention in students. We have examined whether this approach could be used in a biochemistry course to enhance student learning about lipids-related concepts. Students were provided access to two optional learning modules with questions related…

  12. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    ERIC Educational Resources Information Center

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  13. Reversible Ligand Binding Reactions: Why Do Biochemistry Students Have Trouble Connecting the Dots?

    ERIC Educational Resources Information Center

    Sears, Duane W.; Thompson, Scott E.; Saxon, S. Robin

    2007-01-01

    Adaptive chemical behavior is essential for an organism's function and survival, and it is no surprise that biological systems are capable of responding both rapidly and selectively to chemical changes in the environment. To elucidate an organism's biochemistry, its chemical reactions need to be characterized in ways that reflect the normal…

  14. Introductory Course Based on a Single Problem: Learning Nucleic Acid Biochemistry from AIDS Research

    ERIC Educational Resources Information Center

    Grover, Neena

    2004-01-01

    In departure from the standard approach of using several problems to cover specific topics in a class, I use a single problem to cover the contents of the entire semester-equivalent biochemistry classes. I have developed a problem-based service-learning (PBSL) problem on HIV/AIDS to cover nucleic acid concepts that are typically taught in the…

  15. Book Review: "The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second Edition"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complexity of the biological, chemical, and physical interactions occurring in the volume of soil surrounding the root of a growing plant dictates that a multidisciplinary approach must be taken to improve our understanding of this rhizosphere. Hence, "The Rhizosphere: Biochemistry and Organic S...

  16. Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry

    ERIC Educational Resources Information Center

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…

  17. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    ERIC Educational Resources Information Center

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  18. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  19. Using a Scholarly Approach to Improve Teaching and Learning in Biochemistry Higher Education

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2012-01-01

    Although the biochemistry education community is far from avoiding conversations about improving teaching and learning, reexamining individual and community teaching practices through the lens of the scholarship of teaching and learning (SoTL) is critical for continued growth and improvement. The contemporary vision of SoTL, which has been…

  20. Teaching of Biochemistry in Medical School: A Well-Trodden Pathway?

    ERIC Educational Resources Information Center

    Mathews, Michael B.; Stagnaro-Green, Alex

    2008-01-01

    Biochemistry and molecular biology occupy a unique place in the medical school curriculum. They are frequently studied prior to medical school and are fundamental to the teaching of biomedical sciences in undergraduate medical education. These two circumstances, and the trend toward increased integration among the disciplines, have led to…