Science.gov

Sample records for advanced biofuels consortium

  1. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  2. Advanced biofuel production in microbes.

    PubMed

    Peralta-Yahya, Pamela P; Keasling, Jay D

    2010-02-01

    The cost-effective production of biofuels from renewable materials will begin to address energy security and climate change concerns. Ethanol, naturally produced by microorganisms, is currently the major biofuel in the transportation sector. However, its low energy content and incompatibility with existing fuel distribution and storage infrastructure limits its economic use in the future. Advanced biofuels, such as long chain alcohols and isoprenoid- and fatty acid-based biofuels, have physical properties that more closely resemble petroleum-derived fuels, and as such are an attractive alternative for the future supplementation or replacement of petroleum-derived fuels. Here, we review recent developments in the engineering of metabolic pathways for the production of known and potential advanced biofuels by microorganisms. We concentrate on the metabolic engineering of genetically tractable organisms such as Escherichia coli and Saccharomyces cerevisiae for the production of these advanced biofuels.

  3. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  4. Analysis of advanced biofuels.

    SciTech Connect

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  5. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Federal Register on April 16, 2010 (75 FR 20085), with a 60-day comment period that ended June 15, 2010... producer'' provisions for determining whether an advanced biofuel producer of biogas or solid advanced biofuels is a ``larger producer'' or a ``smaller producer.'' For biogas and solid advanced biofuel,...

  6. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Service Rural Utilities Service 7 CFR Part 4288 RIN 0570-AA75 Advanced Biofuel Payment Program; Correction... Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. This... contracts with advanced biofuel producers to pay such producers for the production of eligible...

  7. TERRA: Building New Communities for Advanced Biofuels

    ScienceCinema

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    2016-07-12

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  8. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  9. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  10. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories. PMID:26667057

  11. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  12. Metabolic engineering of microbial pathways for advanced biofuels production.

    PubMed

    Zhang, Fuzhong; Rodriguez, Sarah; Keasling, Jay D

    2011-12-01

    Production of biofuels from renewable resources such as cellulosic biomass provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the conversion of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Here, we review recently engineered biosynthetic pathways from the well-characterized microorganisms Escherichia coli and Saccharomyces cerevisiae for the production of several advanced biofuels.

  13. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  14. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  15. Microbial engineering for the production of advanced biofuels.

    PubMed

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  16. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

  17. The Consortium for Advancing Renewable Energy Technology (CARET)

    NASA Technical Reports Server (NTRS)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  18. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  19. 76 FR 13345 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... for the Advanced Biofuel Payment Program, which can be found at 76 FR 7936 (February 11, 2011). B...,900,000 million BTUs of biogas and solid advanced biofuel per year. (In calculating whether a...

  20. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  1. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  2. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity...

  3. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  4. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  5. 75 FR 24865 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... support and ensure an expanding production of Advanced Biofuels. Under this Notice, applications will be... greenhouse gases. The Agency will authorize up to $40 million in funding for this program for fiscal year (FY... expanding production of Advanced Biofuels by providing payments to Eligible Advanced Biofuel...

  6. Biofuels: biomolecular engineering fundamentals and advances.

    PubMed

    Li, Han; Cann, Anthony F; Liao, James C

    2010-01-01

    The biological production of fuels from renewable sources has been regarded as a feasible solution to the energy and environmental problems in the foreseeable future. Recently, the biofuel product spectrum has expanded from ethanol and fatty acid methyl esters (biodiesel) to other molecules, such as higher alcohols and alkanes, with more desirable fuel properties. In general, biosynthesis of these fuel molecules can be divided into two phases: carbon chain elongation and functional modification. In addition to natural fatty acid and isoprenoid chain elongation pathways, keto acid-based chain elongation followed by decarboxylation and reduction has been explored for higher alcohol production. Other issues such as metabolic balance, strain robustness, and industrial production process efficiency have also been addressed. These successes may provide both scientific insights into and practical applications toward the ultimate goal of sustainable fuel production.

  7. Biofuels

    NASA Video Gallery

    What’s green, slimy and packed full of energy? Algae, of course! This biofuel is just one of the many renewable energies NASA studies. Biofuels could generate and store energy for long-term human...

  8. CASL: The Consortium for Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Kothe, Douglas B.

    2010-11-01

    Like the fusion community, the nuclear engineering community is embarking on a new computational effort to create integrated, multiphysics simulations. The Consortium for Advanced Simulation of Light Water Reactors (CASL), one of 3 newly-funded DOE Energy Innovation Hubs, brings together an exceptionally capable team that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated the Virtual Reactor (VR), will: 1) Enable the use of leadership-class computing for engineering design and analysis to improve reactor capabilities, 2) Promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities, 3) Develop a highly integrated multiphysics environment for engineering analysis through increased fidelity methods, and 4) Incorporate UQ as a basis for developing priorities and supporting, application of the VR tools for predictive simulation. In this presentation, we present the plans for CASL and comment on the similarity and differences with the proposed Fusion Simulation Project (FSP).

  9. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    NASA Astrophysics Data System (ADS)

    Goyal, Garima

    Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface

  10. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  11. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  12. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design.

    PubMed

    Xie, Shangxian; Syrenne, Ryan; Sun, Su; Yuan, Joshua S

    2014-06-01

    Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.

  13. 11th Annual NIH Pain Consortium Symposium on Advances in Pain Research | Division of Cancer Prevention

    Cancer.gov

    The NIH Pain Consortium will convene the 11th Annual NIH Pain Consortium Symposium on Advances in Pain Research, featuring keynote speakers and expert panel sessions on Innovative Models and Methods. The first keynote address will be delivered by David J. Clark, MD, PhD, Stanford University entitled “Challenges of Translational Pain Research: What Makes a Good Model?” |

  14. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka T.; et al

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  15. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  16. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  17. Prospective and development of butanol as an advanced biofuel.

    PubMed

    Xue, Chuang; Zhao, Xin-Qing; Liu, Chen-Guang; Chen, Li-Jie; Bai, Feng-Wu

    2013-12-01

    Butanol has been acknowledged as an advanced biofuel, but its production through acetone-butanol-ethanol (ABE) fermentation by clostridia is still not economically competitive, due to low butanol yield and titer. In this article, update progress in butanol production is reviewed. Low price and sustainable feedstocks such as lignocellulosic residues and dedicated energy crops are needed for butanol production at large scale to save feedstock cost, but processes are more complicated, compared to those established for ABE fermentation from sugar- and starch-based feedstocks. While rational designs targeting individual genes, enzymes or pathways are effective for improving butanol yield, global and systems strategies are more reasonable for engineering strains with stress tolerance controlled by multigenes. Compared to solvent-producing clostridia, engineering heterologous species such as Escherichia coli and Saccharomyces cerevisiae with butanol pathway might be a solution for eliminating the formation of major byproducts acetone and ethanol so that butanol yield can be improved significantly. Although batch fermentation has been practiced for butanol production in industry, continuous operation is more productive for large scale production of butanol as a biofuel, but a single chemostat bioreactor cannot achieve this goal for the biphasic ABE fermentation, and tanks-in-series systems should be optimized for alternative feedstocks and new strains. Moreover, energy saving is limited for the distillation system, even total solvents in the fermentation broth are increased significantly, since solvents are distilled to ~40% by the beer stripper, and more than 95% water is removed with the stillage without phase change, even with conventional distillation systems, needless to say that advanced chemical engineering technologies can distil solvents up to ~90% with the beer stripper, and the multistage pressure columns can well balance energy consumption for solvent fraction

  18. Life cycle assessment of cellulosic and advanced biofuel crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating the carbon intensity of biofuel production is important in order to meet greenhouse gas (GHG) targets set by government policy. Nitrous oxide emissions are the largest source and soil carbon the largest sink of GHGs for determining the carbon intensity of biofuels during their production ...

  19. Improving Butanol Fermentation To Enter the Advanced Biofuel Market

    PubMed Central

    Tracy, Bryan P.

    2012-01-01

    ABSTRACT 1-Butanol is a large-volume, intermediate chemical with favorable physical and chemical properties for blending with or directly substituting for gasoline. The per-volume value of butanol, as a chemical, is sufficient for investing into the recommercialization of the classical acetone-butanol-ethanol (ABE) (E. M. Green, Curr. Opin. Biotechnol. 22:337–343, 2011) fermentation process. Furthermore, with modest improvements in three areas of the ABE process, operating costs can be sufficiently decreased to make butanol an economically viable advanced biofuel. The three areas of greatest interest are (i) maximizing yields of butanol on any particular substrate, (ii) expanding substrate utilization capabilities of the host microorganism, and (iii) reducing the energy consumption of the overall production process, in particular the separation and purification operations. In their study in the September/October 2012 issue of mBio, Jang et al. [mBio 3(5):e00314-12, 2012] describe a comprehensive study on driving glucose metabolism in Clostridium acetobutylicum to the production of butanol. Moreover, they execute a metabolic engineering strategy to achieve the highest yet reported yields of butanol on glucose. PMID:23232720

  20. BTS fact sheet: Ryan Homes and the Consortium for Advanced Residential Buildings

    SciTech Connect

    1999-05-07

    Through Building America's unique collaboration process, Ryan Homes, the US Department of Energy, the National Renewable Energy Laboratory, and the Consortium for Advanced Residential Buildings worked together to identify ways to incorporate money-saving energy features throughout the Carborne house.

  1. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGES

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  2. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  3. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    SciTech Connect

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  4. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  5. Molecular breeding of advanced microorganisms for biofuel production.

    PubMed

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  6. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances

    SciTech Connect

    Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M; Seibert, M.; Darzins, A.

    2008-01-01

    Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

  7. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; Gross, Andrew J.; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  8. The Good, the Bad, and the Ugly: Comparing the Climate Mitigation Potential of Advanced Biofuels

    NASA Astrophysics Data System (ADS)

    Cassidy, E. S.

    2014-12-01

    The federal policy known as the Renewable Fuel Standard mandates that by 2022, 21 billion gallons of advanced biofuels will be used in the U.S. fuel supply. So far this policy has resulted in drastically increased production of corn ethanol and only a small amount of advanced fuels. While most corn ethanol plants are not required to achieve a reduction in greenhouse gas emissions (when compared to gasoline), advanced biofuels are required to reduce emissions by 50 or 60 percent. But not all fuels that qualify for advanced status according to the Environmental Protection Agency have the same climate mitigation potential. This study ranks advanced fuel pathways approved by the EPA from good, to bad…to worse. Climate mitigation potential of these fuels is compared to previous research and examined using the EPA's modeling framework.

  9. 75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ..., 2010 at 75 FR 20085 proposing a payment program for producers of advanced biofuels to supporting... INFORMATION CONTACT: Requests for additional information should be directed to Diane Berger, (202) 260-1508. SUPPLEMENTARY INFORMATION: Correction In the Federal Register of April 16, 2010, in FR Doc. 2010-8278, on...

  10. 75 FR 50986 - Notice of Contract Proposal (NOCP) for Payments to Eligible Advanced Biofuel Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... 12, 2010 at 75 FR 11836 for the distribution of the remaining available Fiscal Year 2009 program...) requested advanced biofuels producers determined eligible under the June 12, 2009, NOCP (74 FR 27998) to... determined eligible under the June 12, 2009 NOCP (74 FR 27998) to submit a request for additional payment...

  11. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  12. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel

    2016-07-12

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  13. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.

    PubMed

    Bokinsky, Gregory; Peralta-Yahya, Pamela P; George, Anthe; Holmes, Bradley M; Steen, Eric J; Dietrich, Jeffrey; Lee, Taek Soon; Tullman-Ercek, Danielle; Voigt, Christopher A; Simmons, Blake A; Keasling, Jay D

    2011-12-13

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  14. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    PubMed Central

    Bokinsky, Gregory; Peralta-Yahya, Pamela P.; George, Anthe; Holmes, Bradley M.; Steen, Eric J.; Dietrich, Jeffrey; Soon Lee, Taek; Tullman-Ercek, Danielle; Voigt, Christopher A.; Simmons, Blake A.; Keasling, Jay D.

    2011-01-01

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  15. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  16. Processing of cellulose for the advancement of biofuels

    NASA Astrophysics Data System (ADS)

    Watson, Brian James

    2011-12-01

    The enzymatic degradation of cellulose polymers is currently a rate-limiting step in the bioconversion of biomass to biofuels. Cellulose polymers self assemble to form crystalline structures stabilized by a complex network of intermolecular interactions such as hydrogen bonding. The network of interactions in crystalline cellulose (cellulose nanostructure) poses an energy barrier that limits enzymatic degradation as apparent from the activity of Cel5H. To improve the degradability of cellulose the intermolecular interactions must be disrupted. The interactions of the cellulose nanostructure prevent solubilization by water and most other common solvents, but some organic solvents aid degradation of cellulose suggesting they influence cellulose nanostructure. The objective of this work is to understand the influence of solvents on cellulose nanostructure with the goal of improving the degradability of cellulose nanostructure using solvents. To understand solvent interaction with cellulose, phosphoric acid was used to first solubilize cellulose (PAS cellulose) followed by adding an organic liquid or water to wash the phosphate from the system. The Flory Huggins theory was used to predict wash liquids that could favorably interact with cellulose. A favorable wash liquid was predicted to prevent the reformation of crystalline domains to yield a disrupted cellulose nanostructure, which should be more degradable. Low molecular weight alcohols and glycols were calculated to be favorable wash liquids. Washing PAS cellulose with the predicted favorable liquids yielded semi-transparent gel-like materials compared to the opaque white precipitate formed when water or unfavorable solvents were used in the wash. Fractal analysis of small angle neutron scattering (SANS) of these apparent gels indicated cellulose polymers likely have the properties of clustered rods. This partial disruption increased degradability relative to the water washed PAS cellulose. The apparent rod

  17. Identification and microbial production of a terpene-based advanced biofuel

    PubMed Central

    Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  18. Identification and microbial production of a terpene-based advanced biofuel.

    PubMed

    Peralta-Yahya, Pamela P; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l(-1). We produce bisabolene in Saccharomyces cerevisiae (>900 mg l(-1)), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  19. An integrated approach: advances in the use of Clostridium for biofuel.

    PubMed

    Kök, M Samil

    2015-01-01

    Almost 90% of our energy comes from fossil fuels, which are both limited and polluting, hence the need to find alternative sources. Biofuels can provide a sustainable and renewable source of energy for the future. Recent significant advances in genetic engineering and fermentation technology have made microbial bio-based production of chemicals from renewable resources more viable. Clostridium species are considered as promising micro-organisms for the production of a wide range of chemicals for industrial use. However, a number of scientific challenges still need to be overcome to facilitate an economically viable production system. These include the use of cheap non-food-based substrates, a better understanding of the metabolic processes involved, improvement of strains through genetic engineering and innovation in process technology. This paper reviews recent developments in these areas, advancing the use of Clostridium within an industrial context especially for the production of biofuels.

  20. An integrated approach: advances in the use of Clostridium for biofuel.

    PubMed

    Kök, M Samil

    2015-01-01

    Almost 90% of our energy comes from fossil fuels, which are both limited and polluting, hence the need to find alternative sources. Biofuels can provide a sustainable and renewable source of energy for the future. Recent significant advances in genetic engineering and fermentation technology have made microbial bio-based production of chemicals from renewable resources more viable. Clostridium species are considered as promising micro-organisms for the production of a wide range of chemicals for industrial use. However, a number of scientific challenges still need to be overcome to facilitate an economically viable production system. These include the use of cheap non-food-based substrates, a better understanding of the metabolic processes involved, improvement of strains through genetic engineering and innovation in process technology. This paper reviews recent developments in these areas, advancing the use of Clostridium within an industrial context especially for the production of biofuels. PMID:27160660

  1. Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Franceschini, Fausto; Evans, Thomas M.; Gehin, Jess C.

    2016-02-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.

  2. From fields to fuels: recent advances in the microbial production of biofuels.

    PubMed

    Kung, Yan; Runguphan, Weerawat; Keasling, Jay D

    2012-11-16

    Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.

  3. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    PubMed

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges.

  4. Genetic resources for advanced biofuel production described with the Gene Ontology

    PubMed Central

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  5. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE PAGES

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  6. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  7. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  8. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  9. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics "core simulator" based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  10. Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation.

    PubMed

    Heeres, Arjan S; Schroën, Karin; Heijnen, Joseph J; van der Wielen, Luuk A M; Cuellar, Maria C

    2015-08-01

    Developments in synthetic biology enabled the microbial production of long chain hydrocarbons, which can be used as advanced biofuels in aviation or transportation. Currently, these fuels are not economically competitive due to their production costs. The current process offers room for improvement: by utilizing lignocellulosic feedstock, increasing microbial yields, and using cheaper process technology. Gravity separation is an example of the latter, for which droplet growth by coalescence is crucial. The aim of this study was to study the effect of fermentation broth components on droplet coalescence. Droplet coalescence was measured using two setups: a microfluidic chip and regular laboratory scale stirred vessel (2 L). Some fermentation broth components had a large impact on droplet coalescence. Especially components present in hydrolysed cellulosic biomass and mannoproteins from the yeast cell wall retard coalescence. To achieve a technically feasible gravity separation that can be integrated with the fermentation, the negative effects of these components on coalescence should be minimized. This could be achieved by redesign of the fermentation medium or adjusting the fermentation conditions, aiming to minimize the release of surface active components by the microorganisms. This way, another step can be made towards economically feasible advanced biofuel production.

  11. The Connecticut Cardiovascular Consortium: a unique, state-wide research collaboration to advance clinical outcomes in patients with heart disease.

    PubMed

    Boden, W E; McKay, R G; Cabin, H S; Radford, M J; Krumholz, H M; Zaret, B L; Garner, L; Bull, M B; Fisherkeller, M; Kosinski, E J; Krauthamer, M J; Maljanian, R; McDowell, A V; Sands, M J; Schwartz, K V; Seltzer, J P; Hager, J D

    2001-10-01

    The establishment of "best clinical practices" founded upon evidence-based medicine has become an increasingly important priority. Frequently, management guidelines are derived from published research data and disseminated among practitioners to help optimize patient care. The ultimate clinical impact of these guidelines in the "real world," however, is often clouded by an incomplete assessment of patient outcomes throughout the continuum of health-care delivery models. In order to address this gap in clinical outcome assessment, we propose to establish the Connecticut Cardiovascular Consortium. The Consortium will consist of a collaborative partnership among all 31 Connecticut hospitals working in concert with Connecticut Office of Health Care Access (OHCA). The primary objective of the Consortium will be to assess, compare, and optimize clinical outcomes among Connecticut residents with cardiovascular disease. As an initial goal for the Consortium, we further propose to undertake a prospective, observational study of Connecticut residents who present with ST Segment Elevation Acute Myocardial Infarction (STEMI). Recent advances in pharmacologic and mechanical reperfusion for STEMI have resulted in a need to define the optimal use of these therapies in the community at large. The primary purpose of this study will be to determine the relative merits of different treatment patterns for STEMI with regard to the use of fibrinolytic therapy and percutaneous coronary intervention (PCI). Particular emphasis will be placed on assessing the relative benefits of urgent mechanical revascularization performed at the state's seven tertiary facilities with PCI capability compared to all other treatment modalities. Successful completion of this unique collaborative endeavor is expected to have significant impact on improved patient care and on current health-care policy for medical resource allocation. Moreover, continued collaboration of health-care providers within the

  12. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  13. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.

    PubMed

    Tippmann, Stefan; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2013-12-01

    Isoprenoids denote the largest group of chemicals in the plant kingdom and are employed for a wide range of applications in the food and pharmaceutical industry. In recent years, isoprenoids have additionally been recognized as suitable replacements for petroleum-derived fuels and could thus promote the transition towards a more sustainable society. To realize the biofuel potential of isoprenoids, a very efficient production system is required. While complex chemical structures as well as the low abundance in nature demonstrate the shortcomings of chemical synthesis and plant extraction, isoprenoids can be produced by genetically engineered microorganisms from renewable carbon sources. In this article, we summarize the development of isoprenoid applications from flavors and pharmaceuticals to advanced biofuels and review the strategies to design microbial cell factories, focusing on Saccharomyces cerevisiae for the production of these compounds. While the high complexity of biosynthetic pathways and the toxicity of certain isoprenoids still denote challenges that need to be addressed, metabolic engineering has enabled large-scale production of several terpenoids and thus, the utilization of these compounds is likely to expand in the future.

  14. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene.

    PubMed

    Phelan, Ryan M; Sekurova, Olga N; Keasling, Jay D; Zotchev, Sergey B

    2015-04-17

    The past decade has witnessed a large influx of research toward the creation of sustainable, biologically derived fuels. While significant effort has been exerted to improve production capacity in common hosts, such as Escherichia coli or Saccharomyces cerevisiae, studies concerning alternate microbes comparatively lag. In an effort to expand the breadth of characterized hosts for fuel production, we map the terpene biosynthetic pathway in a model actinobacterium, Streptomyces venezuelae, and further alter secondary metabolism to afford the advanced biofuel precursor bisabolene. Leveraging information gained from study of the native isoprenoid pathway, we were able to increase bisabolene titer nearly 5-fold over the base production strain, more than 2 orders of magnitude greater than the combined terpene yield in the wild-type host. We also explored production on carbon sources of varying complexity to, notably, define this host as one able to perform consolidated bioprocessing.

  15. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals.

    PubMed

    Mukhopadhyay, Aindrila

    2015-08-01

    During microbial production of solvent-like compounds, such as advanced biofuels and bulk chemicals, accumulation of the final product can negatively impact the cultivation of the host microbe and limit the production levels. Consequently, improving solvent tolerance is becoming an essential aspect of engineering microbial production strains. Mechanisms ranging from chaperones to transcriptional factors have been used to obtain solvent-tolerant strains. However, alleviating growth inhibition does not invariably result in increased production. Transporters specifically have emerged as a powerful category of proteins that bestow tolerance and often improve production but are difficult targets for cellular expression. Here we review strain engineering, primarily as it pertains to bacterial solvent tolerance, and the benefits and challenges associated with the expression of membrane-localized transporters in improving solvent tolerance and production.

  16. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  17. Stimulating learning-by-doing in advanced biofuels: effectiveness of alternative policies

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Khanna, Madhu; Yeh, Sonia

    2012-12-01

    This letter examines the effectiveness of various biofuel and climate policies in reducing future processing costs of cellulosic biofuels due to learning-by-doing. These policies include a biofuel production mandate alone and supplementing the biofuel mandate with other policies, namely a national low carbon fuel standard, a cellulosic biofuel production tax credit or a carbon price policy. We find that the binding biofuel targets considered here can reduce the unit processing cost of cellulosic ethanol by about 30% to 70% between 2015 and 2035 depending on the assumptions about learning rates and initial costs of biofuel production. The cost in 2035 is more sensitive to the speed with which learning occurs and less sensitive to uncertainty in the initial production cost. With learning rates of 5-10%, cellulosic biofuels will still be at least 40% more expensive than liquid fossil fuels in 2035. The addition of supplementary low carbon/tax credit policies to the mandate that enhance incentives for cellulosic biofuels can achieve similar reductions in these costs several years earlier than the mandate alone; the extent of these incentives differs across policies and different kinds of cellulosic biofuels.

  18. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production.

    PubMed

    Ruan, Zhenhua; Zanotti, Michael; Archer, Steven; Liao, Wei; Liu, Yan

    2014-07-01

    A combined hydrolysis process, which first mixed dilute acid- and alkali-pretreated corn stover at a 1:1 (w/w) ratio, directly followed by enzymatic saccharification without pH adjustment, has been developed in this study in order to minimize the need of neutralization, detoxification, and washing during the process of lignocellulosic biofuel production. The oleaginous fungus Mortierella isabellina was selected and applied to the combined hydrolysate as well as a synthetic medium to compare fungal lipid accumulation and biodiesel production in both shake flask and 7.5L fermentor. Fungal cultivation on combined hydrolysate exhibited comparable cell mass and lipid yield with those from synthetic medium, indicating that the integration of combined hydrolysis with oleaginous fungal lipid fermentation has great potential to improve performance of advanced lignocellulosic biofuel production.

  19. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  20. The Meaning of CAPHE. A Report on the First Five Years of the Consortium for the Advancement of Private Higher Education.

    ERIC Educational Resources Information Center

    Moskin, Robert J.

    This report reviews the first five years of the Consortium for the Advancement of Private Education (CAPHE) during which it has assisted small liberal arts colleges in the United States. Questions concerning the condition of these colleges today are addressed, as well as CAPHE's ability to help them and make a difference in their viability and the…

  1. Biorefinery developments for advanced biofuels from a widening array of biomass feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When the United States passed the Renewable Fuel Standards (RFS) of 2007 into law it mandated that, by the year 2022, 36 billion gallons of biofuels be produced annually in the U.S. to displace petroleum. This targeted quota, which required that at least half of domestic transportation fuel be “adva...

  2. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    SciTech Connect

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  3. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGES

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  4. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    SciTech Connect

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteins as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).

  5. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  6. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  7. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine.

    PubMed

    Xu, Joshua; Gong, Binsheng; Wu, Leihong; Thakkar, Shraddha; Hong, Huixiao; Tong, Weida

    2016-01-01

    Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making requires rigorous assessment and consensus between various stakeholders, including the research community, regulatory agencies, and industry. The FDA-led SEquencing Quality Control (SEQC) consortium has made considerable progress in this direction, and is the subject of this review. Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD, and Roche 454) were extensively evaluated at multiple sites to assess cross-site and cross-platform reproducibility. The results demonstrated that relative gene expression measurements were consistently comparable across labs and platforms, but not so for the measurement of absolute expression levels. As part of the quality evaluation several studies were included to evaluate the utility of RNA-seq in clinical settings and safety assessment. The neuroblastoma study profiled tumor samples from 498 pediatric neuroblastoma patients by both microarray and RNA-seq. RNA-seq offers more utilities than microarray in determining the transcriptomic characteristics of cancer. However, RNA-seq and microarray-based models were comparable in clinical endpoint prediction, even when including additional features unique to RNA-seq beyond gene expression. The toxicogenomics study compared microarray and RNA-seq profiles of the liver samples from rats exposed to 27 different chemicals representing multiple toxicity modes of action. Cross-platform concordance was dependent on chemical treatment and transcript abundance. Though both RNA-seq and microarray are suitable for developing gene expression based predictive models with comparable prediction performance, RNA-seq offers

  8. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine.

    PubMed

    Xu, Joshua; Gong, Binsheng; Wu, Leihong; Thakkar, Shraddha; Hong, Huixiao; Tong, Weida

    2016-03-15

    Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making requires rigorous assessment and consensus between various stakeholders, including the research community, regulatory agencies, and industry. The FDA-led SEquencing Quality Control (SEQC) consortium has made considerable progress in this direction, and is the subject of this review. Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD, and Roche 454) were extensively evaluated at multiple sites to assess cross-site and cross-platform reproducibility. The results demonstrated that relative gene expression measurements were consistently comparable across labs and platforms, but not so for the measurement of absolute expression levels. As part of the quality evaluation several studies were included to evaluate the utility of RNA-seq in clinical settings and safety assessment. The neuroblastoma study profiled tumor samples from 498 pediatric neuroblastoma patients by both microarray and RNA-seq. RNA-seq offers more utilities than microarray in determining the transcriptomic characteristics of cancer. However, RNA-seq and microarray-based models were comparable in clinical endpoint prediction, even when including additional features unique to RNA-seq beyond gene expression. The toxicogenomics study compared microarray and RNA-seq profiles of the liver samples from rats exposed to 27 different chemicals representing multiple toxicity modes of action. Cross-platform concordance was dependent on chemical treatment and transcript abundance. Though both RNA-seq and microarray are suitable for developing gene expression based predictive models with comparable prediction performance, RNA-seq offers

  9. Oncofertility Consortium

    MedlinePlus

    ... September 15, 2016 National Physicians Cooperative Brigid Martz Smith July 21, 2016 Postdoctoral Position in Pediatric Fertility ... 2016 Oncofertility Consortium Clinic/Center Map Brigid Martz Smith June 30, 2016 Zika Virus Concerns Grow as ...

  10. Advances in microalgae engineering and synthetic biology applications for biofuel production.

    PubMed

    Gimpel, Javier A; Specht, Elizabeth A; Georgianna, D Ryan; Mayfield, Stephen P

    2013-06-01

    Among the technologies being examined to produce renewable fuels, microalgae are viewed by many in the scientific community as having the greatest potential to become economically viable. Algae are capable of producing greater than 50,000 kg/acre/year of biomass [1]. Additionally, most algae naturally accumulate energy-dense oils that can easily be converted into transportation fuels. To reach economic parity with fossil fuels there are still several challenges. These include identifying crop protection strategies, improving harvesting and oil extraction processes, and increasing biomass productivity and oil content. All of these challenges can be impacted by genetic, molecular, and ultimately synthetic biology techniques, and all of these technologies are being deployed to enable algal biofuels to become economically competitive with fossil fuels.

  11. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  12. ChiNet uncovers rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion.

    PubMed

    Zhang, Yang; Liu, Z Lewis; Song, Mingzhou

    2015-05-19

    Analysis of rewired upstream subnetworks impacting downstream differential gene expression aids the delineation of evolving molecular mechanisms. Cumulative statistics based on conventional differential correlation are limited for subnetwork rewiring analysis since rewiring is not necessarily equivalent to change in correlation coefficients. Here we present a computational method ChiNet to quantify subnetwork rewiring by statistical heterogeneity that enables detection of potential genotype changes causing altered transcription regulation in evolving organisms. Given a differentially expressed downstream gene set, ChiNet backtracks a rewired upstream subnetwork from a super-network including gene interactions known to occur under various molecular contexts. We benchmarked ChiNet for its high accuracy in distinguishing rewired artificial subnetworks, in silico yeast transcription-metabolic subnetworks, and rewired transcription subnetworks for Candida albicans versus Saccharomyces cerevisiae, against two differential-correlation based subnetwork rewiring approaches. Then, using transcriptome data from tolerant S. cerevisiae strain NRRL Y-50049 and a wild-type intolerant strain, ChiNet identified 44 metabolic pathways affected by rewired transcription subnetworks anchored to major adaptively activated transcription factor genes YAP1, RPN4, SFP1 and ROX1, in response to toxic chemical challenges involved in lignocellulose-to-biofuels conversion. These findings support the use of ChiNet in rewiring analysis of subnetworks where differential interaction patterns resulting from divergent nonlinear dynamics abound.

  13. ChiNet uncovers rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion

    PubMed Central

    Zhang, Yang; Liu, Z. Lewis; Song, Mingzhou

    2015-01-01

    Analysis of rewired upstream subnetworks impacting downstream differential gene expression aids the delineation of evolving molecular mechanisms. Cumulative statistics based on conventional differential correlation are limited for subnetwork rewiring analysis since rewiring is not necessarily equivalent to change in correlation coefficients. Here we present a computational method ChiNet to quantify subnetwork rewiring by statistical heterogeneity that enables detection of potential genotype changes causing altered transcription regulation in evolving organisms. Given a differentially expressed downstream gene set, ChiNet backtracks a rewired upstream subnetwork from a super-network including gene interactions known to occur under various molecular contexts. We benchmarked ChiNet for its high accuracy in distinguishing rewired artificial subnetworks, in silico yeast transcription-metabolic subnetworks, and rewired transcription subnetworks for Candida albicans versus Saccharomyces cerevisiae, against two differential-correlation based subnetwork rewiring approaches. Then, using transcriptome data from tolerant S. cerevisiae strain NRRL Y-50049 and a wild-type intolerant strain, ChiNet identified 44 metabolic pathways affected by rewired transcription subnetworks anchored to major adaptively activated transcription factor genes YAP1, RPN4, SFP1 and ROX1, in response to toxic chemical challenges involved in lignocellulose-to-biofuels conversion. These findings support the use of ChiNet in rewiring analysis of subnetworks where differential interaction patterns resulting from divergent nonlinear dynamics abound. PMID:25897127

  14. 77 FR 23673 - Notice of Stakeholder Meeting: Industry Roundtable-DON/USDA/DOE/DOT-FAA Advanced Drop-In Biofuels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... biofuels supply chain. The purpose of the roundtable meeting is for the federal government to present... Chain: (feedstock provider, bio-refiner, finished products distributor, integrated effort,...

  15. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  16. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.

    PubMed

    Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer

    2015-07-21

    To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.

  17. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.

    PubMed

    Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer

    2015-07-21

    To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth. PMID:26086692

  18. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  19. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  20. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  1. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  2. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions Eligibility Provisions § 4288.111 Biofuel eligibility. To be eligible for this...

  3. A comparison of battery testing protocols: Those used by the U.S. advanced battery consortium and those used in China

    NASA Astrophysics Data System (ADS)

    Robertson, David C.; Christophersen, Jon P.; Bennett, Taylor; Walker, Lee K.; Wang, Fang; Liu, Shiqiang; Fan, Bin; Bloom, Ira

    2016-02-01

    Two testing protocols, QC/T 743 and those used by the U.S. Advanced Battery Consortium (USABC), were compared using cells based on LiFePO4/graphite chemistry. Differences in the protocols directly affected the data and the performance decline mechanisms deduced from the data. In all cases, the rate of capacity fade was linear with time. Overall, the testing protocols produced very similar data when the testing conditions and metrics used to define performance were similar. The choice of depth of discharge and pulse width had a direct effect on the apparent rate of resistance increased and estimated cell life. At greater percent depth of discharge (%DOD) and pulse width, the estimated life was shorter that at lower %DOD and shorter pulse width. This indicates that cells which were at the end of life based on the USABC protocol were not at end of life based on the QC/T 743 protocol by a large margin.

  4. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    for hydrodeoxygenation MoP/SBA-15 appears as a very promising catalyst for the production of advanced biofuels. PMID:26716223

  5. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    for hydrodeoxygenation MoP/SBA-15 appears as a very promising catalyst for the production of advanced biofuels.

  6. Cyanobacterial biofuel production.

    PubMed

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. PMID:22446641

  7. Biofuel supply chain, market, and policy analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  8. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  9. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production.

    PubMed

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-10-10

    Microbial oils hold great potential as a suitable feedstock for the renewable production of biofuels. Specifically, the use of oleaginous yeasts offers several advantages related to cultivation and quality of lipid products. However, one of the major bottlenecks for large-scale production of yeast oils is found in the lipid extraction process. This work investigated the hydrothermal treatment of oleaginous yeast for hydrolysis and lipid extraction resulting in fatty acids used for biofuel production. The oleaginous yeast, Cryptococcus curvatus, was grown in 5 L bioreactors and the biomass slurry with 53±4% lipid content (dry weight basis) was treated at 280 °C for 1h with an initial pressure of 500 psi in batch stainless steel reactors. The hydrolysis product was separated and each of the resulting streams was further characterized. The hexane soluble fraction contained fatty acids from the hydrolysis of yeast triacylglycerides, and was low in nitrogen and minerals and could be directly integrated as feedstock into pyrolysis processing to produce biofuels. The proposed hydrothermal treatment addresses some current technological bottlenecks associated with traditional methodologies such as dewatering, oil extraction and co-product utilization. It also enhances the feasibility of using microbial biomass for production of renewable fuels and chemicals.

  10. A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium

    SciTech Connect

    Albrecht, Karl O.; Hallen, Richard T.

    2011-03-29

    Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art “downstream” applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

  11. The Present and Future Opportunities of the Rare Cancer Network: An International Consortium for Advancement of Oncologic Care.

    PubMed

    2015-09-01

    To date, the Rare Cancer Network (RCN) has initiated more than 90 studies and 54 peer-reviewed publications were produced as a result. The Second International Symposium of the Rare Cancer Network recently took place in Istanbul, Turkey on April 17-18, 2015, and update was given on multiple currently ongoing projects, while also giving room for new proposals which will shape the direction of future studies for the group. This companion issue of the RCN Proceedings summarized the findings of this meeting, while also serving as a call for fresh projects and papers which will continue to energize the group and advance the oncologic science. A brief introduction to the principles, history, and vision of the RCN was also included. To review, the academic year of 2014-15 marked an enormous success for the international members of the RCN, with the generation of 8 fully published papers and more than 12 newly proposed topics. By the collective efforts of all RCN members, in the future, we look forward to the upcoming opportunities in continuing to advance the standard of chemo- and radiotherapeutic oncologic care for selected rare tumor topics. The studies of these rare cancers often do not allow the design and execution of prospectively enrolled trials; however, these uncommon malignancies do impact the humankind and add to its suffering globally in significant ways. PMID:26500735

  12. The Present and Future Opportunities of the Rare Cancer Network: An International Consortium for Advancement of Oncologic Care

    PubMed Central

    2015-01-01

    To date, the Rare Cancer Network (RCN) has initiated more than 90 studies and 54 peer-reviewed publications were produced as a result. The Second International Symposium of the Rare Cancer Network recently took place in Istanbul, Turkey on April 17-18, 2015, and update was given on multiple currently ongoing projects, while also giving room for new proposals which will shape the direction of future studies for the group. This companion issue of the RCN Proceedings summarized the findings of this meeting, while also serving as a call for fresh projects and papers which will continue to energize the group and advance the oncologic science. A brief introduction to the principles, history, and vision of the RCN was also included. To review, the academic year of 2014-15 marked an enormous success for the international members of the RCN, with the generation of 8 fully published papers and more than 12 newly proposed topics. By the collective efforts of all RCN members, in the future, we look forward to the upcoming opportunities in continuing to advance the standard of chemo- and radiotherapeutic oncologic care for selected rare tumor topics. The studies of these rare cancers often do not allow the design and execution of prospectively enrolled trials; however, these uncommon malignancies do impact the humankind and add to its suffering globally in significant ways. PMID:26500735

  13. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    PubMed

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-01

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  14. Advances and issues in mantle cell lymphoma research: report of the 2014 Mantle Cell Lymphoma Consortium Workshop.

    PubMed

    Kahl, Brad S; Gordon, Leo I; Dreyling, Martin; Gascoyne, Randy D; Sotomayor, Eduardo M

    2015-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation and cyclin D1 over-expression. A biologically and clinically heterogeneous lymphoma, MCL, remains clinically challenging, with no proven curative therapy and no established standard of care. However, there have been considerable advances in the last several years in the treatment and understanding of MCL with the FDA approval of lenalidomide and ibrutinib, the development of other potentially active novel agents and the identification of recurrent mutations through new genomic sequencing approaches that may contribute to the biology of MCL and to therapeutic resistance. At the Lymphoma Research Foundation's 11th MCL Workshop, researchers gathered to discuss recent studies and current issues related to the biology of MCL, novel therapeutic targets and new treatment strategies. The presentations are summarized in this manuscript, which is intended to highlight areas of active investigation and identify topics for future research.

  15. International Lymphoma Epidemiology Consortium

    Cancer.gov

    The InterLymph Consortium, or formally the International Consortium of Investigators Working on Non-Hodgkin's Lymphoma Epidemiologic Studies, is an open scientific forum for epidemiologic research in non-Hodgkin's lymphoma.

  16. The AGTSR consortium: An update

    SciTech Connect

    Fant, D.B.; Golan, L.P.

    1995-10-01

    The Advanced Gas Turbine Systems Research (AGTSR) program is a collaborative University-Industry R&D Consortium that is managed and administered by the South Carolina Energy R&D Center. AGTSR is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry-defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. The consortium is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its third year of operation and is sponsored by the U.S. DOE - Morgantown Energy Technology Center. The program is scheduled to continue past the year 2000. At present, there are 78 performing member universities representing 36 states, and six cost-sharing U.S. gas turbine corporations. Three RFP`s have been announced and the fourth RFP is expected to be released in December, 1995. There are 31 research subcontracts underway at performing member universities. AGTSR has also organized three workshops, two in combustion and one in heat transfer. A materials workshop is in planning and is scheduled for February, 1996. An industrial internship program was initiated this past summer, with one intern positioned at each of the sponsoring companies. The AGTSR consortium nurtures close industry-university-government collaboration to enhance synergism and the transition of research results, accelerate and promote evolutionary-revolutionary R&D, and strives to keep a prominent U.S. industry strong and on top well into the 21st century. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1996.

  17. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed.

  18. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. PMID:26874262

  19. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards.

  20. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

  1. Radiogenomics Consortium (RGC)

    Cancer.gov

    The Radiogenomics Consortium's hypothesis is that a cancer patient's likelihood of developing toxicity to radiation therapy is influenced by common genetic variations, such as single nucleotide polymorphisms (SNPs).

  2. Consortium Proves Adage.

    ERIC Educational Resources Information Center

    Seidel, Kim

    1997-01-01

    Describes the Minnesota Preparatory Schools, a secondary-level consortium formed by Cotter High School, Saint Mary's University, the Minnesota Academy of Mathematics and Science, De La Salle Language Institute, and the Minnesota Conservatory for the Arts. Indicates that the consortium provides students with flexible schedules geared toward their…

  3. Minnesota Educational Computing Consortium.

    ERIC Educational Resources Information Center

    Haugo, John E.

    The state of Minnesota has established the Minnesota Educational Computing Consortium (MECC) to coordinate the state's educational computing activities. The Consortium is governed by a board of directors representing the State Department of Education, the State Junior Colleges, the State Colleges, the State University and the public and is…

  4. Optoelectronic technology consortium

    NASA Astrophysics Data System (ADS)

    Hibbs-Brenner, Mary

    1992-12-01

    The Optoelectronics Technology Consortium has been established to position U.S. industry as the world leader in optical interconnect technology by developing, fabricating, intergrating and demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology into military and commercial applications. This objective will be accomplished by a program focused in three areas. (1) Demonstrated performance: OETC will demonstrate an aggregate data transfer rate of 16 Gbit/s between single transmitter and receiver packages, as well as the expandability of this technology by combing four links in parallel to achieve a 64 Gbit/s link. (2) Accelerated development: By collaborating during precompetitive technology development stage, OTEC will advance the development of optical components and produce links for a multiboard processor testbed demonstration; and (3) Producibility: OETC's technology will achieve this performance by using components that are affordable, and reliable, with a line BER less than 10(exp -15) and MTTF greater than 10(exp 6) hours.

  5. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  6. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  7. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  8. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    SciTech Connect

    Koperna, George

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  9. The AGTSR consortium: An update

    SciTech Connect

    Fant, D.B.; Golan, L.P.

    1995-12-31

    The Advanced Gas Turbine Systems Research program is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry- defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. It is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its third year of operation; it is scheduled to continue past the year 2000. This update reviews the AGTSR triad, which consists of university/industry R&D activities, technology transfer programs, and trial student programs.

  10. A Survey of Biofuel Production potentials in Russia

    NASA Astrophysics Data System (ADS)

    Lykova, Natalya; Gustafsson, Jan-Erik

    2010-01-01

    Due to the abundance of fossil fuel resources in Russia, the development of the renewable energy market there was delayed. Recent technological advancement has led to an increasing interest in biofuel production. The aim of research was to evaluate how biofuels are introduced into the current energy scheme of the country. The potential production of biofuels was estimated based on sustainable approaches which provide solution for carbon emission reduction and environmental benefits. Russia still requires biofuel policy to make biofuels compatible with traditional fossil fuels.

  11. NCI Cohort Consortium Membership

    Cancer.gov

    The NCI Cohort Consortium membership is international and includes investigators responsible for more than 40 high-quality cohorts who are studying large and diverse populations in more than 15 different countries.

  12. Northeast Technology Education Consortium: Resource Guide.

    ERIC Educational Resources Information Center

    Foster, W. Tad, Ed.

    This guide is designed to provide additional resources for technology educators who are attempting to shift their programs from industrial arts to technology education. An introduction describes the original demonstration site project, a consortium of Northeastern U.S. schools, the primary goal of which was the advancement of technological…

  13. Synthetic Biology Guides Biofuel Production

    PubMed Central

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  14. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  15. Epidemiology of Endometrial Cancer Consortium (E2C2)

    Cancer.gov

    The Epidemiology of Endometrial Cancer Consortium studies the etiology of this common cancer and build on resources from existing studies by combining data across studies in order to advance the understanding of the etiology of this disease.

  16. The benefits of biofuels

    SciTech Connect

    Hinman, N.D.

    1997-07-01

    This article discusses the economic, environmental, and national security advantages of using biofuels instead of petroleum products in vehicles. Smog and carbon monoxide, two of the most trouble-some urban air pollutants, are largely caused by combustion of conventional petroleum based fuels. Topics include sustainable transportation fuels, emphasis on ethanol, the process of producing biofuels, and the growing market for biofuels. 1 tab.

  17. A Modular Approach to Integrating Biofuels Education into ChE Curriculum Part I--Learning Materials

    ERIC Educational Resources Information Center

    He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali

    2016-01-01

    In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…

  18. Engineering biofuel tolerance in non-native producing microorganisms.

    PubMed

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria.

  19. NCI Cohort Consortium

    Cancer.gov

    The NCI Cohort Consortium is an extramural-intramural partnership formed by the National Cancer Institute to address the need for large-scale collaborations to pool the large quantity of data and biospecimens necessary to conduct a wide range of cancer studies.

  20. The Idaho Consortium.

    ERIC Educational Resources Information Center

    Beaird, James H.

    The Idaho Consortium was established by the state board of education to remedy perceived needs involving insufficient certificated teachers, excessive teacher mobility, shortage of teacher candidates, inadequate inservice training, a low level of administrative leadership, and a lack of programs in special education, early childhood education,…

  1. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  2. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  3. Biofuels in China

    NASA Astrophysics Data System (ADS)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  4. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  5. NREL biofuels program overview

    SciTech Connect

    Mielenz, J.R.

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  6. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  7. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  8. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  9. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  10. Biofuels Research at EPA

    EPA Science Inventory

    The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...

  11. 76 FR 20633 - Announcement of Meeting to Explore Feasibility of Establishing a NIST/Industry Consortium on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Establishing a NIST/Industry Consortium on Neutron Measurements for Soft Materials Manufacturing AGENCY... industry interest in creating a NIST/industry consortium focused on advanced neutron-based probes for soft materials. The goals of such a consortium would include the development of neutron-based measurements...

  12. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities.

  13. Portrait of a Consortium: ANKOS (Anatolian University Libraries Consortium)

    ERIC Educational Resources Information Center

    Erdogan, Phyllis; Karasozen, Bulent

    2009-01-01

    The Anatolian University Libraries Consortium (ANKOS) was created in 2001 with only a few members subscribed to nine e-journal collections and bibliographic databases. This Turkish library consortium had developed from one state and three private universities joining together for the purchase of two databases in 1999. Over time, the numbers of…

  14. Extremophiles in biofuel synthesis.

    PubMed

    Barnard, Desire; Casanueva, Ana; Tuffin, Marla; Cowan, Donald

    2010-01-01

    The current global energy situation has demonstrated an urgent need for the development of alternative fuel sources to the continually diminishing fossil fuel reserves. Much research to address this issue focuses on the development of financially viable technologies for the production of biofuels. The current market for biofuels, defined as fuel products obtained from organic substrates, is dominated by bioethanol, biodiesel, biobutanol and biogas, relying on the use of substrates such as sugars, starch and oil crops, agricultural and animal wastes, and lignocellulosic biomass. This conversion from biomass to biofuel through microbial catalysis has gained much momentum as biotechnology has evolved to its current status. Extremophiles are a robust group of organisms producing stable enzymes, which are often capable of tolerating changes in environmental conditions such as pH and temperature. The potential application of such organisms and their enzymes in biotechnology is enormous, and a particular application is in biofuel production. In this review an overview of the different biofuels is given, covering those already produced commercially as well as those under development. The past and present trends in biofuel production are discussed, and future prospects for the industry are highlighted. The focus is on the current and future application of extremophilic organisms and enzymes in technologies to develop and improve the biotechnological production of biofuels.

  15. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria. PMID:20146765

  16. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  17. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  18. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  19. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  20. Hawaii Space Grant Consortium

    NASA Technical Reports Server (NTRS)

    Flynn, Luke P.

    2005-01-01

    The Hawai'i Space Grant Consortium is composed of ten institutions of higher learning including the University of Hawai'i at Manoa, the University of Hawai'i at Hilo, the University of Guam, and seven Community Colleges spread over the 4 main Hawaiian islands. Geographic separation is not the only obstacle that we face as a Consortium. Hawai'i has been mired in an economic downturn due to a lack of tourism for almost all of the period (2001 - 2004) covered by this report, although hotel occupancy rates and real estate sales have sky-rocketed in the last year. Our challenges have been many including providing quality educational opportunities in the face of shrinking State and Federal budgets, encouraging science and technology course instruction at the K-12 level in a public school system that is becoming less focused on high technology and more focused on developing basic reading and math skills, and assembling community college programs with instructors who are expected to teach more classes for the same salary. Motivated people can overcome these problems. Fortunately, the Hawai'i Space Grant Consortium (HSGC) consists of a group of highly motivated and talented individuals who have not only overcome these obstacles, but have excelled with the Program. We fill a critical need within the State of Hawai'i to provide our children with opportunities to pursue their dreams of becoming the next generation of NASA astronauts, engineers, and explorers. Our strength lies not only in our diligent and creative HSGC advisory board, but also with Hawai'i's teachers, students, parents, and industry executives who are willing to invest their time, effort, and resources into Hawai'i's future. Our operational philosophy is to FACE the Future, meaning that we will facilitate, administer, catalyze, and educate in order to achieve our objective of creating a highly technically capable workforce both here in Hawai'i and for NASA. In addition to administering to programs and

  1. Synthetic biology and the technicity of biofuels.

    PubMed

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic.

  2. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  3. Sandia's Biofuels Program

    SciTech Connect

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  4. Sandia's Biofuels Program

    ScienceCinema

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2016-07-12

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  5. NECOR: New research consortium

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Three major marine research institutes in the northeastern United States have entered into a formal agreement to coordinate the operation and scheduling of five seagoing oceanographic vessels. NECOR (Northeast Consortium Research Fleet) consists of the Woods Hole Oceanographic Institution, the University of Rhode Island, and Columbia University's Lamont-Doherty Geological Observatory.NECOR was established, in part, to save money during a time of drastic funding reductions for ship support, explained Jules Hirshman, marine science coordinator at Lamont. Budget axings for 1982 chipped off 10-12% (constant dollars) from 1981 s ship funding, estimates Robert Dinsmore, chairman of facilities and marine operations at Woods Hole and chairman of NECOR's executive committee. Steadily rising fuel costs (Eos, June 23, 1981, p. 549) aggravate the funding problem.

  6. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  8. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  9. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  10. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  11. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  12. Midwest superconductivity consortium. 1993 Progress report

    SciTech Connect

    Not Available

    1994-01-01

    The Midwest Superconductivity Consortium, MISCON, in the fourth year of operations further strengthened its mission to advance the science and understanding of high T{sub c} superconductivity. The goals of the organization and the individual projects continue to reflect the current needs for new knowledge in the field and the unique capabilities of the institutions involved. Group efforts and cooperative laboratory interactions to achieve the greatest possible synergy under the Consortium continue to be emphasized. Industrial affiliations coupled with technology transfer initiatives were expanded. Activities of the participants during the past year achieved an interactive and high level of performance. The number of notable achievements in the field contributed by Consortium investigators increased. The programmatic research continues to focus upon key materials-related problems in two areas. The first area has a focus upon {open_quotes}Synthesis and Processing{close_quotes} while the second is centered around {open_quotes}Limiting Features in Transport Properties of High T{sub c} Materials{close_quotes}.

  13. Biofuel, land and water: maize, switchgrass or Miscanthus?

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Qin, Zhangcai; Chen, Min

    2013-03-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0-5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis.

  14. Midwest Superconductivity Consortium: 1994 Progress report

    SciTech Connect

    Not Available

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  15. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  16. Biofuels and biodiversity.

    PubMed

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  17. Biofuels and biodiversity.

    PubMed

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good. PMID:21774415

  18. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  19. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  20. Regulatory mechanisms related to biofuel tolerance in producing microbes.

    PubMed

    Fu, Y; Chen, L; Zhang, W

    2016-08-01

    Production of renewable biofuels through either native or engineered microbes has drawn significant attention in recent years, mostly due to the increasing concerns on the energy crisis and the environmental consequences of the overutilization of petroleum-based fuels. Although significant progress has been achieved thus far, further advances are still necessary in order to decrease the manufacturing cost so that the producing processes can be more competitive to petroleum fuels. Among various possible approaches, the increase in biofuel tolerance in microbes has been suggested as one aspect which is important for the success of biofuel production at industry-scale. In this article, we critically summarize recent advances in deciphering regulatory mechanisms for enhancing biofuel tolerance in various micro-organisms, focusing on functions and utilization of several well-studied regulatory mechanisms in microbes, such as two-component signal transduction systems, sigma factors, transcription factors, noncoding RNA and other regulators. PMID:27123568

  1. World Biofuels Study

    SciTech Connect

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over

  2. Biofuels and Biotechnology

    SciTech Connect

    Mielenz, Jonathan R

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  3. COnsortium of METabolomics Studies (COMETS)

    Cancer.gov

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  4. ACTS Operations Extended Through a University-Based Consortium

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Krawczyk, Richard J.

    2002-01-01

    The Advanced Communications Technology Satellite (ACTS) program was slated for decommissioning in October 2000. With plans in place to move the spacecraft to an orbital graveyard and then shut the system down, NASA was challenged to consider the feasibility of extending operations for education and research purposes provided that an academic organization would be willing to cover operations costs. This was determined to be viable, and in the fall of 2000, NASA announced that it would consider extending operations. On March 19, 2001, NASA, the Ohio Board of Regents, and the Ohio University signed a Space Act Agreement to continue ACTS operations for 2 more years with options to extend operations up to a total of 4 years. To accomplish this, the Ohio University has formed a university-based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), and acts as the managing member. The Ohio University is responsible for the full reimbursement of NASA's operations costs, and does this through consortium membership. NASA retains the operating license of the spacecraft and has two contractors supporting spacecraft and master control station operations. This flexible arrangement between NASA and academia allows the education community to access a large communications satellite for learning about spacecraft operations and to use the system's transponders for communications applications. It also allows other organizations, such as commercial companies, to become consortium members and use the ACTS wideband Ka-band (30/20 GHz) payload. From the consortium members, six areas of interest have been identified.

  5. Hickory Consortium 2001 Final Report

    SciTech Connect

    Not Available

    2003-02-01

    As with all Building America Program consortia, systems thinking is the key to understanding the processes that Hickory Consortium hopes to improve. The Hickory Consortium applies this thinking to more than the whole-building concept. Their systems thinking embraces the meta process of how housing construction takes place in America. By understanding the larger picture, they are able to identify areas where improvements can be made and how to implement them.

  6. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  7. System for determining biofuel concentration

    DOEpatents

    Huff, Shean P.; Janke, Christopher James; Kass, Michael D.; Lewis, Sr, Samuel Arthur; Pawel, Steven J; Theiss, Timothy J.

    2016-09-13

    A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.

  8. California Space Grant Consortium

    NASA Technical Reports Server (NTRS)

    Kosmatka, John; Berger, Wolfgang; Wiskerchen, Michael J.

    2005-01-01

    The organizational and administrative structure of the CaSGC has the Consortium Headquarters Office (Principal Investigator - Dr. John Kosmatka, California Statewide Director - Dr. Michael Wiskerchen) at UC San Diego. Each affiliate member institution has a campus director and an scholarship/fellowship selection committee. Each affiliate campus director also serves on the CaSGC Advisory Council and coordinates CMIS data collection and submission. The CaSGC strives to maintain a balance between expanded affiliate membership and continued high quality in targeted program areas of aerospace research, education, workforce development, and public outreach. Associate members are encouraged to participate on a project-by-project basis that meets the needs of California and the goals and objectives of the CaSGC. Associate members have responsibilities relating only to the CaSGC projects they are directly engaged in. Each year, as part of the CaSGC Improvement Plan, the CaSGC Advisory Council evaluates the performance of the affiliate and associate membership in terms of contributions to the CaSGC Strategic Plan, These CaSGC membership evaluations provide a constructive means for elevating productive members and removing non-performing members. This Program Improvement and Results (PIR) report will document CaSGC program improvement results and impacts that directly respond to the specific needs of California in the area of aerospace-related education and human capital development and the Congressional mandate to "increase the understanding, assessment, development and utilization of space resources by promoting a strong education base, responsive research and training activities, and broad and prompt dissemination of knowledge and technology".

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  11. Lignin Bioproducts to Enable Biofuels

    SciTech Connect

    Wyman, Charles E.; Ragauskas, Arthur J

    2015-09-15

    Here we report that today's and tomorrow's biofuels production facilities could benefit tremendously from increasing the value from the large amount of lignin that results from biofuels operations. Certainly, the scientific community, and biofuels industry has begun to recognize the challenges and opportunities associated with lignin.

  12. The Brazilian biofuels industry

    PubMed Central

    Goldemberg, José

    2008-01-01

    Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion. PMID:18471272

  13. Challenges in engineering microbes for biofuels production.

    PubMed

    Stephanopoulos, Gregory

    2007-02-01

    Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have been prompting policy-makers to put added emphasis on renewable energy sources. For the scientific community, recent advances, embodied in new insights into basic biology and technology that can be applied to metabolic engineering, are generating considerable excitement. There is justified optimism that the full potential of biofuel production from cellulosic biomass will be obtainable in the next 10 to 15 years.

  14. Electronic health record: implementation across the Michigan Academic Consortium.

    PubMed

    Bostrom, Andrea C; Schafer, Patricia; Dontje, Kathy; Pohl, Joanne M; Nagelkerk, Jean; Cavanagh, Stephen J

    2006-01-01

    The Michigan Academic Consortium of academic nurse-managed primary care centers supported member sites to venture into computer-based advances with the potential to improve quality of health services and students' educational experiences. The experiences of this consortium as it incorporated electronic health records in tandem with an electronic patient management system at several of its member sites reveal the benefits and challenges of such an endeavor. The processes of selection, adoption, and implementation of the electronic health record are discussed in this article. Many lessons learned in the process are discussed.

  15. The International Consortium for the Investigation of Renal Malignancies (I-ConFIRM)

    Cancer.gov

    The International Consortium for the Investigation of Renal Malignancies (I-ConFIRM) was formed to promote international, multidisciplinary collaborations to advance our understanding of the etiology and outcomes of kidney cancer.

  16. Engineering microbial biofuel tolerance and export using efflux pumps.

    PubMed

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-05-10

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes.

  17. Engineering microbial biofuel tolerance and export using efflux pumps

    PubMed Central

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-01-01

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065

  18. Biofuels from urban landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from urban landscapes is an untapped resource. Lawn thatch and clippings, fallen leaves and tree limbs are all potential sources of biofuels. Most cities already collect and transport these materials to disposal sites; but, alternatively could collect and transport these materials to a loc...

  19. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  20. Agriculture - Sustainable biofuels Redux

    SciTech Connect

    Robertson, G. Phillip; Dale, Virginia H; Doering, Otto C.; Hamburg, Steven P; Melillo, Jerry M; Wander, Michele M; Parton, William

    2008-10-01

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  1. PNNL Aviation Biofuels

    SciTech Connect

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  2. Biofuel impacts on water.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  3. CFD parametric study of consortium impeller

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-07-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform

  4. Biofuel on contaminated land

    NASA Astrophysics Data System (ADS)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  5. Shape memory alloy consortium (SMAC)

    NASA Astrophysics Data System (ADS)

    Jacot, A. Dean

    1999-07-01

    The application of smart structures to helicopter rotors has received widespread study in recent years. This is one of the major thrusts of the Shape Memory Alloy Consortium (SMAC) program. SMAC includes 3 companies and 4 Universities in a cost sharing consortium funded under DARPA Smart Materials and Structures program. This paper describes the objective of the SMAC effort, and its relationship to a previous DARPA smart structure rotorcraft program from which it originated. The SMAC program includes NiTinol fatigue/characterization studies, SMA actuator development, and ferromagnetic SMA material development. The paper summarizes the SMAC effort, and includes background and details on Boeing's development of a SMA torsional actuator for rotorcraft applications. SMA actuation is used to retwist the rotorcraft blade in flight, and result in a significant payload increase for either helicopters or tiltrotors. This paper is also augmented by several other papers in this conference with specific results from other SMAC consortium members.

  6. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  7. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  8. The ocean sampling day consortium.

    PubMed

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits. PMID:26097697

  9. The Ocean Sampling Day Consortium

    SciTech Connect

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  10. The ocean sampling day consortium.

    PubMed

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  11. Arid Lands Biofuel

    NASA Astrophysics Data System (ADS)

    Neupane, B. P.

    2013-05-01

    Dependence on imported petroleum, as well as consequences from burning fossil fuels, has increased the demand for biofuel sources in the United States. Competition between food crops and biofuel crops has been an increasing concern, however, since it has the potential to raise prices for US beef and grain products due to land and resource competition. Biofuel crops that can be grown on land not suitable for food crops are thus attractive, but also need to produce biofuels in a financially sustainable manner. In the intermountain west of Nevada, biofuel crops need to survive on low-organic soils with limited precipitation when grown in areas that are not competing with food and feed. The plants must also yield an oil content sufficiently high to allow economically viable fuel production, including growing and harvesting the crop as well as converting the hydrocarbons into a liquid fuel. Gumweed (Grindelia squarrosa) currently appears to satisfy all of these requirements and is commonly observed throughout the west. The plant favors dry, sandy soils and is most commonly found on roadsides and other freshly disturbed land. A warm season biennial, the gumweed plant is part of the sunflower family and normally grows 2-4 feet high with numerous yellow flowers and curly leaves. The gumweed plant contains a large store of diterpene resins—most abundantly grindelic acid— similar to the saps found on pine trees that are used to make inks and adhesives. The dry weight harvest on the experimental field is 5130 lbs/acre. Whole plant biomass yields between 11-15% (average 13%) biocrude when subjected to acetone extraction whereas the buds alone contains up to a maximum of 35% biocrude when harvested in 'white milky' stage. The extract is then converted to basic form (sodium grindelate) followed by extraction of nonpolar constituents (mostly terpenes) with hexane and extracted back to ethyl acetate in acidified condition. Ethyl acetate is removed under vacuum to leave a dark

  12. Primary Immune Deficiency Treatment Consortium (PIDTC) update.

    PubMed

    Griffith, Linda M; Cowan, Morton J; Notarangelo, Luigi D; Kohn, Donald B; Puck, Jennifer M; Shearer, William T; Burroughs, Lauri M; Torgerson, Troy R; Decaluwe, Hélène; Haddad, Elie

    2016-08-01

    The Primary Immune Deficiency Treatment Consortium (PIDTC) is a collaboration of 41 North American centers studying therapy for rare primary immune deficiency diseases (PIDs), including severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), and chronic granulomatous disease (CGD). An additional 3 European centers have partnered with the PIDTC to study CGD. Natural history protocols of the PIDTC analyze outcomes of treatment for rare PIDs in multicenter longitudinal retrospective, prospective, and cross-sectional studies. Since 2009, participating centers have enrolled more than 800 subjects on PIDTC protocols for SCID, and enrollment in the studies on WAS and CGD is underway. Four pilot projects have been funded, and 12 junior investigators have received fellowship awards. Important publications of the consortium describe the outcomes of hematopoietic cell transplantation for SCID during 2000-2009, diagnostic criteria for SCID, and the pilot project of newborn screening for SCID in the Navajo Nation. The PIDTC Annual Scientific Workshops provide an opportunity to strengthen collaborations with junior investigators, patient advocacy groups, and international colleagues. Funded by the National Institute of Allergy and Infectious Diseases and the Office of Rare Diseases Research, National Center for Advancing Translational Sciences, the PIDTC has recently received renewal for another 5 years. Here we review accomplishments of the group, projects underway, highlights of recent workshops, and challenges for the future. PMID:27262745

  13. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  14. Biofuels: What Are They and How Can They Improve Practical Work and Discussions?

    ERIC Educational Resources Information Center

    MacLean, Tristan

    2014-01-01

    This article looks at the potential of bioenergy as a replacement for fossil fuels, the cutting-edge research being undertaken by scientists, and classroom resources available for teaching this topic. There is currently a large programme of scientific research aiming to develop advanced biofuels (replenishable liquid biofuels from non-food plants,…

  15. Plant-based biofuels

    PubMed Central

    Hood, Elizabeth E.

    2016-01-01

    This review is a short synopsis of some of the latest breakthroughs in the areas of lignocellulosic conversion to fuels and utilization of oils for biodiesel. Although four lignocellulosic ethanol factories have opened in the USA and hundreds of biodiesel installations are active worldwide, technological improvements are being discovered that will rapidly evolve the biofuels industry into a new paradigm. These discoveries involve the feedstocks as well as the technologies to process them. PMID:26949525

  16. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  17. The Virginia Home Visiting Consortium

    ERIC Educational Resources Information Center

    Bodkin, Catherine

    2010-01-01

    The Virginia Home Visiting Consortium (HVC) is a collaboration of public and private organizations which work to improve the effectiveness and efficiency of home visiting services throughout the state. The HVC identified service needs and gaps and has focused on increasing the interagency state and local partnerships so that resources are…

  18. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    PubMed

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  19. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  20. Midwest Superconductivity Consortium. Progress report, 1992

    SciTech Connect

    Bement, A.L. Jr.

    1993-01-01

    Mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. Programmatic research focuses upon key materials-related problems; principally, synthesis and processing and properties limiting transport phenomena. During the past year, 26 projects produced over 133 talks and 113 publications. publications. Two Master`s Degrees and one Ph.D. were granted to students working on MISCON projects. Group activities and interactions involved two MISCON group meetings (held in July and January), twenty external speakers, 36 collaborations, 10 exchanges of samples and/or measurements, and one (1) gift of equipment from industry. Research achievements this past year expanded our understanding of processing phenomena on structure property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  1. Midwest Superconductivity Consortium: 1995 Progress report

    SciTech Connect

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master`s Degrees and 9 Doctor`s of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors.

  2. Consortium sandbox: building and sharing resources.

    PubMed

    Lim, Mark D

    2014-06-25

    Some common challenges of biomedical product translation-scientific, regulatory, adoption, and reimbursement-can best be addressed by the broad sharing of resources or tools. But, such aids remain undeveloped because the undertaking requires expertise from multiple research sectors as well as validation across organizations. Biomedical resource development can benefit from directed consortia-a partnership framework that provides neutral and temporary collaborative environments for several, oftentimes competing, organizations and leverages the aggregated intellect and resources of stakeholders so as to create versatile solutions. By analyzing 369 biomedical research consortia, we tracked consortia growth around the world and gained insight into how this partnership model advances biomedical research. Our analyses suggest that research-by-consortium provides benefit to biomedical science, but the model needs further optimization before it can be fully integrated into the biomedical research pipeline.

  3. Toward the design of sustainable biofuel landscapes: A modeling approach

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Zhang, X.; Manowitz, D. H.; Sahajpal, R.

    2011-12-01

    Biofuel crops have emerged as promising feedstocks for advanced bioenergy production in the form of cellulosic ethanol and biodiesel. However, large-scale deployment of biofuel crops for energy production has the potential to conflict with food production and generate a myriad of environmental outcomes related to land and water resources (e.g., decreases in soil carbon storage, increased erosion, altered runoff, deterioration in water quality). In order to anticipate the possible impacts of biofuel crop production on food production systems and the environment and contribute to the design of sustainable biofuel landscapes, we developed a spatially-explicit integrated modeling framework (SEIMF) aimed at understanding, among other objectives, the complex interactions among land, water, and energy. The framework is a research effort of the DOE Great Lakes Bioenergy Research Center. The SEIMF has three components: (1) a GIS-based data analysis system, (2) the biogeochemical model EPIC (Environmental Policy Integrated Climate), and (3) an evolutionary multi-objective optimization algorithm for examining trade-offs between biofuel energy production and ecosystem responses. The SEIMF was applied at biorefinery scale to simulate biofuel production scenarios and the yield and environmental results were used to develop trade-offs, economic and life-cycle analyses. The SEIMF approach was also applied to test the hypothesis that growing perennial herbaceous species on marginal lands can satisfy a significant fraction of targeted demands while avoiding competition with food systems and maintaining ecosystem services.

  4. The Ocean Sampling Day Consortium

    DOE PAGES

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  5. Biofuels program summary. Volume 2: Research summaries

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Federal government has supported research on biomass technology and energy from municipal waste since 1975. Separate research programs were conducted until 1985 when the two were merged into biofuels and municipal waste technology to take advantage of their many similarities in conversion requirements and research needs. The purpose of the biofuels program is to provide focus, direction, coordination, and funding for the development of technologies that produce tailored energy crops and convert these crops and wastes to fuels. The FY 1989 program includes research on the production (growth) of biomass and its conversion to fuels. Research on biomass production involves the development and use of genetically improved trees and grasses specifically for their energy conversion characteristics (terrestrial energy crops). The Biofuels Program Summary is prepared each year and consists of a two-volume reference set describing the technological advances, current projects, and future research and development (R and D) directions of the program. This volume (Volume 2-Research Summaries) is a compilation of detailed descriptions of the R and D projects performed by the national laboratories and their subcontractors from industry, universities, and nonprofit research institutions.

  6. Biofuels: Project summaries

    SciTech Connect

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  7. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  8. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  9. John Glenn Biomedical Engineering Consortium

    NASA Technical Reports Server (NTRS)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  10. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  11. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  12. Appalachian clean coal technology consortium

    SciTech Connect

    Kutz, K.; Yoon, Roe-Hoan

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  13. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  14. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.

    PubMed

    Chinnasamy, Senthil; Bhatnagar, Ashish; Hunt, Ryan W; Das, K C

    2010-05-01

    Industrial and municipal wastewaters are potential resources for production of microalgae biofuels. Dalton - the Carpet Capital of the World generates 100-115 million L of wastewater d(-1). A study was conducted using a wastewater containing 85-90% carpet industry effluents with 10-15% municipal sewage, to evaluate the feasibility of algal biomass and biodiesel production. Native algal strains were isolated from carpet wastewater. Preliminary growth studies indicated both fresh water and marine algae showed good growth in wastewaters. A consortium of 15 native algal isolates showed >96% nutrient removal in treated wastewater. Biomass production potential and lipid content of this consortium cultivated in treated wastewater were approximately 9.2-17.8 tons ha(-1) year(-1) and 6.82%, respectively. About 63.9% of algal oil obtained from the consortium could be converted into biodiesel. However further studies on anaerobic digestion and thermochemical liquefaction are required to make this consortium approach economically viable for producing algae biofuels.

  15. First generation biofuels compete.

    PubMed

    Martin, Marshall A

    2010-11-30

    Rising petroleum prices during 2005-2008, and passage of the 2007 U.S. Energy Independence and Security Act with a renewable fuel standard of 36 billion gallons of biofuels by 2022, encouraged massive investments in U.S. ethanol plants. Consequently, corn demand increased dramatically and prices tripled. This created a strong positive correlation between petroleum, corn, and food prices resulting in an outcry from U.S. consumers and livestock producers, and food riots in several developing countries. Other factors contributed to higher grain and food prices. Economic growth, especially in Asia, and a weaker U.S. dollar encouraged U.S. grain exports. Investors shifted funds into the commodity's future markets. Higher fuel costs for food processing and transportation put upward pressure on retail food prices. From mid-2008 to mid-2009, petroleum prices fell, the U.S. dollar strengthened, and the world economy entered a serious recession with high unemployment, housing market foreclosures, collapse of the stock market, reduced global trade, and a decline in durable goods and food purchases. Agricultural commodity prices declined about 50%. Biotechnology has had modest impacts on the biofuel sector. Seed corn with traits that help control insects and weeds has been widely adopted by U.S. farmers. Genetically engineered enzymes have reduced ethanol production costs and increased conversion efficiency. PMID:20601265

  16. Biofuels: 1995 project summaries

    SciTech Connect

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  17. First generation biofuels compete.

    PubMed

    Martin, Marshall A

    2010-11-30

    Rising petroleum prices during 2005-2008, and passage of the 2007 U.S. Energy Independence and Security Act with a renewable fuel standard of 36 billion gallons of biofuels by 2022, encouraged massive investments in U.S. ethanol plants. Consequently, corn demand increased dramatically and prices tripled. This created a strong positive correlation between petroleum, corn, and food prices resulting in an outcry from U.S. consumers and livestock producers, and food riots in several developing countries. Other factors contributed to higher grain and food prices. Economic growth, especially in Asia, and a weaker U.S. dollar encouraged U.S. grain exports. Investors shifted funds into the commodity's future markets. Higher fuel costs for food processing and transportation put upward pressure on retail food prices. From mid-2008 to mid-2009, petroleum prices fell, the U.S. dollar strengthened, and the world economy entered a serious recession with high unemployment, housing market foreclosures, collapse of the stock market, reduced global trade, and a decline in durable goods and food purchases. Agricultural commodity prices declined about 50%. Biotechnology has had modest impacts on the biofuel sector. Seed corn with traits that help control insects and weeds has been widely adopted by U.S. farmers. Genetically engineered enzymes have reduced ethanol production costs and increased conversion efficiency.

  18. Enzymatic Biofuel Cells on Porous Nanostructures.

    PubMed

    Wen, Dan; Eychmüller, Alexander

    2016-09-01

    Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The latest advances in EBFCs based on porous nanoarchitectures over the past 5 years are detailed here. Porous matrices from carbon, noble metals, and polymers promote the development of EBFCs through the electron transfer and mass transport benefits. Some key issues regarding how these nanostructured porous media improve the performance of EBFCs are also discussed. PMID:27377976

  19. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  20. Engineering microbes to produce biofuels

    SciTech Connect

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  1. Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings

    SciTech Connect

    Oladosu, Gbadebo A; Msangi, Siwa

    2013-01-01

    The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing most of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.

  2. Breakthrough: Using Microbes to Make Advanced Biofuels

    ScienceCinema

    Keasling, Jay

    2016-07-12

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  3. Breakthrough: Using Microbes to Make Advanced Biofuels

    SciTech Connect

    Keasling, Jay

    2012-01-01

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  4. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-01-01

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  5. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels. PMID:24298077

  6. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-01-01

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area. PMID:26938514

  7. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  8. A techno-economic review of thermochemical cellulosic biofuel pathways.

    PubMed

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses.

  9. VAMDC Consortium: A Service to Astrophysics

    NASA Astrophysics Data System (ADS)

    L Dubernet, M.; Moreau, N.; Zwoelf, C. M.; Ba, Y. A.

    2015-12-01

    The VAMDC Consortium is a worldwide consortium which federates Atomic and Molecular databases through an e-science infrastructure and a political organisation. About 90% of the inter-connected databases handle data that are used for the interpretation of spectra and for the modelisation of media of many fields of astrophysics. This paper presents how the VAMDC Consortium is organised in order to provide a ``service'' to the astrophysics community.

  10. International Trade of Biofuels (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  11. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  12. PanScan, the Pancreatic Cancer Cohort Consortium, and the Pancreatic Cancer Case-Control Consortium

    Cancer.gov

    The Pancreatic Cancer Cohort Consortium consists of more than a dozen prospective epidemiologic cohort studies within the NCI Cohort Consortium, whose leaders work together to investigate the etiology and natural history of pancreatic cancer.

  13. Biofuels are dead: long live biofuels(?) - Part one.

    PubMed

    Moore, Andrew

    2008-06-01

    Beleaguered by criticisms, and abused by politicians for ecological target-setting, biofuels are in their darkest hour. But their bringing to trial should remind us - yet again - of something else: the highly questionable sustainability of most of modern agriculture. Is this the end of biofuels? Probably not, but it is certainly the end of a cheap solution to the problem of sustainable portable fuels. Part one of this two-part article focuses on the political and agricultural dimensions of the topic.

  14. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-12-02

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  15. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-08-19

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  16. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  17. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  18. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  19. Geodesy and the UNAVCO Consortium: Three Decades of Innovations

    NASA Astrophysics Data System (ADS)

    Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.

    2015-12-01

    UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in

  20. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    PubMed Central

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  1. Protein engineering in designing tailored enzymes and microorganisms for biofuels production.

    PubMed

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-08-01

    Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performance of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field.

  2. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels

    DOE PAGES

    Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F.; Tuskan, Gerald A.

    2016-09-09

    Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less

  3. Increasing Sales by Developing Production Consortiums.

    ERIC Educational Resources Information Center

    Smith, Christopher A.; Russo, Robert

    Intended to help rehabilitation facility administrators increase organizational income from manufacturing and/or contracted service sources, this document provides a decision-making model for the development of a production consortium. The document consists of five chapters and two appendices. Chapter 1 defines the consortium concept, explains…

  4. Tri-District Arts Consortium Summer Program.

    ERIC Educational Resources Information Center

    Kirby, Charlotte O.

    1990-01-01

    The Tri-District Arts Consortium in South Carolina was formed to serve artistically gifted students in grades six-nine. The consortium developed a summer program offering music, dance, theatre, and visual arts instruction through a curriculum of intense training, performing, and hands-on experiences with faculty members and guest artists. (JDD)

  5. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.

    PubMed

    Hoang, Nam V; Furtado, Agnelo; Botha, Frederik C; Simmons, Blake A; Henry, Robert J

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  6. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  7. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  8. Laccase applications in biofuels production: current status and future prospects.

    PubMed

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy. PMID:24841120

  9. Laccase applications in biofuels production: current status and future prospects.

    PubMed

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  10. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  11. SUNrises on the International Plant Nucleus Consortium

    PubMed Central

    Graumann, Katja; Bass, Hank W.; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458

  12. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  13. The potential of C4 grasses for cellulosic biofuel production

    PubMed Central

    van der Weijde, Tim; Alvim Kamei, Claire L.; Torres, Andres F.; Vermerris, Wilfred; Dolstra, Oene; Visser, Richard G. F.; Trindade, Luisa M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops—maize, sugarcane and sorghum—and two undomesticated perennial energy grasses—miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel. PMID:23653628

  14. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    PubMed

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

  15. Cost goals for biofuels technologies

    SciTech Connect

    Gaines, L.L.; Flaim, S.J.

    1987-01-01

    Federally funded energy research seeks to demonstrate that alternative fuels can be produced and then to induce private sector involvement by showing that they can be produced profitably. Prices for fossil fuels may be used as cost goals for biofuels to determine when profitability may be achieved. Achieving equality with fossil fuel prices drives out the highest-cost sources of supply and enables initial market penetration; as costs decrease, biofuels can potentially gain a greater market share. However, achieving competitive costs is not a sufficient condition for success unless prices of conventional substitutes are expected to rise. Cost goals are used for research planning purposes, as a common denominator to allow comparisons among many biofuels options. Application of standard investment criteria to biofuels R and D would require that benefits from their use pay back research costs. These benefits must be discounted because they are realized in the future. Furthermore, realization of future savings is uncertain, so risks must be accounted for. Research may be justified if the expected value of the discounted benefits is greater than the discounted cost of the research. Cost goals satisfying this condition might be substantially lower than projected fuel prices. This paper examines recent fossil fuel price projections and discusses the challenges biofuels research faces just to produce competitive products. In light of the difficult goals, researchers should adopt a strategy targeting major technological breakthroughs rather than incremental improvements. Production of ethanol from wood is used as an example of this strategy. 35 refs., 8 figs., 7 tabs.

  16. Chemical Kinetic Modeling of Biofuel Combustion

    NASA Astrophysics Data System (ADS)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  17. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  18. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don

    2016-07-12

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  19. A New Biofuels Technology Blooms in Iowa

    SciTech Connect

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  20. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery. PMID:22468603

  1. Biofuels from Microalgae and Seaweeds

    SciTech Connect

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  2. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  3. 25 CFR 1000.55 - Can a Tribe/Consortium appeal within DOI the Director's decision not to award a grant under this...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Can a Tribe/Consortium appeal within DOI the Director's decision not to award a grant under this subpart? 1000.55 Section 1000.55 Indians OFFICE OF THE ASSISTANT... Negotiation Grants Advance Planning Grant Funding § 1000.55 Can a Tribe/Consortium appeal within DOI...

  4. Assessing the environmental sustainability of biofuels.

    PubMed

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels.

  5. Overview on Biofuels from a European Perspective

    ERIC Educational Resources Information Center

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  6. Gene Ontology Consortium: going forward

    PubMed Central

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  7. Biofuels and Agriculture: A Fact Sheet for Farmers

    SciTech Connect

    2001-09-01

    American farmers have a great opportunity, now and in the coming years, to help make the nation more self-sufficient in energy, and to reduce air pollution, including emissions of greenhouse gases. Advances in technologies for making biofuels like ethanol and biodiesel mean that new markets are opening up. These can provide extra farm income, help to revitalize rural communities, and improve the environment at the same time.

  8. Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model

    PubMed Central

    Scarisbrick, Julia J.; Prince, H. Miles; Vermeer, Maarten H.; Quaglino, Pietro; Horwitz, Steven; Porcu, Pierluigi; Stadler, Rudolf; Wood, Gary S.; Beylot-Barry, Marie; Pham-Ledard, Anne; Foss, Francine; Girardi, Michael; Bagot, Martine; Michel, Laurence; Battistella, Maxime; Guitart, Joan; Kuzel, Timothy M.; Martinez-Escala, Maria Estela; Estrach, Teresa; Papadavid, Evangelia; Antoniou, Christina; Rigopoulos, Dimitis; Nikolaou, Vassilki; Sugaya, Makoto; Miyagaki, Tomomitsu; Gniadecki, Robert; Sanches, José Antonio; Cury-Martins, Jade; Miyashiro, Denis; Servitje, Octavio; Muniesa, Cristina; Berti, Emilio; Onida, Francesco; Corti, Laura; Hodak, Emilia; Amitay-Laish, Iris; Ortiz-Romero, Pablo L.; Rodríguez-Peralto, Jose L.; Knobler, Robert; Porkert, Stefanie; Bauer, Wolfgang; Pimpinelli, Nicola; Grandi, Vieri; Cowan, Richard; Rook, Alain; Kim, Ellen; Pileri, Alessandro; Patrizi, Annalisa; Pujol, Ramon M.; Wong, Henry; Tyler, Kelly; Stranzenbach, Rene; Querfeld, Christiane; Fava, Paolo; Maule, Milena; Willemze, Rein; Evison, Felicity; Morris, Stephen; Twigger, Robert; Talpur, Rakhshandra; Kim, Jinah; Ognibene, Grant; Li, Shufeng; Tavallaee, Mahkam; Hoppe, Richard T.; Duvic, Madeleine; Whittaker, Sean J.; Kim, Youn H.

    2015-01-01

    Purpose Advanced-stage mycosis fungoides (MF; stage IIB to IV) and Sézary syndrome (SS) are aggressive lymphomas with a median survival of 1 to 5 years. Clinical management is stage based; however, there is wide range of outcome within stages. Published prognostic studies in MF/SS have been single-center trials. Because of the rarity of MF/SS, only a large collaboration would power a study to identify independent prognostic markers. Patients and Methods Literature review identified the following 10 candidate markers: stage, age, sex, cutaneous histologic features of folliculotropism, CD30 positivity, proliferation index, large-cell transformation, WBC/lymphocyte count, serum lactate dehydrogenase, and identical T-cell clone in blood and skin. Data were collected at specialist centers on patients diagnosed with advanced-stage MF/SS from 2007. Each parameter recorded at diagnosis was tested against overall survival (OS). Results Staging data on 1,275 patients with advanced MF/SS from 29 international sites were included for survival analysis. The median OS was 63 months, with 2- and 5-year survival rates of 77% and 52%, respectively. The median OS for patients with stage IIB disease was 68 months, but patients diagnosed with stage III disease had slightly improved survival compared with patients with stage IIB, although patients diagnosed with stage IV disease had significantly worse survival (48 months for stage IVA and 33 months for stage IVB). Of the 10 variables tested, four (stage IV, age > 60 years, large-cell transformation, and increased lactate dehydrogenase) were independent prognostic markers for a worse survival. Combining these four factors in a prognostic index model identified the following three risk groups across stages with significantly different 5-year survival rates: low risk (68%), intermediate risk (44%), and high risk (28%). Conclusion To our knowledge, this study includes the largest cohort of patients with advanced-stage MF/SS and

  9. The LBNL/JSU/AGMUS Science Consortium

    SciTech Connect

    1996-04-01

    This report discusses the 11 year of accomplishments of the science consortium of minority graduates from Jackson State University and Ana G. Mendez University at the Lawrence Berkeley National Laboratory.

  10. NASA Space Radiation Transport Code Development Consortium.

    PubMed

    Townsend, Lawrence W

    2005-01-01

    Recently, NASA established a consortium involving the University of Tennessee (lead institution), the University of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking.

  11. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. PMID:27416516

  12. International Lymphoma Epidemiology Consortium (InterLymph)

    Cancer.gov

    A consortium designed to enhance collaboration among epidemiologists studying lymphoma, to provide a forum for the exchange of research ideas, and to create a framework for collaborating on analyses that pool data from multiple studies

  13. International Mouse Phenotyping Consortium (IMPC) —

    Cancer.gov

    The International Mouse Phenotyping Consortium (IMPC) comprises a group of major mouse genetics research institutions along with national funding organisations formed to address the challenge of developing an encyclopedia of mammalian gene function.

  14. 32 CFR 37.1255 - Consortium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1255 Consortium. A group of... carry out a research project (see definition of “articles of collaboration,” in § 37.1225)....

  15. 32 CFR 37.1255 - Consortium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in This Part § 37.1255 Consortium. A group of... carry out a research project (see definition of “articles of collaboration,” in § 37.1225)....

  16. CORAL DISEASE & HEALTH CONSORTIUM: FINDING SOLUTIONS

    EPA Science Inventory

    The National Oceanic Atmospheric Administration (NOAA), the Environmental Protection Agency (EPA), and the Department of Interior (DOI) developed the framework for a Coral Disease and Health Consortium (CDHC) for the United States Coral Reef Task Force (USCRTF) through an interag...

  17. Estimates of US biofuels consumption, 1990

    SciTech Connect

    Not Available

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  18. Health Coaching: An Update on the National Consortium for Credentialing of Health & Wellness Coaches

    PubMed Central

    2015-01-01

    In September 2014, Global Advances in Health and Medicine editor Michele Mittelman, RN, MPH, interviewed four of the leaders in health and wellness coaching about trends in coaching and the progress of the National Consortium for Credentialing of Health & Wellness Coaches. Following are the transcripts of those interviews. Additionally, videos of the interviews are available at www.gahmj.com. PMID:25694854

  19. Development of an Academic Consortium for Nurse-Managed Primary Care.

    ERIC Educational Resources Information Center

    Pohl, Joanne M.; Bostrom, Andrea C.; Talarczyk, Geraldine; Cavanagh, Stephen

    2001-01-01

    The Michigan Academic Consortium brought together four universities' nursing schools to address advanced practice issues in nurse-managed primary health care. The collaboration enabled participants to leverage financial resources and take advantage of partnership opportunities. Challenges included multiple management practices, competition, and…

  20. Health coaching: an update on the national consortium for credentialing of health & wellness coaches.

    PubMed

    Mittelman, Michele

    2015-01-01

    In September 2014, Global Advances in Health and Medicine editor Michele Mittelman, RN, MPH, interviewed four of the leaders in health and wellness coaching about trends in coaching and the progress of the National Consortium for Credentialing of Health & Wellness Coaches. Following are the transcripts of those interviews. Additionally, videos of the interviews are available at www.gahmj.com.

  1. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up

    PubMed Central

    Hollinshead, Whitney; He, Lian; Tang, Yinjie J.

    2014-01-01

    Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and 13C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production. PMID:25071754

  2. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    PubMed

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production.

  3. Effects of Deployment Investment on the Growth of the Biofuels Industry

    SciTech Connect

    Vimmerstedt, L. J.; Bush, B. W.

    2013-12-01

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.

  4. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. PMID:22306331

  5. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  6. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  7. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks.

  8. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  9. Computational Astrophysics Consortium, University of Minnesota, Final Report

    SciTech Connect

    Heger, Alexander

    2015-03-26

    During its six year duration the Computational Astrophysics consortium helped to train the next generation of scientists in computational and nuclear astrophysics. A total of five graduate students were supported by the grant at UMN. The major advances at UMN were in the use, testing, and contribution to development of the CASTRO that efficiently scales on over 100,000 CPUs. At UMN it was used for modeling of thermonuclear supernovae (pair instability and supermassive stars) and core-collapse supernovae as well as the final phases of their progenitors, as well as for x-ray bursts from accreting neutron stars. Important secondary advances in the field of nuclear astrophysics included a better understanding of the evolution of massive stars and the origin of the elements. The research resulted in more than 50 publications.

  10. Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium.

    PubMed

    Karthikeyan, Obulisamy P; Chidambarampadmavathy, Karthigeyan; Nadarajan, Saravanan; Lee, Patrick K H; Heimann, Kirsten

    2015-12-01

    Understanding the role of heterotrophic-methanotrophic (H-Meth) communities is important for improvement of methane (CH4) oxidation capacities (MOC) particularly in conjunction with bio-product development in industrial bio-filters. Initially, a H-Meth consortium was established and enriched from marine sediments and characterized by next generation sequencing of the 16s rDNA gene. The enriched consortium was subjected to 10-50% CH4 (i.e., 0.20-1.6 CH4/O2 ratios) to study the effects on MOCs, biomass growth, fatty acid profiles and biopolymer (e.g. polyhydroxybutyrate; PHB) content. Methylocystis, Methylophaga and Pseudoxanthomonas dominated the H-Meth consortium. Culture enrichment of the H-Meth consortium resulted in 15-20-folds higher MOC compared to seed sediments. Increasing CH4 concentration (and decreased O2 levels) yielded higher MOCs, but did not improve total fatty acid contents. PHB contents varied between 2.5% and 8.5% independently of CH4/O2 ratios. The results suggest that H-Meth consortia could potentially be used in industrial bio-filters for production of biopolymer/biofuel precursors from CH4. PMID:26247542

  11. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    PubMed Central

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  12. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect

    Sastri, B.; Lee, A.

    2008-09-15

    . Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  13. Toward nitrogen neutral biofuel production.

    PubMed

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements.

  14. Land availability for biofuel production.

    PubMed

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  15. Biofuels: balancing risks and rewards

    PubMed Central

    Thornley, Patricia; Gilbert, Paul

    2013-01-01

    This paper describes a framework that can be used to evaluate the environmental risks and benefits associated with biofuel production. It uses the example of biodiesel produced from Argentinean soy to show how such a framework can be used to conceptualize trade-offs between different environmental, social and economic impacts of biofuel production. Results showing the greenhouse-gas savings and overall life-cycle impact of different ‘soy-biodiesel’ production methods are presented. These impacts and the significance of uncertainty in overall assessments of key parameters, such as greenhouse-gas savings, are discussed. It is shown that, even where sufficient knowledge exists to be able to quantify these impacts, the sustainability of supply of a particular biofuel is inextricably linked to values and ethical judgements. However, tailoring certification efforts to the issues that are most likely to make a significant difference to the overall sustainability could improve the effectiveness of certification efforts. The potential for a framework to guide and focus certification efforts is discussed and future research and policy priorities suggested. PMID:24427513

  16. Polypyrrole nanowire-based enzymatic biofuel cells.

    PubMed

    Kim, Jihun; Kim, Sung In; Yoo, Kyung-Hwa

    2009-10-15

    Glucose/O(2) biofuel cells with an improved power density were developed, using polypyrrole (PPy) nanowires containing glucose oxidase and 8-hydroxyquinoline-5-sulfonic acid hydrate as an anode. The PPy nanowire anode was made by electropolymerizing within the nanopores of an anodized aluminum oxide (AAO) template, and then dissolving the AAO template. The nanowire-type biofuel cell exhibited a higher power density than the film-type biofuel cell by two orders of magnitude; this was likely due to an increase in surface area and enzyme loading. Additionally, we constructed a glucose/O(2) biofuel cell covered with a fluidic channel. Biofuel cells with and without a fluidic channel had comparable performance, demonstrating the feasibility of integrated biofuel cells within a fluidic cell.

  17. Land clearing and the biofuel carbon debt.

    PubMed

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-29

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages. PMID:18258862

  18. Land Clearing and the Biofuel Carbon Debt

    NASA Astrophysics Data System (ADS)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  19. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  20. The Teleprasenz Consortium: Structure and intentions

    NASA Technical Reports Server (NTRS)

    Blauert, Jens

    1991-01-01

    The Teleprasenz-Consortium is an open group of currently 37 scientists of different disciplines who devote a major part of their research activities to the foundations of telepresence technology. Telepresence technology is basically understood as a means to bridge spatial and temporal gaps as well as certain kinds of concealment, inaccessibility and danger of exposure. The activities of the consortium are organized into three main branches: virtual environment, surveillance and control systems, and speech and language technology. A brief summary of the main activities in these areas is given.

  1. Biofuels development and the policy regime.

    PubMed

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future.

  2. Biofuels development and the policy regime.

    PubMed

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. PMID:23174283

  3. Towards Sustainable Production of Biofuels from Microalgae

    PubMed Central

    Patil, Vishwanath; Tran, Khanh-Quang; Giselrød, Hans Ragnar

    2008-01-01

    Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel. PMID:19325798

  4. Third Generation Biofuels via Direct Cellulose Fermentation

    PubMed Central

    Carere, Carlo R.; Sparling, Richard; Cicek, Nazim; Levin, David B.

    2008-01-01

    Consolidated bioprocessing (CBP) is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering. PMID:19325807

  5. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  6. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology. PMID:19722000

  7. National University Consortium on Microwave Research (NUCOMR)

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Agee, Forrest J.

    1995-09-01

    This paper introduces a new cooperative research program of national scale that is focused on crucial research issues in the development of high energy microwave sources. These have many applications in the DOD and industry. The Air Force Office of Scientific Research (AFOSR), in coopertaion with the Phillips Laboratory, the Naval Research Laboratory, and the Army Research Laboratory, has established a tri-service research consortium to investigate novel high energy microwave sources. The program is part of the DODs 'Multidisciplinary University Research Initiative' and will be funded at a rate of $DLR3.0M per year for up to five years. All research performed under this program will be unclassified. Under its auspices, HPM scientists at nine US universities will be attacking twenty-two separate research projects under the leadership of Neville Luhmann at UC-Davis, Victor Granatstein at Maryland, Magne Kristiansen at Texas Tech, Edl Schamiloglu at New Mexico, John Nation at Cornell, Ned Birdsall at UC-Berkeley, George Caryotakis at Standord, Ronald Gilgenbach at Michigan, and Anthony Lin at UCLA. To facilitate the rapid transition of research results into the industrial community, formal collaborative subcontracts are already in place with James Benford at Physics International, Carter Armstrong at Northrop, and Glen Huffman at Varian Associates. Although this new program officially only came into existence in mid-March of this year, it builds on over a decade of microwave research efforts funded by the plasma physics office at AFOSR. It also is synergistic with the ongoing Tri-Service Vacuum Electronics Initiative led by Robert Parker of NRL as well as with the AFOSR's and Rome Laboratory's long standing Advanced Thermionic Research Initiative. An overview will be given of the broad spectrum of research objectives encompassed by NUCOMR. Areas of collaboration and technology transfer will be highlighted. The areas in which the three university consortia will conduct

  8. Extending ACTS Operations Through a University-Based Consortium

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; Krawcyzk, Richard; Irwin, Dennis; Kruse, Hans

    2001-01-01

    The Advanced Communications Technology Satellite (ACTS) program was slated for decommissioning in October 2000 as was announced at the 6th Ka-band Utilization Conference in May 2000. Quite a celebration was had at that event too centering on the decommissioning of this very successful technology program. With plans in place to move the spacecraft to an orbital graveyard and then shut the system down, NASA was challenged to consider the feasibility of extending operations for education and research purposes provided that an academic organization would be willing to cover operations costs. Continuing operations of the system was determined viable and in the fall of 2000, an announcement was made by NASA to consider extending operations. Plans are now in place to continue the operations of ACTS through a university-based consortium led by Ohio University, Athens, Ohio. Initial plans are for two more years of operations, with options to extend up to a total of four years. This paper will present the change in plans to continue operations of ACTS. A description of the multi-month transition of the spacecraft to its new and final orbital location is provided. With the spacecraft at this new location, an update on its performance is presented as well as estimates of long-term performance. The consortium development will be presented along with its organization, membership, and operations plans for using ACTS.

  9. PERSPECTIVE: Learning from the Brazilian biofuel experience

    NASA Astrophysics Data System (ADS)

    Wang, Michael

    2006-11-01

    . Advancements in technology associated with both sugarcane farming and ethanol production have definitely played an important role in yielding the significant benefits associated with sugarcane ethanol. The United States produced about 4 billion gallons of ethanol from corn in 2005. Production was expected to increase to about 5 billion gallons by 2006. Corn-based ethanol achieves moderate reductions in greenhouse gas emissions. In the long run, the great potential of fuel ethanol lies in its production from cellulosic biomass, which is abundant in many regions of the world and can yield much greater reductions in greenhouse gas emissions and energy benefits. Figure 1 presents reductions in greenhouse emissions of several ethanol production pathways that were evaluated at the Argonne National Laboratory. Bagasse, a cellulosic biomass type already available in sugarcane ethanol plants, will certainly offer an opportunity for economically co-producing cellulosic ethanol and sugarcane ethanol in existing sugarcane ethanol plants. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used Figure 1. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used. Despite the encouraging progress of Brazil's ethanol program some issues will still need to be addressed. Figure 4 of [1] shows a significant drop in ethanol production in the 2000/2001 season. A steady supply of ethanol will be a key factor for the success of a fuel ethanol program. Consumers are not going to tolerate fluctuations in ethanol production. Instead, they will turn to conventional fuels for fueling their FFVs as a result of supply fluctuations, which can be detrimental to the success of the ethanol program. In addition to this, other environmental effects of biofuels in general, and sugarcane ethanol in particular, need to be assessed. Some have debated and speculated that Brazil's sugarcane ethanol program has caused (i) soil erosion and biodiversity problems by

  10. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    PubMed

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.

  11. 78 FR 19716 - International Consortium of Cardiovascular Registries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... HUMAN SERVICES Food and Drug Administration International Consortium of Cardiovascular Registries AGENCY... of Cardiovascular Registries.'' The purpose of this meeting is to discuss the development of an international consortium of cardiovascular registries with a broad array of interested stakeholders. The...

  12. THE FEDERAL INTEGRATED BIOTREATMENT RESEARCH CONSORTIUM (FLASK TO FIELD)

    EPA Science Inventory

    The Federal Integrated Biotreatment Research Consortium (Flask to Field) represented a 7-year concerted effort by several research laboratories to develop bioremediation technologies for contaminated DoD sites. The consortium structure consisted of a director and four thrust are...

  13. The path to next generation biofuels: successes and challenges in the era of synthetic biology

    PubMed Central

    2010-01-01

    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

  14. The National University Consortium: An Assessment.

    ERIC Educational Resources Information Center

    Fehnel, Richard A.

    1982-01-01

    The Off-Campus Degree Program at Linfield College (Oregon) provides quality coursework to a group of part-time adult students who would not otherwise have access to a four-year degree program. In 1980, Linfield joined six other institutions to form the National University Consortium (NUC), the first national organization of colleges and…

  15. Consortium wins major Brazilian gas contract

    SciTech Connect

    O`Driscoll

    1994-08-16

    An international consortium of BHP of Australia, Tenneco Gas of the U.S. and British Gas was selected Monday by Petroleo Braileiro SA (Petrobras) to Monday by Petroleo Brasileiro SA (Petrobras) to develop a $2 billion natural gas pipeline linking reserves in Bolivia with markets in southern and southeastern Brazil.

  16. A consortium approach to intravenous certification.

    PubMed

    Kelly, D; Ziemba, S; Shumlas, D; Files, B

    1998-01-01

    Providing education for intravenous therapy without offering redundant courses is a concern for staff development educators. The consortium approach maximizes resources, provides a standard and consistent level of intravenous training, and provides a cost-effective remedy. Problems, solutions, and benefits to students, educators, and hospitals are described in this article. Emergent issues are also discussed.

  17. Retirement Plan Consortium Structures for K-12

    ERIC Educational Resources Information Center

    Kevin, John

    2012-01-01

    As school districts continue to seek administrative efficiencies and cost reductions in the wake of severe budget pressures, the resources they devote to creating or expanding retirement plan consortia is increasing. Understanding how to structure a retirement plan consortium is paramount to successfully achieving the many objectives of…

  18. West Tennessee Research Development Consortium. Final Report.

    ERIC Educational Resources Information Center

    Colmey, James W.

    The West Tennessee Research Development Consortium, formed to increase the potentiality of research in two small West Tennessee Colleges, consists of a project designed to train in research methodology one research person on each of the two campuses, and to offer concurrently an inservice training program to eight faculty members in each of the…

  19. 10 CFR 603.1235 - Consortium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Consortium. 603.1235 Section 603.1235 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in... incorporated or that otherwise agrees to jointly carry out a RD&D project (see definition of “articles...

  20. CORAL DISEASE & HEALTH CONSORTIUM; PARTNERS FOR PRESERVATION

    EPA Science Inventory

    Presented at EMAP Symposium 2001: Coastal Monitoring Through Partnerships, 24-27 April 2001, Pensacola Beach, FL.

    The Coral Disease and Health Consortium (CDHC) was one recommendation to the U.S. Coral Reef Task Force (CRTF), to conserve the coral reef ecosystems of the U...

  1. Consortium on Inclusive Schooling Practices. Final Report.

    ERIC Educational Resources Information Center

    Salisbury, Christine; Roach, Virginia; Strieker, Toni; McGregor, Gail

    This final report describes the activities and accomplishments of the Consortium on Inclusive Schooling Practices, a federally-funded 5-year project to investigate the utility of a systemic approach for building the capacity of state and local education agencies to provide inclusive educational services. The project focused on four states…

  2. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply. PMID:20163088

  3. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  4. Establishing a Consortium for the Study of Rare Diseases: The Urea Cycle Disorders Consortium

    PubMed Central

    Seminara, Jennifer; Tuchman, Mendel; Krivitzky, Lauren; Krischer, Jeffrey; Lee, Hye-Seung; LeMons, Cynthia; Baumgartner, Matthias; Cederbaum, Stephen; Diaz, George A.; Feigenbaum, Annette; Gallagher, Renata C.; Harding, Cary O.; Kerr, Douglas S.; Lanpher, Brendan; Lee, Brendan; Lichter-Konecki, Uta; McCandless, Shawn E.; Merritt, J. Lawrence; Oster-Granite, Mary Lou; Seashore, Margretta R.; Stricker, Tamar; Summar, Marshall; Waisbren, Susan; Yudkoff, Marc; Batshaw, Mark L.

    2010-01-01

    The Urea Cycle Disorders Consortium (UCDC) was created as part of a larger network established by the National Institutes of Health to study rare diseases. This paper reviews the UCDC’s accomplishments over the first six years, including how the Consortium was developed and organized, clinical research studies initiated, and the importance of creating partnerships with patient advocacy groups, philanthropic foundations and biotech and pharmaceutical companies. PMID:20188616

  5. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  6. Modifying plants for biofuel and biomaterial production.

    PubMed

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel.

  7. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  8. Biofuels and Fisheries: Risks and Opportunities .

    EPA Science Inventory

    A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

  9. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  10. Microbial Stress Tolerance for Biofuels: Systems Biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides comprehensive up-to-date understanding and frontier research addressing mechanisms of microbial stress tolerance involved in biofuels using a systems biology approach. It ties closely with the cutting edge technology with a focus on the challenging subject of biofuels. The develo...

  11. Meeting Report from the Genomic Standards Consortium (GSC) Workshop 10.

    PubMed

    Glass, Elizabeth; Meyer, Folker; Gilbert, Jack A; Field, Dawn; Hunter, Sarah; Kottmann, Renzo; Kyrpides, Nikos; Sansone, Susanna; Schriml, Lynn; Sterk, Peter; White, Owen; Wooley, John

    2010-01-01

    This report summarizes the proceedings of the 10th workshop of the Genomic Standards Consortium (GSC), held at Argonne National Laboratory, IL, USA. It was the second GSC workshop to have open registration and attracted over 60 participants who worked together to progress the full range of projects ongoing within the GSC. Overall, the primary focus of the workshop was on advancing the M5 platform for next-generation collaborative computational infrastructures. Other key outcomes included the formation of a GSC working group focused on MIGS/MIMS/MIENS compliance using the ISA software suite and the formal launch of the GSC Developer Working Group. Further information about the GSC and its range of activities can be found at http://gensc.org/.

  12. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  13. Biofuels and the conundrum of sustainability.

    PubMed

    Sheehan, John J

    2009-06-01

    Sustainable energy is the problem of the 21st century. If biofuels want to be part of the solution they must accept a degree of scrutiny unprecedented in the development of a new industry. That is because sustainability deals explicitly with the role of biofuels in ensuring the well-being of our planet, our economy, and our society both today and in the future. Life cycle assessment (LCA) has been the standard framework for assessing sustainability of biofuels. These assessments show that corn ethanol has a marginally lower fossil energy and greenhouse gas footprint compared to petroleum fuel. Sugarcane ethanol and some forms of biodiesel offer substantially lower footprints. New biofuels may offer low footprints. The science of LCA is being stretched to its limits as policy makers consider direct and indirect effects of biofuels on global land and water resources, global ecosystems, air quality, public health, and social justice.

  14. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  15. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  16. Biofuels 2020: Biorefineries based on lignocellulosic materials.

    PubMed

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan-Luis

    2016-09-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge-based jobs and mitigating greenhouse gas emissions. Today, engineering for plant construction is accessible and new processes using agricultural residues and municipal solid wastes have reached a good degree of maturity and high conversion yields (almost 90% of polysaccharides are converted into monosaccharides ready for fermentation). For the complete success of the 2G technology, it is still necessary to overcome a number of limitations that prevent a first-of-a-kind plant from operating at nominal capacity. We also claim that the triumph of 2G technology requires the development of favourable logistics to guarantee biomass supply and make all actors (farmers, investors, industrial entrepreneurs, government, others) aware that success relies on agreement advances. The growth of ethanol production for 2020 seems to be secured with a number of 2G plants, but public/private investments are still necessary to enable 2G technology to move on ahead from its very early stages to a more mature consolidated technology. PMID:27470921

  17. Characterization of Mixing Between Water and Biofuels

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Green, Erica; Acevedo, Marina; Otero, Margarita; Demond, Avery

    2012-11-01

    Currently, gasoline containing ethanol is considered to be among the best alternatives to gasoline. However, the potential environmental impact of a spill of ethanol-based biofuels on aquatic environments is an area of open discussion and research. Since these fuels are a combination of a miscible fluid (ethanol) and an immiscible fluid (gasoline), models used for traditional gasoline fuels (immiscible in water) are not applicable. Preliminary experiments show that when a solution of ethanol and glycol is mixed with water, a third mixed fluid is formed. Two distinct mixing regimes were observed. An exothermic reaction also occurred between ethanol and water. In the first regime, a turbulent wake is created between the ethanol/glycol and water layers causing the ethanol and glycol solution to entrain and mix into with the water phase. Because the mixed fluid is denser than either parent fluid, a dramatic overturning is possible. The amount of mixing was found to be dependent upon the initial ratio of ethanol to glycol in the parent fluid. The second regime begins when the turbulent wake has dissipated and the internal wave created by the plate has begun to settle, typically within the first minute. At this point, Bénard-like cells, similar to those typically seen in Rayleigh-Bénard convection, form at the interface and relatively slow mass transfer is evident. The cells at the interface show distinct features of interfacial turbulence, including small transverse waves, denoting that instabilities exist there. Funding from UM-OVPR and NSF Advance.

  18. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  19. Removal of Triphenylmethane Dyes by Bacterial Consortium

    PubMed Central

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  20. Primary Immune Deficiency Treatment Consortium (PIDTC) report.

    PubMed

    Griffith, Linda M; Cowan, Morton J; Notarangelo, Luigi D; Kohn, Donald B; Puck, Jennifer M; Pai, Sung-Yun; Ballard, Barbara; Bauer, Sarah C; Bleesing, Jack J H; Boyle, Marcia; Brower, Amy; Buckley, Rebecca H; van der Burg, Mirjam; Burroughs, Lauri M; Candotti, Fabio; Cant, Andrew J; Chatila, Talal; Cunningham-Rundles, Charlotte; Dinauer, Mary C; Dvorak, Christopher C; Filipovich, Alexandra H; Fleisher, Thomas A; Bobby Gaspar, Hubert; Gungor, Tayfun; Haddad, Elie; Hovermale, Emily; Huang, Faith; Hurley, Alan; Hurley, Mary; Iyengar, Sumathi; Kang, Elizabeth M; Logan, Brent R; Long-Boyle, Janel R; Malech, Harry L; McGhee, Sean A; Modell, Fred; Modell, Vicki; Ochs, Hans D; O'Reilly, Richard J; Parkman, Robertson; Rawlings, David J; Routes, John M; Shearer, William T; Small, Trudy N; Smith, Heather; Sullivan, Kathleen E; Szabolcs, Paul; Thrasher, Adrian; Torgerson, Troy R; Veys, Paul; Weinberg, Kenneth; Zuniga-Pflucker, Juan Carlos

    2014-02-01

    The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, and chronic granulomatous disease through retrospective, prospective, and cross-sectional studies. The PIDTC additionally seeks to encourage training of junior investigators, establish partnerships with European and other International colleagues, work with patient advocacy groups to promote community awareness, and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for primary immunodeficiency diseases. To date, the PIDTC has funded 2 pilot projects: newborn screening for SCID in Navajo Native Americans and B-cell reconstitution in patients with SCID after hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first 2 PIDTC workshops, and consideration of future consortium objectives.

  1. Primary Immune Deficiency Treatment Consortium (PIDTC) Report

    PubMed Central

    Griffith, Linda M.; Cowan, Morton J.; Notarangelo, Luigi D.; Kohn, Donald B.; Puck, Jennifer M.; Pai, Sung-Yun; Ballard, Barbara; Bauer, Sarah C.; Bleesing, Jack J. H.; Boyle, Marcia; Brower, Amy; Buckley, Rebecca H.; van der Burg, Mirjam; Burroughs, Lauri M.; Candotti, Fabio; Cant, Andrew J.; Chatila, Talal; Cunningham-Rundles, Charlotte; Dinauer, Mary C.; Dvorak, Christopher C.; Filipovich, Alexandra H.; Fleisher, Thomas A.; Gaspar, Hubert Bobby; Gungor, Tayfun; Haddad, Elie; Hovermale, Emily; Huang, Faith; Hurley, Alan; Hurley, Mary; Iyengar, Sumathi; Kang, Elizabeth M.; Logan, Brent R.; Long-Boyle, Janel R.; Malech, Harry L.; McGhee, Sean A.; Modell, Fred; Modell, Vicki; Ochs, Hans D.; O'Reilly, Richard J.; Parkman, Robertson; Rawlings, David J.; Routes, John M.; Shearer, William T.; Small, Trudy N.; Smith, Heather; Sullivan, Kathleen E.; Szabolcs, Paul; Thrasher, Adrian; Torgerson, Troy R.; Veys, Paul; Weinberg, Kenneth; Zuniga-Pflucker, Juan Carlos

    2013-01-01

    The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases (PID). Current protocols address the natural history of patients treated for Severe Combined Immunodeficiency (SCID), Wiskott-Aldrich Syndrome and Chronic Granulomatous Disease through retrospective, prospective and cross-sectional studies. The PIDTC additionally seeks to: encourage training of junior investigators; establish partnerships with European and other International colleagues; work with patient advocacy groups to promote community awareness; and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for PID. To date, the PIDTC has funded two pilot projects: newborn screening for SCID in Navajo Native Americans; and B cell reconstitution in SCID patients following hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first two PIDTC workshops, and consideration of future consortium objectives. PMID:24139498

  2. Removal of triphenylmethane dyes by bacterial consortium.

    PubMed

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  3. Reuse at the Software Productivity Consortium

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1989-01-01

    The Software Productivity Consortium is sponsored by 14 aerospace companies as a developer of software engineering methods and tools. Software reuse and prototyping are currently the major emphasis areas. The Methodology and Measurement Project in the Software Technology Exploration Division has developed some concepts for reuse which they intend to develop into a synthesis process. They have identified two approaches to software reuse: opportunistic and systematic. The assumptions underlying the systematic approach, phrased as hypotheses, are the following: the redevelopment hypothesis, i.e., software developers solve the same problems repeatedly; the oracle hypothesis, i.e., developers are able to predict variations from one redevelopment to others; and the organizational hypothesis, i.e., software must be organized according to behavior and structure to take advantage of the predictions that the developers make. The conceptual basis for reuse includes: program families, information hiding, abstract interfaces, uses and information hiding hierarchies, and process structure. The primary reusable software characteristics are black-box descriptions, structural descriptions, and composition and decomposition based on program families. Automated support can be provided for systematic reuse, and the Consortium is developing a prototype reuse library and guidebook. The software synthesis process that the Consortium is aiming toward includes modeling, refinement, prototyping, reuse, assessment, and new construction.

  4. The Third Pacific Basin Biofuels Workshop: Proceedings

    NASA Astrophysics Data System (ADS)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  5. Global biofuel use, 1850-2000

    NASA Astrophysics Data System (ADS)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  6. Europe report discloses biofuels' embarrassing secret

    SciTech Connect

    2010-06-15

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  7. Global Biofuel Use, 1850-2000.

    SciTech Connect

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  8. Genetic structure of a novel biofuel-producing microorganism community.

    PubMed

    de Felice, Bruna; Blasi, Vito Onofrio; de Castro, Olga; Cennamo, Paola; Martino, Laura; Trifuoggi, Marco; Condorelli, Valerio; di Onofrio, Valeria; Guida, Marco

    2012-08-01

    Biofuels are an important alternative, renewable source of energy in the face of the ongoing depletion of fossil fuels. Cheese whey is a dairy industry waste characterized by high lactose concentration, which represents a significant environmental problem. Bio-ethanol production by cheese whey could be an effective nonvegetable source for renewable energy production. Here, we report the isolation of a mixed microbial population, able to produce ethanol as main fermentation product from fermenting whey. The microbial consortium has been used to perform a batch fermentation of crude whey in both anoxic and hypoxic conditions. Maximum ethanol concentrations achieved in this study was obtained using the mixed culture in hypoxic conditions, grown at pH 4 and 30 °C, with ethanol production yield of 60 g/L. Our research has pointed out an alternative way to both dispose and valorize cheese whey, a dairy by-product that could cause water pollution and harm to the environment if not properly treated.

  9. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  10. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  11. LBL/JSU/AGMUS science consortium annual report, FY 1991--1992

    SciTech Connect

    Not Available

    1992-12-31

    In 1983, a formal Memorandum of Understanding joined the Ana G. Mendez University System (AGMUS), Jackson State University (JSU), and the Lawrence Berkeley Laboratory (LBL) in a consortium designed to advance the science and technology programs of JSU and AGMUS. This is the first such collaboration between a Hispanic university system, a historically Black university, and a national laboratory. The goals of this alliance are basic and direct: to develop and effect a long-term, comprehensive program that will enable the campuses of AGMUS and JSU to provide a broad, high-quality offering in the natural and computer sciences, to increase the number of minority students entering these fields, and to contribute to scientific knowledge and the federal government`s science mission through research. This report documents the progress toward these goals and includes individual success stories. The LBL/JSU/AGMUS Science Consortium has developed plans for utilizing its program successes to help other institutions to adopt or adapt those elements of the model that have produced the greatest results. Within the five-year plan formulated in 1990 are eight major components, each with defining elements and goals. These elements have become the components of the Science Consortium`s current plan for expansion and propagation.

  12. Biofuels: A Solution for Climate Change

    SciTech Connect

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  13. Designer landscapes for sustainable biofuels.

    PubMed

    Koh, Lian Pin; Levang, Patrice; Ghazoul, Jaboury

    2009-08-01

    Oil palm is one of the most extensively cultivated biodiesel feedstocks worldwide, and expansion of its cultivation poses a significant threat to ecosystems, biodiversity and potentially the global climate. We evaluate the prospects of land sparing and wildlife-friendly farming, two contrasting approaches for reducing the impacts of oil palm agriculture. We draw on concepts from both approaches to suggest more sustainable production systems and argue that landscapes under threat from oil palm expansion need to be designed in recognition of biodiversity, economic and livelihood needs. Specifically, we advocate agroforestry zones between high conservation value areas and intensive oil palm plantations to create a more heterogeneous landscape benefiting both biodiversity and rural communities. Similar principles could apply to biofuel systems elsewhere.

  14. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  15. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  16. Recent development of miniatured enzymatic biofuel cell

    NASA Astrophysics Data System (ADS)

    Song, Yin; Penmatsa, Varun; Wang, Chunlei

    2011-06-01

    Enzymatic biofuel cells (EBFCs) that oxidize biological fuels using enzyme-modified electrodes are considered a promising candidate for implantable power sources. However, there are still challenges to overcome before biofuel cells become competitive in any practical applications. Currently, the short lifespan of the catalytic enzymes and poor power density are the most critical issues in developing EBFCs. In this paper, we will review the recent development of biofuel cells and highlight the progress in Carbon-microelectromechanical system (C-MEMS) based micro biofuel cells by both computational modeling and experimental work. Also, our effort on utilizing a covalent immobilization technique for the attachment of enzymes onto the substrate which is expected to increase the enzyme loading efficiency and the power density of devices is discussed in this paper.

  17. NASA Now: Biology: Extreme Green Biofuels

    NASA Video Gallery

    Learn what makes something a “green” technology, how scientists are using climactic adaptation in their research and what aspects of plants NASA is most interested in for generating biofuel.

  18. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  19. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  20. Future of Liquid Biofuels for APEC Economies

    SciTech Connect

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  1. Graphene based enzymatic bioelectrodes and biofuel cells.

    PubMed

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-28

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided. PMID:25832672

  2. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels. PMID:22324757

  3. [Life cycle assessment on oxygen biofuels].

    PubMed

    Yi, Hong-hong; Zhu, Yong-qing; Wang, Jian-xin; Hao, Ji-ming

    2005-11-01

    Life Cycle Assessment (LCA) was used to compare energy consumption and pollutant emissions of two oxygen biofuels, ethanol and methyl ester, which were mixed with gasoline and diesel oil at levels of 10% and 30% of the biofuel. The future of oxygen-containing biofuels was analyzed and forecasted. The results show that the mixture of biofuels and petroleum products can reduce crude oil consumption, but only methyl ester alternative fuel can reduce fossil fuel consumption. Use of methyl ester mixtures would reduce NOx by 50% compared to gasoline or diesel on a life cycle basis; however, NOx would increase using ethanol. Each alternative fuel mixture reduced PM10 emissions from the vehicle and methyl ester decreased VOCs. The SO2 emissions from the fuel production processes, which account for about 80% of SO2 life cycle emissions, must be strictly controlled.

  4. Factors Driving Biofuel Crops' Influence on Climate

    NASA Astrophysics Data System (ADS)

    Jones, A.; Torn, M. S.; Riley, W. J.; Collins, W.

    2010-12-01

    Large scale deployment of new biofuel crops has the potential to influence climate through biogeophysical and biogeochemical mechanisms operating at the land surface. In turn, climatic variability influences the productivity of biofuel crops and thus their potential contribution as a source of energy. In order to characterize this two-way interaction between biofuels and climate, we are conducting a series of modeling experiments within the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM). Key questions that this study attempts to address include 1) In what ways (e.g. at what spatial and temporal scales, under what land cover and management scenarios) does a transition to biofuel crops represent a climate stabilizing versus a climate destabilizing endeavor? 2) Which vegetation properties and management choices are most influential in determining key climatic outcomes associated with biofuels? 3) Are biofuel crop yields robust to changing climatic conditions? Our approach is to develop new biofuel plant functional types (PFTs) for the land surface component of CESM - the Community Land Model (CLM) - and to examine climatic implications of future biofuel deployment scenarios within the coupled land-atmosphere framework of CESM. We are focusing initially on c4 grass crops - i.e. switchgrass, miscnathus, sugarcane, and maize. CLM represents plant functional types with more than 50 parameters that describe aerodynamic, physiological, optical, and biogeochemical properties etc. We are also making structural modification to the model in order to represent unique features of biofuel crops and their management, such as changes to the phenology and carbon allocation schema for c4 grasses. Detailed observational data from new biofuel crops such as switchgrass and miscanthus is limited and offers a weak constraint on the full set of PFT parameters. To address this problem, we are conducting systematic sensitivity analysis on the default c4

  5. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  6. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  7. Latest Developments of the Isprs Student Consortium

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Kanjir, U.; Reyes, S. R.; Miyazaki, H.; Aktas, A. F.

    2016-06-01

    The International Society for Photogrammetry and Remote Sensing (ISPRS) Student Consortium (SC) is a network for young professionals studying or working within the fields of photogrammetry, remote sensing, Geographical Information Systems (GIS), and other related geo-spatial sciences. The main goal of the network is to provide means for information exchange for its young members and thus help promote and integrate youth into the ISPRS. Over the past four years the Student Consortium has successfully continued to fulfil its mission in both formal and informal ways. The formal means of communication of the SC are its website, newsletter, e-mail announcements and summer schools, while its informal ones are multiple social media outlets and various social activities during student related events. The newsletter is published every three to four months and provides both technical and experiential content relevant for the young people in the ISPRS. The SC has been in charge or at least has helped with organizing one or more summer schools every year. The organization's e-mail list has over 1,100 subscribers, its website hosts over 1,300 members from 100 countries across the entire globe, and its public Facebook group currently has over 4,500 joined visitors, who connect among one another and share information relevant for their professional careers. These numbers show that the Student Consortium has grown into a significant online-united community. The paper will present the organization's on-going and past activities for the last four years, its current priorities and a strategic plan and aspirations for the future four-year period.

  8. Migrating from Informal to Formal Consortium — COSTLI Issues

    NASA Astrophysics Data System (ADS)

    Birdie, C.; Patil, Y. M.

    2010-10-01

    There are many models of library consortia which have come into existence due to various reasons and compulsions. FORSA (Forum for Resource Sharing in Astronomy) is an informal consortium born from the links between academic institutions specializing in astronomy in India. FORSA is a cooperative venture initiated by library professionals. Though this consortium was formed mainly for inter-lending activities and bibliographic access, it has matured over the years to adopt the consortium approach on cooperative acquisitions, due to increased requirements.

  9. University Research Consortium annual review meeting program

    SciTech Connect

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  10. Document delivery by the Jupiter Library Consortium

    NASA Technical Reports Server (NTRS)

    Wessels, Robert H. A.

    1994-01-01

    The Jupiter library consortium consists of 4 of the leading libraries in the Netherlands. During 1993 Jupiter received 600,000 requests for copies of journal articles, or 70 percent of all external article requests in the Netherlands. Over 90 percent of the requested documents were delivered from a collection of 40,000 current international journal subscriptions. Jupiter and its affiliate libraries are non-profit organizations belonging to, and serving, the scientific and technical research community. The usage of the current journal collection of the libraries was analyzed to improve the cost/benefit ratio.

  11. Consortium for materials development in space

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During fiscal 1993, the Consortium for Materials Development in Space (CMDS) maintained the organizational structure and project orientation established in prior years. The commercial objectives are improved materials, biomedical applications, and infrastructure and support hardware. Projects include nonlinear optical materials; space materials (specifically polymer foam/films, atomic oxygen and high temperature superconductors); alloyed and blended materials: sintered and alloyed materials; polymer and carbonate blends; electrodeposition; organic separation; materials dispersion and biodynamics; space carriers: Consort, COMET support, Spacehab utilization; and flight services: accelerometers, CMIX, USEC, ORSEP, and Space Experiment Facility (SEF).

  12. Consortium for materials development in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The status of the Consortium for Materials Development in Space (CMDS) is reviewed. Individual CMDS materials projects and flight opportunities on suborbital and orbital carriers are outlined. Projects include: surface coatings and catalyst production; non-linear optical organic materials; physical properties of immiscible polymers; nuclear track detectors; powdered metal sintering; iron-carbon solidification; high-temperature superconductors; physical vapor transport crystal growth; materials preparation and longevity in hyperthermal oxygen; foam formation; measurement of the microgravity environment; and commercial management of space fluids.

  13. External RNA Controls Consortium Beta Version Update.

    PubMed

    Lee, Hangnoh; Pine, P Scott; McDaniel, Jennifer; Salit, Marc; Oliver, Brian

    2016-01-01

    Spike-in RNAs are valuable controls for a variety of gene expression measurements. The External RNA Controls Consortium developed test sets that were used in a number of published reports. Here we provide an authoritative table that summarizes, updates, and corrects errors in the test version that ultimately resulted in the certified Standard Reference Material 2374. We have noted existence of anti-sense RNA controls in the material, corrected sub-pool memberships, and commented on control RNAs that displayed inconsistent behavior. PMID:27512518

  14. External RNA Controls Consortium Beta Version Update

    PubMed Central

    Lee, Hangnoh; Pine, P. Scott; McDaniel, Jennifer; Salit, Marc; Oliver, Brian

    2016-01-01

    Spike-in RNAs are valuable controls for a variety of gene expression measurements. The External RNA Controls Consortium developed test sets that were used in a number of published reports. Here we provide an authoritative table that summarizes, updates, and corrects errors in the test version that ultimately resulted in the certified Standard Reference Material 2374. We have noted existence of anti-sense RNA controls in the material, corrected sub-pool memberships, and commented on control RNAs that displayed inconsistent behavior. PMID:27512518

  15. Cross-Disciplinary Biomarkers Research: Lessons Learned by the CKD Biomarkers Consortium

    PubMed Central

    Hsu, Chi-yuan; Ballard, Shawn; Batlle, Daniel; Bonventre, Joseph V.; Böttinger, Erwin P.; Feldman, Harold I.; Klein, Jon B.; Coresh, Josef; Eckfeldt, John H.; Inker, Lesley A.; Kimmel, Paul L.; Kusek, John W.; Liu, Kathleen D.; Mauer, Michael; Mifflin, Theodore E.; Molitch, Mark E.; Nelsestuen, Gary L.; Rebholz, Casey M.; Rovin, Brad H.; Sabbisetti, Venkata S.; Van Eyk, Jennifer E.; Vasan, Ramachandran S.; Waikar, Sushrut S.; Whitehead, Krista M.

    2015-01-01

    Significant advances are needed to improve the diagnosis, prognosis, and management of persons with CKD. Discovery of new biomarkers and improvements in currently available biomarkers for CKD hold great promise to achieve these necessary advances. Interest in identification and evaluation of biomarkers for CKD has increased substantially over the past decade. In 2009, the National Institute of Diabetes and Digestive and Kidney Diseases established the CKD Biomarkers Consortium (http://www.ckdbiomarkersconsortium.org/), a multidisciplinary, collaborative study group located at over a dozen academic medical centers. The main objective of the consortium was to evaluate new biomarkers for purposes related to CKD in established prospective cohorts, including those enriched for CKD. During the first 5 years of the consortium, many insights into collaborative biomarker research were gained that may be useful to other investigators involved in biomarkers research. These lessons learned are outlined in this Special Feature and include a wide range of issues related to biospecimen collection, storage, and retrieval, and the internal and external quality assessment of laboratories that performed the assays. The authors propose that investigations involving biomarker discovery and validation are greatly enhanced by establishing and following explicit quality control metrics, including the use of blind replicate and proficiency samples, by carefully considering the conditions under which specimens are collected, handled, and stored, and by conducting pilot and feasibility studies when there are concerns about the condition of the specimens or the accuracy or reproducibility of the assays. PMID:25739849

  16. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

    PubMed

    Samorì, Giulia; Samorì, Chiara; Guerrini, Franca; Pistocchi, Rossella

    2013-02-01

    The microalgal biomass applications strongly depend on cell composition and the production of low cost products such as biofuels appears to be economically convenient only in conjunction with wastewater treatment. As a preliminary study, in view of the development of a wastewater treatment pilot plant for nutrient removal and algal biomass production, a biological wastewater system was carried out on a laboratory scale growing a newly isolated freshwater algal strain, Desmodesmus communis, and a natural consortium of microalgae in effluents generated by a local wastewater reclamation facility. Batch cultures were operated by using D. communis under different growth conditions to better understand the effects of CO₂, nutrient concentration and light intensity on the biomass productivity and biochemical composition. The results were compared with those obtained using a natural algal consortium. D. communis showed a great vitality in the wastewater effluents with a biomass productivity of 0.138-0.227 g L⁻¹ d⁻¹ in the primary effluent enriched with CO₂, higher biomass productivity compared with the one achieved by the algal consortium (0.078 g L⁻¹ d⁻¹). D. communis cultures reached also a better nutrient removal efficiency compared with the algal consortium culture, with almost 100% for ammonia and phosphorous at any N/P ratio characterizing the wastewater nutrient composition. Biomass composition was richer in polysaccharides and total fatty acids as the ammonia concentration in the water decreased. In view of a future application of this algal biomass, due to the low total fatty acids content of 1.4-9.3 wt% and the high C/N ratio of 7.6-39.3, anaerobic digestion appeared to be the most appropriate biofuel conversion process. PMID:23211134

  17. Essays concerning the cellulosic biofuel industry

    NASA Astrophysics Data System (ADS)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  18. Liquid biofuels - can they meet our expectations?

    NASA Astrophysics Data System (ADS)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  19. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    ERIC Educational Resources Information Center

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  20. The NIH Extracellular RNA Communication Consortium

    PubMed Central

    Ainsztein, Alexandra M.; Brooks, Philip J.; Dugan, Vivien G.; Ganguly, Aniruddha; Guo, Max; Howcroft, T. Kevin; Kelley, Christine A.; Kuo, Lillian S.; Labosky, Patricia A.; Lenzi, Rebecca; McKie, George A.; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S.; Srinivas, Pothur R.; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A.; Tucker, Jessica M.; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators. PMID:26320938

  1. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-12-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organizing and hosting the Fall SWC Technology Transfer Workshop for the northeastern U.S., in Pittsburgh, PA, on November 9, 2006, and organizing and identifying projects to exhibit during the SWC/Gas Storage Technology Consortium (GSTC) joint reception on November 8, 2006; (2) Distributing a paper copy of the Texas Tech 2004 Final Report and a revised, complete compact disc of all 2004 final reports; (3) Invoicing current and potential members for FY2007; (4) Soliciting nominations for the 2007-2008 Executive Council seats; and (5) Communications and outreach.

  2. Overview of the carbon products consortium (CPC)

    SciTech Connect

    Irwin, C.L.

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  3. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: {lg_bullet} 2004 SWC Final Project Reports distribution; {lg_bullet} Exhibit and present at the Midcontinent Oil and Gas Prospect Fair, Great Bend, KS, September 12, 2006; {lg_bullet} Participate and showcase current and past projects at the 2006 Oklahoma Oil and Gas Trade Expo, Oklahoma City, OK, October 26, 2006; {lg_bullet} Finalize agenda and identify exhibitors for the northeastern US, Fall SWC Technical Transfer Workshop, Pittsburghhh, PA, November 9, 2006; {lg_bullet} Continue distribution of the public broadcast documentary, ''Independent Oil: Rediscovering American's Forgotten Wells''; {lg_bullet} Communications/outreach; and {lg_bullet} New members update.

  4. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  5. National microalgae biofuel production potential and resource demand

    NASA Astrophysics Data System (ADS)

    Wigmosta, Mark S.; Coleman, André M.; Skaggs, Richard J.; Huesemann, Michael H.; Lane, Leonard J.

    2011-03-01

    Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220 × 109 L yr-1 of oil, equivalent to 48% of current U.S. petroleum imports for transportation. However, this level of production requires 5.5% of the land area in the conterminous United States and nearly three times the water currently used for irrigated agriculture, averaging 1421 L water per liter of oil. Optimizing the locations for microalgae production on the basis of water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, southeastern seaboard, and Great Lakes shows a 75% reduction in consumptive freshwater use to 350 L per liter of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target and utilizing some 25% of the current irrigation demand. With proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  6. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Wiggins, H. V.; Creek, K. R.

    2012-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  7. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.

    2013-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  8. The Goals and Research of the BioEnergy Sciences Center (BESC): Developing Cost-effective and Sustainable Means of Producing Biofuels by Overcoming Biomass Recalcitrance

    SciTech Connect

    Fowler, Suzy

    2009-01-01

    The mission of BioEnergy Sciences Center is to understand and overcome the recalcitrance of biomass to conversion by modifying plant cell walls with improved biocatalysts. The papers in this volume are from the plant transformation and the biomass characterization areas, and showcase the multidisciplinary and multi-institutional nature of the center. The challenge of converting cellulosic biomass to accessible sugars is the dominant obstacle to cost-effective production of biofuels in sustained quantities capable of impacting U.S. consumption of fossil transportation fuels. This was affirmed in a Biomass to Biofuels Workshop report, 'Breaking the Barriers to Cellulosic Ethanol' (DOE/SC-0095, 2006). The potential beneficial economic impact of addressing the difficulty of accessing biomass sugars was explained by Lynd et al. [1]. The BioEnergy Science Center (BESC) research project addresses this challenge with an unprecedented interdisciplinary effort focused on overcoming the recalcitrance of biomass. The 5-year mission of BESC is to make revolutionary advances in understanding and overcoming the recalcitrance of biomass to conversion into sugars, making it feasible to displace imported petroleum with ethanol and other fuels. BESC will combine plant cell walls engineered to reduce recalcitrance with new biocatalysts to improve deconstruction. These breakthroughs will be realized with a systems biology approach and new high-throughput analytical and computational technologies to achieve: (1) targeted modification of plant cell walls to reduce their recalcitrance (using Populus and switchgrass as high-impact bioenergy feedstocks), thereby, decreasing or eliminating the need for costly chemical pretreatment; and (2) consolidated bioprocessing, which involves the use of a single microorganism or microbial consortium to overcome biomass recalcitrance through single-step conversion of biomass to biofuels. We will greatly enhance our understanding of cell wall structure

  9. 25 CFR 1000.283 - If the Tribe/Consortium or Tribe's/Consortium's employee receives a summons and/or a complaint...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../Consortium do? As part of the notification required by 28 U.S.C. 2679(c), if the Tribe/Consortium or Tribe's... Solicitor, Department of the Interior, Room 6511, 1849 C Street NW., Washington, DC 20240, (b) Inform the... 25 Indians 2 2010-04-01 2010-04-01 false If the Tribe/Consortium or Tribe's/Consortium's...

  10. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  11. 10 CFR 603.515 - Qualification of a consortium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is not formally incorporated must provide a collaboration agreement, commonly referred to as the articles of collaboration, which sets out the rights and responsibilities of each consortium member. This agreement binds the individual consortium members together and should discuss, among other things,...

  12. 47 CFR 54.631 - Designation of Consortium Leader.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Designation of Consortium Leader. 54.631 Section 54.631 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Health Care Providers Healthcare Connect Fund § 54.631 Designation of Consortium Leader....

  13. 47 CFR 54.631 - Designation of Consortium Leader.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Designation of Consortium Leader. 54.631 Section 54.631 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Health Care Providers Healthcare Connect Fund § 54.631 Designation of Consortium Leader....

  14. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  15. Policy Report of the Physician Consortium on Substance Abuse Education.

    ERIC Educational Resources Information Center

    Lewis, David C.; Faggett, Walter L.

    This report contains the recommendations of the Physician Consortium for significantly improving medical education and training to enhance the physician's role in early identification, treatment, and prevention of substance abuse. In addition, the consortium subcommittees report on their examination of substance abuse treatment needs of ethnic and…

  16. 40 CFR 35.504 - Eligibility of an Intertribal Consortium.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Consortium. 35.504 Section 35.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes General-All Grants... Environmental General Assistance Program Act, in accordance with § 35.540, if the Consortium demonstrates...

  17. 40 CFR 35.504 - Eligibility of an Intertribal Consortium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Consortium. 35.504 Section 35.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes General-All Grants... Environmental General Assistance Program Act, in accordance with § 35.540, if the Consortium demonstrates...

  18. 40 CFR 35.504 - Eligibility of an Intertribal Consortium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Consortium. 35.504 Section 35.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes General-All Grants... Environmental General Assistance Program Act, in accordance with § 35.540, if the Consortium demonstrates...

  19. The Financing of the Michigan Library Consortium. Paper No. 3.

    ERIC Educational Resources Information Center

    Michigan Library Consortium, Detroit.

    Since the formal organization of the Michigan Library Consortium, its financial support has come through membership fees and a grant from the Michigan State Library from Title III funds. The financing of the consortium is already a complex operation and will become even more complex as new programs are undertaken, since funds have been accepted…

  20. The Alaska State Writing Consortium: The First Five Years.

    ERIC Educational Resources Information Center

    Parson, Gail

    This booklet documents the first 5 years of the Alaska State Writing Consortium, an association made up of 45 Alaska school districts, the Alaska Department of Education, and the University of Alaska. The Consortium, which oversees the organization and implementation of teacher training programs in writing and the teaching of writing, has five…

  1. 24 CFR 943.122 - How is a consortium organized?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false How is a consortium organized? 943... URBAN DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.122 How is a... consortium will be paid to the lead agency. (b) The lead agency must not be a PHA that is designated as...

  2. 24 CFR 943.118 - What is a consortium?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false What is a consortium? 943.118 Section 943.118 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT... DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.118 What is a consortium?...

  3. 24 CFR 943.118 - What is a consortium?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false What is a consortium? 943.118 Section 943.118 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT... DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.118 What is a consortium?...

  4. The Consortium for Higher Education Tax Reform Report

    ERIC Educational Resources Information Center

    Center for Postsecondary and Economic Success, 2014

    2014-01-01

    This White Paper presents the work of the Consortium for Higher Education Tax Reform, a partnership funded by the Bill & Melinda Gates Foundation as part of the second phase of its Reimagining Aid Design and Delivery (RADD) initiative. Consortium partners are the Center for Postsecondary and Economic Success at CLASP, the Education Trust, New…

  5. 24 CFR 943.118 - What is a consortium?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Consortia § 943.118 What is a consortium? A... consortium also submits a joint PHA Plan. The lead agency collects the assistance funds from HUD that would... same fiscal year so that the applicable periods for submission and review of the joint PHA Plan are...

  6. A Consortium-based Research Education Program for Residents.

    ERIC Educational Resources Information Center

    Neale, Anne Victoria; Pieper, David; Hammel, Ernest

    2000-01-01

    Reports on a consortium-based research education seminar program developed by the OHEP Center for Medical Education that presents a yearly research forum in which the best research projects from consortium members are presented by the resident-researchers, who compete for recognition and prize money. Of the 128 presentations to date 25 percent…

  7. United States Participation in the Pacific Circle Consortium. Final Report.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The goal of the Pacific Circle Project is to improve international and intercultural understanding among the people and nations of the Pacific. Consortium member countries are Australia, Canada, New Zealand, and the United States. Within the countries are chosen member institutions. Two major types of activities of the consortium are the exchange…

  8. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands.

    PubMed

    Vuichard, Nicolas; Ciais, Philippe; Wolf, Adam

    2009-11-15

    Although the CO(2) mitigation potential of biofuels has been studied by extrapolation of small-scale studies, few estimates exist of the net regional-scale carbon balance implications of biofuel cultivations programs, either growing conventional biofuel crops or applying new advanced technologies. Here we used a spatially distributed process-driven model over the 20 Mha of recently abandoned agricultural lands of the Former Soviet Union to quantify the GHG mitigation by biofuel production from Low Input/High Diversity (LIHD) grass-legume prairies and to compare this GHG mitigation with the one of soil C sequestration as it currently occurs. LIHD has recently received a lot of attention as an emerging opportunity to produce biofuels over marginal lands leading to a good energy efficiency with minimal adverse consequences on food security and ecosystem services. We found that, depending on the time horizon over which one seeks to maximize the GHG benefit, the optimal time for implementing biofuel production shifts from "never" (short-term horizon) to "as soon as possible" (longer-term horizon). These results highlight the importance of reaching agreement a priori on the target time interval during which biofuels are expected to play a role within the global energy system, to avoid deploying biofuel technology over a time interval for which it has a detrimental impact on the GHG mitigation objective. The window of opportunity for growing LIHD also stresses the need to reduce uncertainties in soil C inputs, turnover, and soil organic matter stability under current and future climate and management practices.

  9. A resilience perspective on biofuel production.

    PubMed

    Mu, Dongyan; Seager, Thomas P; Rao, P Suresh C; Park, Jeryang; Zhao, Fu

    2011-07-01

    The recent investment boom and collapse of the corn ethanol industry calls into question the long-term sustainability of traditional approaches to biofuel technologies. Compared with petroleum-based transportation fuels, biofuel production systems are more closely connected to complex and variable natural systems. Especially as biofeedstock production itself becomes more independent of fossil fuel-based supports, stochasticity will become an increasingly important, inherent feature of biofuel feedstock production systems. Accordingly, a fundamental change in design philosophy is necessary to ensure the long-term viability of the biofuels industry. To respond effectively to unexpected disruptions, the new approach will require systems to be designed for resilience (indicated by diversity, efficiency, cohesion, and adaptability) rather than more narrowly defined measures of efficiency. This paper addresses important concepts in the design of coupled engineering-ecological systems (resistance, resilience, adaptability, and transformability) and examines biofuel conversion technologies from a resilience perspective. Conversion technologies that can accommodate multiple feedstocks and final products are suggested to enhance the diversity and flexibility of the entire industry.

  10. Biofuels: A win-win strategy

    SciTech Connect

    1997-12-31

    This article looks at the overall goal of stabilizing global climate change while achieving a sustainable energy future. On Earth Day 1993, President Clinton announced that the U.S. would comply with the Rio accord and bring U.S. greenhouse gas emissions back to 1990 levels by the year 2000. Since the transportation sector accounts for over 30 percent of domestic CO{sub 2} emissions, the large-scale use and deployment of biofuels would be a useful tool in achieving the Administration`s goals of limiting greenhouse gases. Biofuels such as ethanol, methanol, and biodiesel are expected to have lower emissions of greenhouse gases than those derived from petroleum or other fossil fuels. This marked difference is due to the {open_quotes}CO{sub 2} recycling effect{close_quotes} associated with the growth process of biomass renewable resources such as trees and grasses. This article covers the following topics: global climate change an future energy consumption, reducing greenhouse transportation sector emissions: improving fuel economy and switching to low-carbon emission fuel sources; integration of fuel economy and alternative fuels; biofuels as a transportation strategy for mitigating global climate change; a win-win strategy: biofuels reduce carbon dioxide while promoting sustainable economic growth; increasing biofuels utilization through government and industry cooperation. 5 figs.

  11. The Black Rock Forest Consortium: A narrative

    NASA Astrophysics Data System (ADS)

    Buzzetto-More, Nicole Antoinette

    The Black Rock Forest is a 3,785-acre wilderness area whose richly forested landscape represents the splendor of the Hudson Valley Region of New York State. Although originally intended to become the home of wealthy banker James Stillman, it was his son Ernest whose love of conservation caused him to embrace the then new and revolutionary practice of sustainable forestry and establish Black Rock in 1928. Due to Ernest Stillman's foresight, the property was protected from development and bequeathed to Harvard University following his death for the establishment of an experimental forest. The modern environmental movement in America began when the Black Rock Forest was threatened with development by Consolidated Edison, and the people of the surrounding community banded together, battling tirelessly for over 17 years to stop the degradation of this historic forest. The outcome of this crusade marked a hallmark win for the environment leaving an illustrious and inveterate legacy. The campaign resulted in the watershed legislation the National Environmental Policy Act, the formation of several environmental advocacy groups, the creation of the Council on Environmental Quality of the Executive Office of the President, as well as set a precedent for communities to initiate and win cases against major corporations in order to safeguard natural resources. In the midst of the controversy it became apparent that alternative futures for the Forest needed to be explored. As a result of a committee report and one man's vision, the idea emerged to create a consortium that would purchase and steward the Forest. With a formation that took nearly fifteen years, the Black Rock Forest Consortium was formed, a unique amalgamation of K--12 public and private schools, colleges and universities, and science and cultural centers that successfully collaborate to enhance scientific research, environmental conservation, and education. The Consortium works to bridge the gaps between learners

  12. PERSPECTIVE: Learning from the Brazilian biofuel experience

    NASA Astrophysics Data System (ADS)

    Wang, Michael

    2006-11-01

    . Advancements in technology associated with both sugarcane farming and ethanol production have definitely played an important role in yielding the significant benefits associated with sugarcane ethanol. The United States produced about 4 billion gallons of ethanol from corn in 2005. Production was expected to increase to about 5 billion gallons by 2006. Corn-based ethanol achieves moderate reductions in greenhouse gas emissions. In the long run, the great potential of fuel ethanol lies in its production from cellulosic biomass, which is abundant in many regions of the world and can yield much greater reductions in greenhouse gas emissions and energy benefits. Figure 1 presents reductions in greenhouse emissions of several ethanol production pathways that were evaluated at the Argonne National Laboratory. Bagasse, a cellulosic biomass type already available in sugarcane ethanol plants, will certainly offer an opportunity for economically co-producing cellulosic ethanol and sugarcane ethanol in existing sugarcane ethanol plants. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used Figure 1. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used. Despite the encouraging progress of Brazil's ethanol program some issues will still need to be addressed. Figure 4 of [1] shows a significant drop in ethanol production in the 2000/2001 season. A steady supply of ethanol will be a key factor for the success of a fuel ethanol program. Consumers are not going to tolerate fluctuations in ethanol production. Instead, they will turn to conventional fuels for fueling their FFVs as a result of supply fluctuations, which can be detrimental to the success of the ethanol program. In addition to this, other environmental effects of biofuels in general, and sugarcane ethanol in particular, need to be assessed. Some have debated and speculated that Brazil's sugarcane ethanol program has caused (i) soil erosion and biodiversity problems by

  13. Recent trends in nanomaterials immobilised enzymes for biofuel production.

    PubMed

    Verma, Madan L; Puri, Munish; Barrow, Colin J

    2016-01-01

    Application of nanomaterials as novel supporting materials for enzyme immobilisation has generated incredible interest in the biotechnology community. These robust nanostructured forms, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets, and nanocomposites, possess a high surface area to volume ratios that can cause a high enzyme loading and facilitate reaction kinetics, thus improving biocatalytic efficiency for industrial applications. In this article, we discuss research opportunities of nanoscale materials in enzyme biotechnology and highlight recent developments in biofuel production using advanced material supports for enzyme immobilisation and stabilisation. Synthesis and functionalisation of nanomaterial forms using different methods are highlighted. Various simple and effective strategies designed to result in a stable, as well as functional protein-nanomaterial conjugates are also discussed. Analytical techniques confirming enzyme loading on nanomaterials and assessing post-immobilisation changes are discussed. The current status of versatile nanomaterial support for biofuel production employing cellulases and lipases is described in details. This report concludes with a discussion on the likely outcome that nanomaterials will become an integral part of sustainable bioenergy production.

  14. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  15. Life cycle and landscape impacts of biofuel production

    NASA Astrophysics Data System (ADS)

    Hill, J.

    2012-12-01

    Achieving the biofuel volumes mandated in the Renewable Fuels Standard of the United States Energy Independence and Security Act of 2007 will require large amounts of biomass such as crop residues and dedicated bioenergy crops. Growing sufficient amounts of these feedstocks would greatly transform the agricultural landscape of the United States, and depending on where and how they are grown, may have vastly different implications for the sustainability of the biofuels industry. This presentation describes ongoing research into how biomass can best be produced on the landscape so as to benefit rural economies and provide ecosystem services such as greenhouse gas mitigation and improved air quality. The focus is on newly developed methods for integrating spatial and temporal information into life cycle assessment so as to both allow for more detailed impact assessment and to provide insight into how to improve efficiency along bioenergy production supply chains. Results will benefit stakeholders both by offering recommendations for guiding sustainable growth of the emerging bioeconomy and by advancing understanding of the inherent tradeoffs among alternate scenarios.

  16. The virtual atomic and molecular data centre (VAMDC) consortium

    NASA Astrophysics Data System (ADS)

    Dubernet, M. L.; Antony, B. K.; Ba, Y. A.; Babikov, Yu L.; Bartschat, K.; Boudon, V.; Braams, B. J.; Chung, H.-K.; Daniel, F.; Delahaye, F.; Del Zanna, G.; de Urquijo, J.; Dimitrijević, M. S.; Domaracka, A.; Doronin, M.; Drouin, B. J.; Endres, C. P.; Fazliev, A. Z.; Gagarin, S. V.; Gordon, I. E.; Gratier, P.; Heiter, U.; Hill, C.; Jevremović, D.; Joblin, C.; Kasprzak, A.; Krishnakumar, E.; Leto, G.; Loboda, P. A.; Louge, T.; Maclot, S.; Marinković, B. P.; Markwick, A.; Marquart, T.; Mason, H. E.; Mason, N. J.; Mendoza, C.; Mihajlov, A. A.; Millar, T. J.; Moreau, N.; Mulas, G.; Pakhomov, Yu; Palmeri, P.; Pancheshnyi, S.; Perevalov, V. I.; Piskunov, N.; Postler, J.; Quinet, P.; Quintas-Sánchez, E.; Ralchenko, Yu; Rhee, Y.-J.; Rixon, G.; Rothman, L. S.; Roueff, E.; Ryabchikova, T.; Sahal-Bréchot, S.; Scheier, P.; Schlemmer, S.; Schmitt, B.; Stempels, E.; Tashkun, S.; Tennyson, J.; Tyuterev, Vl G.; Vujčić, V.; Wakelam, V.; Walton, N. A.; Zatsarinny, O.; Zeippen, C. J.; Zwölf, C. M.

    2016-04-01

    The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases. .

  17. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

  18. The Russian/American Fuel Cell Consortium

    SciTech Connect

    Sylwester, A.; Baker, R.; Krumpelt, M.

    1996-12-31

    The United States and Russia discovered a mutual interest in fuel cell development during a series of workshops designed to teach entrepreneurial skills to Russian nuclear weapon scientists and engineers to aid them in converting their skill to peaceful applications. The proposal for a Russian/American Fuel Cell Consortium was initiated at the third workshop held in Livermore, CA, in May 1994. Representatives from U.S. fuel cell industries, U.S. research institutes, Russian institutes and ministries, and U.S. national laboratories attended, including those from GAZPROM, the Russian natural gas company. GASPROM needs to provide power for telemetry, cathodic corrosion protection of gas lines, and gas line pumping power in remote areas, and estimates that it needs approximately seventy thousand 1.5 to 15 KW plants to do so. Since the workshop, several direct working relationships have developed between the Russian Nuclear Weapon Institutes and the U.S. fuel cell industry.

  19. A consortium approach to glass furnace modeling.

    SciTech Connect

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  20. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    PubMed

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  1. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

  2. In Defense of Biofuels, Done Right

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Lee, Russell; Leiby, Paul Newsome

    2009-01-01

    Recent claims attibuting rising fuel costs and deforestation to biofuels are examined. Given a priority to protect biodiversity and ecosystem services, it is important to further explore the drivers for conversion of land at the frontier and to consider the effects, positive and negative, that U.S. biofuel policies could have in these areas. This means it is critical to distinguish between valid concerns calling for caution and alarmist criticisms that attribute complex problems solely to biofuels. This article discusses how plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation s indeed, the world s energy security while providing other benefits and reducing pressures on native ecosystems.

  3. Impacts of Climate Change on Biofuels Production

    SciTech Connect

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  4. Economics of Current and Future Biofuels

    SciTech Connect

    Tao, L.; Aden, A.

    2009-06-01

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  5. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels. PMID:27023246

  6. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors. PMID:22628426

  7. SUNrises on the International Plant Nucleus Consortium: SEB Salzburg 2012.

    PubMed

    Graumann, Katja; Bass, Hank W; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes-from nuclear, to cellular, to organismal. Its main components-the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.

  8. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    PubMed

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors.

  9. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  10. Water Consumption for Biofuel Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Fingerman, K. R.; Torn, M. S.

    2008-12-01

    Water use may prove to be a central issue in the global and local development of the biofuel industry. While most literature on biofuel water use only considers the biorefinery phase, we studied water consumption for biofuel feedstock cultivation in major feedstock-producing regions of the United States. Using a spatially explicit Penman-Monteith model informed by field-level eddy covariance measurements, distributed climate data, and land use figures, we estimated water consumption and net water use for a number of scenarios of feedstock, location, and refining processes for biofuel development. We find that in California, for example, average water consumption for biofuels from different feedstocks ranges from about 900 to over 1500 gallons per gallon of fuel produced. Cellulosic feedstocks are found to be less water-intensive on average. Furthermore, we find feedstock cultivation to account for more than 99% of the life-cycle embedded water for fuels in California. In some regions and for some feedstock options, a shift to biofuel feedstock cultivation would reduce the strain on water resources, while in others we project it would greatly increase water demand. We are expanding this analysis to better capture both base-line ET from natural systems and ET of some of the less-studied cellulosic feedstocks, as well as to incorporate other regions in the U.S. and internationally. Thus far, we conclude that while water demand for processing is important for plant location and pollution, water consumption for feedstock growth may be (along with land resources) the limiting factor for bioenergy production in many regions.

  11. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  12. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  13. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  14. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  15. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  16. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  17. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  18. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed.

  19. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  20. The Cardiac Safety Research Consortium enters its second decade: An invitation to participate.

    PubMed

    Turner, J Rick; Kowey, Peter R; Rodriguez, Ignacio; Cabell, Christopher H; Gintant, Gary; Green, Cynthia L; Kunz, Barbara Lopez; Mortara, Justin; Sager, Philip T; Stockbridge, Norman; Wright, Theressa J; Finkle, John; Krucoff, Mitchell W

    2016-07-01

    The Cardiac Safety Research Consortium (CSRC), a transparent, public-private partnership established in 2005 as a Critical Path Program and formalized in 2006 under a Memorandum of Understanding between the United States Food and Drug Administration and Duke University, is entering its second decade. Our continuing goal is to advance paradigms for more efficient regulatory science related to the cardiovascular safety of new therapeutics, both in the United States and globally, particularly where such safety questions add burden to innovative research and development. Operationally, CSRC brings together a broad base of stakeholders from academia, industry, and government agencies in a collaborative forum focused on identifying barriers and then creating novel solutions through shared data, expertise, and collaborative research. This white paper provides a brief overview of the Consortium's activities in its first decade and a context for some of our current activities and future directions. The growth and success of the CSRC have been primarily driven by members' active participation and the development of goodwill and trust throughout our membership, which have facilitated novel collaborations across traditionally competitive or contentious stakeholder boundaries. The continued expansion of our base of participating academicians, industry experts, and regulators will define the Consortium's success in our second decade. It is our hope that sharing our endeavors to date will stimulate additional participation in the CSRC and also provide a model for other groups starting to develop similar collaborative forums. PMID:27297854

  1. Consortium for oral health-related informatics: improving dental research, education, and treatment.

    PubMed

    Stark, Paul C; Kalenderian, Elsbeth; White, Joel M; Walji, Muhammad F; Stewart, Denice C L; Kimmes, Nicole; Meng, Thomas R; Willis, George P; DeVries, Ted; Chapman, Robert J

    2010-10-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come.

  2. Consortium for oral health-related informatics: improving dental research, education, and treatment.

    PubMed

    Stark, Paul C; Kalenderian, Elsbeth; White, Joel M; Walji, Muhammad F; Stewart, Denice C L; Kimmes, Nicole; Meng, Thomas R; Willis, George P; DeVries, Ted; Chapman, Robert J

    2010-10-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come. PMID:20930236

  3. Consortium for Oral Health-Related Informatics: Improving Dental Research, Education, and Treatment

    PubMed Central

    Stark, Paul C.; Kalenderian, Elsbeth; White, Joel M.; Walji, Muhammad F.; Stewart, Denice C.L.; Kimmes, Nicole; Meng, Thomas R.; Willis, George P.; DeVries, Ted; Chapman, Robert J.

    2011-01-01

    Advances in informatics, particularly the implementation of electronic health records (EHR), in dentistry have facilitated the exchange of information. The majority of dental schools in North America use the same EHR system, providing an unprecedented opportunity to integrate these data into a repository that can be used for oral health education and research. In 2007, fourteen dental schools formed the Consortium for Oral Health-Related Informatics (COHRI). Since its inception, COHRI has established structural and operational processes, governance and bylaws, and a number of work groups organized in two divisions: one focused on research (data standardization, integration, and analysis), and one focused on education (performance evaluations, virtual standardized patients, and objective structured clinical examinations). To date, COHRI (which now includes twenty dental schools) has been successful in developing a data repository, pilot-testing data integration, and sharing EHR enhancements among the group. This consortium has collaborated on standardizing medical and dental histories, developing diagnostic terminology, and promoting the utilization of informatics in dental education. The consortium is in the process of assembling the largest oral health database ever created. This will be an invaluable resource for research and provide a foundation for evidence-based dentistry for years to come. PMID:20930236

  4. Engineering of plant cell walls for enhanced biofuel production.

    PubMed

    Loqué, Dominique; Scheller, Henrik V; Pauly, Markus

    2015-06-01

    The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.

  5. [Activity of NTDs Drug-discovery Research Consortium].

    PubMed

    Namatame, Ichiji

    2016-01-01

    Neglected tropical diseases (NTDs) are an extremely important issue facing global health care. To improve "access to health" where people are unable to access adequate medical care due to poverty and weak healthcare systems, we have established two consortiums: the NTD drug discovery research consortium, and the pediatric praziquantel consortium. The NTD drug discovery research consortium, which involves six institutions from industry, government, and academia, as well as an international non-profit organization, is committed to developing anti-protozoan active compounds for three NTDs (Leishmaniasis, Chagas disease, and African sleeping sickness). Each participating institute will contribute their efforts to accomplish the following: selection of drug targets based on information technology, and drug discovery by three different approaches (in silico drug discovery, "fragment evolution" which is a unique drug designing method of Astellas Pharma, and phenotypic screening with Astellas' compound library). The consortium has established a brand new database (Integrated Neglected Tropical Disease Database; iNTRODB), and has selected target proteins for the in silico and fragment evolution drug discovery approaches. Thus far, we have identified a number of promising compounds that inhibit the target protein, and we are currently trying to improve the anti-protozoan activity of these compounds. The pediatric praziquantel consortium was founded in July 2012 to develop and register a new praziquantel pediatric formulation for the treatment of schistosomiasis. Astellas Pharma has been a core member in this consortium since its establishment, and has provided expertise and technology in the area of pediatric formulation development and clinical development.

  6. Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange.

    PubMed

    Gifford, McKay; Liu, Jianyong; Rittmann, Bruce E; Vannela, Raveender; Westerhoff, Paul

    2015-03-01

    Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%. PMID:25528543

  7. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  8. Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)

    SciTech Connect

    Wiley, Julie G.; Manke, Kristin L.

    2012-01-02

    When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities, particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.

  9. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... and biogas, which is fuel derived from renewable biomass, other than corn kernel starch (cellulose... example, biogas can be used for the production of electricity and replacing petroleum-based gases, such as.... Any applicant that generates biogas from an anaerobic digester, including those located on a...

  10. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don't behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  11. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... publication on June 12, 2009 (74 FR 27998). All payments will be made based upon the terms and conditions..., Rural Development-Energy Division, Program Branch, Attention: Diane Berger, 1400 Independence Avenue,...

  12. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    SciTech Connect

    Block, Timothy; Ball, Kia; Fournier, Ashley

    2014-01-21

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub

  13. Establishing an International Soil Modelling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    -change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  14. 3 CFR - Biofuels and Rural Economic Development

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Memorandum for the Secretary of Agriculture, the Secretary of Energy, the Administrator of the Environmental Protection Agency In the Nation's ongoing efforts to achieve energy independence, biomass and biofuels promise to play a key role by providing the Nation with homegrown sustainable energy options...

  15. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  16. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  17. Health impact assessment of liquid biofuel production.

    PubMed

    Fink, Rok; Medved, Sašo

    2013-01-01

    Bioethanol and biodiesel as potential substitutes for fossil fuels in the transportation sector have been analyzed for environmental suitability. However, there could be impacts on human health during the production, therefore adverse health effects have to be analyzed. The aim of this study is to analyze to what health risk factors humans are exposed to in the production of biofuels and what the size of the health effects is. A health impact assessment expressed as disability adjusted life years (DALYs) was conducted in SimaPro 7.1 software. The results show a statistically significant lower carcinogenic impact of biofuels (p < 0.05) than fossil fuels. Meanwhile, the impact of organic respirable compounds is smaller for fossil fuels (p < 0.05) than for biofuels. Analysis of inorganic compounds like PM₁₀,₂.₅, SO₂ or NO(x) shows some advantages of sugar beet bioethanol and soybean biodiesel production (p < 0.05), although production of sugarcane bioethanol shows larger impacts of respirable inorganic compounds than for fossil fuels (p < 0.001). Although liquid biofuels are made of renewable energy sources, this does not necessary mean that they do not represent any health hazards. PMID:22774773

  18. [Significance and limitations of first generation biofuels].

    PubMed

    Gabrielle, Benoît

    2008-01-01

    Formerly on the margins of the European agricultural landscape, liquid biofuels for transport have recently come into sharp focus with the help of three drivers: the depletion of oil resources and the political motto of energy independence, international negotiations on climate, and finally - in Europe at least - the overhaul of the common agricultural policy underpinning the need to diversify this sector. This political purpose has led to aggressive development targets in both Europe and the United States, implying a nearly ten-fold increase of biofuel production within ten years. This article introduces the current biofuel production technologies (so-called ;first generation'), whose common marker is the reliance on the storage organs of agricultural plants. This implies a relatively strong demand in arable areas, along with only moderately positive energy and environmental advantages compared to fossil fuels. 'Second generation' biofuels, which are based on generic biomass (ligno-cellulose) are expected to overcome these limitations, but will not be deployed on the market for another ten years.

  19. Sustainability Research: Biofuels, Processes and Supply Chains

    EPA Science Inventory

    Presentation will talk about sustainability at the EPA, summarily covering high level efforts and focusing in more detail on research in metrics for liquid biofuels and tools to evaluate sustainable processes. The presentation will also briefly touch on a new area of research, t...

  20. An overview of second generation biofuel technologies.

    PubMed

    Sims, Ralph E H; Mabee, Warren; Saddler, Jack N; Taylor, Michael

    2010-03-01

    The recently identified limitations of 1st-generation biofuels produced from food crops (with perhaps the exception of sugarcane ethanol) have caused greater emphasis to be placed on 2nd-generation biofuels produced from ligno-cellulosic feedstocks. Although significant progress continues to be made to overcome the technical and economic challenges, 2nd-generation biofuels production will continue to face major constraints to full commercial deployment. The logistics of providing a competitive, all-year-round, supply of biomass feedstock to a commercial-scale plant is challenging, as is improving the performance of the conversion process to reduce costs. The biochemical route, being less mature, probably has a greater cost reduction potential than the thermo-chemical route, but here a wider range of synthetic fuels can be produced to better suit heavy truck, aviation and marine applications. Continued investment in research and demonstration by both public and private sectors, coupled with appropriate policy support mechanisms, are essential if full commercialisation is to be achieved within the next decade. After that, the biofuel industry will grow only at a steady rate and encompass both 1st- and 2nd-generation technologies that meet agreed environmental, sustainability and economic policy goals. PMID:19963372

  1. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions.

  2. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  3. Characterizing Emissions from the Combustion of Biofuels

    EPA Science Inventory

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  4. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  5. Designing Sustainable Supply Chains for Biofuels

    EPA Science Inventory

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  6. Multi-University Southeast INIE Consortium

    SciTech Connect

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering

  7. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  8. Case Definitions, Diagnostic Algorithms, and Priorities in Encephalitis: Consensus Statement of the International Encephalitis Consortium

    PubMed Central

    Venkatesan, A.; Tunkel, A. R.; Bloch, K. C.; Lauring, A. S.; Sejvar, J.; Bitnun, A.; Stahl, J-P.; Mailles, A.; Drebot, M.; Rupprecht, C. E.; Yoder, J.; Cope, J. R.; Wilson, M. R.; Whitley, R. J.; Sullivan, J.; Granerod, J.; Jones, C.; Eastwood, K.; Ward, K. N.; Durrheim, D. N.; Solbrig, M. V.; Guo-Dong, L.; Glaser, C. A.; Sheriff, Heather; Brown, David; Farnon, Eileen; Messenger, Sharon; Paterson, Beverley; Soldatos, Ariane; Roy, Sharon; Visvesvara, Govinda; Beach, Michael; Nasci, Roger; Pertowski, Carol; Schmid, Scott; Rascoe, Lisa; Montgomery, Joel; Tong, Suxiang; Breiman, Robert; Franka, Richard; Keuhnert, Matt; Angulo, Fred; Cherry, James

    2013-01-01

    Background.Encephalitis continues to result in substantial morbidity and mortality worldwide. Advances in diagnosis and management have been limited, in part, by a lack of consensus on case definitions, standardized diagnostic approaches, and priorities for research. Methods.In March 2012, the International Encephalitis Consortium, a committee begun in 2010 with members worldwide, held a meeting in Atlanta to discuss recent advances in encephalitis and to set priorities for future study. Results.We present a consensus document that proposes a standardized case definition and diagnostic guidelines for evaluation of adults and children with suspected encephalitis. In addition, areas of research priority, including host genetics and selected emerging infections, are discussed. Conclusions.We anticipate that this document, representing a synthesis of our discussions and supported by literature, will serve as a practical aid to clinicians evaluating patients with suspected encephalitis and will identify key areas and approaches to advance our knowledge of encephalitis. PMID:23861361

  9. [Model-based biofuels system analysis: a review].

    PubMed

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  10. Sol-gel based biofuel cell architectures

    NASA Astrophysics Data System (ADS)

    Lim, James Robert

    Sol-gel based biofuel cell architectures were investigated and quantified for electrochemical performance. The flexible solution chemistry of the sol-gel process has been used to synthesize bio-hybrid materials in which a wide variety of biomolecules are encapsulated in a transparent, inorganic matrix. These biomolecules retain their characteristic reactivities and spectroscopic properties despite being immobilized in the pores of the inorganic matrix. Stability of the biomolecules is also improved because of the confinement in the rigid inorganic network. Sol-gel immobilization serves as the basis for the electrode architecture used in enzymatic biofuel cells. In this dissertation, the fabrication and characterization of an enzymatic glucoseoxygen biofuel cell that incorporates nanostructured silica sol-gel/carbon nanotube composite electrodes was evaluated. These novel electrodes combine the benefits of sol-gel encapsulation with the use of carbon nanotubes which provide enhanced electronic conduction pathways and increase the effective surface area of the electrode. With this immobilization approach, the silica sol-gel is sufficiently porous that both glucose and oxygen have access to enzymes and yet provide a protective cage that preserves biological structure and function, offers long-term stability and perhaps enables operation at elevated temperatures. In addition, direct electron transfer was exhibited by a nanostructured cathode. More notably, these nanostructured composites were developed for power generation. Analysis of electron transfer rates and enzyme kinetics were used to quantify encapsulation properties and explore potential opportunities for optimization. Another topic for biofuel cells is miniaturization. Through miniaturization, biofuel cell design and integration are major considerations for increasing power density and performance.

  11. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel. PMID:27112132

  12. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  13. Consortium for Materials Development in Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During FY99 the Consortium for Materials Development in Space (CMDS) was reorganized around the following guidelines: industry driven, product focus, an industry led advisory council, focus on University of Alabama in Huntsville (UAH) core competencies, linkage to regional investment firms to assist commercialization and to take advantage of space flights. The organizational structure of the CMDS changed considerably during the year. The decision was made to reduce the organization to a Director and an Administrative Assistant. The various research projects, including the employees, were transferred to the appropriate UAH research center or college. In addition, an advisory council was established to provide direction and guidance to the CMDS to ensure a strong commercial focus. The council will (i) review CMDS commercial development plans and provide feedback, (ii) perform an annual evaluation of the Center's progress and present the results of this review to the UAH Vice President for Research, (iii) serve as an avenue of communication between the CMDS and its commercial partners, and (iv) serve as an ambassador and advocate for the CMDS.

  14. AGRICOH: A Consortium of Agricultural Cohorts

    PubMed Central

    Leon, Maria E.; Beane Freeman, Laura E.; Douwes, Jeroen; Hoppin, Jane A.; Kromhout, Hans; Lebailly, Pierre; Nordby, Karl-Christian; Schenker, Marc; Schüz, Joachim; Waring, Stephen C.; Alavanja, Michael C.R.; Annesi-Maesano, Isabella; Baldi, Isabelle; Dalvie, Mohamed Aqiel; Ferro, Giles; Fervers, Béatrice; Langseth, Hilde; London, Leslie; Lynch, Charles F.; McLaughlin, John; Merchant, James A.; Pahwa, Punam; Sigsgaard, Torben; Stayner, Leslie; Wesseling, Catharina; Yoo, Keun-Young; Zahm, Shelia H.; Straif, Kurt; Blair, Aaron

    2011-01-01

    AGRICOH is a recently formed consortium of agricultural cohort studies involving 22 cohorts from nine countries in five continents: South Africa (1), Canada (3), Costa Rica (2), USA (6), Republic of Korea (1), New Zealand (2), Denmark (1), France (3) and Norway (3). The aim of AGRICOH, initiated by the US National Cancer Institute (NCI) and coordinated by the International Agency for Research on Cancer (IARC), is to promote and sustain collaboration and pooling of data to investigate the association between a wide range of agricultural exposures and a wide range of health outcomes, with a particular focus on associations that cannot easily be addressed in individual studies because of rare exposures (e.g., use of infrequently applied chemicals) or relatively rare outcomes (e.g., certain types of cancer, neurologic and auto-immune diseases). To facilitate future projects the need for data harmonization of selected variables is required and is underway. Altogether, AGRICOH provides excellent opportunities for studying cancer, respiratory, neurologic, and auto-immune diseases as well as reproductive and allergic disorders, injuries and overall mortality in association with a wide array of exposures, prominent among these the application of pesticides. PMID:21655123

  15. National Consortium Supports Cities in Evaluating LED Streetlights

    SciTech Connect

    2013-09-30

    Fact sheet that introduces Municipal Solid-State Street Lighting Consortium, a group of municipalities, utilities, and energy efficiency organizations who are interested in making investments in LED street and area lighting.

  16. Men of African Descent and Carcinoma of the Prostate Consortium

    Cancer.gov

    The Men of African Descent and Carcinoma of the Prostate Consortium collaborates on epidemiologic studies to address the high burden of prostate cancer and to understand the causes of etiology and outcomes among men of African ancestry.

  17. A Perspective from the National Consortium for Secondary STEM Schools

    ERIC Educational Resources Information Center

    Bonds, Crystal

    2016-01-01

    This article addresses the role of National Consortium for Secondary STEM Schools in the process of data-informed decision-making for both improving and addressing achievement gaps in participatory specialized STEM high schools.

  18. Breast and Prostate Cancer Cohort Consortium (BPC3)

    Cancer.gov

    Breast and Prostate Cancer Cohort Consortium collaborates with three genomic facilities, epidemiologists, population geneticists, and biostatisticians from multiple institutions to study hormone-related gene variants and environmental factors in breast and prostate cancers.

  19. Genome Structure Gallery from the Mycobacterium Tuberculosis Structual Genomics Consortium

    DOE Data Explorer

    The TB Structural Genomics Consortium works with the structures of proteins from M. tuberculosis, analyzing these structures in the context of functional information that currently exists and that the Consortium generates. The database of linked structural and functional information constructed from this project will form a lasting basis for understanding M. tuberculosis pathogenesis and for structure-based drug design. The Consortium's structural and functional information is publicly available. The Structures Gallery makes more than 650 total structures available by PDB identifier. Some of these are not consortium targets, but all are viewable in 3D color and can be manipulated in various ways by Jmol, an open-source Java viewer for chemical structures in 3D from http://www.jmol.org/

  20. Consortium--A New Direction for Staff Development

    ERIC Educational Resources Information Center

    Cope, Adrienne B.

    1976-01-01

    The shared services and joint planning of the area-wide continuing education program of the Northwest Allegheny Hospitals Corporation (a Consortium of seven acute care and two rehabilitation centers in Allegheny County, Pennsylvania) are described. (LH)