Science.gov

Sample records for advanced biomass gasification-based

  1. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  3. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  4. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  5. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  6. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  7. Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems

    SciTech Connect

    Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

    2010-01-01

    The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen

  8. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  9. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.

  10. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate

  11. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  12. Biomass Burning: Major Uncertainties, Advances, and Opportunities

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Liu, X.; Huey, L. G.; Ryerson, T. B.; Dibb, J. E.; Wisthaler, A.; Müller, M.; Alvarado, M. J.; Kreidenweis, S. M.; Robinson, A. L.; Toon, O. B.; Peischl, J.; Pollack, I. B.

    2014-12-01

    Domestic and open biomass burning are poorly-understood, major influences on Earth's atmosphere composed of countless individual fires that (along with their products) are difficult to quantify spatially and temporally. Each fire is a minimally-controlled complex phenomenon producing a diverse suite of gases and aerosols that experience many different atmospheric processing scenarios. New lab, airborne, and space-based observations along with model and algorithm development are significantly improving our knowledge of biomass burning. Several campaigns provided new detailed emissions profiles for previously undersampled fire types; including wildfires, cooking fires, peat fires, and agricultural burning; which may increase in importance with climate change and rising population. Multiple campaigns have better characterized black and brown carbon and used new instruments such as high resolution PTR-TOF-MS and 2D-GC/TOF-MS to improve quantification of semi-volatile precursors to aerosol and ozone. The aerosol evolution and formation of PAN and ozone, within hours after emission, have now been measured extensively. The NASA DC-8 sampled smoke before and after cloud-processing in two campaigns. The DC-8 performed continuous intensive sampling of a wildfire plume from the source in California to Canada probing multi-day aerosol and trace gas aging. Night-time plume chemistry has now been measured in detail. Fire inventories are being compared and improved, as is modeling of mass transfer between phases and sub-grid photochemistry for global models.

  13. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  14. Development of advanced technologies for biomass pyrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  15. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  16. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  17. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  18. Environmental Impacts of Advanced Biomass Combustion Systems : Final Report.

    SciTech Connect

    OMNI Environmental Services, Inc.

    1988-01-01

    This project was conducted to quantify the emissions from advanced technology small-scale biomass combustors relative to conventional woodstoves. Five devices were tested: a catalytic stove, a pellet fuel stove, a naturally-drafted refractory stove, a conventional stove, and a small institutional boiler retrofitted to burn pellet fuel. Each device was operated at high and low heat outputs and tested for atmospheric emissions and ash residues. Particulate emission testing consisted of gravimetric measurements and quantification of polycyclic aromatic hydrocarbons (PAH), total carbon, pH, acidity, and toxicitymutagenicity. Measurements of gas-phase emissions included volatile organic compounds (VOC), NO/sub x/, SO/sub 2/, and CO. Ash residues were tested for elemental composition, total carbon, and solubility. Emissions from each of the advanced technology stoves were compared to emissions from the conventional woodstove. The pellet fuel boiler, while not directly comparable to the residential heaters, was evaluated with the other combustor systems. In general, the advanced technology devices showed significant reductions, relative to the conventional stove, of most pollutant emissions. Emission reductions of several orders of magnitude were recorded for particulate material, VOC, PAH, and acidity for some of the test stoves. All particulate emission samples were toxic, and several showed mutagenic responses. The advanced technology stoves appear to offer significant environmental impact reductions for virtually all the tested parameters.

  19. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    SciTech Connect

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide

  20. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don't behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  1. Advanced liquid fuel production from biomass for power generation

    SciTech Connect

    Grassi, G.; Palmarocchi, M.; Joeler, J.

    1995-11-01

    In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

  2. Advances in direct transesterification of algal oils from wet biomass.

    PubMed

    Park, Ji-Yeon; Park, Min S; Lee, Young-Chul; Yang, Ji-Won

    2015-05-01

    An interest in biodiesel as an alternative fuel for diesel engines has been increasing because of the issue of petroleum depletion and environmental concerns related to massive carbon dioxide emissions. Researchers are strongly driven to pursue the next generation of vegetable oil-based biodiesel. Oleaginous microalgae are considered to be a promising alternative oil source. To commercialize microalgal biodiesel, cost reductions in oil extraction and downstream biodiesel conversion are stressed. Herein, starting from an investigation of oil extraction from wet microalgae, a review is conducted of transesterification using enzymes, homogeneous and heterogeneous catalysts, and yield enhancement by ultrasound, microwave, and supercritical process. In particular, there is a focus on direct transesterification as a simple and energy efficient process that omits a separate oil extraction step and utilizes wet microalgal biomass; however, it is still necessary to consider issues such as the purification of microalgal oils and upgrading of biodiesel properties.

  3. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  4. Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter details the recent advances made on bioconversion of lignocellulosic biomass to butanol, a superior biofuel that can be used in internal combustion engines or transportation industry. It should be noted that butanol producing cultures cannot tolerate or produce more than 20-30 g/L of ac...

  5. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel

    2016-07-12

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  6. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  7. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  8. Economic feasibility study of a wood gasification-based methanol plant: A subcontract report

    SciTech Connect

    Not Available

    1987-04-01

    This report presents an economic feasibility study for a wood-gasification-based methanol plant. The objectives were to evaluate the current commercial potential of a small-scale, wood-fed methanol plant using the SERI oxygen-blown, pressurized, down-draft gasifier technology and to identify areas requiring further R and D. The gasifier gas composition and material balance were based on a computer model of the SERI gasifier since acceptable test data were not available. The estimated capital cost was based on the Nth plant constructed. Given the small size and commercial nature of most of the equipment, N was assumed to be between 5 and 10. Only large discrepancies in gasifier output would result in significant charges in capital costs. 47 figs., 55 tabs.

  9. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass

    SciTech Connect

    Ju, Xiaohui; Engelhard, Mark H.; Zhang, Xiao

    2013-01-17

    A deep understanding of biomass recalcitrance has been hampered by the intricate and heterogeneous nature of pretreated biomass substrates obtained from random deconstruction methods. In this study, we established a unique methodology based on chemical pulping principles to create "reference substrates" with intact cellulose fibers and controlled morphological and chemical properties that enable us to investigate the individual effect of xylan, bulk, and surface lignin content on enzymatic hydrolysis. We also developed and demonstrated an X-ray photoelectron spectroscopy (XPS) technique for quantifying surface lignin content on biomass substrates. The results from this study show that, apart from its hindrance effect, xylan can facilitate cellulose fibril swelling and thus create more accessible surface area, which improves enzyme and substrate interactions. Surface lignin has a significant impact on enzyme adsorption kinetics and hydrolysis rate. Advanced understanding of xylan, bulk, and surface lignin effects provides critical information for an effective biomass conversion process.

  10. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design.

    PubMed

    Xie, Shangxian; Syrenne, Ryan; Sun, Su; Yuan, Joshua S

    2014-06-01

    Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.

  11. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  12. Element partitioning in combustion- and gasification-based waste-to-energy units.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-01

    A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  13. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  14. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this

  15. Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement.

    PubMed

    Rønnest, Nanna Petersen; Stocks, Stuart M; Eliasson Lantz, Anna; Gernaey, Krist V

    2011-10-01

    The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.

  16. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  17. Advanced system demonstration for utilization of biomass as an energy source. Executive summary

    NASA Astrophysics Data System (ADS)

    1980-10-01

    The feasibility of collecting 1000 oven dry tons of biomass per day to fuel a 510,000 lb/hr boiler operating in a cogeneration mode and producing steam and electricity was confirmed in a study based on the supply of a significant portion of the facility's biomass fuel by tree harvesting and collection operations within a 50 mile radius of the plant site. These operations, including transporting biomass to the conversion plant, pose no threat to the environment if good forestry practice is carefully maintained. Other environmental factors relating to air and water discharges from the conversion plant pose no significant technological problems in complying with federal, state, and local regulations at a cost that is competitive with similar costs associated with fossil fueled facilities.

  18. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  19. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    Not Available

    1980-10-01

    The results of the study investigations confirm the feasibility of collecting 1000 oven dry tons of biomass per day to fuel a 510,000 lb/hr boiler operating in a congeneration mode and producing steam and electricity. This study was based on the supply of a significant portion of the facility's biomass fuel by tree harvesting and collection operations within a 50 mile radius of the plant site. These operations, including transporting biomass to the conversion plant, would pose no threat to the environment if good forestry practice is carefully maintained. Other environmental factors relating to air and water discharges from the conversion plant pose no significant technological problems in complying with federal, state, and local regulations at a cost that is competitive with similar costs associated with fossil fueled facilities.

  20. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    1980-10-01

    This report presents the results of a study undertaken to locate a site for the construction of a biomass cogeneration plant in the state of Maine. On the basis of the study, the site selected was Westbrook, Maine. The evaluation of sites was based on comparison of site-related variables such as: adequate biomass availability; cogeneration potential (market for steam produced); water availability; air quality compliance; access roads; site area required; and adequate tie-ins with electric power grids for sale of electricity produced. (DMC)

  1. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    Not Available

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  2. Advanced system demonstration for utilization of biomass as an energy source. Volume IV. Design drawings

    SciTech Connect

    1980-10-01

    This volume contains design drawings for the biomass cogeneration plant to be built in Maine. The drawings show a considerable degree of detail, however, they are not to be considered released for construction. There has been no actual procurement of equipment, therefore equipment drawings certified by suppliers have not been included. (DMC)

  3. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  4. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  5. Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass.

    PubMed

    Li, Ming-Fei; Yang, Sheng; Sun, Run-Cang

    2016-01-01

    Organosolv fractionation is a promising process to separate lignocellulosic biomass for the preparation of multiply products including biofuels, chemicals, and materials. This review presents the state of art of different processes applying alcohols and organic acids to treat lignocellulosic biomass for the production of ethanol, lignin, xylose, etc. The major organosolv technologies using ethanol, formic acid, and acetic acid, are intensively introduced and discussed in depth. In addition, the structural modifications of the major components of lignocelluloses, the technical processes, and the applications of the products were also summarized. The object of the review is to provide recent information in the field of organosolv process for the integrated biorefinery. The perspectives of the challenge and opportunity related to this topic are also presented. PMID:26476870

  6. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  7. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    PubMed Central

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to

  8. Advances towards a Marker-Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop

    PubMed Central

    Gedye, K. R.; Gonzalez-Hernandez, J. L.; Owens, V.; Boe, A.

    2012-01-01

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is an indigenous, perennial grass of North America that is being developed into a cellulosic biomass crop suitable for biofuel production. Limited research has been performed into the breeding of prairie cordgrass; this research details an initial investigation into the development of a breeding program for this species. Genomic libraries enriched for four simple sequence repeat (SSR) motifs were developed, 25 clones from each library were sequenced, identifying 70 SSR regions, and primers were developed for these regions, 35 of which were amplified under standard PCR conditions. These SSR markers were used to validate the crossing methodology of prairie cordgrass and it was found that crosses between two plants occurred without the need for emasculation. The successful cross between two clones of prairie cordgrass indicates that this species is not self-incompatible. The results from this research will be used to instigate the production of a molecular map of prairie cordgrass which can be used to incorporate marker-assisted selection (MAS) protocols into a breeding program to improve this species for cellulosic biomass production. PMID:23227036

  9. Advanced biomass research program. Annual report for 1987. Technical progress report

    SciTech Connect

    Smith, W.H.

    1989-01-01

    These results are from an interdisciplinary program researching plant growth and bioconversion processes for enhancing methane from biomass. Modern molecular and cellular biology approaches are being used to characterize the genes and to develop methods for accomplishing transformations to improve biomass quality by regulating plant chemicals. Quality is being emphasized since quantities of 25 Mg/ha can be sustained for five years and conditions for higher yields of some grasses were identified. Breeding has succeeded in the development of hexaploids that produce seeds, and vegetative propagation from tissue cultures for asexual species. Gel seeding of tissue culture derived plantlets inoculated with mycrohizal to improve survivability has shown promise. Biological methane potential assays have revealed the effects of harvesting frequency, storage and the proportion of plant parts on methane yields. Non-hydrolytical depolymerization of polypectate and hydrolytic degradation of cellulose occur more rapidly at near neutral pH's. A gene encoding for the xylan-degrading enzymes was isolated. These enzymes are repressed by glucose. Kinetic modeling of these reactions is progressing. Methods of describing the microbial community structure in digesters are being developed and used to monitor digester health and performance. Polyclonal antibodies for 9 methanogenic bacteria were developed, propionate and butyrate inhibited dissimilation of large organic polymers, the cellular location of key enzyme were revealed and cellulolytic bacteria were found to attack cells from inside the lumen. Controls of formate production and conversion to gas were identified and the genes for the hydrogenase enzymes in the conversions were cloned. System analysis allows the authors to assess the impact of research progress on cost factors. Sixty scientific papers reporting program results were published in 1987.

  10. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors.

    PubMed

    Wang, Lei; Mu, Guang; Tian, Chungui; Sun, Li; Zhou, Wei; Yu, Peng; Yin, Jie; Fu, Honggang

    2013-05-01

    Porous graphitic carbon nanosheets (PGCS) are synthesized by an in situ self-generating template strategy based on the carburized effect of iron with cornstalks. Cornstalks firstly coordinate with [Fe(CN)(6)](4-) ions to form the cornstalk-[Fe(CN)(6)](4-) precursor. After carbonization and removal of the catalyst, PGCS are obtained. Series experiments indicate that PGCS can only be formed when using an iron-based catalyst that can generate a carburized phase during the pyrolytic process. The unique structures of PGCS exhibit excellent capacitive performance. The PGCS-1-1100 sample (synthesized from 0.1 M [Fe(CN)(6)](4-) with a carbonization temperature of 1100 °C), which shows excellent electrochemical capacitance (up to 213 F g(-1) at 1 A g(-1)), cycling stability, and rate performance in 6 M KOH electrolyte. In the two-electrode symmetric supercapacitors, the maximum energy densities that can be achieved are as high as 9.4 and 61.3 Wh kg(-1) in aqueous and organic electrolytes, respectively. Moreover, high energy densities of 8.3 and 40.6 Wh kg(-1) are achieved at the high power density of 10.5 kW kg(-1) in aqueous and organic electrolytes, respectively. This strategy holds great promise for preparing PGCS from natural resources, including cornstalks, as advanced electrodes in supercapacitors. PMID:23606450

  11. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  12. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    PubMed

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  13. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    PubMed

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.

  14. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    PubMed Central

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  15. Advanced system demonstration for utilization of biomass as an energy source. Volume 1: Scope and design criteria and project summary

    NASA Astrophysics Data System (ADS)

    1980-10-01

    A generic design is presented for biomass conversion facilities located anywhere biomass is abundant. The plant, its concept of operation, and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and its equipment and facilities are discussed as well as noise control, reliability, maintainability, and safety. The results of studies relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  16. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2002-12-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  18. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  19. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.

    PubMed

    Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R

    2016-08-01

    Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources. PMID:27355829

  20. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.

    PubMed

    Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R

    2016-08-01

    Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.

  1. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2016-07-12

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  2. Biomass Research Program

    SciTech Connect

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  3. USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    SciTech Connect

    D. Tillman; E. Hughes

    1999-01-01

    During the period of October 1, 1998 through December 31, 1998, significant work was done in direct preparation for several cofiring tests. Major progress was made on several projects including cofiring at Seward (GPU Genco), Allen (TVA), and Bailly (NIPSCO). Most of the work was focused on construction activities at the Seward and Bailly Generating Stations. The conceptual design and feasibility study for gasification-based cofiring at the Allen Fossil Plant was completed. The feasibility study for cofiring at the Pirkey and Northeastern Generating Stations of Central and South West Utilities (C&SW) also was completed. This report summarizes the activities during the fourth calendar quarter in 1998--of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of construction activities and related events.

  4. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  5. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  6. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  7. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.

    PubMed

    Shen, Qiao-Hui; Jiang, Jia-Wei; Chen, Li-Ping; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-08-01

    The combination of tertiary wastewater treatment and microalgal lipid production is considered to be a promising approach to water eutrophication as well as energy crisis. To intensify wastewater treatment and microalgal biofuel production, the effect of organic and inorganic carbon on algal growth and nutrient removal of Scenedesmus obliquus were examined by varying TOC (total organic carbon) concentrations of 20-120mgL(-1) in wastewater and feeding CO2 concentrations in the range of 0.03-15%, respectively. The results showed that the maximal biomass and average lipid productivity were 577.6 and 16.7mgL(-1)d(-1) with 5% CO2 aeration. The total nitrogen, total phosphorus and TOC removal efficiencies were 97.8%, 95.6% and 59.1% respectively within 6days when cultured with real secondary municipal wastewater. This work further showed that S. obliquus could be utilized for simultaneous organic pollutants reduction, N, P removal and lipid accumulation.

  8. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  9. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry

    SciTech Connect

    Eric D. Larson; Stefano Consonni; Ryan E. Katofsky; Kristiina Iisa; W. James Frederick

    2007-03-31

    Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Program of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the

  11. Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from initial assessment of select commercial models in India.

    PubMed

    Sambandam, Sankar; Balakrishnan, Kalpana; Ghosh, Santu; Sadasivam, Arulselvan; Madhav, Satish; Ramasamy, Rengaraj; Samanta, Maitreya; Mukhopadhyay, Krishnendu; Rehman, Hafeez; Ramanathan, Veerabhadran

    2015-03-01

    Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels. PMID:25293811

  12. Investigation of Prediction Method and Fundamental Thermo-decomposition Properties on Gasification of Woody Biomass

    NASA Astrophysics Data System (ADS)

    Morita, Akihiro

    Recently, development of energy transfer technology based on woody biomass remarkably has been forwarding accompanied biomass boom for gasification and liquefaction. To elevate on yield of energy into biomass for transportation and exergy is extremely important for essential utilization and production of bio-fuels. Because, conversion to bio-fuel must be discussion in detail thermo-decomposition characteristics for biomass main composition formed on cellulose and hemicelluloses, lignin. In this research, we analyze thermo-decomposition characteristics of each biomass main composition on both active (air) and passive (N2) atmosphere. Especially, we suggest predict model of gasification based on change of atomic carbon ratio with thermo-decomposition. 1) Even if it heat-treats cedar chip by 473K, loss of energy hardly produces it. From this, it acquired that the substance contributed to weight reduction was a low ingredient of energy value. 2) If cedar chip is heated in the 473K around, it can be predicted that the substance with a low energy value like water or acetic acid has arisen by thermal decomposition. It suggested that the transportation performance of the biomass improved by choosing and eliminating these. 3) Each ingredient of hydrogen, nitrogen, and oxygen which dissipated in the gasification process acquired that it was direct proportion to the carbonaceous dissipation rate. 4) The action at the time of thermo-decomposition of (the carbon, hydrogen, nitrogen, oxygen which are) the main constituent factors of the biomass suggested a possibility of being predicted by a statistical method.

  13. Biomass Program Recovery Act Factsheet

    SciTech Connect

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  14. Biomass Conversion

    NASA Astrophysics Data System (ADS)

    Decker, Stephen R.; Sheehan, John; Dayton, David C.; Bozell, Joseph J.; Adney, William S.; Hames, Bonnie; Thomas, Steven R.; Bain, Richard L.; Czernik, Stefan; Zhang, Min; Himmel, Michael E.

    In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the sun to combine carbon dioxide from the atmosphere with water to produce organic plant matter. More inclusive definitions are possible. For example, animal products and waste can be included in the definition of biomass. Animals, like plants, are renewable; but animals clearly are one step removed from the direct use of sunlight. Using animal rather than plant material thus leads to substantially less efficient use of our planet's ultimate renewable resource, the sun. So, we emphasize plant matter in our definition of biomass. It is the photosynthetic capability of plants to utlize carbon dioxide from the atmosphere that leads to its designation as a "carbon neutral" fuel, meaning that it does not introduce new carbon into the atmosphere.

  15. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  16. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  17. RECENT ADVANCES IN BIOCONVERSION OF AGRICULTURAL BIOMASS TO BUTANOL BY FERMENTATION: EMPLOYING POTENTIAL OF AVAILABLE RENEWABLE RESOURCES TO PRODUCE A SUPERIOR BIOFUEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of a sharp increase in gasoline/petroleum prices we, at the USDA’s National Center for Agricultural Utilization Research, have intensified our research program on bioconversion of agricultural biomass such as corn stover, corn fiber, rice and wheat straw, rice hulls, switch grass, and mi...

  18. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  19. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  20. Biotechnology of biomass conversion

    SciTech Connect

    Wayman, M.; Parekh, S.R.

    1990-01-01

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.

  1. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  2. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  3. Structural Studies of Biomass Degrading Enzyme Systems

    SciTech Connect

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  4. Biomass Power for Rural Development

    SciTech Connect

    2000-06-01

    The U.S. Departments of Energy and Agriculture work together to advance the development of electricity generation systems that use biomass instead of fossil fuels. The national benefits include lower sulfur emissions (which contribute to acid rain), reductions in greenhouse gas emissions, and less dependence on fossil fuels.

  5. Subtask 7.4 - Power River Basin Subbituminous Coal-Biomass Cogasification Testing in a Transport Reactor

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2009-03-01

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the Kellogg Brown and Root transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 3600 hours of operation on 17 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air- and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 90% have also been obtained and are highly dependent on the oxygen

  6. Development of a 1-week cycle menu for an Advanced Life Support System (ALSS) utilizing practical biomass production data from the Closed Ecology Experiment Facilities (CEEF).

    PubMed

    Masuda, Tsuyoshi; Arai, Ryuuji; Komatsubara, Osamu; Tako, Yasuhiro; Harashima, Emiko; Nitta, Keiji

    2005-01-01

    Productivities of 29 crops in the Closed Ecology Experiment Facilities (CEEF) were measured. Rice and soybean showed higher productivities than these given by the Advanced Life Support System Modeling and Analysis Project Baseline Values and Assumption Document (BVAD), but productivities of some other crops, such as potato and sweet potato, were lower. The cultivation data were utilized to develop a 1-week cycle menu for Closed Habitation Experiment. The menu met most of the nutritional requirements. Necessary cultivation area per crew was estimated to be 255 m2. Results from this study can be used to help design the future Advanced Life Support System (ALSS) including the CEEF. PMID:15742533

  7. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  8. Biomass Energy Research

    SciTech Connect

    Traylor, T.D.; Pitsenbarger, J.

    1996-03-01

    Biomass Energy Research announces on a bimonthly basis the current worldwide research and development (R&D) information available on biomass power systems, alternate feedstocks from biomass, and biofuels supply options.

  9. Energy from Biomass for Conversion of Biomass

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  10. Pyrolytic sugars from cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  11. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  13. Decentralized conversion of biomass to energy, fuels and electricity with fuel cells

    SciTech Connect

    Grimes, P.

    1996-12-31

    Fuel cells, new processes, advanced equipment and total system approaches will allow biomass to become a larger source of energy to make electricity, fuel and chemicals. These innovative new approaches allow smaller scale operations and allow decentralization of biomass to energy. The pivotal role of biomass will change and expand. Biomass will become a significant near term and a long term energy source.

  14. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  15. Energy from Biomass.

    ERIC Educational Resources Information Center

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  16. Biomass for Electricity Generation

    EIA Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  17. Education Highlights: Forest Biomass

    ScienceCinema

    Barone, Rachel; Canter, Christina

    2016-07-12

    Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.

  18. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  19. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  20. Biomass Program Biopower Factsheet

    SciTech Connect

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  1. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  2. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  3. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  4. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  5. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  6. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  7. CFD Studies on Biomass Thermochemical Conversion

    PubMed Central

    Wang, Yiqun; Yan, Lifeng

    2008-01-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848

  8. CFD studies on biomass thermochemical conversion.

    PubMed

    Wang, Yiqun; Yan, Lifeng

    2008-06-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848

  9. Power generation potential of biomass gasification systems

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Overend, R.P.; Bain, R.L.

    1996-10-01

    Biomass has the potential to contribute a significant portion of the electricity consumed in industrialized nations and a major share of the power mix in developing countries. In addition to providing an alternative to fossil-fuel-based energy and creating new markets for agriculture, a renewable resource like biomass used in a sustainable fashion facilitates closure of the carbon cycle. To realize these benefits, particularly in the shadow of uncertainties cast by deregulation and recent changes in federal energy and agricultural policies, biomass power systems must be competitive with incumbent power-generation technologies in terms of generation efficiency and overall cost. Anticipated performance and cost of biomass-based integrated gasification, combined-cycle power systems are discussed. The electric power that can be generated worldwide using existing biomass resources (primarily crop residues and wastes) and the potential amount that could be generated from crops grown specifically for electricity generation are projected. Technical and economic obstacles which must be overcome before advanced biomass-power systems based on aeroderivative turbines or fuel cells can become fully commercial are identified. Research, development, and demonstration efforts underway or being planned to overcome those obstacles are described; developments in a major biomass gasification demonstration project taking place in Hawaii under the auspices of the US Department of Energy and the State of Hawaii are detailed.

  10. Power generation potential of biomass gasification systems

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Overend, R.P.; Bain, R.L.

    1997-12-01

    Biomass has the potential to contribute a significant portion of the electricity consumed in industrialized nations and a major share of the power mix in developing countries. In addition to providing an alternative to fossil-fuel-based energy and creating new markets for agriculture, a renewable resource like biomass used in a sustainable fashion facilitates closure of the carbon cycle. To realize these benefits, particularly in the shadow of uncertainties cast by deregulation and recent changes in federal energy and agricultural policies, biomass power systems must be competitive with incumbent power-generation technologies in terms of generation efficiency and overall cost. Anticipated performance and cost of biomass-based integrated gasification, combined-cycle power systems are discussed. The electric power that can be generated worldwide using existing biomass resources (primarily crop residues and wastes) and the potential amount that could be generated from crops grown specifically for electricity generation are projected. Technical and economic obstacles that must be overcome before advanced biomass-power systems based on aeroderivative turbines or fuel cells can become fully commercial are identified. Research, development, and demonstration efforts under way or being planned to overcome those obstacles are described; developments in a major biomass gasification demonstration project taking place in Hawaii under the auspices of the US Department of Energy and the State of Hawaii are detailed.

  11. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1999-01-28

    This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 � December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

  12. QTLs for Biomass and Developmental Traits in Switchgrass (Panicum virgatum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and genomic resources have recently been developed for the bioenergy crop switchgrass (Panicum virgatum). Despite these advances, little research has been focused on identifying genetic loci involved in natural variation of important bioenergy traits, including biomass. Quantitative trait l...

  13. Complex pendulum biomass sensor

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  14. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  15. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    PubMed Central

    Dube, Timothy; Mutanga, Onisimo; Adam, Elhadi; Ismail, Riyad

    2014-01-01

    The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1). We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands. PMID:25140631

  16. Process for treating biomass

    SciTech Connect

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  17. Process for treating biomass

    DOEpatents

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  18. Biomass Processing Photolibrary

    DOE Data Explorer

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  19. Biomass for thermochemical conversion: targets and challenges

    PubMed Central

    Tanger, Paul; Field, John L.; Jahn, Courtney E.; DeFoort, Morgan W.; Leach, Jan E.

    2013-01-01

    Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment. PMID:23847629

  20. Energetische Verwertung von Biomasse

    NASA Astrophysics Data System (ADS)

    Zahoransky, Richard; Allelein, Hans-Josef; Bollin, Elmar; Oehler, Helmut; Schelling, Udo

    Etwa 0,1% der Solarenergie wandeln sich durch Photosynthese aus dem Kohlendioxid der Luft in Biomasse um. Die Biomassen sind als Festbrennstoff nutzbar oder zu gasförmigen Brennstoffen weiterverarbeitbar. Zwei Arten von Biomassen sind zu unterscheiden: Anfallende Biomasse

  1. Genetic manipulation of lignocellulosic biomass for bioenergy.

    PubMed

    Wang, Peng; Dudareva, Natalia; Morgan, John A; Chapple, Clint

    2015-12-01

    Lignocellulosic biomass represents an abundant and sustainable raw material for biofuel production. The recalcitrance of biomass to degradation increases the estimated cost of biofuel production and limits its competitiveness in the market. Genetic engineering of lignin, a major recalcitrance factor, improves saccharification and thus the potential yield of biofuels. Recently, our understanding of lignification and its regulation has been advanced by new studies in various systems, all of which further enhances our ability to manipulate the biosynthesis and deposition of lignin in energy crops for producing cost-effective second generation biofuels.

  2. Process Systems Engineering R&D for Advanced Fossil Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-09-11

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

  3. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  4. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  5. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application.

  6. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. PMID:25770670

  7. Biomass -- A new assessment

    SciTech Connect

    Hartung, H.A.

    1999-07-01

    Photo-conversion of atmospheric CO{sub 2} to biomass by plants is the world's basic source of food, fiber, oxygen and fossil fuel; for many people and some industries, biomass combustion supplies a significant amount of the energy they need. Much ingenuity has been applied to developing strategies for recovering energy directly from biomass by cleaning burning, gasification and liquid fuel production; these processes generally have economic or ecological features that keep them out of the main stream of technological development. By contrast, fresh biomass can be digested anaerobically at high conversion, with stimulation, to methane-rich gas and a stabilized organic residue, using technology already at hand. As an example, methane can be produced from sugarcane at a total cost of about $.50/mcf. This process, originally devised to control the level of CO{sub 2} in the atmosphere, provides opportunities to contribute to that goal while supplying clean pipeline gas, electricity or petrochemicals.

  8. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  9. Biomass Reburning: Modeling/Engineering Studies

    SciTech Connect

    Vladimir M. Zamansky

    1998-01-20

    Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

  10. Immunological Approaches to Biomass Characterization and Utilization

    PubMed Central

    Pattathil, Sivakumar; Avci, Utku; Zhang, Tiantian; Cardenas, Claudia L.; Hahn, Michael G.

    2015-01-01

    Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research. PMID:26579515

  11. Immunological Approaches to Biomass Characterization and Utilization.

    PubMed

    Pattathil, Sivakumar; Avci, Utku; Zhang, Tiantian; Cardenas, Claudia L; Hahn, Michael G

    2015-01-01

    Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research. PMID:26579515

  12. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  13. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  14. Biomass Power: Program overview fiscal years 1993--1994

    SciTech Connect

    1995-03-01

    The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies--gasification, pyrolysis, and direct combustion--from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The Program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

  15. Biomass Power: Program overview fiscal years 1993--1994

    NASA Astrophysics Data System (ADS)

    1995-03-01

    The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies -- gasification, pyrolysis, and direct combustion -- from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

  16. Biomass cogeneration. A business assessment

    SciTech Connect

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  17. Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-04-01

    In this presentation we describe the major features and capabilities of NETL’s Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOE’s $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus®) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT®).

  18. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  19. Combustion of Micropowdered Biomass

    NASA Astrophysics Data System (ADS)

    Geil, Ethan; Thorne, Robert

    2009-03-01

    Combustion of finely powdered biomass has the potential to replace heating oil, which accounts for a significant fraction of US oil consumption, in heating, cooling and local power generation applications. When ground to 30-150 micron powders and dispersed in air, wood and other biomass can undergo deflagrating combustion, as occurs with gaseous and dispersed liquid fuels. Combustion is very nearly complete, and in contrast to sugar/starch or cellulose-derived ethanol, nearly all of the available plant mass is converted to usable energy so the economics are much more promising. We are exploring the fundamental combustion science of biomass powders in this size range. In particular, we are examining how powder size, powder composition (including the fraction of volatile organics) and other parameters affect the combustion regime and the combustion products.

  20. Northeast Regional Biomass Program

    SciTech Connect

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  1. SERI Biomass Program

    NASA Astrophysics Data System (ADS)

    Bergeron, P. W.; Corder, R. E.; Hill, A. M.; Lindsey, H.; Lowenstein, M. Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  2. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  3. Biomass production in Florida

    SciTech Connect

    Smith, W.H.; Dowd, M.L.

    1981-08-01

    Florida posseses climatic, land, and water resources favorable for abundant biomass production. Therefore, a statewide program has been initiated to determine adapted species for the available array of production sites. Plant resources under investigation include woody, aquatic, grasses, hydrocarbon, and root crop species. The goal is to produce a continuous stream of biomass for the various biofuel conversion options. Preliminary yields from energy cropping experiments range from about 10 to nearly 90 metric tons per hectare per year, depending on the crop and the production systems employed. (Refs. 15).

  4. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  5. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  6. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  7. Genetic variation in biomass traits among 20 diverse rice varieties.

    PubMed

    Jahn, Courtney E; Mckay, John K; Mauleon, Ramil; Stephens, Janice; McNally, Kenneth L; Bush, Daniel R; Leung, Hei; Leach, Jan E

    2011-01-01

    Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops.

  8. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  9. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  10. Biomass Program Factsheet

    SciTech Connect

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  11. Enzymes for improved biomass conversion

    DOEpatents

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  13. Biomass and biomass change in lodgepole pine stands in Alberta.

    PubMed

    Monserud, Robert A; Huang, Shongming; Yang, Yuqing

    2006-06-01

    We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0

  14. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  15. Biomass energy conversion in Hawaii

    NASA Astrophysics Data System (ADS)

    Ritschard, R. L.; Ghirardi, A.

    1981-06-01

    Materials and processes for producing liquid fuels from biomass are discussed. Direct combustion of biomass is discussed. The use of sugar industry products, tree crops, municipal solid wastes, and other biomass resources is discussed, as well as the environmental impacts of direct combustion systems.

  16. Reburn system with feedlot biomass

    DOEpatents

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  17. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

  18. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  19. Biomass sustainability and certification.

    PubMed

    Pavanan, Krishna C; Bosch, Roeland A; Cornelissen, Rob; Philp, Jim C

    2013-07-01

    The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge - the sustainability of biomass. PMID:23427899

  20. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  1. Biomass Estimation for Individual Trees using Waveform LiDAR

    NASA Astrophysics Data System (ADS)

    Wang, K.; Kumar, P.; Dutta, D.

    2015-12-01

    Vegetation biomass information is important for many ecological models that include terrestrial vegetation in their simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Traditionally biomass estimation requires intensive, and often destructive, field measurements. However, with advances in technology, airborne LiDAR has become a convenient tool for acquiring such information on a large scale. In this study, we use infrared full waveform LiDAR to estimate biomass information for individual trees in the Sangamon River basin in Illinois, USA. During this process, we also develop automated geolocation calibration algorithms for raw waveform LiDAR data. In the summer of 2014, discrete and waveform LiDAR data were collected over the Sangamon River basin. Field measurements commonly used in biomass equations such as diameter at breast height and total tree height were also taken for four sites across the basin. Using discrete LiDAR data, individual trees are delineated. For each tree, a voxelization methods is applied to all waveforms associated with the tree to result in a pseudo-waveform. By relating biomass extrapolated using field measurements from a training set of trees to waveform metrics for each corresponding tree, we are able to estimate biomass on an individual tree basis. The results can be especially useful as current models increase in resolution.

  2. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  3. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    SciTech Connect

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  4. Biomass energy technology research program summary, FY 1983

    SciTech Connect

    Not Available

    1983-01-01

    Program summaries are presented for ongoing research sponsored by the Division of Biomass Energy Technology during fiscal year 1983. Projects are arranged in the following categories: feedstock production; feedstock conversion; and analysis and crosscutting. Specific technical objectives are to: increase biomass feedstock productivity by factors of 2 to 5 over current yields through species screening, genetic improvements, and innovative agronomic practices; establish the technical feasibility of aquatic species and biological hydrogen as economical sources of biomass feedstocks. Verify the research on advanced concepts using integrated process experiments for producing medium-Btu gas; and verify the research on advanced integrated process experiments for producing liquid fuels that would substitute for petroleum- and natural gas-derived liquid fuels.

  5. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  6. Biomass process handbook

    SciTech Connect

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  7. Development potentials and policy options of biomass in China.

    PubMed

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to10(6) tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts' energy distribution also varies from province to province in China

  8. Development Potentials and Policy Options of Biomass in China

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  9. Biomass Program Overview Presentation

    SciTech Connect

    2011-12-01

    This presentation is an interactive walk through of the Program's vision of advancing the biofuels and bioproducts industry and highlights the research and development activities that will help achieve it.

  10. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  11. Considerations for biomass energy systems

    SciTech Connect

    Carson, C.C.; Hart, C.M.

    1980-05-01

    Several different biomass forms, or feedstocks, contribute to the total potential for biomass energy. A summary of the energy potential of the US biomass resource base is presented along with a survey of existing thermochemical and biochemical processes for converting the feedstocks into usable energy products. Energy requirements, economics, and alternate uses for biomass resources are included in the discussion. It is concluded that the current biomass resources could provide up to 2.5 EJ of usable energy and that with a concentrated, long-term program this contribution could grow to between 10 and 15 EJ. The biomass feedstock with the largest potential is wood, which provides more than half of the estimated total.

  12. Pipeline transport of biomass.

    PubMed

    Kumar, Amit; Cameron, Jay B; Flynn, Peter C

    2004-01-01

    The cost of transporting wood chips by truck and by pipeline as a water slurry was determined. In a practical application of field delivery by truck of biomass to a pipeline inlet, the pipeline will only be economical at large capacity ( >0.5 million dry t/yr for a one-way pipeline, and >1.25 million dry t/yr for a two-way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances ( >75 km [one-way] and >470 km [two-way] at a capacity of 2 million dry t/yr). Mixed hardwood and softwood chips in western Canada rise in moisture level from about 50% to 67% when transported in water; the loss in lower heating value (LHV) would preclude the use of water slurry pipelines for direct combustion applications. The same chips, when transported in a heavy gas oil, take up as much as 50% oil by weight and result in a fuel that is >30% oil on mass basis and is about two-thirds oil on a thermal basis. Uptake of water by straw during slurry transport is so extreme that it has effectively no LHV. Pipeline-delivered biomass could be used in processes that do not produce contained water as a vapor, such as supercritical water gasification.

  13. Biomass power for rural development

    SciTech Connect

    Shepherd, P.

    2000-06-02

    Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

  14. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  15. Biomass in the Deregulated Marketplace: Current Issues for Biomass Power

    SciTech Connect

    Not Available

    1998-12-01

    This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

  16. New perspectives on quantitative characterization of biomass burning (Invited)

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.

    2010-12-01

    Biomass burning (BB) occurs seasonally in different vegetated landscapes across the world, consuming large amounts of biomass, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise aerosols and trace gases, which include carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), non-methane hydrocarbons, and numerous other trace compounds, many of which have adverse effects on human health, air quality, and environmental processes. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. The goal of this presentation is to highlight results of research activities that are aimed at advancing the quantitative characterization of various aspects of biomass burning (energetics, intensity, burn areas, burn severity, emissions, and fire weather) from aircraft and satellite measurements that can help advance our understanding of biomass burning and its overall effects. We will show recent results of analysis of fire radiative power (FRP), burned areas, fuel consumption, smoke emission rates, and plume heights from satellite measurements, as well as related aircraft calibration/validation activities. We will also briefly examine potential future plans and strategies for effective monitoring of biomass burning characteristics and emissions from aircraft and satellite.

  17. System and process for biomass treatment

    SciTech Connect

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  18. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  19. Growing perennial forages for biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent attention given to converting biomass into ethanol to fuel cars and trucks or burning it to generate electricity has captured society’s interest. There are three main routes for converting biomass into usable forms of energy or other chemical end products: (i) biochemical, (ii) thermochemical...

  20. Process for concentrated biomass saccharification

    DOEpatents

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  1. Assessment of technology for production of liquid fuels from biomass

    SciTech Connect

    Sheppard, A.P.; Spurlock, J.M.; Birchfield, J.L.

    1981-01-01

    Technologies for liquid fuel production from biomass vary widely in states of development and extent of need for government action. Ethanol produced from grain (principally corn), for use in gasohol blends, is the most widely used and accepted biomass-based energy source in the U.S. at present. Several practical factors strongly point to needed government emphasis on research and development to advance ethanol-production technology. Liquid fuels produced from soybeans, sunflowers, Euphorbia and similar crops, or from aquatic plants, remain as longer-term potential requiring further assessment. 6 refs.

  2. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass.

    PubMed

    Adsul, M G; Singhvi, M S; Gaikaiwari, S A; Gokhale, D V

    2011-03-01

    Lignocellulosic biomass is recognized as potential sustainable source for production of power, biofuels and variety of commodity chemicals which would potentially add economic value to biomass. Recalcitrance nature of biomass is largely responsible for the high cost of its conversion. Therefore, it is necessary to introduce some cost effective pretreatment processes to make the biomass polysaccharides easily amenable to enzymatic attack to release mixed fermentable sugars. Advancement in systemic biology can provide new tools for the development of such biocatalysts for sustainable production of commodity chemicals from biomass. Integration of functional genomics and system biology approaches may generate efficient microbial systems with new metabolic routes for production of commodity chemicals. This paper provides an overview of the challenges that are faced by the processes converting lignocellulosic biomass to commodity chemicals. The critical factors involved in engineering new microbial biocatalysts are also discussed with more emphasis on commodity chemicals. PMID:21277771

  3. FUNCTIONAL INTERACTOMICS: DETERMINING THE ROLES PLAYED BY MEMBERS OF THE POPULAR BIOMASS PROTEIN-PROTEIN INTERACTOME

    SciTech Connect

    Beers, Eric; Brunner, Amy; Helm, Richard

    2015-07-31

    Proteins are molecular machines that are required for nearly all biological functions based on interactions with other molecules such as carbohydrates, lipids, other low molecular weight molecules, nucleic acids and other proteins. Here we map protein-protein interactions relevant to biomass production by focusing on proteins coexpressed in poplar xylem, the site of the majority of lignocellulose synthesis and hence biomass accumulation in poplar. Work proposed here will yield novel biological and bioinformatic resources that can benefit a variety of ongoing and future projects focusing on plant biomass/cell wall biology. The protein-protein interaction map that results from these studies will comprise an advanced view of protein-protein interactions in a model biomass tissue. Results will be made available to the biomass research community to serve as tools for developing new strategies for altering biomass quality and quantity.

  4. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  5. Biomass resources for alcohol fuels

    NASA Astrophysics Data System (ADS)

    MacDowell, J. E.

    The production of alcohol fuel from biomass represents a fast and practical means of adding to the dwindling petroleum supply. The biomass feed-stocks which will feed the alcohol distilleries must be carefully selected. Using food chain biomass crops for conversion to alcohol will cause a reduction in the amount of food available and increase the cost of food and alcohol feedstocks. The food chains should not be drastically interrupted, and agricultural economic balances should not be altered. Various alternatives to alcohol production are presented, which lie within the confines of selected biomass feedstocks and will not interrupt normal agricultural activities. A corn processing and distillation process is shown graphically as an example; the biomass to alcohol conversion potential of feedstocks is given, and the potential cropland for conversion in the U.S.A. is shown as a percentage of the nation's total land area.

  6. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  7. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  8. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  9. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  10. Delano Biomass Power Plant

    SciTech Connect

    Middleton, M.; Hendershaw, W.K.; Corbin, H.R.; Taylor, T.A.

    1995-12-31

    The Delano Biomass Power Plant utilizes orchard prunings, urban wood waste, almond shells, and cotton stalks to fuel a boiler for steam generation. The steam is condensed in a steam turbine/generator to produce 31.8 MW of power. The electrical power generated (27 MW net) is then sold to Southern California Edison Co. for distribution. By incorporating a cooling tower, demineralizer, brine concentration tower, and evaporation ponds this system is able to achieve zero discharge. Steam at 97{degrees}F is condensed with cooling water. The cooling water is recirculated through an evaporator tower. Due to the temperature of the water entering the tower (83{degrees}F), evaporation occurs leaving behind concentrated salts. A blowdown is used to remove these salts from the tower. Losses from evaporation or leaks require make up to the tower. Wastewater from various processes in the plant are passed to a brine concentration tower. This concentrate is then taken to the evaporation ponds. Concentrated blowdown of small volumes (approximately 2-4 gpm) from the brine tower is disposed of in evaporation ponds.

  11. The estimation of microbial biomass.

    PubMed

    Harris, C M; Kell, D B

    1985-01-01

    Methods that have been used to estimate the content, and in some cases the nature, of the microbial biomass in a sample are reviewed. The methods may be categorised in terms of their principle (physical, chemical, biological or mathematical/computational), their speed (real-time or otherwise) and the amount of automation/expense involved. For sparse populations, where the output signal is to be enhanced by growth of the organisms, physical, chemical and biological approaches may be of equal merit, whilst in systems, such as laboratory and industrial fermentations, in which the microbial biomass content is high, physical methods (alone) can permit the real-time estimation of microbial biomass.

  12. Forest Biomass Mapping from Prism Triplet, Palsar and Landsat Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Ni, W.

    2014-12-01

    The loss of sensitivity at higher biomass levels is a common problem in biomass mapping using optical multi-spectral data or radar backscattering data due to the lack of information on canopy vertical structure. Studies have shown that adding implicit information of forest vertical structure improves the performance of forest biomass mapping from optical reflectance and radar backscattering data. LiDAR, InSAR and stereo imager are the data sources for obtaining forest structural information. The potential of providing information on forest vertical structure by stereoscopic imagery data has drawn attention recently due to the availability of high-resolution digital stereo imaging from space and the advances of digital stereo image processing software. The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observation Satellite (ALOS) has acquired multiple global coverage from June 2006 to April 2011 providing a good data source for regional/global forest studies. In this study, five PRISM triplets acquired on June 14, 2008, August 19 and September 5, 2009; PALSAR dual-pol images acquired on July 12, 2008 and August 30, 2009; and LANDSAT 5 TM images acquired on September 5, 2009 and the field plot data collected in 2009 and 2010 were used to map forest biomass at 50m pixel in an area of about 4000 km2in Maine, USA ( 45.2 deg N 68.6 deg W). PRISM triplets were used to generate point cloud data at 2m pixel first and then the average height of points above NED (National Elevation Dataset) within a 50m by 50m pixel was calculated. Five images were mosaicked and used as canopy height information in the biomass estimation along with the PALSAR HH, HV radar backscattering and optical reflectance vegetation indices from L-5 TM data. A small portion of this region was covered by the Land Vegetation and Ice Sensor (LVIS) in 2009. The biomass maps from the LVIS data was used to evaluate the results from combined use of PRISM, PALSAR and

  13. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis

    SciTech Connect

    Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

  14. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas – A Techno-Economic Analysis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.; Dagle, Robert A.; Palo, Daniel R.

    2012-08-01

    This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealed that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.

  15. Washington State biomass data book

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  16. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. PMID:25192611

  17. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-04-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  18. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.

  19. Long-term biomass research

    SciTech Connect

    Not Available

    1981-03-01

    Some of DOE's long term R and D programs for biomass are summarized in this article. These include research efforts in the fields of anaerobic digestion, energy farming, short rotation cultivation and aquatic farming. (DMC)

  20. Biomass energy systems program summary

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Research and development in appropriate conversion technologies is reported. The technologies include direct combustion, biochemical conversion, and thermochemical conversion techniques. Biomass sources were reviewed. Estimates indicate that the conversion of unused agricultural residues, forestry residues, and noncommercial timber growth can provide 6 to 10% of the national energy needs. The use of biomass energy conversion in fuel production, chemical production, residential space heating, and electricity supplies is discussed.

  1. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.

    PubMed

    Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony

    2013-07-01

    Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.

  2. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  3. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  4. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  5. Utilization of residual forest biomass

    SciTech Connect

    Hakkila, P.

    1989-01-01

    The first world-wide energy crisis in the early 1970s resulted in an explosive increase in both the number and diversity of studies on unmerchantable tree components such as tops, branches, foliage, stumps, and roots, and on whole small-sized trees. This book presents a synopsis and the latest information on forest biomass utilization and the potential of this renewable raw material resource, presented from an interdisciplinary viewpoint. This balanced review of scientific literature as well as recent practical developments and experience in forest biomass utilization covers various aspects of quantity and properties of the resource, harvesting and transport, ecological consequences of intensive biomass recovery, comminution and upgrading, utilization for pulp, paper, composite boards, fodder, and energy in solid, liquid, or gaseous form.

  6. A sustainable woody biomass biorefinery.

    PubMed

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  7. Enthanol fuels from biomass projects

    NASA Astrophysics Data System (ADS)

    Hsieh, B. C. B.

    About 100 projects are proposed or underway to convert organic crops such as corn and grains or waste organic material into a clean usable ethyl alcohol fuel. Total production capacity could reach more than two billion gallons per year in 1985, excluding beverage and industrial uses. Congressional appropriation of approximately one-half billion dollars to DOE/USDA for loan guarantees and federal and state laws exempting excise taxes can make this ethanol fuel from biomass possible. An overview and status of the projects will be reviewed. Net energy production of ethyl alcohol from biomass and the impacts of increasing alcohol fuel use will also be discussed.

  8. Genetic Variation in Biomass Traits among 20 Diverse Rice Varieties1[W][OA

    PubMed Central

    Jahn, Courtney E.; Mckay, John K.; Mauleon, Ramil; Stephens, Janice; McNally, Kenneth L.; Bush, Daniel R.; Leung, Hei; Leach, Jan E.

    2011-01-01

    Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops. PMID:21062890

  9. Biomass Program Partners Fact Sheet

    SciTech Connect

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  10. Biomass energy systems program summary

    SciTech Connect

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  11. Fiscalini Farms Biomass Energy Project

    SciTech Connect

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  12. Biomass Supply Logistics and Infrastructure

    NASA Astrophysics Data System (ADS)

    Sokhansanj, Shahabaddine; Hess, J. Richard

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  13. Biomass energies: resources, links, constraints

    SciTech Connect

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  14. Biomass in a petrochemical world.

    PubMed

    Roddy, Dermot J

    2013-02-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted.

  15. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  16. Biomass Supply Logistics and Infrastructure

    SciTech Connect

    Sokhansanj, Shahabaddine

    2009-04-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the Biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews methods of estimating the quantities of biomass followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and Transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  17. Torrefied biomass-polypropylene composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrefied almond shells and wood chips were incorporated into polypropylene as fillers to produce torrefied biomass-polymer composites. Response surface methodology was used to examine the effects of filler concentration, filler size, and lignin factor (relative lignin to cellulose concentration) on...

  18. Global Biomass Variation and its Geodynamic Effects, 1982-1998

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.

    2005-01-01

    Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.

  19. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  20. New market potential: Torrefaction of Woody Biomass

    SciTech Connect

    Jaya Shankar Tumuluru; J. Richard Hess

    2015-07-01

    According to researchers in Idaho National Laboratory’s Bioenergy Program, torrefaction of woody biomass could reduce variability in biomass feedstock and enable development of a commodity-type product for green energy generation and usage.

  1. Biomass Feedstock Composition and Property Database

    DOE Data Explorer

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.)

  2. Treatment of biomass to obtain ethanol

    DOEpatents

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  3. Biomass Resources for the Federal Sector

    SciTech Connect

    Not Available

    2005-08-01

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  4. Biomass Resources for the Federal Sector

    SciTech Connect

    R. Robichaud; A. Crawley; and L. Poole: NREL

    2005-09-09

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  5. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  6. Evaluation of biomass systems for electricity generation

    NASA Astrophysics Data System (ADS)

    Lipinsky, E. S.; Ball, D. A.; Anson, D.

    1982-02-01

    State-of-the-art information and evaluation of alternative biomass systems for generation of electricity are provided. The biomass systems consist of silvicultural or agricultural resources, processing and conversion technology to make biomass-derived fuels, and electricity-generating technology. The systems are delineated in energy network charts and are evaluated in matrices that display biomass-system alternatives and multiple technical, economic, and environmental-impact criteria.

  7. Hydrogen from biomass: state of the art and research challenges

    SciTech Connect

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  8. Microwave moisture measurements of flowing biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of pelleted biomass is a significant emerging industry in the United States. A primary quality attribute of pelleted biomass is moisture content. This parameter is critical in pricing, binding, combustion, and storage of pelleted biomass. In order to produce pellets of a high quality mois...

  9. Moisture sorption kinetics of switchgrass, big bluestem, and bromegrass biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moisture status in biomass is the most influential factor of biomass storage, and hydration kinetics control the dynamic moisture condition of the biomass, thus affecting biomass storage and processing operations and final utilization applications. Moisture hydration characteristics of switchgrass, ...

  10. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  11. Methods for producing and using densified biomass products containing pretreated biomass fibers

    DOEpatents

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  12. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  13. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. Irradiation enhancement of biomass conversion

    NASA Astrophysics Data System (ADS)

    Smith, G. S.; Kiesling, H. E.; Galyean, M. L.; Bader, J. R.

    The vast supply of cellulosic agricultural residues and industrial by-products that is produced each year is a prospective resource of biomass suitable for conversion to useful products such as feedstock for the chemicals industry and feedstuffs for the livestock industry. Conversions of such biomass is poor at present, and utilization is inefficient, because of physio-chemical barriers to biological degradation and (or) anti-quality components such as toxicants that restrict biological usages. Improvements in biodegradability of ligno-cellulosic materials have been accomplished by gamma-ray and electron-beam irradiation at intermediate dosage (˜ 50 Mrad; .5 MGy); but applications of the technology have been hampered by questionable interpretations of results. Recent research with organic wastes such as sewage sludge and straw suggests opportunity for important applications of irradiation technology in enhancement of biomass conversion. Data from experiments using irradiated straw as feed for ruminants are presented and discussed in relation to research on prospective usage of sewage products as feed for ruminants. Findings are discussed in regard to prospective applications in industrial fermentation processes. Possible usage of irradiation technology for destruction of toxicants in exotic plants is considered in regard to prospective new feedstuffs.

  15. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  16. Biomass energy systems and the environment

    NASA Astrophysics Data System (ADS)

    Braunstein, H. M.; Kanciruk, P.; Roop, R. D.; Sharples, F. E.; Tatum, J. S.; Oakes, K. M.

    The technology, resources, applied, and experimental features of biomass energy resources are explored, with an emphasis on environmental and social implications of large-scale biomass development. The existing land and water based biomass resource is described in terms of available energy, ecological concerns, agricultural crops, livestock production, freshwater systems, and ocean systems. Attention is given to proposed systems of biomass energy production from forestry and silviculture, agricultural crops, livestock wastes, and freshwater and ocean systems. A survey is made of various biomass materials, techniques for conversion to gas, liquid fuels, or for direct combustion, and impacts of large-scale biomass production and harvest are examined. Particular note is made of the effects of scaling biomass conversion systems, including near- and long-term applications, and ethics and aesthetic concerns.

  17. Lime pretreatment of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of

  18. Evaluation on the efficiency of biomass power generation industry in china.

    PubMed

    Sun, Jingqi; Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  19. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  20. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.

    PubMed

    Hoang, Nam V; Furtado, Agnelo; Botha, Frederik C; Simmons, Blake A; Henry, Robert J

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  1. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  2. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Default Factors for Biomass-Based Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column...

  3. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Default Factors for Biomass-Based Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column...

  4. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Default Factors for Biomass-Based Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column...

  5. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Factors for Biomass-Based Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column...

  6. Biomass Energy Data Book: Edition 1

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  8. Biomass Energy Data Book: Edition 3

    SciTech Connect

    Boundy, Robert Gary; Davis, Stacy Cagle

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  9. Biomass Energy Data Book: Edition 4

    SciTech Connect

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  10. Biomass Energy Data Book: Edition 2

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  11. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  12. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  13. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  14. Biomass proximate analysis using thermogravimetry.

    PubMed

    García, Roberto; Pizarro, Consuelo; Lavín, Antonio G; Bueno, Julio L

    2013-07-01

    This work proposes a 25 min-last thermogravimetric method as a tool to determine biomass sample's proximate analysis data (moisture, ash, volatile matter and fixed carbon contents) just by direct measure of weight changes on each sample's TG chart. Compared with international standards commonly used to that aim, TG is a faster and easier to develop technique. Obtained results were satisfactory, with AEE under 6% for moisture and volatile matter, close to 10% for fixed carbon determination and AAD of 1.6 points for ash content.

  15. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.

  16. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1998-10-20

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

  17. Biomass Resource Allocation among Competing End Uses

    SciTech Connect

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  18. Biomass cofiring impacts on flame structure and emissions

    SciTech Connect

    Bradley Damstedt; Jesper M. Pederson; Dane Hansen; Todd Knighton; Justin Jones; Craig Christensen; Larry Baxter; Dale Tree

    2007-07-01

    The impacts of cofiring biomass and coal on flame structure and NO emissions are investigated in the context of a swirl-stabilized, pilot-scale burner with straw and coal fired independently. The comparatively low energy density of biomass generally leads to higher transport air requirements per unit energy, increasing the momentum of biomass streams relative to an energy equivalent coal stream in burner feeds. Increasing the primary momentum in this manner alters the flow field and stoichiometry patterns of the burner. Detailed species concentration measurements as well as particle sampling were employed to investigate the flame structures of both high and low straw primary air flowrates. Large straw particles penetrate the internal recirculation zone at the high primary air flowrate, elongating the flame structure by forming fuel-rich eddies. The knees (relatively dense sections of straw) of the straw penetrated much further into the reactor, forming a secondary combustion zone. The NO emission was seen to decrease as the straw primary air flowrate increased because of increased numbers of fuel-rich eddies providing more reducing zone, where the fuel nitrogen from the large particles was released. It is also shown that the fuel-rich eddies served as reburning and/or advanced reburning centers, reducing the effluent NO emission further. 27 refs., 9 figs., 2 tabs.

  19. [Preface for special issue on biomass refinery (2014)].

    PubMed

    Chen, Hongzhang; Qiu, Weihua

    2014-05-01

    Biomass is the most abundant organic macromolecules in nature, which is expected to achieve the brilliant of biorefinery equivalent to petroleum refining. However, it is considered as the future industry to human due to the complicated composition and transformation processes. The traditional lignocellulose bio-refining thoughts ignored the functional requirements of products, but spent a lot of energies to destruct macromolecule into small molecules, and then converted the small molecules into different products, which was high energy consumption and low atom economy. How to realize the biorefinery of lignocellulose is the key point and difficulty to achieve the biomass industry. An ideal biorefinery of lignocellulose should as far as possibly to obtain the maximum yield of each component, to maintain the integrity of the molecule, to optimize the utilization of raw materials and finally to realize the maximum value. Therefore, it requires the raw materials refining of lignocellosic biomass should be based on the relationship of structure, process transformation and related product characteristics. This special issue reports the latest advances in the fields of raw material refinery, refining technologies, conversion technologies of component.

  20. Regional biomass supply: three case studies in the Midwest, US

    SciTech Connect

    English, B.C.; Dillivan, K.D.; Ojo, M.A.; Alexander, R.R.; Graham, R.L.

    1995-06-01

    Increased interest in the development and utilization of alternative energy sources has generated research demonstrating that fuels developed from energy crops (biofuels) can be a viable substitute for fossil fuels. A national energy program dedicated to the advancement of fuel derived from lignocellulosic crops could have major impacts on conventional energy supplied in the United States. Sufficient biofuel demand would allow conversion of croplands, as well as some pasture and forest lands, into biomass producing lands and possibly return to production acres formerly idled. A shift from crop, pasture or forest production activities to biomass production would likely require changes in the levels of inputs, outputs, and costs associated with these activities, which would impact producers and ultimately consumers. The conversion of cropland or idled land to biomass production will also have impacts on the physical characteristics of the soil. Soil erosion levels, soil chemical composition, soil structure, and organic matter content are some of the many soil attributes which will be impacted as a result of conversion. Research is needed to estimate the impact conversion activities have on these variables.

  1. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  2. Estimates of US biomass energy consumption 1992

    SciTech Connect

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  3. California's biomass and its energy potential

    SciTech Connect

    Lucarelli, F.B. Jr.

    1980-04-01

    The potentials for using California's biomass for energy have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed Energy System's Project to specify an energy future for Californians. These works identify transportation fuels as the most valuable energy conversion for biomass. Within this context, the extent of five categories of terrestial biomass is estimated, in addition to the environmental impacts and monetary cost of collecting and transporting each biomass category. Estimates of the costs of transforming biomass into different fuels as well as a survey of government's role in a biomass energy program are presented. The major findings are summarized below. (1) California's existing biomass resources are sufficient to provide only 20 percent of its future liquid fuel requirements. (2) Meeting the full transportation demand with biomass derived fuels will require the development of exotic biomass sources such as kelp farms and significant reductions in automobile travel in the State. (3) Under assumptions of moderate increases in gasoline prices and without major new government incentives, the cost of transforming biomass into transport fuels will be competitive with the price of gasoline on a Btu basis by the year 1990. (4) The environmental impacts of collecting most forms of biomass are beneficial and should reduce air pollution from agricultural burning and water pollution from feedlot and dairy farm runoff. Moreover, the collection of logging residues should improve timber stand productivity and the harvest of chaparral should reduce the risk of wildfire in the State. (5) The institutional context for implementing biomass energy projects is complex and fragmented.

  4. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  5. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  6. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  7. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  8. Biomass fuel combustion and health*

    PubMed Central

    de Koning, H. W.; Smith, K. R.; Last, J. M.

    1985-01-01

    Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect health—such as suspended particulate matter and polycyclic organic matter which includes a number of known carcinogens, such as benzo[a]pyrene, as well as gaseous pollutants like carbon monoxide and formaldehyde. Exposure to large amounts of smoke may present a health risk that is of a similar order of magnitude to the risk from tobacco smoke. The effects on health arising from exposure to air pollution are reviewed, based on what has been reported in the literature so far. Further and more detailed information on exposures and on the epidemiological aspects is urgently required. The persons most frequently affected are women who do the cooking for households in rural villages; they suffer from impaired health due to prolonged and repeated contact with these harmful pollutants. When they are pregnant, the developing fetus may also be exposed and this leads to the risk of excess deaths. In the developing countries, exposure to biomass fuel emissions is probably one of the most important occupational health hazards for women. A conservatively estimated 300-400 million people worldwide, mostly in the rural areas of developing countries, are affected by these problems. PMID:3872729

  9. Lignocellulosic biomass pretreatment using AFEX.

    PubMed

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  10. Apparatus and method for pyrolyzing biomass material

    SciTech Connect

    Diebold, J.P.; Reed, T.B.

    1981-08-21

    A technique for pyrolyzing biomass materials is disclosed wherein a hot surface is provided having a predetermined temperature which is sufficient to pyrolyze only the surface strata of the biomass material without substantially heating the interior of the biomass material thereby providing a large temperature gradient from the surface strata inwardly of the relatively cool biomass materials. Relative motion and physical contact is produced between the surface strata and the hot surface for a sufficient period of time for ablative pyrolyzation by heat conduction to occur with minimum generation of char.

  11. Common elements of successful biomass projects

    SciTech Connect

    Muehlenfeld, K.J.; Bransby, D.I.; Badger, P.C.

    1996-12-31

    An examination of six successful commercial operations utilizing biomass energy reveals several recurring elements that appear to positively influence the success of these operations. These include ready access to a secure supply of low-cost biomass fuels, significant on-site thermal energy requirements, access to special financing arrangements, special circumstances that precipitate the initial decision to switch to biomass fuels, and aggressive, far-sighted management. Recognition of the common elements of success exhibited in these case studies should prove useful in identifying promising commercial biomass energy opportunities.

  12. EERC Center for Biomass Utilization 2006

    SciTech Connect

    Zygarlicke, Christopher J.; Hurley, John P.; Aulich, Ted R.; Folkedahl, Bruce C.; Strege, Joshua R.; Patel, Nikhil; Shockey, Richard E.

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  13. Energy from biomass and wastes: an overview

    SciTech Connect

    Klass, D.L.

    1980-01-01

    Energy from biomass and wastes already contributes about 850,000 barrels oil equivalent per day to US primary consumption. Recent changes in Federal funding of energy projects are expected to stimulate commercialization of additional biomass energy systems, particularly those processes that utilize biomass and wastes for the manufacture of ethanol fuel. However, although research and development on biomass production and conversion is progressing at a rapid rate, commercialization of non-ethanol and non-combustion based processes has been minimal. Commercial plants in the United States currently include one municipal solid waste gasification plant, one manure gasification plant which was recently shut down, and eight landfill methane recovery systems.

  14. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  15. Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities

    PubMed Central

    Kang, Qian; Appels, Lise; Tan, Tianwei

    2014-01-01

    “Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes. PMID:25614881

  16. Fuel cell power plants using hydrogen from biomass

    SciTech Connect

    Knight, R.A.; Onischak, M.; Lau, F.S.

    1998-12-31

    This paper discusses a power generation system that offers high energy efficiency, ultra-clean environmental performance, and near-zero greenhouse gas emissions. Biomass from agricultural and forestry wastes or dedicated energy farms can be used efficiently for power generation in integrated biomass gasification-fuel cell (IBGFC) systems. The energy efficiency of these systems has been projected to approach 55% or even higher if cogeneration opportunities can be utilized. Such systems, in addition to being ultra-efficient, can boast very low emissions of SO{sub 2}, NO{sub x}, and particulates, and are essentially CO{sub 2}-neutral. With the mounting concern about greenhouse gas emissions, this approach to renewable energy is very attractive for small distributed generation markets in the US and worldwide. Biomass wastes alone, by current estimates, have the potential to provide as much as 338 GW of electrical power worldwide if utilized in this fashion, and offer the best near- to mid-term market entry opportunities for this technology. Power demand in the US will be driven by the opening of niche markets as a result of deregulation and environmental concerns, and markets in other regions will be driven by economic growth as well. In this paper, the integration of a pressurized fluidized-bed gasifier with a molten carbonate fuel cell and expansion turbine bottoming cycle will be presented. Two cycles are suggested: one using conventional technology for biomass drying, feeding, and gasification, and a second, more advanced cycle using wet feeding direct to the gasifier and in-bed steam reforming to boost cycle efficiency and reduce capital costs. Both cycles use state-of-the-art molten carbonate fuel cells with an expansion turbine bottoming cycle. These options are presented along with recommended technical development activities and targets.

  17. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be

  18. A review of whole cell wall NMR by the direct-dissolution of biomass

    DOE PAGES

    Foston, Marcus B.; Samuel, Reichel; He, Jian; Ragauskas, Arthur J.

    2016-01-19

    To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less

  19. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems. PMID:26230033

  20. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems.

  1. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  2. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  3. Improvements of biomass deconstruction enzymes

    SciTech Connect

    Sale, K. L.

    2012-03-01

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  4. Gasohol - Analysis and biomass alternatives

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The economics of fermentation ethanol as a near-term alternative to liquid hydrocarbon fuels are analyzed and alternatives to grain-fermented ethanol are examined. Based on estimates of raw material and production costs and energy consumption, it is shown that net production costs for alcohol fuel from corn amount to $2.14/gallon, with no significant net consumption or gain in energy. It is also pointed out that the use of grain for alcohol production will influence quantities available for livestock production and export, and that land available for grain production is limited. Consideration is then given to the economic potential of using cellulosic biomass from agricultural and forest residues in the production of ethanol fuels and coal gasification for methanol production, and it is pointed out that these alternatives offer economic, energy and oil-savings advantages over ethanol production from grains.

  5. Advanced high-temperature, high-pressure transport reactor gasification

    SciTech Connect

    Swanson, M.L.

    1999-07-01

    The mission of the U.S. Department of Energy's (DOE's) Federal Energy Technology Center Office of Power Systems Product Management is to foster the development and deployment of advanced, clean, and affordable fossil-based (coal) power systems. These advanced power systems include the development and demonstration of gasification-based advanced power systems. These systems are integral parts of the Vision 21 Program for the co-production of power and chemicals which is being developed at DOE. DOE has been developing advanced gasification systems which lower the capital and operating cost of producing syngas for electricity or chemicals production. A transport reactor gasifier has shown potential to be a low-cost syngas producer as compared to other gasification systems because of its high throughput. This work directly supports the Power Systems Development Facility (PSDF) utilizing the Kellogg, Brown and Root (KBR) transport reactor located at the Southern Company Services (SCS) Wilsonville, Alabama, site. Over 1000 hours of operation on three different fuels in the pilot-scale transport reactor development unit (TRDU) has been completed to date. The Energy and Environmental Research Center (EERC) has established an extensive database on the operation of various fuels in a transport reactor gasifier. This database will be useful in determining the effectiveness of design changes on a transport reactor gasifier. It has been demonstrated that corrected fuel gas heating values ranging between 105 to 130 Btu/scf can be achieved. Factors that affect the TRDU product gas quality appear to be circulation rate, coal type, temperature, and air:coal and steam:coal ratios. Future plans are to modify the transport reactor mixing zone and J-leg loop seal to increase backmixing, thereby increasing solids residence time and gasifier performance. Enriched air- and oxygen-blown gasification tests, especially on widely available low-cost fuels such as petroleum coke, will also be

  6. Carbon Monoxide from Biomass Burning

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of images shows levels of carbon monoxide at the atmospheric pressure level of 700 millibars (roughly 12,000 feet in altitude) over the continent of South America, as observed by the Measurements Of Pollution In The Troposphere (MOPITT) sensor flying aboard NASA's Terra spacecraft. Data for producing the image on the left were acquired on March 3, 2000, and for the image on the right on September 7, 2000. Blue pixels show low values, yellows show intermediate values, and the red to pink and then white pixels are progressively higher values. In the lefthand image (March 3), notice the fairly low levels of carbon monoxide over the entire continent. The slightly higher equatorial values are the result of burning emissions in sub-Saharan Africa that are convected at the Intertropical Convergence Zone (ITCZ) and spread by the trade winds. Also, notice the effect of the elevated surface topography across the Andes Mountains running north to south along the western coastline. (In this region, white pixels show no data.) In the righthand image (September 7), a large carbon monoxide plume is seen over Brazil, produced primarily by biomass burning across Amazonia and lofted into the atmosphere by strong cloud convection. The generally higher carbon monoxide levels as compared to March are both the result of South American fire emissions and the transport of carbon monoxide across the Atlantic Ocean from widespread biomass burning over Southern Africa. These images were produced using MOPITT data, which are currently being validated. These data were assimilated into an atmospheric chemical transport model using wind vectors provided by the National Center for Environmental Prediction (NCEP). Although there is good confidence in the relative seasonal values and geographic variation measured by MOPITT, that team anticipates their level of confidence will improve further with ongoing intensive validation campaigns and comparisons with in situ and ground

  7. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  8. Mini-biomass electric generation

    SciTech Connect

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  9. Global repowering opportunities for biomass

    SciTech Connect

    Demeter, C.P.; Gray, E.E.; Lindsey, C.A.

    1996-12-31

    Global demand for electricity is growing during a time of significant structural change in electric markets. Many countries are creating more competitive markets for power production and sales through regulation and ownership structure. Governments are reducing monopolies, enhancing competition and unbundling electricity services. Equipment suppliers, developers, and service providers are expanding into the global market. Meeting future electric energy needs has forced the power community to examine alternatives to Greenfield Development. Repowering existing facilities to gain a competitive advantage is a promising option. Repowering has the potential to offer increased capacity, heat rate reductions, and improved environmental profiles in a manner consistent with an asset and capital deployment rationalization strategy that appears to characterize the future of the power industry. It is also a defensive strategy for extending the life of existing assets. The breadth of repowering options continues to expand as technologies are introduced to increase plant capacities, efficiencies or both. Some options such as feedwater heater repowering appear to offer advantages to repowering with biomass fuels as an alternative to natural gas projects. By repowering solid fueled facilities, developed and developing countries can receive multiple benefits. Most developing countries are largely agrarian with traditional policies that have relied on trickle-down rural development. By turning agricultural and forestry by-products into commodities, farmers and foresters can benefit from a sustainable source of income. As power demand and biomass requirements are expanded to a regional scale, the government can reduce some agricultural subsidies and shift that money to other economically and socially beneficial programs. Furthermore, rural development can minimize rural-to-urban flight and thus lessen the strain on already overburdened urban infrastructure.

  10. Energy from biomass and wastes IV. Proceedings of the Symposium, Lake Buena Vista, FL, January 21-25, 1980

    SciTech Connect

    Not Available

    1980-01-01

    Attention is given to energy from biomass and wastes, the energy potential of sugar cane and sweet sorghum, the yields of short rotation Eucalyptus Grandis in high density plantings, maximizing forest biomass energy production by municipal wastewater irrigation, and large-scale biomass cogenerated power. Advanced systems concerning residential wood fired furnaces are considered along with environmental impacts of increased fuelwood use, metabolic control for microbial fuel production during thermophilic fermentation of biomass, anaerobic sludge digestion in the presence of lactobacillus additive, the enzymatic enhancement of solid waste bioconversion, and the gasification of organic solid wastes in cocurrent moving bed reactors. Other subjects discussed are related to the Simplex coal and biomass gasification process, molecular mechanisms underlying solar conversion and energy storage by the photocatalytic decomposition of water in photosynthesis, and the production of hydrogen from biomass and wastes. There is also a description of topics which are concerned with the economics of modest size pyrolysis systems providing substitute fuel for existing combustion systems, the gasification of solid waste linked with purification, refuse conversion to methane, the biothermal gasification of biomass, and some practical aspects affecting the operation of a commercial gas producer on biomass.

  11. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  12. Dedicated herbaceous biomass feedstock genetics and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels and bio-based products can be produced from a wide variety of plant feedstocks. To supply enough biomass to meet the proposed need for a bio-based economy a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the United States. Re...

  13. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  14. Manufacture of Prebiotics from Biomass Sources

    NASA Astrophysics Data System (ADS)

    Gullón, Patricia; Gullón, Beatriz; Moure, Andrés; Alonso, José Luis; Domínguez, Herminia; Parajó, Juan Carlos

    Biomass from plant material is the most abundant and widespread renewable raw material for sustainable development, and can be employed as a source of polymeric and oligomeric carbohydrates. When ingested as a part of the diet, some biomass polysaccharides and/or their oligomeric hydrolysis products are selectively fermented in the colon, causing prebiotic effects.

  15. Processes for pretreating lignocellulosic biomass: A review

    SciTech Connect

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  16. Biomass thermal conversion research at SERI

    SciTech Connect

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  17. SERI Biomass Program. FY 1983 annual report

    SciTech Connect

    Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.; McIntosh, R.P.

    1984-02-01

    This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1983. The SERI Biomass Program consists of three elements: Aquatic Species, Anaerobic Digestion, and Photo/Biological Hydrogen. Each element has been indexed separately. 2 references, 44 figures, 22 tables.

  18. Biomass Program 2007 Accomplishments - Report Introduction

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  19. Biomass Program 2007 Accomplishments - Full Report

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  20. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  1. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  2. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  3. Environmental implications of increased biomass energy use

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr. , Portland, OR )

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  4. Biomass Estimates for Five Western States.

    SciTech Connect

    Howard, James O.

    1990-10-01

    The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

  5. Biomass of freshwater turtles: a geographic comparison

    SciTech Connect

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entire six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.

  6. Agriculture, land use, and commercial biomass energy

    SciTech Connect

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  7. Rational control of nano-scale metal-catalysts for biomass conversion.

    PubMed

    Wang, Yunzhu; De, Sudipta; Yan, Ning

    2016-05-01

    Nano-scale metal particles have huge potential due to their wide range of diverse catalytic applications. Recently, they have found numerous applications in the field of biomass conversion. The proposed contribution is aimed at providing a brief account of remarkable recent findings and advances in the design of metal-based nanocatalysts for biomass valorization. We have discussed the rational control of the size, shape, composition and surface properties of nano-scale metal catalysts. Following that, the interplay between various structural parameters and the catalytic properties in the transformation of cellulose, chitin, lignin and lipids has been critically discussed. PMID:27022992

  8. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  9. Assessment of Biomass Resources in Liberia

    SciTech Connect

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  10. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  11. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  12. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect

    Sharp, William; Singbeil, Douglas; Keiser, James R

    2012-01-01

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  13. Freshwater aquatic plant biomass production in Florida

    SciTech Connect

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  14. Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data

    PubMed Central

    Avtar, Ram; Suzuki, Rikie; Sawada, Haruo

    2014-01-01

    Forests play a vital role in terrestrial carbon cycling; therefore, monitoring forest biomass at local to global scales has become a challenging issue in the context of climate change. In this study, we investigated the backscattering properties of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data in cashew and rubber plantation areas of Cambodia. The PALSAR backscattering coefficient (σ0) had different responses in the two plantation types because of differences in biophysical parameters. The PALSAR σ0 showed a higher correlation with field-based measurements and lower saturation in cashew plants compared with rubber plants. Multiple linear regression (MLR) models based on field-based biomass of cashew (C-MLR) and rubber (R-MLR) plants with PALSAR σ0 were created. These MLR models were used to estimate natural forest biomass in Cambodia. The cashew plant-based MLR model (C-MLR) produced better results than the rubber plant-based MLR model (R-MLR). The C-MLR-estimated natural forest biomass was validated using forest inventory data for natural forests in Cambodia. The validation results showed a strong correlation (R2 = 0.64) between C-MLR-estimated natural forest biomass and field-based biomass, with RMSE  = 23.2 Mg/ha in deciduous forests. In high-biomass regions, such as dense evergreen forests, this model had a weaker correlation because of the high biomass and the multiple-story tree structure of evergreen forests, which caused saturation of the PALSAR signal. PMID:24465908

  15. Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes.

    PubMed

    Steudler, Susanne; Böhmer, Ulrike; Weber, Jost; Bley, Thomas

    2015-02-01

    Solid-state fermentation (SSF) is a robust process that is well suited to the on-site cultivation of basidiomycetes that produce enzymes for the treatment of lignocellulosics. Reliable methods for biomass quantification are essential for the analysis of fungal growth kinetics. However, direct biomass determination is not possible during SSF because the fungi grow into the substrate and use it as a nutrient source. This necessitates the use of indirect methods that are either very laborious and time consuming or can only provide biomass measurements during certain growth periods. Here, we describe the development and optimization of a new rapid method for fungal biomass determination during SSF that is based on counting fungal nuclei by flow cytometry. Fungal biomass was grown on an organic substrate and its concentration was measured by isolating the nuclei from the fungal hyphae after cell disruption, staining them with SYTOX(®) Green, and then counting them using a flow cytometer. A calibration curve relating the dry biomass of the samples to their concentrations of nuclei was established. Multiple buffers and disruption methods were tested. The results obtained were compared with values determined using the method of ergosterol determination, a classical technique for fungal biomass measurement during SSF. Our new approach can be used to measure fungal biomass on a range of different scales, from 15 mL cultures to a laboratory reactor with a working volume of 10 L (developed by the Research Center for Medical Technology and Biotechnology (fzmb GmbH)). © 2014 International Society for Advancement of Cytometry.

  16. Natural forest biomass estimation based on plantation information using PALSAR data.

    PubMed

    Avtar, Ram; Suzuki, Rikie; Sawada, Haruo

    2014-01-01

    Forests play a vital role in terrestrial carbon cycling; therefore, monitoring forest biomass at local to global scales has become a challenging issue in the context of climate change. In this study, we investigated the backscattering properties of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data in cashew and rubber plantation areas of Cambodia. The PALSAR backscattering coefficient (σ0) had different responses in the two plantation types because of differences in biophysical parameters. The PALSAR σ0 showed a higher correlation with field-based measurements and lower saturation in cashew plants compared with rubber plants. Multiple linear regression (MLR) models based on field-based biomass of cashew (C-MLR) and rubber (R-MLR) plants with PALSAR σ0 were created. These MLR models were used to estimate natural forest biomass in Cambodia. The cashew plant-based MLR model (C-MLR) produced better results than the rubber plant-based MLR model (R-MLR). The C-MLR-estimated natural forest biomass was validated using forest inventory data for natural forests in Cambodia. The validation results showed a strong correlation (R2 = 0.64) between C-MLR-estimated natural forest biomass and field-based biomass, with RMSE  = 23.2 Mg/ha in deciduous forests. In high-biomass regions, such as dense evergreen forests, this model had a weaker correlation because of the high biomass and the multiple-story tree structure of evergreen forests, which caused saturation of the PALSAR signal.

  17. Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign

    NASA Astrophysics Data System (ADS)

    Russell-Smith, Jeremy; Edwards, Andrew C.; Cook, Garry D.

    2003-02-01

    This paper estimates the two-daily extent of savanna burning and consumption of fine (grass and litter) fuels from an extensive 230,000 km2 region of northern Australia during August-September 1999 encompassing the Australian continental component of the Biomass Burning and Lightning Experiment B (BIBLE B) campaign [, 2002]. The extent of burning for the study region was derived from fire scar mapping of imagery from the advanced very high resolution radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) satellite. The mapping was calibrated and verified with reference to one Landsat scene and associated aerial transect validation data. Fine fuel loads were estimated using published fuel accumulation relationships for major regional fuel types. It is estimated that more than 43,000 km2 was burnt during the 25 day study period, with about 19 Mt of fine (grass and litter) fuels. This paper examines assumptions and errors associated with these estimates. It is estimated from uncalibrated fire mapping derived from AVHRR imagery that 417,500 km2 of the northern Australian savanna was burnt in 1999, of which 136,405 km2, or 30%, occurred in the Northern Territory study region. Using generalized fuel accumulation equations, such biomass burning consumed an estimated 212.3 Mt of fine fuels, but no data are available for consumption of coarse fuels. This figure exceeds a recent estimate, based on fine fuels only, for the combined Australian savanna and temperate grassland biomass burning over the period 1990-1999 but is lower than past estimates derived from classification approaches. We conclude that (1) fire maps derived from coarse-resolution optical imagery can be applied relatively reliably to estimate the extent of savanna fires, generally with 70-80% confidence using the approach adopted here, over the major burning period in northern Australia and (2) substantial further field assessment and associated modeling of fuel accumulation

  18. Biomass in Serbia - potential of beech forests

    NASA Astrophysics Data System (ADS)

    Brasanac-Bosanac, Lj.; Cirkovic-Mitrovic, T.; Popovic, V.; Jokanovic, D.

    2012-04-01

    As for the renewable sources for energy production, biomass from forests and wood processing industry comes to the second place. The woody biomass accounts for 1.0 Mtoe, that is equivalent with 1.0 Mtoe of oil. Due to current evaluations, the greatest part of woody biomass would be used for briquettes and pallets production. As the biomass from forests is increasingly becoming the interest of national and international market, a detailed research on overall potential of woody supply from Serbian forests is required. Beech forests account for 29.4 % of forest cover of Serbia. They also have the greatest standing volume (42.4 % of the overall standing volume) and the greatest mean annual increment (32.3 %)(Bankovic,et.al.2009). Herewith, the aim of this poster is to determine the long-term biomass production of these forests.For this purpose a management unit called Lomnicka reka has been chosen. As these beech forests have similar structural development, this location is considered representative for whole Serbia. DBH of all trees were measured with clipper and the accuracy of 0.01 mm, and the heights with a Vertex 3 device (with accuracy of 0.1 m). All measurements were performed on the fields each 500 m2 (square meters). The overall quantity of root biomass was calculated using the allometric equations. The poster shows estimated biomass stocks of beech forests located in Rasina area. Dates are evaluated using non-linear regression (Wutzler,T.et.al.2008). Biomass potential of Serbian beech forests will enable the evaluation of long-term potential of energy generation from woody biomass in agreement with principles of sustainable forest management. The biomass from such beech forests can represent an important substitution for energy production from fossil fuels (e.g. oil) and herewith decrease the CO2 emissions.

  19. Driftless Area Initiative Biomass Energy Project

    SciTech Connect

    Wright, Angie; Bertjens, Steve; Lieurance, Mike; Berguson, Bill; Buchman, Dan

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  20. 78 FR 46331 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Biomass... for candidates to fill vacancies on the Biomass Research and Development Technical Advisory Committee...: http://biomassboard.gov/committee/committee.html . SUPPLEMENTARY INFORMATION: The Biomass Research...

  1. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  2. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes.

  3. The regional environmental impact of biomass production

    SciTech Connect

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  4. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes. PMID:26676907

  5. Electricity from biomass: A development strategy

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.

  6. Comparison of biomass and coal char reactivities

    SciTech Connect

    Huey, S.P.; Davis, K.A.; Hurt, R.H.; Wornat, M.J.

    1995-12-31

    Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass potential as a sustainable and renewable energy source, the change in reactivities with the extent of burnout of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to examine biomass and coal char reactivities and extinction behaviors and presents results from CPI experiments. The reactivity as a function of extent of burnout for six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, was investigated using the CPI apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

  7. Simulation of Biomass Accumulation Pattern in Vapor-Phase Biofilters.

    PubMed

    Xi, Jin-Ying; Hu, Hong-Ying; Zhang, Xian

    2012-06-01

    Existence of inert biomass and its impact on biomass accumulation patterns and biofilter performance were investigated. Four biofilters were set up in parallel to treat gaseous toluene. Each biofilter operated under different inlet toluene loadings for 100 days. Two microbial growth models, one with an inert biomass assumption and the other without, were established and compared. Results from the model with the inert biomass assumption showed better agreement with the experimental data than those based on the model without the inert biomass assumption thus verifying that inert biomass accumulation cannot be ignored in the long-term operation of biofilters. According to the model with an inert biomass assumption, the ratio of active biomass to total biomass will decrease and the inert biomass will become dominant in total biomass after a period of time. Filter bed structure simulation results showed that the void fraction is more sensitive to biomass accumulation than the specific surface area. The final void fraction of the biofilters with the highest inlet toluene loading is only 67% of its initial level while the final specific surface area is 82%. Identification and quantification of inert biomass will give a better understanding of biomass accumulation in biofilters and will result in a more exact simulation of biomass change during long-term operations. Results also indicate that an ideal biomass control technique should be able to remove most inert biomass while simultaneously preserving as much active biomass as possible.

  8. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  9. EERC Center for Biomass Utilization 2005

    SciTech Connect

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  10. NO reduction in decoupling combustion of biomass and biomass-coal blend

    SciTech Connect

    Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

    2009-01-15

    Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

  11. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  12. Development of a new generation of small scale biomass-fueled electric generating power plants

    SciTech Connect

    Craig, J.D.; Purvis, C.R.

    1995-11-01

    There exists a need by a large worldwide market for greatly improved small scale (1 to 20 MWe per unit) biomass-fueled power plants. These power plants will significantly increase the efficiency of generating electric power from wood and bagasse as well as convert non-traditional fuel sources such as rice hulls, animal manure, cotton gin trash, straws, and grasses to electricity. Advancing the technology of biomass-fueled power plants will greatly expand the use of this environmentally friendly sustainable 24 hr-per-day source of electrical power for industry and communities worldwide. This paper briefly describes the status of a biomass-fueled power plant under development by Cratech, Inc.

  13. Biomass production from inland brines

    SciTech Connect

    Reach, C.D. Jr.

    1985-01-01

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  14. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  15. [Low temperature plasma technology for biomass refinery].

    PubMed

    Fu, Xiaoguo; Chen, Hongzhang

    2014-05-01

    Biorefinery that utilizes renewable biomass for production of fuels, chemicals and bio-materials has become more and more important in chemical industry. Recently, steam explosion technology, acid and alkali treatment are the main biorefinery treatment technologies. Meanwhile, low temperature plasma technology has attracted extensive attention in biomass refining process due to its unique chemical activity and high energy. We systemically summarize the research progress of low temperature plasma technology for pretreatment, sugar platflow, selective modification, liquefaction and gasification in biomass refinery. Moreover, the mechanism of low temperature plasma in biorefinery and its further development were also discussed.

  16. Macrophyte growth in shallow streams: biomass model

    SciTech Connect

    Wright, R.M.; Mc Donnell, A.J.

    1986-10-01

    An assessment was made of the water quality and the magnitude of growth of rooted aquatic macrophytes in a nutrient-enriched, shallow stream system in order to provide a basis for evaluating the recovery of the ecosystem following the implementation of a program of phosphorus removal. Field investigations defined the temporal and spatial changes of plant biomass in selected study sections. A model to predict changes in macrophyte biomass as a function of varying environmental factors including nutrient flux was developed, calibrated and validated. The potential of the biomass model as a management tool to assess the impact of nutrient reductions on stream oxygen budgets was demonstrated.

  17. Biocatalysts for biomass deconstruction from environmental genomics.

    PubMed

    Armstrong, Zachary; Mewis, Keith; Strachan, Cameron; Hallam, Steven J

    2015-12-01

    Plant biomass offers a sustainable alternative to the energy and materials produced from fossil fuels. The industrial scale production or biorefining of fermentable sugars and aromatics from plant biomass is currently limited by the lack of cost effective and efficient biocatalysts. One potential solution to this problem is the discovery of biomass deconstructing biocatalysts from uncultivated microbial communities. Here we review recent progress in recovering such biological devices from environmental genomes and consider how this information can be used to build better biorefining ecosystems.

  18. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    SciTech Connect

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  19. Putney Basketville Site Biomass CHP Analysis

    SciTech Connect

    Hunsberger, Randolph; Mosey, Gail

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  20. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  1. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  2. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  3. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.

    PubMed

    Devendra, Leena P; Kiran Kumar, M; Pandey, Ashok

    2016-08-01

    The production of cellulosic ethanol from biomass is considered as a promising alternative to fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The presence of lignin poses a significant challenge for obtaining biofuels and bioproducts from biomass. Part of that problem involves understanding fundamental aspects of lignin structure which can provide a pathway for the development of improved technologies for biomass conversion. Hydrotropic pretreatment has several attractive features that make it an attractive alternative for biofuel production. This review highlights the recent developments on hydrotropic pretreatment processes for lignocellulosic biomass on a molecular structure basis for recalcitrance, with emphasis on lignin concerning chemical structure, transformation and recalcitrance. The review also evaluates the hydrotropic delignification in comparison to alkaline delignification on lignin reduction and surface coverage by lignin. The effect of hydrotrope pretreatment on enzymatic saccharification has also been discussed. PMID:27013188

  4. Assessment of Biomass Resources in Afghanistan

    SciTech Connect

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  5. 2011 Biomass Program Platform Peer Review. Sustainability

    SciTech Connect

    Eng, Alison Goss

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.

  6. Protein measurements of microalgal and cyanobacterial biomass.

    PubMed

    López, Cynthia Victoria González; García, María del Carmen Cerón; Fernández, Francisco Gabriel Acién; Bustos, Cristina Segovia; Chisti, Yusuf; Sevilla, José María Fernández

    2010-10-01

    The protein content of dry biomass of the microalgae Porphyridium cruentum, Scenedesmus almeriensis, and Muriellopsis sp. and of the cyanobacteria Synechocystis aquatilis and Arthrospira platensis was measured by the Lowry method following disruption of the cells by milling with inert ceramic particles. The measurements were compared with the Kjeldahl method and by elemental analysis. The nitrogen-to-protein conversion factors for biomass obtained from exponentially growing cells with a steady state doubling time of approximately 23 h were 5.95 for nitrogen measured by Kjeldahl and 4.44 for total nitrogen measured by elemental analysis. The protein content in dry biomass ranged from 30% to 55%. The above conversion factors are useful for estimating the protein content of microalgal biomass produced in rapid steady state growth as encountered in many commercial production processes.

  7. Biomass accessibility analysis using electron tomography

    DOE PAGES

    Hinkle, Jacob D.; Ciesielski, Peter N.; Gruchalla, Kenny; Munch, Kristin R.; Donohoe, Bryon S.

    2015-12-25

    Substrate accessibility to catalysts has been a dominant theme in theories of biomass deconstruction. Furthermore, current methods of quantifying accessibility do not elucidate mechanisms for increased accessibility due to changes in microstructure following pretreatment.

  8. Energy biomass characteristics of chosen plants

    NASA Astrophysics Data System (ADS)

    Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W.

    2012-04-01

    The chosen energy plants species: willow, mallow and Miscanthus are presented. Result of analysis of combustion heat and heating value of these species biomass indicate on possibility of their utilization as fuel for combustion and energy and heat production.

  9. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  10. Rangeland biomass estimation demonstration. [Texas Experimenta Ranch

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Boyd, W. E.; Clark, B. V.

    1982-01-01

    Because of their sensitivity to chlorophyll density, green leaf density, and leaf water density, two hand-held radiometers which have sensor bands coinciding with thematic mapper bands 3, 4, and 5 were used to calibrate green biomass to LANDSAT spectral ratios as a step towards using portable radiometers to speed up ground data acquisition. Two field reflectance panels monitored incoming radiation concurrently with sampling. Software routines were developed and used to extract data from uncorrected tapes of MSS data provided in NASA LANDSAT universal format. A LANDSAT biomass calibration curve estimated the range biomass over a four scene area and displayed this information spatially as a product in a format of use to ranchers. The regional biomass contour map is discussed.

  11. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  12. 2011 Biomass Program Platform Peer Review: Analysis

    SciTech Connect

    Haq, Zia

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Analysis Platform Review meeting.

  13. Energy plantations: a future source of biomass

    SciTech Connect

    Frederick, D.J.; Williford, M.

    1980-01-01

    Woody biomass can furnish a significant portion of alternative energy sources in the future. Mill and logging residues and biomass derived from existing forests will supply most of this wood energy in the next decade. Energy plantations have good potential for providing a dependable and sustained supply of woody biomass in the long term. The U.S. Department of Energy is supporting a substantial research effort to develop fuels and chemical foodstocks from woody biomass. Seventeen projects are currently active and encompass four major research areas: species selection; stand establishment; cultural treatments and management alternatives;, and harvest, collection, transport, and storage. Research at N.C. State University shows loblolly pine, numerous indigeneous hardwoods, and the exotics: European black alder and numerous Eucalyptus species to have good potential for energy plantation culture on selected sites. Major consideration in evaluating energy plantations are land availability, site impacts, and competion for alternative land uses.

  14. Understanding Ionic Liquid Pretreatment of Lignocellulosic Biomasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment of biomass is essential for breaking apart highly ordered and crystalline plant cell walls and loosening the lignin and hemicellulose conjugation to cellulose microfibrills, thereby facilitating enzyme accessibility and adsorption and reducing costs of downstream saccharification proces...

  15. 2011 Biomass Program Platform Peer Review. Infrastructure

    SciTech Connect

    Lindauer, Alicia

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Infrastructure Platform Review meeting.

  16. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  17. 2011 Biomass Program Platform Peer Review: Feedstock

    SciTech Connect

    McCann, Laura

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  18. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  19. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  20. Estimating phytoplankton biomass and productivity. Final report

    SciTech Connect

    Janik, J.J.; Taylor, W.D.; Lambou, V.W.

    1981-06-01

    Estimates of phytoplankton biomass and rates of production can provide a manager with some insight into questions concerning trophic state, water quality, and aesthetics. Methods for estimation of phytoplankton biomass include a gravimetric approach, microscopic enumeration, and chlorophyll analysis, Strengths and weaknesses of these and other methods are presented. Productivity estimation techniques are discussed including oxygen measurement, carbon dioxide measurements, carbon 14 measurements, and the chlorophyll method. Again, strengths and weaknesses are presented.

  1. Process for the treatment of lignocellulosic biomass

    SciTech Connect

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  2. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  3. Appendix B - GPRA06 biomass program documentation

    SciTech Connect

    None, None

    2009-01-18

    This appendix discusses the assumptions and methods employed in the biomass benefits analysis that is part of the fiscal year 2006 GPRA benefits analysis for all of the Department of Energy’s Energy Efficiency and Renewable Energy (EERE) research and deployment programs. The biomass benefits analysis focuses on the benefits of future achievements by the program and excludes retrospective benefits and benefits resulting from industry’s own initiative and funding.

  4. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience. PMID:26840632

  5. Biomass reburning - Modeling/engineering studies

    SciTech Connect

    Sheldon, M.; Marquez, A.; Zamansky, V.

    2000-07-27

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

  6. Airflow resistance of selected biomass materials

    SciTech Connect

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  7. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  8. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  9. Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions

    PubMed Central

    Yuan, Huili; Cheung, C. Y. Maurice; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2016-01-01

    The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA). Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modeling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models. PMID:27200014

  10. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    SciTech Connect

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  11. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  12. Experimental evaluation of a solar fired flash pyrolysis of biomass reactor

    SciTech Connect

    Antal, M.J. Jr.; Edwards, W.E.; Steenblik, R.A.; Brown, C.T.; Knight, J.A.; Elston, L.W.; Hurst, D.R.

    1981-01-01

    A Princeton-Georgia Institute of Technology flash pyrolysis of biomass test program was conducted at the DOE Advanced Components Test Facility (CTF) at Georgia Tech in August 1980. The 400 kWth solar thermal facility was used to provide a source of highly concentrated radiant energy for the flash pyrolysis of four types of biomass in a steam counterflow quartz reactor. The biomass materials were microcrystalline cellulose, hardwood sawdust, ground corn cob, and Kraft lignin. The experiments at Princeton and Georgia Tech suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Experiments at Princeton have indicated that sugar related syrups are selectively produced when the biomass particles are rapidly heated by radiation in a cool gaseous environment. The gas temperatures in the reactor during the test program at Georgia Tech were relatively high, which selectively turned the chemistry toward the production of hydrocarbon rich synthesis gases.

  13. Reduction of CO(2)-emissions by using biomass in combustion and digestion plants.

    PubMed

    Hoffmann, Gaston; Schingnitz, Daniel; Schnapke, Antje; Bilitewski, Bernd

    2010-05-01

    Climate protection is one of the main aims of environmental policy. One way to advance and push the progress is to reduce the use of fossil fuels for energy production through an increasing production of renewable and CO(2)-neutral energy for example through application of biomass. This paper sets the focus on biomass streams that can be used both thermal and biological for energy production like grass or energy crops. To calculate the potentials of decrease of CO(2)-emissions for treatment of biomass in either combustion or digestion plants some scenarios were set up with different assumptions regarding degree of efficiency of treatment plants which depends on size of plants and the treatment process itself. The energetic utilisation of the considered biomass streams is divided in different utilisation scenarios: combined heat and power generation (CHP) and heat generation or power generation only. Additionally four groups of plant sizes referring to electrical power (from 0.1 up to 10.0MW) were taken into consideration. The calculations of potential savings of CO(2)-emission in both types of treatment scenarios lead to the result that in comparison to biological technologies thermal processes show a much higher utilisation of the energy content in biomass.

  14. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol.

  15. Mapping Africa Biomass with MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Baccini, A.; Houghton, R.

    2006-12-01

    Central Africa contains the second largest block of tropical forest remaining in the world, and is one of the largest carbon reservoirs on Earth. The carbon dynamics of the region differ substantially from other tropical forests because most deforestation and land use is associated with selective logging and small-scale landholders practicing traditional "slash-and-burn" agriculture. Despite estimates of 1-2 PgC/yr released to the atmosphere from tropical deforestation, the amount released from Central Africa is highly uncertain relative to the amounts released from other tropical forest areas. The uncertainty in carbon fluxes results from inadequate estimates of both rates of deforestation and standing stocks of carbon (forest biomass). Here we present new results mapping above-ground forest biomass for tropical Africa using machine learning techniques to integrate MODIS 1km spectral reflectance with forest inventory measurements to calibrate an empirical relationship. The derived forest biomass at each MODIS pixel shows the spatial distribution of forest biomass over the entire tropical forest region. The model has been tested in Uganda, Mali and part of Republic of Congo where field data were available. The regression tree model based on MODIS NBAR surface reflectance for Uganda, Mali and Republic of Congo explains 94 percent of the variance in above-ground biomass with a root mean square error (RMSE) of 27 Tons/ha. The approach shows promise for use of optical remote sensing data in mapping the spatial distribution of forest biomass across the region.

  16. Energy from biomass: the environmental effects

    SciTech Connect

    Plotkin, S.E.

    1980-11-01

    Biomass as an energy source has environmental and economic appeal for its advocates, who overlook the devastation in other parts of the world from large-scale biomass energy uses. Now producing 2% of the energy consumed in the US, biomass could contribute most of the 20% goal set for solar and renewable sources with support from the government. Biomass is used for direct burning or to make biogas and alcohol fuels, although a major controversy is developing over the wisdom of converting croplands to fuel-producing land. A comparison of the probable economic and environmental effects of ethanol and methanol production shows the latter to be less damaging. The loss of forest lands from increased harvesting will introduce problems of soil depletion, while pressures to log more timber will deplete high-quality stands and change the character of those forests that are poorly managed. Poaching and other illegal practices will also have adverse effects. The use of biomass will require large-scale land conversion and fuel substitution that could reduce the atmospheric buildup of carbon dioxide. Policies should require periodic reviews of biomass management until there is a better understanding of all these effects. 30 references. (DCK)

  17. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  18. Biomass energy analysis for crop dehydration

    SciTech Connect

    Whittier, J.P.; Haase, S.G.; Quinn, M.W.

    1994-12-31

    In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

  19. Mercury emissions from biomass burning in China.

    PubMed

    Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei

    2011-11-01

    Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.

  20. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  1. A Forest Biomass Survey by Bitterlich Method With an Electronic Relascope for Satellite Data Validation

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ishii, R.; Takao, G.; Nakano, T.; Yasuda, T.

    2006-12-01

    For the better understanding of the carbon cycle in the global ecosystem, an investigation on the spatio- temporal variation of the carbon stock which is stored as vegetation biomass should be important. "PALSAR (Phased Array type L-band Synthetic Aperture Radar)", an onboard sensor of the polar orbiting satellite "ALOS (Advanced Land Observing Satellite)" launched in January 2006, provides the information which can be used for the above-ground biomass estimation. It is expected that ALOS/PALSAR provides us a great opportunity to analyze the biomass dynamics over extensive regions. To derive the biomass from the ALOS/PALSAR measurement, it is inevitable to acquire in situ biomass measurement by ground-based forest surveys. Moreover, it is required to obtain such ground-based information at as possible many sites, because the region targeted by satellite remote sensing is extensive and the forest structure in that region is various. Therefore, a quick forest survey will be required to measure the biomass at as possible many sites. For the quick measurement of the forest above-ground biomass, we propose a way that is a combination of Bitterlich angle count sampling method and sampled-tree measuring method. First, a tree which has wider trunk than the basal area factor (BAF) angle is identified by the relascope from a representative point in the target forest. Next, the tree height and the breast height diameter (DBH) of the sampled tree are measured. The biomass of the tree is estimate by the allometric equation with the tree height and DBH measurements. Through these processes, the biomass density of the sampled tree per the forest area defined by the BAF is estimated. By sampling and measuring all trees (usually around 20 trees), the biomass of the forest can be estimate. A brand-new electronic relascope (Criterion RD 1000, Laser Technology Inc.) and laser range finder (TruPulse 200, Laser Technology Inc.) are used for the tree height and DBH measurements to

  2. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  4. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  5. Demonstration plant for pressurized gasification of biomass feedstocks

    SciTech Connect

    Trenka, A.R. ); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. ); Caldwell, C. Co., Pasadena, CA ); Kwok, R. ); Onischak, M.; Babu, S.P. (Institute of Gas Technology

    1991-01-01

    A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

  6. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  7. 77 FR 47047 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... of Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory... open meeting. SUMMARY: This notice announces an open meeting of the Biomass Research ] and Development... Biomass R&D Activities Update on DOE Biomass R&D Activities Review of the recently awarded...

  8. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  9. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  10. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  11. 76 FR 9339 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... of Energy Efficiency and Renewable Energy Biomass Research and Development Technical Advisory... Open Meeting. SUMMARY: This notice announces an open meeting of the Biomass Research and Development... on USDA Biomass R&D Activities. Update on DOE Biomass R&D Activities. Overview of the DOE...

  12. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOEpatents

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  13. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  14. Biomass for biorefining: Resources, allocation, utilization, and policies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  15. Biophysical Perspective on the Cellulosome: New Opportunities for Biomass Conversion

    SciTech Connect

    Ding, S. Y.; Xi, Q.; Crowley, M.; Zeng, Y.; Nimlos, M.; Lamed, R.; Bayer, E. A.; Himmel, M. E.

    2008-01-01

    The cellulosome is a multiprotein complex, produced primarily by anaerobic microorganisms, which functions to degrade lignocellulosic materials. An important topic of current debate is whether cellulosomal systems display greater ability to deconstruct complex biomass materials (e.g. plant cell walls) than nonaggregated enzymes, and in so doing would be appropriate for improved, commercial bioconversion processes. To sufficiently understand the complex macromolecular processes between plant cell wall polymers, cellulolytic microbes, and their secreted enzymes, a highly concerted research approach is required. Adaptation of existing biophysical techniques and development of new science tools must be applied to this system. This review focuses on strategies likely to permit improved understanding of the bacterial cellulosome using biophysical approaches, with emphasis on advanced imaging and computational techniques.

  16. Ion Exchange Properties of Biomass Wastes and their Applications

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi

    Recent works on the adsorptive removal of heavy metals and recovery of valuable materials by the effective use of various biomass wastes generated in agriculture and forestry and their related industries were introduced. Among them, effective use of orange juice residue in particular was focused. Two types of adsorbents were prepared from raw orange juice residue. One was prepared by saponifying with calcium hydroxide solution. This type of adsorbent is effective not only for the removal of cationic heavy metals like lead (II) but also for the removal or recovery of oxo anions like arsenic and phosphorus by loaded with zirconium (IV) in advance. Another is that prepared with concentrated sulfuric acid. Gold is highly selectively adsorbed on this adsorbent from hydrochloric acid solution to be formed as fine gold particles.

  17. Assessment of regional biomass-soil relationships using vegetation indexes

    SciTech Connect

    Lozano-Garcia, D.F.; Fernandez, R.N.; Johannsen, C.J. )

    1991-03-01

    This paper reports on data from the NOAA-10 Advanced Very High Resolution Radiometer (AVHRR) collected over the midwestern United States for the 1987 and 1988 growing seasons. A Normalized Difference Vegetation Index (NDVI) transformation was performed using the two optical bands of the sensor (0.58-0.68 {mu}m and 0.72-1.10 {mu}m). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing 8 soil associations throughout the State of Indiana were collected to assess the effect of soil conditions and acquisition data on the spectral response of the vegetation, as shown by the NDVI's.

  18. Geospatial Assessment of Long-Term Sustainability of Biomass Feedstock Supplies: Erosion, Soil Biomass Accumulation, Greenhouse Gasses

    NASA Astrophysics Data System (ADS)

    Rosentrater, K. A.; Kaleita, A. L.

    2013-12-01

    In the past decade, the corn grain-based fuel ethanol industry has grown exponentially. Now, stakeholders within the corn grain producing regions of the midwestern United States are seeking to develop advanced biofuels from abundant post-harvest lignocellulosic corn stover resides. How sustainable are these biofuels? Scientific guidelines regarding the sustainable use of corn grain and stover to maintain soil quality have not been clearly defined, due in part to the complexity of agricultural soil systems and the dearth of robust and consistent data. The objective of this study was to examine the long-term sustainability of corn stover harvest for economically relevant agricultural production scenarios focused on the state of Iowa. We used the Water Erosion Prediction Project (WEPP) model to simulate soil erosion and biomass returned to the soil under two crop rotation scenarios (continuous corn vs. corn-soybean rotation), three corn stover removal rates (0, 50, 100% removed), and three tillage intensities (no till (NT), intermediate till (IT), conventional till (CT)). Calculations were aggregated to the township-scale using multiple sampling points from the USDA Natural Resources Inventory per township within each county, for a total of 17,848 sampling points throughout the state. This accounted for the topographical and soils variation within the state; use of county weather stations incorporated climate variations. Statistical characterization and GIS visualization were used to illustrate and interpret the results. Wide variations in biomass accumulation/erosion/GHG impacts were observed across agronomic scenarios and landform regions throughout Iowa, and biomass management and tillage intensity impacted on-site soil quality and the off-site environment. Soil biomass was primarily affected by stover removal rate, with soybean rotation also reducing soil biomass. Soil erosion was primarily affected by slope and tillage, with stover removal rate playing a lesser

  19. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  20. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  1. Quantifying the Carbon Intensity of Biomass Energy

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Wise, M.; Clarke, L.; McJeon, H.; Mignone, B.

    2012-12-01

    Regulatory agencies at the national and regional level have recognized the importance of quantitative information about greenhouse gas emissions from biomass used in transportation fuels or in electricity generation. For example, in the recently enacted California Low-Carbon Fuel Standard, the California Air Resources Board conducted a comprehensive study to determine an appropriate methodology for setting carbon intensities for biomass-derived transportation fuels. Furthermore, the U.S. Environmental Protection Agency is currently conducting a multi-year review to develop a methodology for estimating biogenic carbon dioxide (CO2) emissions from stationary sources. Our study develops and explores a methodology to compute carbon emission intensities (CIs) per unit of biomass energy, which is a metric that could be used to inform future policy development exercises. To compute CIs for biomass, we use the Global Change Assessment Model (GCAM), which is an integrated assessment model that represents global energy, agriculture, land and physical climate systems with regional, sectoral, and technological detail. The GCAM land use and land cover component includes both managed and unmanaged land cover categories such as food crop production, forest products, and various non-commercial land uses, and it is subdivided into 151 global land regions (wiki.umd.edu/gcam), ten of which are located in the U.S. To illustrate a range of values for different biomass resources, we use GCAM to compute CIs for a variety of biomass crops grown in different land regions of the U.S. We investigate differences in emissions for biomass crops such as switchgrass, miscanthus and willow. Specifically, we use GCAM to compute global carbon emissions from the land use change caused by a marginal increase in the amount of biomass crop grown in a specific model region. Thus, we are able to explore how land use change emissions vary by the type and location of biomass crop grown in the U.S. Direct

  2. Optimizing pneumatic conveying of biomass materials

    NASA Astrophysics Data System (ADS)

    DiCianni, Matthew Edward Michael

    2011-12-01

    Biomass is a readily available but underutilized energy resource. One of the main challenges is the inability of biomass feed stocks like corn stover or wood chips to flow freely without intermittent jamming. This research integrated an automated pneumatic conveying system to efficiently transport biomass into a biomass reactor. Material was held in a storage container until an end effector attached to a 3-axis controller engaged the material to flow through pneumatic vacuum in the carrier fluid of air. The material was disengaged from the carrier fluid through centripetal forces induced by a cyclone separator. As the air was pulled out of the cyclone, the biomass drops out the bottom due to gravitational forces and fell into a secondary storage hopper. The second storage container was for testing purposes only, where the actual apparatus would use a vertically oriented lock hopper to feed material into the biomass reactor. In the experimental test apparatus, sensors measured the storage hopper weight (mass-flow rate), pressure drop from the blower, and input power consumption of the motor. Parameters that were adjusted during testing include pipe diameter, material type, and motor speed. Testing indicated that decreasing the motor speed below its maximum still allows for conveyance of the material without blockage forming in the piping. The data shows that the power consumption of the system can be reduced based on the size and weight of the material introduced to the conveying pipe. Also, conveying certain materials proved to be problematic with particular duct diameters. Ultimately, an optimal duct diameter that can perform efficiently for a broad range of materials was chosen for the given system. Through these improvements, the energy return on investment will be improved for biomass feed stocks, which is taking a step in the right direction to secure the nation's energy independence.

  3. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  4. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the

  5. Energy and mass flow computation in biomass computation in biomass combustion systems

    SciTech Connect

    Payne, F.A.

    1984-09-01

    A computational technique which utilizes biomass ultimate analysis, gross heat of combustion from a bomb calorimeter, and moisture content was developed for balancing an empirical chemical equation and calculating the combustion temperature and exhaust composition. A single equation for relating the net heat of combustion of a biomass to moisture content was developed. A sample calculation is presented. 7 references.

  6. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio.

    PubMed

    Tachibana, Yuya; Masuda, Takashi; Funabashi, Masahiro; Kunioka, Masao

    2010-10-11

    We have produced fully biomass-based poly(butylene succinate) (PBS) from furfural produced from inedible agricultural cellulosic waste. Furfural was oxidized to give fumaric acid. Fumaric acid was hydrogenated under high pressure with a palladium-rhenium/carbon catalyst to give 1,4-butanediol, and with a palladium/carbon catalyst to give succinic acid. Dimethyl succinate was synthesized from fumaric acid by esterification and hydrogenation under normal pressure. Fully biomass-based PBS was obtained by polycondensation of biomass-based 1,4-butanediol and biomass-based succinic acid or dimethyl succinate. The biomass carbon ratio calculated from (14)C concentrations measured by accelerator mass spectroscopy (AMS) verified that the PBS obtained in this study contained only biomass carbon. The polycondensation of biomass-based 1,4-butanediol and petroleum-based terephthalic acid or dimethyl terephthalate gave partially biomass-based poly(butylene terephthalate), which is an engineering plastic.

  7. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  8. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled.

  9. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect

    Washington University- St. Louis: Muthanna Al-Dahhan E-mail: muthanna@wustl.edu Rajneesh Varma Khursheed Karim Mehul Vesvikar Rebecca Hoffman Oak Ridge National Laboratory: David Depaoli, Email: depaolidw@ornl.gov Thomas Klasson Alan L. Wintenberg Charles W Alexander Lloyd Clonts Iowa Energy Center Norm Olson Email: nolson@energy.iastate.edu

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  10. Study on new biomass energy systems

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  11. Biomass compositional analysis for energy applications.

    PubMed

    Hames, Bonnie R

    2009-01-01

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  12. Biomass Compositional Analysis for Energy Applications

    NASA Astrophysics Data System (ADS)

    Hames, Bonnie R.

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  13. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  14. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  15. Estimating slash pine biomass using radar backscatter

    NASA Technical Reports Server (NTRS)

    Hussin, Yousif Ali; Reich, Robin M.; Hoffer, Roger M.

    1991-01-01

    L-band HV multiple-incidence-angle aircraft synthetic aperture radar (SAR) data were analyzed in relation to average stand biomass, basal area, and tree height for 55 slash pine plantations located in northern Florida. This information was used to develop a system of equations to predict average stand biomass as a function of L-band (24.5-cm) radar backscatter. The system of equations developed in this study using three-stage least-squares and combinatorial screening accounted for 97 percent of the variability observed in average stand biomass per hectare. When applied to an independent data set, the biomass equations had an average bias of less than 1 percent with a standard error of approximately 3 percent. These results indicate that future Shuttle Imaging Radar Systems (e.g., SIR-C, which will have cross-polarized radar sensors) should be able to obtain better estimates of forest biomass than were obtained with previous satellite radar missions, which utilized only HH-polarized SAR data.

  16. Biomass Reburning - Modeling/Engineering Studies

    SciTech Connect

    Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

    1998-04-30

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

  17. Biomass burning a driver for global change

    SciTech Connect

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.; Winstead, E.L.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source of atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.

  18. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  19. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  20. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  1. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vitali V. Lissianski; Vladimir M. Zamansky

    1999-04-29

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

  2. SERI biomass program annual technical report: 1982

    SciTech Connect

    Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  3. Coal and biomass to fuels and power.

    PubMed

    Williams, Robert H; Liu, Guangjian; Kreutz, Thomas G; Larson, Eric D

    2011-01-01

    Systems with CO(2) capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO(2), the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO(2) capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

  4. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  5. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  6. Resolution of grass canopy biomass classes

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1977-01-01

    Analysis of variance methods has been applied to in situ grassland spectral reflectance data in order to determine the classes or levels of total wet biomass that can be resolved spectrally by a single narrow band measurement. Ground-truth clipping of blue grama grass plots was performed immediately following spectral reflectance measurements at 91 wavelength intervals which were 0.005 microns apart over the spectral range from 0.350 to 0.800 microns. It was found that the photographic infrared region of 0.750 to 0.800 microns could be used to distinguish three classes or levels of total wet biomass. Four or five classes, particularly at higher biomass levels, could not be distinguished by this technique.

  7. Lytic Polysaccharide Monooxygenases in Biomass Conversion.

    PubMed

    Hemsworth, Glyn R; Johnston, Esther M; Davies, Gideon J; Walton, Paul H

    2015-12-01

    The derivation of second-generation biofuels from non-edible biomass is viewed as crucial for establishing a sustainable bio-based economy for the future. The inertness of lignocellulosic biomass makes its breakdown for conversion into fuels and other compounds a challenge. Enzyme cocktails can be utilized in the bio-refinery for lignocellulose deconstruction but until recently their costs were regarded as high. Lytic polysaccharide monooxygenases (LPMOs) offer tremendous promise for further process improvements owing to their ability to boost the activity of biomass-degrading enzyme consortia. Combining data from multiple disciplines, progress has been made in understanding the biochemistry of LPMOs. We review the academic literature in this area and highlight some of the key questions that remain.

  8. Biomass-based polyols through oxypropylation reaction.

    PubMed

    Aniceto, José P S; Portugal, Inês; Silva, Carlos M

    2012-08-01

    Biomass residues are a potential renewable source for the sustainable production of chemicals, materials, fuels, and energy embodying the so-called biorefinery concept. In this context, agro-forestry and agro-food industry by-products have attracted considerable interest of researchers in academia and industry as a renewable source of polymeric materials. The research developed to date on the valorization of biomass residues by converting them into polyols through oxypropylation is the subject of this review. These bio-based polyols exhibit properties similar to their petrochemical counterparts and, as such, can be used with economical advantage in the production of polyurethanes. The operating conditions of the oxypropylation reaction depend on the biomass and on the desired polyol properties. The discussion of their influence and the economic viability of the process are also presented. PMID:22807440

  9. Ethanol from biomass: A status report

    SciTech Connect

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  10. Fermentable sugars by chemical hydrolysis of biomass

    PubMed Central

    Binder, Joseph B.; Raines, Ronald T.

    2010-01-01

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70–80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery. PMID:20194793

  11. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  12. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  13. Cofiring biomass with coal: Opportunities for Malaysia

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  14. Validating Community-Led Forest Biomass Assessments.

    PubMed

    Venter, Michelle; Venter, Oscar; Edwards, Will; Bird, Michael I

    2015-01-01

    The lack of capacity to monitor forest carbon stocks in developing countries is undermining global efforts to reduce carbon emissions. Involving local people in monitoring forest carbon stocks could potentially address this capacity gap. This study conducts a complete expert remeasurement of community-led biomass inventories in remote tropical forests of Papua New Guinea. By fully remeasuring and isolating the effects of 4,481 field measurements, we demonstrate that programmes employing local people (non-experts) can produce forest monitoring data as reliable as those produced by scientists (experts). Overall, non-experts reported lower biomass estimates by an average of 9.1%, equivalent to 55.2 fewer tonnes of biomass ha(-1), which could have important financial implications for communities. However, there were no significant differences between forest biomass estimates of expert and non-expert, nor were there significant differences in some of the components used to calculate these estimates, such as tree diameter at breast height (DBH), tree counts and plot surface area, but were significant differences between tree heights. At the landscape level, the greatest biomass discrepancies resulted from height measurements (41%) and, unexpectedly, a few large missing trees contributing to a third of the overall discrepancies. We show that 85% of the biomass discrepancies at the tree level were caused by measurement taken on large trees (DBH ≥50 cm), even though they consisted of only 14% of the stems. We demonstrate that programmes that engage local people can provide high-quality forest carbon data that could help overcome barriers to reducing forest carbon emissions in developing countries. Nonetheless, community-based monitoring programmes should prioritise reducing errors in the field that lead to the most important discrepancies, notably; overcoming challenges to accurately measure large trees. PMID:26126186

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    SciTech Connect

    Tan, Eric; Talmadge, M.; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary J.; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  16. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; David Moyeda; Mark Sheldon

    2000-04-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

  17. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  18. Production of chemicals and fuels from biomass

    SciTech Connect

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  19. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4

  20. IGT and energy from biomass and wastes

    SciTech Connect

    Tarman, P.B.

    1982-01-01

    Progress made at the Institute of Gas Technology (IGT) in the conversion of biomass into usable synthetic fuels is reviewed. Laboratory work with upflow reactors and attached film digesters has resulted in a greatly reduced digester volume as compared to a stirred tank. The RENUGAS process is based on pressurized, fluidized-bed, steam-oxygen gasification of biomass - a half-ton-per-hour process development unit is being built for the DOE. A two-phase anaerobic digestion process - the ANTHANE process - is being commercialized and the LANFILGAS process in another approach to recovering energy from municipal solid waste that is being dumped in landfill sites.

  1. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  2. Biomass Gasifier Facility (BGF). Environmental Assessment

    SciTech Connect

    Not Available

    1992-09-01

    The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

  3. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  4. Biomass Burning Observation Project Science Plan

    SciTech Connect

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  5. Environmental analysis of biomass-ethanol facilities

    SciTech Connect

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  6. Closed loop biomass in Puerto Rico

    SciTech Connect

    Schroeder, R.M.

    1995-11-01

    Kenetech Energy Systems, Inc., began to explore the opportunities for power generation in Puerto Rico in 1993. Among the projects investigated was the development of a power plant that uses biomass for fuel. Through the assistance of a grant from the National Renewable Energy Laboratory, a preliminary study was undertaken to explore various possibilities in biomass production and conversion. The existing sugar cane industry was examined, and various species and regimes of cane species, grass species, and other types of crops were studied. Among the other issues were the political and economic situation, and the uncertainty of the sugar industry in Puerto Rico. A current status of the project is provided.

  7. Emissions of nitrous oxide from biomass burning

    NASA Technical Reports Server (NTRS)

    Winstead, Edward L.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    A study has been conducted which compared N2O results obtained over large prescribed fires or wildfires, in which 'grab-sampling' with storage had been used with N2O measurements made in near-real time. CO2-normalized emission ratios obtained initially from the laboratory fires are substantially lower than those obtained over large-scale biomass fires. Combustion may not be the only source of N2O in large fire smoke plumes; physical, chemical, and biochemical processes in the soil may be altered by large biomass fires, leading to large N2O releases.

  8. New market potential: Torrefaction of woody biomass

    SciTech Connect

    Tumuluru, Jaya Shankar; Hess, J. Richard

    2015-06-02

    Biomass was the primary source of energy worldwide until a few generations ago, when the energy-density, storability and transportability of fossil fuels enabled one of the most rapid cultural transformations in the history of humankind: the industrial revolution. In just a few hundred years, coal, oil and natural gas have prompted the development of highly efficient, high-volume manufacturing and transportation systems that have become the foundation of the world economy. But over-reliance on fossil resources has also led to environmental and energy security concerns. In addition, one of the greatest advantages of using biomass to replace fossil fuels is reduced greenhouse gas emissions and carbon footprint.

  9. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  10. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  11. Biomass thermochemical conversion program: 1987 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  12. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development. PMID:24817483

  13. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  14. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  15. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    NASA Astrophysics Data System (ADS)

    Stevens, D. J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL's BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  16. High-Solids Enzymatic Saccharification Screening Method for Lignocellulosic Biomass (Poster)

    SciTech Connect

    Roche, C. M.; Stickel, J. J.

    2009-05-01

    The ability to screen new biomass pretreatments and advanced enzyme systems at process-relevant conditions is key to developing economically viable lignocellulosic ethanol. While much research is being invested in developing pretreatment technologies and enzyme systems that will more efficiently convert cellulosic biomass to sugars, the current standard reactor vessel, a shake flask, that is used for screening enzymatic saccharification of cellulosic biomass is inadequate at high-solids conditions. Shake flasks do not provide adequate mixing at high solids conditions. In this work, a roller bottle reactor was identified as a small-scale high-solids saccharification reaction vessel, and a method was developed for use in screening both pretreated biomass and enzyme systems at process-relevant conditions. This new method addresses mixing issues observed in high-solids saccharifications. In addition, yield calculations from sugar concentrations on a mass basis were used to account for the two-phase nature of the saccharification slurry, which eliminates discontinuities in comparing high-solids to low-solids saccharifications that occur when using concentrations on a volume basis. The roller bottle reactors out-performed the shake flasks by 5% for an initial insoluble solids loading of 15% and 140% for an initial soluble solids loading of 30%. The reactor system and method was compared at bench and floor scales and determined to be scalable for initial insoluble solids loading in the range of 15% to 30%. Pretreatment and enzyme screening results indicate that mid severity pretreated biomass is more digestible than the low and high severity biomass and GC220 is a superior enzyme to Spezyme CP.

  17. Improved allometric models to estimate the aboveground biomass of tropical trees.

    PubMed

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

  18. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  19. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  20. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  1. Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing.

    PubMed

    Senturk-Ozer, Semra; Gevgilili, Halil; Kalyon, Dilhan M

    2011-10-01

    Twin screw extrusion based pretreatment of biomass is an attractive option due to its flexibility to carry out chemical reactions under relatively high stresses, temperatures and pressures. However, extrusion processes are rarely utilized in biomass pretreatment because such processing is constrained by rheological behavior of typical biomass suspensions. Without the manipulation of their rheological behavior, biomass suspensions become unprocessable within the extruder at modest biomass concentrations. Here it is demonstrated that gelation agents can render biomass suspensions processable. Specifically, carboxy methyl cellulose, CMC, could be used in conjunction with alkaline pretreatment of hardwood-type biomass and enabled separation of lignin from cellulose fibers. Furthermore, recycled black liquor, obtained upon pretreatment, was determined to be as effective as CMC for rendering biomass suspensions flowable by again facilitating the concomitant application of high shearing stresses and chemical treatment for the pretreatment of the biomass in the twin screw extruder. PMID:21831631

  2. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    SciTech Connect

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  3. Potential transgenic routes to increase tree biomass.

    PubMed

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. PMID:24094056

  4. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    SciTech Connect

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  5. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  6. 75 FR 6263 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... (74 FR 21531-21532)). One aspect of the larger effort outlined in the memorandum is the issuance of... for use in biomass conversion facilities--a component of the BCAP. On June 11, 2009 (74 FR 27767-27772... different notice published on May 13, 2009 (74 FR 22510-22511), to collect public input needed to prepare...

  7. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  8. Coal + Biomass → Liquids + Electricity (with CCS)

    EPA Science Inventory

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  9. Sustainable Production of Switchgrass for Biomass Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  10. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. PMID:26896862

  11. Outlook for Biomass Ethanol Production and Demand

    EIA Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  12. Method for making adhesive from biomass

    DOEpatents

    Russell, Janet A.; Riemath, William F.

    1985-01-01

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin.

  13. Method for making adhesive from biomass

    DOEpatents

    Russell, J.A.; Riemath, W.F.

    1984-03-30

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin. 2 figures.

  14. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  15. Environmental issues related to biomass: An overview

    SciTech Connect

    Hughes, M.; Ranney, J.W.

    1993-12-31

    Now that public attention has grown increasingly focused on environmentalism and climate change, the commercial use of biomass could greatly accelerate. Renewable feedstocks like biomass can provide better environmentally balanced sources of energy and other nonfood products than fossil fuels. The future of biomass is uncertain, however, because public attention focuses on both its potential and its challenges. This paper is divided into five sections. Section 2 briefly addresses economic environmental issues. The extent to which externalities are accounted for in the market price of fuels plays a significant role in determining both the ultimate size of biofuel markets and the extent of the environmental benefits of feedstock cultivation and conversion processes. Sections 3 and 4 catalog the main hazards and benefits that are likely to arise in the large-scale commercialization of biomass fuel and note where the major uncertainties lay. Environmental issues arise with the cultivation of each feedstock and with each step in the process of its conversion to fuel. Feedstocks are discussed in Section 3 in terms of three main groups: wastes, energy crops, and traditional agricultural crops. In Section 4, conversion processes are also divided into three groups, on the basis of the end energy carrier: gas, liquid, and solid and electricity. Section 5 provides a conclusion and summary.

  16. Effect of stabilization on biomass activity.

    PubMed

    Cokgor, Emine Ubay; Okutman Tas, Didem; Zengin, Gulsum Emel; Insel, Guclu

    2012-02-20

    The study aimed to compare aerobic and aerobic/anoxic stabilization processes in terms of organic matter and the biomass removal efficiencies using a municipal sludge sample. The efficiency of stabilization process was assessed monitoring suspended solids (SS), volatile suspended solids (VSS), total and dissolved organic carbon (TOC, DOC), nitrate, nitrite, and phosphate parameters. The oxygen uptake rate (OUR) measurements were conducted to determine active biomass concentration. On the 30th day of the aerobic stabilization, the SS, VSS and TOC removal efficiencies were 22%, 28% and 55%, respectively. Under aerobic/anoxic conditions, removal efficiencies for SS, VSS and TOC were 25%, 27% and 67%. On the 17th day of the stabilization, SS and VSS removal rates were 60 mg SS/L day and 47 mg VSS/L day for aerobic and 102 mg SS/L day and 63 mg VSS/L day for aerobic/anoxic conditions, respectively. These findings reflected the higher stabilization performance of the aerobic/anoxic conditions. Based on respirometric results, the ratios of the active biomass were decreased to 30% and 24% for the 17th and 30th day of the aerobic stabilization, respectively. Such results have significant implications relative to the activity decrease quantification of the biomass as well as its further application potentials after aerobic or aerobic/anoxic sludge stabilization. PMID:21791229

  17. A sustainable legume biomass energy farming system

    SciTech Connect

    Neathery, J.; Rubel, A.; Stencel, J.; Collins, M.

    1996-12-31

    Before environmentally sensitive areas are converted to biomass energy production, the production, the potential for sustainability of such systems must be assessed. The focus has been on woody or grass crops because of their high potential yields; however, yield sustainability is dependent on the application of fertilizer and lining materials, which in turn contribute to large costs. Growing legumes or mixtures of legumes with grasses could lower or alleviate the need for nitrate fertilizers. The incorporation of legumes into energy cropping systems could: (1) add soil organic matter; (2) introduce biologically fixed N; (3) improve soil structure and texture; (4) reduce soil erosion; (5) reduce production costs; and (6) decrease nitrate run-off in surface waters. Through the {open_quotes}rotation effect{close_quotes}, legumes cause increases in yield of subsequent non-legume crops beyond that accounted for by biologically-fixed N alone. In this paper, we describe a biomass energy system combining legume and grass biomass energy with fertilizer production from these same materials. Preliminary agronomic and engineering assessments for this type of biomass system are presented. The technologies needed to integrate nitrate production with legume energy farming and energy production through legume energy conversion are identified.

  18. Lead removal by Spirulina platensis biomass.

    PubMed

    Al-Homaidan, Ali A; Al-Abbad, Aljawharah F; Al-Hazzani, Amal A; Al-Ghanayem, Abdullah A; Alabdullatif, Jamila A

    2016-01-01

    In this investigation, we report on the biosorption of Pb (II) from aqueous solutions by the nonliving biomass of the micro-alga (cyanobacterium) Spirulina platensis. Propagation of the micro-alga was carried out in outside oblong raceway ponds. The biomass was cleaned, dried and used for the investigation. The effects of pH, adsorbent dose, temperature, initial concentration of Pb (II), and contact time on the adsorption of lead by the dry biomass were studied. The experiments were carried out in 250 ml conical flasks containing 100 ml of test solutions using an orbital incubator at 150 rpm. Concentrations of the metal before and after the experiments were measured using Atomic Absorption Spectrophotometer. Very high levels of Pb (II) removal (>91%) were obtained. The optimum conditions for maximal adsorption by S. platensis were found to be pH 3; 2 g of adsorbent dose; incubation at 26°C; 100 mg/l of lead initial concentration and 60 minutes of contact time. The experimental data fitted well with Freundlich isotherm equation with R(2) values greater than 0.97. Based on our results, we recommend the utilization of S. platensis biomass for heavy metal removal from aqueous solutions. PMID:26280392

  19. BSCL use plan: Solving biomass recalcitrance

    SciTech Connect

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Saccharification of lignocellulosic biomass has long been recognized as a potential low-cost source of mixed sugars for fermentation to fuel ethanol or chemicals. Several technologies have been developed over the years that allow this conversion process to occur, yet the significant challenge remaining is to make the process cost competitive.

  20. Power from coal and biomass via CFB

    SciTech Connect

    Giglio, R.; Wehrenberg, J.

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  1. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  2. Fuel densifier converts biomass into fuel cubes

    SciTech Connect

    Not Available

    1982-02-01

    A new cost-effective means to produce clean-burning and low cost commercial and industrial fuel is being introduced by Columbia Fuel Densification Corp., Phoenix. The Columbia Commercial Hydraulic Fuel Densifier converts raw biomass materials such as wood chips, paper, peat moss and rice hulls into densified fuel cubes. The densifier is mobile and its operation is briefly outlined.

  3. Lignocellulosic biomass conversion to ethanol by Saccharomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As interest in alternative energy sources rises, the concept of agriculture as an energy producer has become increasingly attractive (Outlaw et al. 2005). Renewable biomass, including lignocellulosic materials and agricultural residues, are low-cost materials for bioethanol production (Bothast and ...

  4. Process for decomposing lignin in biomass

    SciTech Connect

    Rector, Kirk Davin; Lucas, Marcel; Wagner, Gregory Lawrence; Kimball, David Bryan; Hanson, Susan Kloek

    2014-10-28

    A mild inexpensive process for treating lignocellulosic biomass involves oxidative delignification of wood using an aqueous solution prepared by dissolving a catalytic amount of manganese (III) acetate into water and adding hydrogen peroxide. Within 4 days and without agitation, the solution was used to convert poplar wood sections into a fine powder-like delignified, cellulose rich materials that included individual wood cells.

  5. Biomass, Part A: Cellulose and hemicellulose

    SciTech Connect

    Wood, W.A.; Kellogg, S.T.

    1988-01-01

    This volume covers cellulose and hemicellulose and includes proven and reproducible methods for research related to the conversion of carbohydrate polymers to usable monomeric units. Sections on the preparation of biomass materials and of substrates are included, as are sections on analytical methods and on the purification and assay of enzymes.

  6. PRODUCTION OF XYLITOL FROM AGRICULTURAL HEMICELLULOSIC BIOMASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of value-added co-products from agricultural biomass is an important economic driver for the success of a biorefinery approach to the production of ethanol and other fuels. During most ethanol production methods, significant amounts of hemicellulose by-products are produced which are...

  7. [Sumac (Rhus chinensis Mill) biomass refinery engineering].

    PubMed

    Wang, Lan; Wang, Ning; Li, Tan; Chen, Hongzhang

    2014-05-01

    Sumac (Rhus chinensis Mill) is an abundant and widely distributed Chinese native plant. Sumac fruit contains low content of vegetable oil, as an atypical oil plants hardly being processed through traditional vegetable oil production technologies. Based on our own studies on the characteristics of sumac fruit and branches, we established a novel model of sumac biomass refinery, and constructed the sumac biomass refinery technology system and eco-industrial chain integration. Steam explosion was the key technology, and several components fractionation technologies were integrated in the sumac biomass refinery system. The fractionated components were converted into different products depending on their functional features. Eight products including sumac fruit oil, biodiesel, protein feed, flavonoids, unbleached facial tissue, phenolic resin, biomass briquette and biogas were produced in the refinery. The extracted sumac fruit oil by steam explosion pretreatment was applied for the new food resource of Ministry of Health, and the permit was approved. This research provides a new model for the development of atypical wild plant resources.

  8. Biomass round bales infield aggregation logistic scenarios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass bales often need to be aggregated (collected into groups and transported) to a field-edge stack for temporary storage for feedlots or processing facilities. Aggregating the bales with the least total distance involved is a goal of producers and bale handlers. Several logistics scenarios for ...

  9. Biomass-energy-technology program summary

    SciTech Connect

    Not Available

    1982-06-01

    An account is given of the ongoing research, development, and demonstration efforts of the Biomass Energy Technology program. Descriptions are given for each of the program projects funded and/or in existence during Fiscal Year 1981, reflecting their status as of September 30, 1981. The summaries are grouped as follows: feedstock production, conversion systems, market development, and general support and analysis.

  10. Forest Volume and Biomass estimation from SAR/LIDAR/Optical Fusion in Chile

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Walker, W. S.; Goetz, S. J.; Cormier, T.; Kirsch, K.; Gonzalez, S.; Rombach, M.

    2009-12-01

    The paper reports on research to investigate ALOS/PALSAR L-band radar and optical time series data in conjunction with airborne lidar datasets to develop advanced data fusion algorithms for biomass and ecosystem structure measurements in support of the NASA DESDynI mission. The research is based on the acquisition of ALOS/PALSAR time series data beginning in 2007 and the timely confluence of these acquisitions with other highly relevant remote sensing and ground reference data sets in forested areas in Chile. Through collaboration with Digimapas Chile, the project has access to 75,000 km2 of 1-meter resolution full-waveform small footprint lidar (SFPL) data and 0.5 m resolution digital orthophoto imagery covering the commercial forests of Arauco, one of the largest cellulose producers in Latin America. Field inventory data from Arauco are used to test terrain and environmental influences on biomass estimation from empirical regression tree based data fusion approaches. The SAR data acquisitions available from PALSAR during the project time frame will span a five year period from 2007 to 2011, allowing investigations into how L-band time series data, similar to that expected from the DESDynI SAR (backscatter and interferometric coherence), can be used to build (1) the DESDynI biomass map product to be produced at the end of the “designed mission life” (i.e., 3 and/or 5/5+ years) and (2) annual maps of aboveground biomass change.

  11. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  12. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  13. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Parker, R. D.; Buritz, R. S.; Taylor, A. R.; Bullwinkel, E. P.

    1982-11-01

    An experimental development program was conducted to develop and test advanced dielectric materials for capacitors for airborne power systems. High rep rate and low rate capacitors for use in pulse-forming networks, high voltage filter capacitors, and high frequency ac capacitors for series resonant inverters were considered. The initial goal was to develop an improved polysulfone film. Initially, low breakdown strength was thought to be related to inclusions of conductive particles. The effect of filtration of the casting solution was investigated. These experiments showed that more filtration was not the entire solution to low breakdown. The film samples were found to contain dissolved ionic impurities that move through the dielectric when voltage is applied and cause enhancement of the electric field. These contaminants enter the film via the resin and solvent, and can be partially removed. However, these treatments did not significantly improve the breakdown characteristics. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films. this is the first step toward a replacement for kraft paper.

  14. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  15. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  16. Energy from biomass and wastes: 1982 update

    SciTech Connect

    Klass, D.L.

    1983-01-01

    Although federal support of research to develop energy from biomass and wastes continued to decrease in 1982, other sources of funding are taking up some of the slack. The contribution of energy from biomass and wastes to US primary energy consumption has increased to about 2.7 quads or 3.5% of total consumption and is projected to grow to about 3.5 quads by 1985. A reassessment of future climatic changes because of the greenhouse effect has not found any new results that require revision of the first assessment conducted in 1979. It is therefore apropos to begin to incorporate methodologies into world energy and biomass management that take this effect into account before any adverse changes begin to occur. Extensive research programs have continued on biomass production for energy applications and on the gasification and liquefaction of biomass and wastes for fuels, energy, and chemicals. Commercialization of this technology appears to be increasing at a higher rate, particularly for combustion of wood, wood wastes, and municipal solid wastes for heat, steam, and electric production; anaerobic digestion of industrial wastes for combined waste disposal and methane production; and use of fermentation ethanol as a motor fuel. Ethanol-fuel usage more than doubled in 1982 in the United States as compared to 1981, and plant capacity is expanding rapidly. Methanol has not yet begun to compete with ethanol because of federal limitations on the concentration of methanol in blends with gasoline. Relaxation of these requirements and passage of tax-forgiveness laws for methanol now enjoyed by ethanol could provide the incentives to make methanol the dominant fuel for vehicles in the long term.

  17. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  18. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  19. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  20. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    PubMed

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass.