Science.gov

Sample records for advanced bone age

  1. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  2. IN SITU ACCUMULATION OF ADVANCED GLYCATION ENDPRODUCTS (AGES) IN BONE MATRIX AND ITS CORRELATION WITH OSTEOCLASTIC BONE RESORPTION

    PubMed Central

    Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-01-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698

  3. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    PubMed

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  4. Aging and Bone

    PubMed Central

    Boskey, A.L.; Coleman, R.

    2010-01-01

    Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes. PMID:20924069

  5. Bone Tissue Engineering: Recent Advances and Challenges

    PubMed Central

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  6. Low-Magnitude Mechanical Stimulation to Improve Bone Density in Persons of Advanced Age: A Randomized, Placebo-Controlled Trial.

    PubMed

    Kiel, Douglas P; Hannan, Marian T; Barton, Bruce A; Bouxsein, Mary L; Sisson, Emily; Lang, Thomas; Allaire, Brett; Dewkett, Dawn; Carroll, Danette; Magaziner, Jay; Shane, Elizabeth; Leary, Elizabeth Teng; Zimmerman, Sheryl; Rubin, Clinton T

    2015-07-01

    Nonpharmacologic approaches to preserve or increase bone mineral density (BMD) include whole-body vibration (WBV), but its efficacy in elderly persons is not clear. Therefore, we conducted the Vibration to Improve Bone in Elderly Subjects (VIBES) trial, a randomized, placebo-controlled trial of 10 minutes of daily WBV (0.3g at 37 Hz) in seniors recruited from 16 independent living communities. The primary outcomes were volumetric BMD of the hip and spine measured by quantitative computed tomography (QCT) and biochemical markers of bone turnover. We randomized 174 men and women (89 active, 85 placebo) with T-scores -1 to -2.5 who were not taking bone active drugs and had no diseases affecting the skeleton (mean age 82 ± 7 years, range 65 to 102). Participants received daily calcium (1000 mg) and vitamin D (800 IU). Study platforms were activated using radio frequency ID cards providing electronic adherence monitoring; placebo platforms resembled the active platforms. In total, 61% of participants in the active arm and 73% in the placebo arm completed 24 months. The primary outcomes, median percent changes (interquartile range [IQR]) in total volumetric femoral trabecular BMD (active group (2.2% [-0.8%, 5.2%]) versus placebo 0.4% [-4.8%, 5.0%]) and in mid-vertebral trabecular BMD of L1 and L2 (active group (5.3% [-6.9%, 13.3%]) versus placebo (2.4% [-4.4%, 11.1%]), did not differ between groups (all p values > 0.1). Changes in biochemical markers of bone turnover (P1NP and sCTX) also were not different between groups (p = 0.19 and p = 0.97, respectively). In conclusion, this placebo-controlled randomized trial of daily WBV in older adults did not demonstrate evidence of significant beneficial effects on volumetric BMD or bone biomarkers; however, the high variability in vBMD changes limited our power to detect small treatment effects. The beneficial effects of WBV observed in previous studies of younger women may not occur to the same extent in

  7. Bone age in cerebral palsy

    PubMed Central

    Miranda, Eduardo Régis de Alencar Bona; Palmieri, Maurício D'arc; de Assumpção, Rodrigo Montezuma César; Yamada, Helder Henzo; Rancan, Daniela Regina; Fucs, Patrícia Maria de Moraes Barros

    2013-01-01

    Objective To compare the chronological age and bone age among cerebral palsy patients in the outpatient clinic and its correlation with the type of neurological involvement, gender and functional status. Methods 401 patients with spastic cerebral palsy, and ages ranging from three months to 20 years old, submitted to radiological examination for bone age and analyzed by two independent observers according Greulich & Pyle. Results In the topographic distribution, there was a significant delay (p<0.005) in tetraparetic (17.7 months), hemiparetic (10.1 months), and diparetic patients (7.9 months). In the hemiparetic group, the mean bone age in the affected side was 96.88 months and the uncompromised side was 101.13 months (p<0.005). Regarding functional status, the ambulatory group showed a delay of 18.73 months in bone age (p<0.005). Comparing bone age between genders, it was observed a greater delay in males (13.59 months) than in females (9.63 months), but not statistically significant (p = 0.54). Conclusion There is a delay in bone age compared to chronological age influenced by the topography of spasticity, functional level and gender in patients with cerebral palsy. Level of Evidence IV, Case Series. PMID:24453693

  8. Advanced Glycation End-products and Bone Fractures

    PubMed Central

    Vashishth, Deepak

    2015-01-01

    Bone does not turn over uniformly, and becomes susceptible to post-translational modification by non-enzymatic glycation (NEG). NEG of bone causes the formation of advanced glycation end-products (AGEs) and this process is accelerated with aging, diabetes and antiresorptive postmenopausal osteoporosis therapy. Due to the elevated incidence of fracture associated with aging and diabetes, several studies have attempted to measure and evaluate AGEs as biomarkers for fracture risk. Here current methods of estimating AGEs in bone by liquid chromatography and fluorometric assay are summarized and the relationships between AGEs and fracture properties at whole bone, apparent tissue and matrix levels are discussed. PMID:27158323

  9. Healthy Bones at Every Age

    MedlinePlus

    ... at every age and stage of life. The skeleton is our body’s storage bank for calcium — a ... the actual size and structure of a person’s skeleton is determined by genetic factors. Although peak bone ...

  10. Bone Mineral Density in Healthy Female Adolescents According to Age, Bone Age and Pubertal Breast Stage

    PubMed Central

    Moretto, M.R; Silva, C.C; Kurokawa, C.S; Fortes, C.M; Capela, R.C; Teixeira, A.S; Dalmas, J.C; Goldberg, T.B

    2011-01-01

    Objectives: This study was designed to evaluate bone mineral density (BMD) in healthy female Brazilian adolescents in five groups looking at chronological age, bone age, and pubertal breast stage, and determining BMD behavior for each classification. Methods: Seventy-two healthy female adolescents aged between 10 to 20 incomplete years were divided into five groups and evaluated for calcium intake, weight, height, body mass index (BMI), pubertal breast stage, bone age, and BMD. Bone mass was measured by bone densitometry (DXA) in lumbar spine and proximal femur regions, and the total body. BMI was estimated by Quetelet index. Breast development was assessed by Tanner’s criteria and skeletal maturity by bone age. BMD comparison according to chronologic and bone age, and breast development were analyzed by Anova, with Scheffe’s test used to find significant differences between groups at P≤0.05. Results: BMD (g·cm-2) increased in all studied regions as age advanced, indicating differences from the ages of 13 to 14 years. This group differed to the 10 and 11 to 12 years old groups for lumbar spine BMD (0.865±0.127 vs 0.672±0.082 and 0.689±0.083, respectively) and in girls at pubertal development stage B3, lumbar spine BMD differed from B5 (0.709±0.073 vs 0.936±0.130) and whole body BMD differed from B4 and B5 (0.867±0.056 vs 0.977±0.086 and 1.040±0.080, respectively). Conclusion: Bone mineralization increased in the B3 breast maturity group, and the critical years for bone mass acquisition were between 13 and 14 years of age for all sites evaluated by densitometry. PMID:21966336

  11. Cervical vertebral bone age in girls.

    PubMed

    Mito, Toshinori; Sato, Koshi; Mitani, Hideo

    2002-10-01

    The purpose of this study was to establish cervical vertebral bone age as a new index for objectively evaluating skeletal maturation on cephalometric radiographs. Using cephalometric radiographs of 176 girls (ages 7.0-14.9 years), we measured cervical vertebral bodies and determined a regression formula to obtain cervical vertebral bone age. Next, using cephalometric and hand-wrist radiographs of another 66 girls (ages 8.0-13.9 years), we determined the correlation between cervical vertebral bone age and bone age using the Tanner-Whitehouse 2 method. The following results were obtained: (1) a regression formula was determined to obtain cervical vertebral bone age based on ratios of measurements in the third and fourth cervical vertebral bodies; (2) the correlation coefficient for the relationship between cervical vertebral bone age and bone age (0.869) was significantly (P <.05) higher than that for the relationship between cervical vertebral bone age and chronological age (0.705); and (3) the difference (absolute value) between the cervical vertebral bone age and bone age (0.75 years) was significantly (P <.001) smaller than that between cervical vertebral bone age and chronological age (1.17 years). These results suggest that cervical vertebral bone age reflects skeletal maturity because it approximates bone age, which is considered to be the most reliable method for evaluating skeletal maturation. Using cervical vertebral bone age, it might be possible to evaluate maturity in a detailed and objective manner on cephalometric radiographs.

  12. Bone age assessment meets SIFT

    NASA Astrophysics Data System (ADS)

    Kashif, Muhammad; Jonas, Stephan; Haak, Daniel; Deserno, Thomas M.

    2015-03-01

    Bone age assessment (BAA) is a method of determining the skeletal maturity and finding the growth disorder in the skeleton of a person. BAA is frequently used in pediatric medicine but also a time-consuming and cumbersome task for a radiologist. Conventionally, the Greulich and Pyle and the Tanner and Whitehouse methods are used for bone age assessment, which are based on visual comparison of left hand radiographs with a standard atlas. We present a novel approach for automated bone age assessment, combining scale invariant feature transform (SIFT) features and support vector machine (SVM) classification. In this approach, (i) data is grouped into 30 classes to represent the age range of 0- 18 years, (ii) 14 epiphyseal ROIs are extracted from left hand radiographs, (iii) multi-level image thresholding, using Otsu method, is applied to specify key points on bone and osseous tissues of eROIs, (iv) SIFT features are extracted for specified key points for each eROI of hand radiograph, and (v) classification is performed using a multi-class extension of SVM. A total of 1101 radiographs of University of Southern California are used in training and testing phases using 5- fold cross-validation. Evaluation is performed for two age ranges (0-18 years and 2-17 years) for comparison with previous work and the commercial product BoneXpert, respectively. Results were improved significantly, where the mean errors of 0.67 years and 0.68 years for the age ranges 0-18 years and 2-17 years, respectively, were obtained. Accuracy of 98.09 %, within the range of two years was achieved.

  13. Determinants of muscle and bone aging

    PubMed Central

    Curtis, E; Litwic, A; Cooper, C; Dennison, E

    2015-01-01

    Loss of bone and muscle with advancing age represent a huge threat to loss of independence in later life. Osteoporosis represents a major public health problem through its association with fragility fractures, primarily of the hip, spine and distal forearm. Sarcopenia, the age related loss of muscle mass and function, may add to fracture risk by increasing falls risk. In the context of muscle aging, it is important to remember that it is not just a decline in muscle mass which contributes to the deterioration of muscle function. Other factors underpinning muscle quality come into play, including muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance, fibrosis and neural activation. Genetic, developmental, endocrine and lifestyle factors, such as physical activity, smoking and poor diet have dual effects on both muscle and bone mass in later life and these will be reviewed here. These include poor nutrition, lack of physical activity and cigarette smoking, comorbidities or medication use. Recent work has highlighted a possible role for the early environment. Inflammaging is an exciting emerging research field that is likely to prove relevant to future work, including interventions designed to retard to reverse bone and muscle loss with age. PMID:25820482

  14. Preventing painful age-related bone fractures

    PubMed Central

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient’s functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures. PMID:27837171

  15. Role of inflammation in the aging bones.

    PubMed

    Abdelmagid, Samir M; Barbe, Mary F; Safadi, Fayez F

    2015-02-15

    Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging.

  16. Mechanisms of age-related bone loss.

    PubMed

    Mosekilde, L

    2001-01-01

    The human skeleton is formed and modelled during childhood and youth through the influence of hormones and daily mechanical usage. Around the age of 20-25 years, the skeleton achieves its maximum mass and strength. Thereafter, and throughout adult life, bone is lost at an almost constant rate due to the dynamic bone turnover process: the remodelling process. During this process, small packets of bone are renewed by teams of bone cells coupled together in time and space. In an adult human skeleton there will be 1-2 million active remodelling sites at any time point. The vast number of turnover units combined with a slightly negative balance at the completion of each process leads to the age-related loss of bone mass mentioned above and, concomitantly, to loss of structural continuity and strength. The magnitude of this loss will be determined by hormonal factors, nutrition and mechanical usage. As a consequence of the remodelling process, the bone tissue of the skeleton will always be younger than the age of the individual. However, as a consequence of the remodelling process, osteopenia and osteoporotic fractures will also occur. In this article, the remodelling-induced changes in the human spine will be used as an example of ageing bone.

  17. Advances in noninvasive bone measurement

    SciTech Connect

    Mazess, R.B.; Barden, H.; Vetter, J.; Ettinger, M.

    1989-01-01

    Several noninvasive measurement methods are used for evaluation of metabolic disease. Single-photon (/sup 125/I) scans of the peripheral skeleton are useful in some diseases but are ineffective in osteoporosis (even on the distal radius or os calcis) because they cannot predict spinal or femoral density. Also, peripheral measurements show high percentages of false negatives, that is many patients with fractures have normal peripheral density. Dual-photon (/sup 153/Gd) scans of the spine, femur, and total skeleton are precise and accurate (2% error) and provide direct measurements of bone strength at fracture sites. This gives the best discrimination of abnormality and the most sensitive monitoring. Quantitative computed computed tomography (QCT) allows measurement of the spine but not the critical proximal femur area. QCT has a large accuracy error because (a) the limited area measured (under 5 cm3) fails to represent the total vertebral body, (b) technical errors, and (c) variable fat and osteoid influence the results. 25 references.

  18. Fracture, aging and disease in bone

    SciTech Connect

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-02-01

    From a public health perspective, developing a detailed mechanistic understanding of the well-known increase in fracture risk of human bone with age is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nano-structural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nanodimensions using pico-force atomic-force microscopy, nanoindentation and vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size-scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its

  19. Age-related elemental change in bones

    NASA Astrophysics Data System (ADS)

    Wang, C.; Eisa, M. H.; Jin, W.; Shen, H.; Mi, Y.; Gao, J.; Zhou, Y.; Yao, H.; Zhao, Y.

    2008-04-01

    To investigate age dependence of the bone element contents and structure, lumbar and femur from Sprague-Dawley (SD) rats were chosen for their more susceptibility to fracture. These rats were divided into to 5 age groups: 1, 4, 7, 11 and 25 month-age, corresponding human beings from the young to the old. The elements contents were detected by external Proton Induced X-ray emission (PIXE) technique. X-ray Absorption Fine Structure (XAFS) method was also applied to obtain information about calcium (Ca) and phosphor (P) structure. It was found that Ca content, Ca/P ratio, valance state of Ca and P and their coordinate structure remains unaltered with age variance, whereas the content of strontium (Sr) was significantly decreasing. Sr concentration may provide a new parameter for diagnosis of bone disorder.

  20. Postponing parenthood to advanced age

    PubMed Central

    Waldenström, Ulla

    2016-01-01

    The aim of the Postponing Parenthood project was to investigate several aspects of the delaying of childbearing phenomenon in Sweden and Norway, such as medical risks and parental experiences. Data were retrieved from the Swedish and Norwegian Medical Birth Registers and three different cohorts: the Swedish Young Adult Panel Study, the Norwegian Mother and Child Cohort, and the Swedish Women’s Experiences of Childbirth cohort. Postponing childbirth to age 35 years and later increased the risk of rare but serious pregnancy outcomes, such as stillbirth and very preterm birth. Older first-time parents were slightly more anxious during pregnancy, and childbirth overall was experienced as more difficult, compared with younger age groups. First-time mothers’ satisfaction with life decreased from about age 28 years, both when measured during pregnancy and early parenthood. Delaying parenthood to mid-30 or later was more related to lifestyle than socioeconomic factors, suggesting that much could be done in terms of informing young persons about the limitations of fertility and assisted reproductive techniques, and the risks associated with advanced parental age. PMID:27385461

  1. Advances in noninvasive functional imaging of bone.

    PubMed

    Lan, Sheng-Min; Wu, Ya-Na; Wu, Ping-Ching; Sun, Chi-Kuang; Shieh, Dar-Bin; Lin, Ruey-Mo

    2014-02-01

    The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.

  2. Automated bone age assessment of older children using the radius

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Gertych, Arkadiusz; Zhang, Aifeng; Liu, Brent J.; Huang, Han K.

    2008-03-01

    The Digital Hand Atlas in Assessment of Skeletal Development is a large-scale Computer Aided Diagnosis (CAD) project for automating the process of grading Skeletal Development of children from 0-18 years of age. It includes a complete collection of 1,400 normal hand X-rays of children between the ages of 0-18 years of age. Bone Age Assessment is used as an index of skeletal development for detection of growth pathologies that can be related to endocrine, malnutrition and other disease types. Previous work at the Image Processing and Informatics Lab (IPILab) allowed the bone age CAD algorithm to accurately assess bone age of children from 1 to 16 (male) or 14 (female) years of age using the Phalanges as well as the Carpal Bones. At the older ages (16(male) or 14(female) -19 years of age) the Phalanges as well as the Carpal Bones are fully developed and do not provide well-defined features for accurate bone age assessment. Therefore integration of the Radius Bone as a region of interest (ROI) is greatly needed and will significantly improve the ability to accurately assess the bone age of older children. Preliminary studies show that an integrated Bone Age CAD that utilizes the Phalanges, Carpal Bones and Radius forms a robust method for automatic bone age assessment throughout the entire age range (1-19 years of age).

  3. X-Ray Exam: Bone Age Study (For Parents)

    MedlinePlus

    ... 2-Year-Old X-Ray Exam: Bone Age Study KidsHealth > For Parents > X-Ray Exam: Bone Age Study A A A What's in this article? What ... edad ósea What It Is A bone age study helps doctors estimate the maturity of a child's ...

  4. X-Ray Exam: Bone Age Study (For Parents)

    MedlinePlus

    ... to 2-Year-Old X-Ray Exam: Bone Age Study KidsHealth > For Parents > X-Ray Exam: Bone Age Study Print A A A What's in this ... la edad ósea What It Is A bone age study helps doctors estimate the maturity of a ...

  5. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  6. Bone age, social deprivation, and single parent families.

    PubMed Central

    Cole, T J; Cole, A J

    1992-01-01

    It is well known that deprivation affects bone growth. The study was set up to investigate what aspects of deprivation are of greatest importance. Bone ages of 1593 child trauma patients aged 0-19 years from Middlesbrough General Hospital, Cleveland, were related to local authority ward indices of socioeconomic status (51 wards). After adjustment for chronological age and sex, the mean bone ages in each ward were highly significantly negatively associated with five ward indices of deprivation: the rate of single parent families, low care ownership, unemployment, rented housing, and overcrowding. There was a mean four month deficit in bone age among children living in wards with the highest single parent family rates. The inverse association between deprivation and bone age is unlikely to be causal throughout childhood, as older and younger children were affected to the same extent. However the bone age deficit could be caused by deprivation retarding skeletal maturation during a critical period in early life. PMID:1444529

  7. Research Advances in Aging 1984-1986.

    ERIC Educational Resources Information Center

    National Inst. on Aging (DHHS/NIH), Bethesda, MD.

    The National Institute on Aging (NIA) has, for the past several years, focused attention on a wide range of clinical problems associated with aging, including falls and gait disorders, bone fractures, urinary incontinence, and hypertension. Understanding the causes of and exploring possible treatments for Alzheimer's disease has been another of…

  8. Metastasis and bone loss: advancing treatment and prevention.

    PubMed

    Coleman, Robert E; Lipton, Allan; Roodman, G David; Guise, Theresa A; Boyce, Brendon F; Brufsky, Adam M; Clézardin, Philippe; Croucher, Peter I; Gralow, Julie R; Hadji, Peyman; Holen, Ingunn; Mundy, Gregory R; Smith, Matthew R; Suva, Larry J

    2010-12-01

    Tumor metastasis to the skeleton affects over 400,000 individuals in the United States annually, more than any other site of metastasis, including significant proportions of patients with breast, prostate, lung and other solid tumors. Research on the bone microenvironment and its role in metastasis suggests a complex role in tumor growth. Parallel preclinical and clinical investigations into the role of adjuvant bone-targeted agents in preventing metastasis and avoiding cancer therapy-induced bone loss have recently reported exciting and intriguing results. A multidisciplinary consensus conference convened to review recent progress in basic and clinical research, assess gaps in current knowledge and prioritize recommendations to advance research over the next 5 years. The program addressed three topics: advancing understanding of metastasis prevention in the context of bone pathophysiology; developing therapeutic approaches to prevent metastasis and defining strategies to prevent cancer therapy-induced bone loss. Several priorities were identified: (1) further investigate the effects of bone-targeted therapies on tumor and immune cell interactions within the bone microenvironment; (2) utilize and further develop preclinical models to study combination therapies; (3) conduct clinical studies of bone-targeted therapies with radiation and chemotherapy across a range of solid tumors; (4) develop biomarkers to identify patients most likely to benefit from bone-targeted therapies; (5) educate physicians on bone loss and fracture risk; (6) define optimal endpoints and new measures of efficacy for future clinical trials; and (7) define the optimum type, dose and schedule of adjuvant bone-targeted therapy.

  9. Age-related changes in the fracture resistance of male Fischer F344 rat bone.

    PubMed

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S

    2016-02-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue.

  10. The Canalicular Structure of Compact Bone in the Rat at Different Ages

    NASA Astrophysics Data System (ADS)

    Okada, Shigenori; Yoshida, Shigemitsu; Ashrafi, Shahid H.; Schraufnagel, Dean E.

    2002-04-01

    Osteocytes communicate through a canalicular system that maintains the vitality and mineral metabolism of bone. Casting the vascular canals and canaliculi of compact bone with methacrylate and viewing them with scanning electron microscopy shows their extent and relationships. Confocal laser scanning microscopy of the same specimen before corrosion establishes the degree of calcification of the different tissue components. These methods were used to compare basal with alveolar compact bone in the rat mandible at different ages. Sections of the mandibular molar region were placed in a methacrylate resin. After polymerization and study with confocal microscopy, the organic matrix was removed. Juvenile rats had large irregular central vascular canals and lacunae that were more concentric in the basal than the alveolar bone. Cast lacunae were round, and the canaliculi from these lacunae were short and thick in both bones. Adult rats had regular concentrically arranged lacunae in the basal bone. Cast lacunae were ellipsoid and flatter in the basal bone than in the alveolar bone. The intercommunicating canaliculi were increased and canaliculi had more branching than the juvenile rats. The aged rats had fewer vascular canals, lacunae, and canaliculi and had osteoporotic changes. The cast lacunae were slender and flat especially in the basal bone. The porosity of the mandible became more pronounced in the alveolar than in the basal bone with aging. The canaliculi of mandibular compact bone thinned and developed extensive branching with adulthood but decreased in size and number with advanced age. Lacunae proceed from the large circular structures of youth to the flat forms of the aged. These studies show that the internal structure of compact bone changes with age and mirrors its functional state.

  11. Utilization of bone impedance for age estimation in postmortem cases.

    PubMed

    Ishikawa, Noboru; Suganami, Hideki; Nishida, Atsushi; Miyamori, Daisuke; Kakiuchi, Yasuhiro; Yamada, Naotake; Wook-Cheol, Kim; Kubo, Toshikazu; Ikegaya, Hiroshi

    2015-11-01

    In the field of Forensic Medicine the number of unidentified cadavers has increased due to natural disasters and international terrorism. The age estimation is very important for identification of the victims. The degree of sagittal closure is one of such age estimation methods. However it is not widely accepted as a reliable method for age estimation. In this study, we have examined whether measuring impedance value (z-values) of the sagittal suture of the skull is related to the age in men and women and discussed the possibility to use bone impedance for age estimation. Bone impedance values increased with aging and decreased after the age of 64.5. Then we compared age estimation through the conventional visual method and the proposed bone impedance measurement technique. It is suggested that the bone impedance measuring technique may be of value to forensic science as a method of age estimation.

  12. Advanced imaging assessment of bone quality.

    PubMed

    Genant, Harry K; Jiang, Yebin

    2006-04-01

    Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostructural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring

  13. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    NASA Technical Reports Server (NTRS)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  14. Hyoid bone fusion and bone density across the lifespan: prediction of age and sex.

    PubMed

    Fisher, Ellie; Austin, Diane; Werner, Helen M; Chuang, Ying Ji; Bersu, Edward; Vorperian, Houri K

    2016-06-01

    The hyoid bone supports the important functions of swallowing and speech. At birth, the hyoid bone consists of a central body and pairs of right and left lesser and greater cornua. Fusion of the greater cornua with the body normally occurs in adulthood, but may not occur at all in some individuals. The aim of this study was to quantify hyoid bone fusion across the lifespan, as well as assess developmental changes in hyoid bone density. Using a computed tomography imaging studies database, 136 hyoid bones (66 male, 70 female, ages 1-to-94) were examined. Fusion was ranked on each side and hyoid bones were classified into one of four fusion categories based on their bilateral ranks: bilateral distant non-fusion, bilateral non-fusion, partial or unilateral fusion, and bilateral fusion. Three-dimensional hyoid bone models were created and used to calculate bone density in Hounsfield units. Results showed a wide range of variability in the timing and degree of hyoid bone fusion, with a trend for bilateral non-fusion to decrease after age 20. Hyoid bone density was significantly lower in adult female scans than adult male scans and decreased with age in adulthood. In sex and age estimation models, bone density was a significant predictor of sex. Both fusion category and bone density were significant predictors of age group for adult females. This study provides a developmental baseline for understanding hyoid bone fusion and bone density in typically developing individuals. Findings have implications for the disciplines of forensics, anatomy, speech pathology, and anthropology.

  15. [Psychosocial rehabilitation in advanced age].

    PubMed

    Haag, G

    1985-02-01

    The psychosocial rehabilitation of older persons is one of the main problems in health policy. About one quarter of the over 65-year-olds face psychic problems, without, to a large extent, receiving adequate treatment and rehabilitative care. Substantial deficits exist above all in the out-patient and non-residential service sectors. In in-patient care, existing methods for psychosocial intervention (such as psychoanalysis, behavioural, client-centered, family, Gestalt, milieu, or music and dance therapy, psychodrama, reality orientation training, or resensitization techniques) are hardly ever used. This absence of applied geronto-psychology is attributable to the shortcomings of available assessment methods, multiple methodical problems of intervention research, and--above all--to insufficient staff positions for psychosocial professions in the gerontological sector. Provision of further permanent posts for psychosocial workers; development of age-specific assessment methods; interdisciplinary and systematic interventional research; the development of ambulatory, community-based services as well as intensive support for existing self-help efforts are therefore called for.

  16. Recent advances in nano scaffolds for bone repair

    PubMed Central

    Yi, Huan; Ur Rehman, Fawad; Zhao, Chunqiu; Liu, Bin; He, Nongyue

    2016-01-01

    Biomedical applications of nanomaterials are exponentially increasing every year due to analogy to various cell receptors, ligands, structural proteins, and genetic materials (that is, DNA). In bone tissue, nanoscale materials can provide scaffold for excellent tissue repair via mechanical stimulation, releasing of various loaded drugs and mediators, 3D scaffold for cell growth and differentiation of bone marrow stem cells to osteocytes. This review will therefore highlight recent advancements on tissue and nanoscale materials interaction. PMID:28018707

  17. Decreases in bone blood flow and bone material properties in aging Fischer-344 rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.; Hogan, Harry A.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.

  18. Age at death estimation from bone histology in Malaysian males.

    PubMed

    Nor, Faridah Mohd; Pastor, Robert F; Schutkowski, Holger

    2014-10-01

    Estimation of age from microscopic examination of human bone utilizes bone remodeling. This allows 2 regression equation to be determined in a specific population based on the variation in osteon turnover in different populations. The aim of this study was to provide age estimation for Malaysian males. Ground undecalcified cross sections were prepared from long limb bones of 50 deceased males aged between 21 and 78 years. Ten microstructural parameters were measured and subjected to multivariate regression analysis. Results showed that osteon count had the highest correlation with age (R = 0.43), and age was estimated to be within 10.94 years of the true value in 98% of males. Cross validation of the equation on 50 individuals showed close correspondence of true ages with estimated ages. Further studies are needed to validate and expand these results.

  19. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  20. Effects of altered bone remodeling and retention of cement lines on bone quality in osteopetrotic aged c-Src-deficient mice.

    PubMed

    Nakayama, Hiroto; Takakuda, Kazuo; Matsumoto, Hiroko N; Miyata, Atsushi; Baba, Otto; Tabata, Makoto J; Ushiki, Tatsuo; Oda, Tsuyoshi; McKee, Marc D; Takano, Yoshiro

    2010-02-01

    Cement lines represent mineralized, extracellular matrix interfacial boundaries at which bone resorption by osteoclasts is followed by bone deposition by osteoblasts. To determine the contribution of cement lines to bone quality, the osteopetrotic c-Src mouse model-where cement lines accumulate and persist as a result of defective osteoclastic resorption-was used to investigate age-related changes in structural and mechanical properties of bone having long-lasting cement lines. Cement lines of osteopetrotic bones in c-Src knockout mice progressively mineralized with age up to the level that the entire matrix of cement lines was lost by EDTA decalcification. While it was anticipated that suppressed and abnormal remodeling, together with the accumulation of cement line interfaces, would lead to defective bone quality with advancing age of the mutant mice, unexpectedly, three-point bending tests of the long bones of 1-year-old c-Src-deficient mice indicated significantly elevated strength relative to age-matched wild-type bones despite the presence of numerous de novo microcracks. Among these microcracks in the c-Src bones, there was no sign of preferential propagation or arrest of microcracks along the cement lines in either fractured or nonfractured bones of old c-Src mice. These data indicate that cement lines are not the site of a potential internal failure of bone strength in aged c-Src osteopetrotic mice and that abundant and long-lasting cement lines in these osteopetrotic bones appear to have no negative impacts on the mechanical properties of this low-turnover bone despite their progressive hypermineralization (and thus potential brittleness) with age.

  1. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    PubMed Central

    Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun

    2012-01-01

    An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus

  2. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    PubMed Central

    2016-01-01

    Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs) that impair bone marrow progenitor cell (BMPC) osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes) on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization) and chondrogenesis (glycosaminoglycan production) of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase) was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a) decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b) increased bone marrow adiposity; and (c) deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis). Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC. PMID:27840829

  3. Aging changes in the bones - muscles - joints

    MedlinePlus

    Osteoporosis and aging; Muscle weakness associated with aging; Osteoarthritis ... Loss of muscle mass reduces strength. COMMON PROBLEMS Osteoporosis is a common problem, especially for older women. ...

  4. Midfacial advancement by bone distraction for treatment of craniofacial deformities.

    PubMed

    Alonso, N; Munhoz, A M; Fogaça, W; Ferreira, M C

    1998-03-01

    Craniofaciostenosis is often associated with midfacial hypoplasia and has been treated traditionally using Le Fort advancement osteotomies and bone grafts. The surgical procedure requires a prolonged operating time, several osteotomies with a significant blood loss, and wide surgical exposure. According to the principles of bone lengthening, we performed midfacial advancement by bone distraction in 4 patients with midfacial hypoplasia to reduce the operative time and complication rate. In 2 patients with Crouzon's syndrome we performed a Le Fort III osteotomy and placed the distraction device behind the malar eminence and screwed it on the temporal bone bilaterally. In the other 2 children, with Apert's syndrome, we performed frontal advancement and remodeling before placing the device during the same surgery behind the malar bone without any midfacial osteotomy. It appears to us that patients with more severe deformities will need surgical procedures to offer more satisfactory results. In these patients, distraction is an initial therapy to reduce the severity of the deformity, making it possible to effect a better treatment afterward.

  5. Age-related bone loss in the LOU/c rat model of healthy ageing.

    PubMed

    Duque, Gustavo; Rivas, Daniel; Li, Wei; Li, Ailian; Henderson, Janet E; Ferland, Guylaine; Gaudreau, Pierrette

    2009-03-01

    Inbred albino Louvain (LOU) rats are considered a model of healthy aging due to their increased longevity in the absence of obesity and with a low incidence of common age-related diseases. In this study, we characterized the bone phenotype of male and female LOU rats at 4, 20 and 27 months of age using quantitative micro computed tomographic (mCT) imaging, histology and biochemical analysis of circulating bone biomarkers. Bone quality and morphometry of the distal femora, assessed by mCT, was similar in male and female rats at 4 months of age and deteriorated over time. Histochemical staining of undecalcified bone showed a significant reduction in cortical and trabecular bone by 20 months of age. The reduction in mineralized tissue was accompanied by reduced numbers of osteoblasts and osteoclasts and a significant increase in marrow adiposity. Biochemical markers of bone turnover, C-telopeptide and osteocalcin, correlated with the age-related bone loss whereas the calciotropic hormones PTH and vitamin D remained unchanged over time. In summary, aged LOU rats exhibit low-turnover bone loss and marrow fat infiltration, which are the hallmarks of senile osteoporosis, and thus represent a novel model in which to study the molecular mechanisms leading to this disorder.

  6. Cells derived from young bone marrow alleviate renal aging.

    PubMed

    Yang, Hai-Chun; Rossini, Michele; Ma, Li-Jun; Zuo, Yiqin; Ma, Ji; Fogo, Agnes B

    2011-11-01

    Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.

  7. Radiological Indicators of Bone Age Assessment in Cephalometric Images. Review

    PubMed Central

    Durka-Zając, Magdalena; Mituś-Kenig, Maria; Derwich, Marcin; Marcinkowska-Mituś, Agata; Łoboda, Magdalena

    2016-01-01

    Summary The ability to assess bone age accurately is important and allows to diagnose the patient correctly and to plan orthodontic treatment appropriately. The aim of the work is to present views of different authors on the subject of using cephalometric images to determine bone age and its significance for conducting appropriate orthodontic treatment. Publications from the PubMed medical database were analyzed. Search criteria: bone age assessment, CVM method. Ultimately, 36 papers out of 1354 publications were selected. The research of many authors confirms the usefulness of various methods using cephalometric images to assess skeletal age. Currently, the CVM method devised by Baccetti et al. is the most frequently mentioned one in literature. It seems that bone age assessment methods based on evaluating the morphological structure of the cervical vertebrae in cephalometric images can clearly differentiate skeletal maturity in children regardless of their race or sex. Bearing in mind the constant technological progress in medicine and stomatology, bone age assessment methods need to be perfected in order to alleviate their impact on the patient as much as possible. PMID:27536337

  8. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon.

    PubMed

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean; Eliasson, Pernilla; Mogensen, Pernille; Hag, Anne Mette F; Kjær, Michael; Schalkwijk, Casper G; Schjerling, Peter; Magnusson, Stig P; Couppé, Christian

    2017-03-01

    Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50-fold higher than HFD The mice were sacrificed at week 40 and Achilles and tail tendons were carefully excised to compare weight and nonweight-bearing tendons. The amount of the AGEs carboxymethyllysine (CML), methylglyoxal-derived hydroimidazolone (MG-H1) and carboxyethyllysine (CEL) in Achilles and tail tendon was measured using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and pentosidine with high-pressure liquid chromatography (HPLC) with fluorescent detection. AGEs in Achilles tendon were higher than in tail tendon for CML (P < 0.0001), CEL (P < 0.0001), MG-H1 and pentosidine (for both ND and HFD) (P < 0.0001). The AGE-rich diet (ND) resulted in an increase in CML (P < 0.0001), MG-H1 (P < 0.001) and pentosidine (P < 0.0001) but not CEL, in Achilles and tail tendon. This is the first study to provide evidence for AGE accumulation in injury-prone, weight-bearing Achilles tendon associated with intake of an AGE-rich diet. This indicates that food-derived AGEs may alter tendon properties and the development of tendon injuries.

  9. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality.

    PubMed

    Willett, Thomas L; Pasquale, Julia; Grynpas, Marc D

    2014-09-01

    The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.

  10. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.

  11. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone

    PubMed Central

    Todd, Henry; Galea, Gabriel L.; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  12. Morphologic alterations of the subchondral bone in advanced degenerative arthritis.

    PubMed

    Milgram, J W

    1983-03-01

    A series of 535 femoral heads surgically excised at the time of total hip arthroplasty for degenerative arthritis were analyzed by gross photography, specimen roentgenograms, and whole-mount histologic sections. Limited regenerative capacity was apparent in the chondrous tufts in the exposed bone of the osteoarthritic joint surface. The mechanism for the formation of subchondral cysts was interpreted to be the proliferation of viable myxomatous cells within the bone marrow. Osseous remodeling adjacent to the cysts was secondary to expansion of the soft tissue contents of the early cysts and later vascularization with fibrosis in the older cysts. Stress fracturing was a focal feature secondary to the remodeling of live bone. Advanced degenerative arthritis demonstrated focal osteocytic necrosis in the exposed osseous surface. Bone necrosis was also observed when small segments of the surface were undermined by cysts. Finally, bone necrosis was occasionally observed as focal infarcts of the joint surface (2-6 mm). In all three instances, bone necrosis in degenerative arthritis appeared to be a secondary reaction, presumably related to local disruption of blood supply.

  13. Segmentation of bone pixels from EROI Image using clustering method for bone age assessment

    NASA Astrophysics Data System (ADS)

    Bakthula, Rajitha; Agarwal, Suneeta

    2016-03-01

    The bone age of a human can be identified using carpal and epiphysis bones ossification, which is limited to teen age. The accurate age estimation depends on best separation of bone pixels and soft tissue pixels in the ROI image. The traditional approaches like canny, sobel, clustering, region growing and watershed can be applied, but these methods requires proper pre-processing and accurate initial seed point estimation to provide accurate results. Therefore this paper proposes new approach to segment the bone from soft tissue and background pixels. First pixels are enhanced using BPE and the edges are identified by HIPI. Later a K-Means clustering is applied for segmentation. The performance of the proposed approach has been evaluated and compared with the existing methods.

  14. Cardiovascular KATP channels and advanced aging

    PubMed Central

    Yang, Hua-Qian; Subbotina, Ekaterina; Ramasamy, Ravichandran; Coetzee, William A.

    2016-01-01

    With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention. PMID:27733235

  15. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    PubMed

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.

  16. [Methods of radiological bone age assessment (author's transl)].

    PubMed

    Fendel, H

    1976-09-01

    An assessment of the bone age can be made in different manners. Numerical methods calculating the number of existing ossification centers are to inaccurate. The use of "age-of-appearance" tables gives a more accurate evaluation. In both methods, however, x-ray films of several body parts must be made. Therefore, they are complicated and lead to a higher patient radiation exposure. Methods using hand and wrist as a representative area of the whole skeleton are of greater value for routine bone-age assessments. There is a wide-spread use of the Greulich-Pyle atlas. The atlas-method is fully sufficient in the great majority of cases when certain rules are considered. A more detailed information can be achieved by using the so-called "bone-by-bone" evaluation. A score system was introduced by Tanner and Whitehouse which should be used to a greater extent than is done up to now. Metrical methods give no real information about the bone age but additional informations which can be helpful in following examinations with short intervals.

  17. Aging of microstructural compartments in human compact bone

    NASA Technical Reports Server (NTRS)

    Akkus, Ozan; Polyakova-Akkus, Anna; Adar, Fran; Schaffler, Mitchell B.

    2003-01-01

    Composition of microstructural compartments in compact bone of aging male subjects was assessed using Raman microscopy. Secondary mineralization of unremodeled fragments persisted for two decades. Replacement of these tissue fragments with secondary osteons kept mean composition constant over age, but at a fully mineralized limit. Slowing of remodeling may increase fracture susceptibility through an increase in proportion of highly mineralized tissue. In this study, the aging process in the microstructural compartments of human femoral cortical bone was investigated and related to changes in the overall tissue composition within the age range of 17-73 years. Raman microprobe analysis was used to assess the mineral content, mineral crystallinity, and carbonate substitution in fragments of primary lamellar bone that survived remodeling for decades. Tissue composition of the secondary osteonal population was investigated to determine the composition of turned over tissue volume. Finally, Raman spectral analysis of homogenized tissue was performed to evaluate the effects of unremodeled and newly formed tissue on the overall tissue composition. The chemical composition of the primary lamellar bone exhibited two chronological stages. Organic matrix became more mineralized and the crystallinity of the mineral improved during the first stage, which lasted for two decades. The mineral content and the mineral crystallinity did not vary during the second stage. The results for the primary lamellar bone demonstrated that physiological mineralization, as evidenced by crystal growth and maturation, is a continuous process that may persist as long as two decades, and the growth and maturation process stops after the organic matrix becomes "fully mineralized." The average mineral content and the average mineral crystallinity of the homogenized tissue did not change with age. It was also observed that the mineral content of the homogenized tissue was consistently greater than the

  18. [Development and aging of bone in the female life cycle].

    PubMed

    Ohta, Hiroaki

    2011-09-01

    In Japan, where the society is fast aging at an unprecedented pace, osteoporosis is estimated to affect more than 15 million individuals, thus representing a "common" disease, which exactly meets the definition of a lifestyle-related disease. As osteoporosis has a predominantly female prevalence and bone accounts for the most marked gender difference all organs commonly affected in males and females alike, to have an understanding of the development and aging of bone in women represents an urgent task toward gaining a better understanding of the pathophysiology of osteoporosis affecting them as well as its clinical stages. In this context, the benefit of ensuring bone health has been identified as maintenance of ADL/QOL in the elderly as well as prevention of osteoporotic fractures which lead to affected individuals becoming bed-ridden and requiring nursing care.

  19. Comparison between the properties of "accelerated-aged" bones and archaeological bones.

    NASA Astrophysics Data System (ADS)

    Abdel Maksoud, Gomaa

    This study focuses on the changes in the properties of bones that resulted from 'heatageing' at different temperatures and long term of exposure compared to archaeological samples. It also aims to prepare aged samples similar to archaeological samples for the experimental studies in the conservation of bone artifacts. FTIR, XRD, UV spectrophotometry, dual-energy X-ray absorptiometry, polarizing and SEM microscopes were used as analytical techniques. The results revealed that 'heat ageing' technique used at different temperatures (200oC and 300OC) and times (from 1 hour to 13 hours) affected the properties of change in colour, loss of bone density, destruction of the surface morphology, increasing the crystallinity index which, was similar with the archaeological sample after 8 and 12 hours of exposure. The study concluded that 'heat ageing' at 300°C after 8 hours can give properties close or similar to archaeological samples.

  20. Proceedings of the 2015 Santa Fe Bone Symposium: Clinical Applications of Scientific Advances in Osteoporosis and Metabolic Bone Disease.

    PubMed

    Lewiecki, E Michael; Baron, Roland; Bilezikian, John P; Gagel, Robert E; Leonard, Mary B; Leslie, William D; McClung, Michael R; Miller, Paul D

    2016-01-01

    The 2015 Santa Fe Bone Symposium was a venue for healthcare professionals and clinical researchers to present and discuss the clinical relevance of recent advances in the science of skeletal disorders, with a focus on osteoporosis and metabolic bone disease. Symposium topics included new developments in the translation of basic bone science to improved patient care, osteoporosis treatment duration, pediatric bone disease, update of fracture risk assessment, cancer treatment-related bone loss, fracture liaison services, a review of the most significant studies of the past year, and the use of telementoring with Bone Health Extension for Community Healthcare Outcomes, a force multiplier to improve the care of osteoporosis in underserved communities.

  1. Cortical bone loss with age in three native American populations.

    PubMed

    Ericksen, M F

    1976-11-01

    Age-related thinning of cortical bone was investigated in archaeological populations of Eskimos, Pueblos, and Arikaras. Medial-lateral cortical thickness was measured on radiographs of humerus and femur, and thickness of the anterior femoral cortex was measured directly on samples taken for histologic study. Maximum length of the bones was used to calculate indices of relative cortical thickness, in order to minimize differences due to body size and build. Bone loss in the humerus begins before middle age in all three populations and, except for Eskimo males, the same is true of the anterior femoral cortex. In general, overall female loss of cortical bone amounts to two or three times that of the males, and in the case of the humerus and the anterior cortex of the femur, this difference is evident by middle age. The weight-bearing femoral medial-lateral cortex shows less sexual difference but has the greatest number of statistically significant differences between populations and the greatest contrast between populations in pattern of loss with age. It appears that of the cortical regions studied this is the area upon which environmental factors have the greatest effect, whereas areas more subject to tensile stress, the humerus and anterior femoral cortex, are less affected by these factors.

  2. Loss of Rictor with aging in osteoblasts promotes age-related bone loss

    PubMed Central

    Lai, Pinling; Song, Qiancheng; Yang, Cheng; Li, Zhen; Liu, Sichi; Liu, Bin; Li, Mangmang; Deng, Hongwen; Cai, Daozhang; Jin, Dadi; Liu, Anling; Bai, Xiaochun

    2016-01-01

    Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment. PMID:27735936

  3. Aging and Bone Health in Individuals with Developmental Disabilities

    PubMed Central

    Jasien, Joan; Daimon, Caitlin M.; Maudsley, Stuart; Shapiro, Bruce K.; Martin, Bronwen

    2012-01-01

    Low bone mass density (BMD), a classical age-related health issue and a known health concern for fair skinned, thin, postmenopausal Caucasian women, is found to be common among individuals with developmental/intellectual disabilities (D/IDs). It is the consensus that BMD is decreased in both men and women with D/ID. Maintaining good bone health is important for this population as fractures could potentially go undetected in nonverbal individuals, leading to increased morbidity and a further loss of independence. This paper provides a comprehensive overview of bone health of adults with D/ID, their risk of fractures, and how this compares to the general aging population. We will specifically focus on the bone health of two common developmental disabilities, Down syndrome (DS) and cerebral palsy (CP), and will discuss BMD and fracture rates in these complex populations. Gaining a greater understanding of how bone health is affected in individuals with D/ID could lead to better customized treatments for these specific populations. PMID:22888344

  4. Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice.

    PubMed

    Shahnazari, Mohammad; Dwyer, Denise; Chu, Vivian; Asuncion, Frank; Stolina, Marina; Ominsky, Michael; Kostenuik, Paul; Halloran, Bernard

    2012-03-01

    We examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion. Trabecular bone loss temporally correlated with reductions in biomarkers of bone formation and resorption in both peripheral blood and bone marrow. Endocortical bone loss and periosteal bone gain were not reflected in these protein biomarkers, but were well correlated with increased expression of osteocalcin, rank, tracp5b, and cathepsinK in RNA extracted from cortical bone. While age-related changes in bone turnover markers remained concordant in blood versus marrow, aging led to divergent changes in blood versus marrow for the bone cell regulators RANKL, OPG, sclerostin, DKK1, and serotonin. Bone expression of runx2 and osterix increased progressively with aging and was associated with an increase in the number of osteoprogenitors and osteoclast precursors. In summary, levels of biochemical markers of bone turnover in blood and bone marrow plasma were predictive of an age-related loss of trabecular surfaces in adult C57BL/6 mice, but did not predict gains in cortical surfaces resulting from cortical expansion. Unlike these turnover markers, a panel of bone cell regulatory proteins exhibited divergent age-related changes in marrow versus peripheral blood, suggesting that their circulating levels may not reflect local levels to which osteoclasts and osteoblasts are directly exposed.

  5. Bone Age Assessment of Children using a Digital Hand Atlas

    PubMed Central

    Gertych, Arkadiusz; Zhang, Aifeng; Sayre, James; Pospiech-Kurkowska, Sylwia; Huang, H.K

    2007-01-01

    We have developed an automated method to assess bone age of children using a digital hand atlas. The hand Atlas consists of two components. The first component is a database which is comprised of a collection of 1,400 digitized left hand radiographs from evenly distributed normally developed children of Caucasian (CA), Asian (AS), African-American (AA) and Hispanic (HI) origin, male (M) and female (F), ranged from 1 to 18 year old; and relevant patient demographic data along with pediatric radiologists' readings of each radiograph. This data is separate into eight categories: CAM, CAF, AAM, AAF, HIM, HIF, ASM, and ASF. In addition, CAM, AAM, HIM, and ASM are combined as one male category; and CAF, AAF, HIF, and ASF are combined as one female category. The male and female are further combined as the F & M category. The second component is a computer-assisted diagnosis (CAD) module to assess a child bone age based on the collected data. The CAD method is derived from features extracted from seven regions of interest (ROIs): the carpal bone ROI, and six phanlangeal PROIs. The PROIs are six areas including the distal and middle regions of three middle fingers. These features were used to train the eleven category fuzzy classifiers: one for each race and gender, one for the female, one male, and one F & M, to assess the bone age of a child. The digital hand atlas is being integrated with a PACS for validation of clinical use. PMID:17387000

  6. Advances in bone marrow stem cell therapy for retinal dysfunction.

    PubMed

    Park, Susanna S; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D; Grant, Maria B; Zam, Azhar; Zawadzki, Robert J; Werner, John S; Nolta, Jan A

    2017-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34(+) cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34(+) cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.

  7. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2010-01-01

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419

  8. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone.

    PubMed

    Tang, S Y; Vashishth, D

    2011-01-11

    The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk.

  9. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  10. Diagnostic workstation for digital hand atlas in bone age assessment

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Ominsky, Steven

    1998-06-01

    Bone age assessment by a radiological examination of a hand and wrist image is a procedure frequently performed in pediatric patients to evaluate growth disorders, determine growth potential in children and monitor therapy effects. The assessment method currently used in radiological diagnosis is based on atlas matching of the diagnosed hand image with the reference set of atlas patterns, which was developed in 1950s and is not fully applicable for children of today. We intent to implement a diagnostic workstation for creating a new reference set of clinically normal images which will serve as a digital atlas and can be used for a computer-assisted bone age assessment. In this paper, we present the initial data- collection and system setup phase of this five-year research program. We describe the system design, user interface implementation and software tool development for collection, visualization, management and processing of clinically normal hand and wrist images.

  11. Exercise in youth: High bone mass, large bone size, and low fracture risk in old age.

    PubMed

    Tveit, M; Rosengren, B E; Nilsson, J Å; Karlsson, M K

    2015-08-01

    Physical activity is favorable for peak bone mass but if the skeletal benefits remain and influence fracture risk in old age is debated. In a cross-sectional controlled mixed model design, we compared dual X-ray absorptiometry-derived bone mineral density (BMD) and bone size in 193 active and retired male elite soccer players and 280 controls, with duplicate measurements of the same individual done a mean 5 years apart. To evaluate lifetime fractures, we used a retrospective controlled study design in 397 retired male elite soccer players and 1368 controls. Differences in bone traits were evaluated by Student's t-test and fracture risk assessments by Poisson regression and Cox regression. More than 30 years after retirement from sports, the soccer players had a Z-score for total body BMD of 0.4 (0.1 to 0.6), leg BMD of 0.5 (0.2 to 0.8), and femoral neck area of 0.3 (0.0 to 0.5). The rate ratio for fracture after career end was 0.6 (0.4 to 0.9) and for any fragility fracture 0.4 (0.2 to 0.9). Exercise-associated bone trait benefits are found long term after retirement from sports together with a lower fracture risk. This indicates that physical activity in youth could reduce the burden of fragility fractures.

  12. Male biological clock: a critical analysis of advanced paternal age

    PubMed Central

    Ramasamy, Ranjith; Chiba, Koji; Butler, Peter; Lamb, Dolores J.

    2016-01-01

    Extensive research defines the impact of advanced maternal age on couples’ fecundity and reproductive outcomes, but significantly less research has been focused on understanding the impact of advanced paternal age. Yet it is increasingly common for couples at advanced ages to conceive children. Limited research suggests that the importance of paternal age is significantly less than that of maternal age, but advanced age of the father is implicated in a variety of conditions affecting the offspring. This review examines three aspects of advanced paternal age: the potential problems with conception and pregnancy that couples with advanced paternal age may encounter, the concept of discussing a limit to paternal age in a clinical setting, and the risks of diseases associated with advanced paternal age. As paternal age increases, it presents no absolute barrier to conception, but it does present greater risks and complications. The current body of knowledge does not justify dissuading older men from trying to initiate a pregnancy, but the medical community must do a better job of communicating to couples the current understanding of the risks of conception with advanced paternal age. PMID:25881878

  13. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  14. Automated bone age assessment: motivation, taxonomies, and challenges.

    PubMed

    Mansourvar, Marjan; Ismail, Maizatul Akmar; Herawan, Tutut; Raj, Ram Gopal; Kareem, Sameem Abdul; Nasaruddin, Fariza Hanum

    2013-01-01

    Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research.

  15. Automated Bone Age Assessment: Motivation, Taxonomies, and Challenges

    PubMed Central

    Ismail, Maizatul Akmar; Herawan, Tutut; Gopal Raj, Ram; Abdul Kareem, Sameem; Nasaruddin, Fariza Hanum

    2013-01-01

    Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research. PMID:24454534

  16. Evaluation of dental and bone age in iron-deficient anemic children of South India

    PubMed Central

    Kumar, Vinod; Haridas, Harish; Hunsigi, Prahlad; Farooq, Umar; Erugula, Sridhar R.; Ealla, Kranti K. R.

    2016-01-01

    Aims and Objectives: Dental and bone age is very essential for the dental practitioner in planning treatments and is an extra source of information for the pediatrician, orthopedician, and endocrinologist. There are few published data regarding collation between dental age, bone age, and chronological age in iron-deficiency anemic children. This study has been undertaken to evaluate and compare dental age, bone age, and chronological age in children with iron-deficiency anemia. Materials and Methods: One hundred iron-deficiency anemic children were selected in the age group of 8–14 years. Chronological age of the child was recorded by asking birth date from parents or checking school records. Dental age was calculated by Demirjians method and bone age was evaluated using Bjork, Grave, and Brown's method. Unpaired student's t-test and Pearson's correlation coefficient were the two statistical tests applied to compare dental, bone, and chronological age. Results: Dental and bone age was significantly lower (P < 0.001) compared to chronological age. The correlation between the three ages was positive in both sexes. Conclusion: Dental and bone age retardation was a significant feature in our sample of 100 iron-deficient anemic children. Bone age and dental age are valuable parameters in assessing the overall growth of the child. Further studies are required to corroborate our findings. PMID:27891309

  17. Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones.

    PubMed

    Maher, Jason R; Inzana, Jason A; Awad, Hani A; Berger, Andrew J

    2013-07-01

    Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, further advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS.

  18. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    SciTech Connect

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  19. Aging and fracture of human cortical bone and tooth dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt J.; Ager, Joel W.; Ritchie, Robert O.

    2008-06-01

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms, which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force (e.g., the stress intensity) as a function of crack extension (“R-curve approach”). Here this methodology is used to study the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  20. Use of Aromatase Inhibitors in Large Cell Calcifying Sertoli Cell Tumors: Effects on Gynecomastia, Growth Velocity, and Bone Age

    PubMed Central

    Crocker, Melissa K.; Gourgari, Evgenia; Stratakis, Constantine A.

    2014-01-01

    Context: Large cell calcifying Sertoli cell tumors (LCCSCT) present in isolation or, especially in children, in association with Carney Complex (CNC) or Peutz-Jeghers Syndrome (PJS). These tumors overexpress aromatase (CYP19A1), which leads to increased conversion of delta-4-androstenedione to estrone and testosterone to estradiol. Prepubertal boys may present with growth acceleration, advanced bone age, and gynecomastia. Objective: To investigate the outcomes of aromatase inhibitor therapy (AIT) in prepubertal boys with LCCSCTs. Design: Case series of a very rare tumor and chart review of cases treated at other institutions. Setting: Tertiary care and referral center. Patients: Six boys, five with PJS and one with CNC, were referred to the National Institutes of Health for treatment of LCCSCT. All patients had gynecomastia, testicular enlargement, and advanced bone ages, and were being treated by their referring physicians with AIT. Interventions: Patients were treated for a total of 6–60 months on AIT. Main Outcome Measures: Height, breast tissue mass, and testicular size were all followed; physical examination, scrotal ultrasounds, and bone ages were obtained, and hormonal concentrations and tumor markers were measured. Results: Tumor markers were negative. All patients had decreases in breast tissue while on therapy. Height percentiles declined, and predicted adult height moved closer to midparental height as bone age advancement slowed. Testicular enlargement stabilized until entry into central puberty. Only one patient required unilateral orchiectomy. Conclusions: Patients with LCCSCT benefit from AIT with reduction and/or elimination of gynecomastia and slowing of linear growth and bone age advancement. Further study of long-term outcomes and safety monitoring are needed but these preliminary data suggest that mammoplasty and/or orchiectomy may be foregone in light of the availability of medical therapy. PMID:25226294

  1. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  2. Factors that characterize bone health with aging in healthy postmenopausal women.

    PubMed

    Ikegami, Shota; Uchiyama, Shigeharu; Nakamura, Yukio; Mukaiyama, Keijiro; Hirabayashi, Hiroki; Kamimura, Mikio; Nonaka, Kiichi; Kato, Hiroyuki

    2015-07-01

    The exponential increase in the incidence of fragility fractures in older people is attributed to attenuation of both bone strength and neuromuscular function. Decrease in bone mineral density (BMD) does not entirely explain this increase. The objective of this study is to investigate the effect of age on various parameters related to bone health with aging, and to identify combinations of factors that collectively express the bone metabolic state in healthy postmenopausal women. Height, weight, and grip strength were measured in 135 healthy postmenopausal volunteer women. Hip BMD, biomechanical indices derived from quantitative computed tomography (QCT), cross-sectional areas of muscle and fat of the proximal thigh, and various biochemical markers of bone metabolism were measured. A smaller group of factors explanatory for bone health was identified using factor analysis and each was newly named. As a result, the factors bone mass, bone turnover, bone structure, and muscle strength had the greatest explanatory power for assessing the bone health of healthy postmenopausal women. Whereas dual X-ray absorptiometry parameters only loaded on the factor bone mass, QCT parameters loaded on both the factors bone mass and bone structure. Most bone turnover markers loaded on the factor bone turnover, but deoxypyridinoline loaded on both bone turnover and muscle strength. Age was negatively correlated with bone mass (r = -0.49, p < 0.001) and muscle strength (r = -0.67, p < 0.001). We conclude that aging is associated as much with muscle weakening as with low BMD. More attention should be paid to the effects of muscle weakening during aging in assessments of bone health.

  3. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice.

    PubMed

    Diderich, Karin E M; Nicolaije, Claudia; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Botter, Sander M; Weinans, Harrie; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-08-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism.

  4. Advanced paternal age and reproductive outcome

    PubMed Central

    Wiener-Megnazi, Zofnat; Auslender, Ron; Dirnfeld, Martha

    2012-01-01

    Women have been increasingly delaying the start of motherhood in recent decades. The same trend is seen also for men. The influence of maternal age on fertility, chromosomal anomalies, pregnancy complications, and impaired perinatal and post-natal outcome of offspring, has been thoroughly investigated, and these aspects are clinically applied during fertility and pregestational counseling. Male aging and reproductive outcome has gained relatively less attention. The purpose of this review is to evaluate updated and relevant literature on the effect of paternal age on reproductive outcome. PMID:22157982

  5. Outcomes of temporal bone resection for locally advanced parotid cancer.

    PubMed

    Mehra, Saral; Morris, Luc G; Shah, Jatin; Bilsky, Mark; Selesnick, Samuel; Kraus, Dennis H

    2011-11-01

    This study was conducted to report outcomes and identify factors predictive of survival and recurrence in patients undergoing lateral temporal bone resection (LTBR) as part of an extended radical parotidectomy for parotid cancer. This is a retrospective cohort study which includes all patients undergoing LTBR for parotid cancer between 1994 and 2010 at two affiliated academic centers. Survival and recurrence rates were analyzed using the Kaplan-Meier method and Cox multivariate regression. A total of 12 patients with median follow-up duration of 30.6 months were included: 6 de novo cases and 6 patients referred after local recurrence. Actuarial locoregional control at 2 years was 73%. Most patients (11; 92%) developed disease recurrence with distant metastases the most common site of first failure (83%). Overall and disease-specific survival rates were 80% at 2 years and 22.5% at 5 years. Recurrence-free survival (RFS) was 67% at 2 years and 8.3% at 5 years. On multivariate analysis, surgical margin status was an independent predictor of RFS (hazard ratio = 3.85, p = 0.045). In advanced parotid cancer, LTBR with a goal of gross total resection offers good locoregional control with an acceptable complication rate. The benefits of this surgery must be balanced with the morbidity and low likelihood of long-term survival, with most patients ultimately experiencing disease recurrence and death.

  6. Outcomes of Temporal Bone Resection for Locally Advanced Parotid Cancer

    PubMed Central

    Mehra, Saral; Morris, Luc G.; Shah, Jatin; Bilsky, Mark; Selesnick, Samuel; Kraus, Dennis H.

    2011-01-01

    This study was conducted to report outcomes and identify factors predictive of survival and recurrence in patients undergoing lateral temporal bone resection (LTBR) as part of an extended radical parotidectomy for parotid cancer. This is a retrospective cohort study which includes all patients undergoing LTBR for parotid cancer between 1994 and 2010 at two affiliated academic centers. Survival and recurrence rates were analyzed using the Kaplan-Meier method and Cox multivariate regression. A total of 12 patients with median follow-up duration of 30.6 months were included: 6 de novo cases and 6 patients referred after local recurrence. Actuarial locoregional control at 2 years was 73%. Most patients (11; 92%) developed disease recurrence with distant metastases the most common site of first failure (83%). Overall and disease-specific survival rates were 80% at 2 years and 22.5% at 5 years. Recurrence-free survival (RFS) was 67% at 2 years and 8.3% at 5 years. On multivariate analysis, surgical margin status was an independent predictor of RFS (hazard ratio = 3.85, p = 0.045). In advanced parotid cancer, LTBR with a goal of gross total resection offers good locoregional control with an acceptable complication rate. The benefits of this surgery must be balanced with the morbidity and low likelihood of long-term survival, with most patients ultimately experiencing disease recurrence and death. PMID:22547966

  7. Value of bone scintigraphy for detection and ageing of vertebral fractures in patients with severe osteoporosis and correlation between bone scintigraphy and mineral bone density.

    PubMed

    Kucukalic-Selimovic, Elma; Begic, Amela

    2004-01-01

    Osteoporosis is the most common of the metabolic bone diseases, and is an important cause of morbidity in the elderly. Bone scintigraphy is used to detect skeletal lesions at the earliest possible time, to monitor the course of the skeletal discase and to evaluate the metabolic activity of skeletal lesions. The aim of this study was to determine, by using the bone scan age of vertebral fractures in patients with severe osteoporosis, and make correlation between bone scintigraphy and mineral bone density. Material and methods 30 female patients were studied with bone scintigraphy after BMD.BMD was measurred with DEXA Hologic QDR 4500 Elite System. Correlation between T-score and uptake of radiofarmaceutical (Tc-99mMDP) was 0.849, and it was high. Intensity of uptake of Tc-99m MDP scintigraphy is an accurate method for the detection and ageing of fractures in osteoporotic patients.

  8. Vaccination with DKK1-derived peptides promotes bone formation and bone mass in an aged mouse osteoporosis model.

    PubMed

    Wu, Qiong; Li, Rui-Shu; Zhao, Yue; Wang, Zhi-Xia; Tang, Yan-Chun; Zhang, Jing; Liu, Jian-Ning; Tan, Xiang-Yang

    2014-08-01

    The investigation of agents for the treatment of osteoporosis has been a long-standing effort. The Wnt pathway plays an important role in bone formation and regeneration, and expression of Wnt pathway inhibitors, Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of DKK1 leads to substantially increased bone mass in genetically manipulated animals. DKK1-derived peptides (DDPs) were added to BMP2-stimulated MC3T3-E1 preosteoblastic cells in vitro to evaluate inhibitory activity of DDPs in MC3T3-E1 cell differentiation. Study was extended in vivo on old female mice to show whether or not inhibition of endogenous DKK1 biological activity using DDPs vaccination approach leads to increase of bone formation, bone density, and improvement of bone microstructure. We reported that synthetic DDPs were able to reduce alkaline phosphatase activity, prevent mineralization and inhibit the differentiation of MC3T3-E1 cells in vitro. Furthermore, vaccination with these DDPs in aged female mice 4 times for a total period of 22 weeks promoted bone mass and bone microstructure. 3D microCT and histomorphometric analysis showed that there were significant increase in bone mineral densities, improvement of bone microstructure and promotion of bone formation in the vaccinated mice, especially in the mice vaccinated with DDP-A and DDP-C. Histological and scanning electron microscopy image analysis also indicated that vaccination increased trabecular bone mass and significantly decreased fragmentation of bone fibers. Taken together, these preclinical results suggest that vaccination with DDPs represents a promising new therapeutic approach for the treatment of bone-related disorders, such as osteoporosis.

  9. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  10. Effects of dry aging of bone-in and boneless strip loins using two aging processes for two aging times.

    PubMed

    Degeer, S L; Hunt, M C; Bratcher, C L; Crozier-Dodson, B A; Johnson, D E; Stika, J F

    2009-12-01

    This experiment investigated the combined effects of two dry-aging methods (unpackaged and in a bag), two loin-cut styles (bone-in shell loins and boneless strip loins), and two aging times (21 and 28days) on the physical, chemical, sensory, and microbial properties of dry-aged beef. Sections from shell and strip loin were assigned randomly to be aged unpackaged or aged packaged in a bag with high moisture permeability. Weight losses increased with aging time. Shell loins lost more (P<0.05) weight during aging compared with strip loins; dry aging in a bag had less (P<0.05) weight loss than unpackaged aging. There were no differences (P>0.05) in any of the sensory traits between shell and strip loins or dry aging using a traditional method or in a bag. Dry aging in a bag creates positive effects on yields, no negative effects on product quality, and adds flexibility and control of the aging environment.

  11. Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.

    PubMed

    Koester, K J; Barth, H D; Ritchie, R O

    2011-10-01

    The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone specifically in the transverse (breaking) orientation. Because bone exhibits rising crack-growth resistance with crack extension, the aging-related transverse toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from a wide range of age groups (25-74 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; however, the effect is far smaller than that reported for the longitudinal toughness of cortical bone. Whereas the longitudinal crack-growth toughness has been reported to be reduced by almost an order of magnitude for human cortical bone over this age range, the corresponding age-related decrease in transverse toughness is merely ~14%. Similar to that reported for X-ray irradiated bone, with aging cracks in the transverse direction are subjected to an increasing incidence of crack deflection, principally along the cement lines, but the deflections are smaller and result in a generally less tortuous crack path.

  12. Computer-assisted analysis of cervical vertebral bone age using cephalometric radiographs in Brazilian subjects.

    PubMed

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter Neto, Francisco

    2010-01-01

    The aims of this study were to develop a computerized program for objectively evaluating skeletal maturation on cephalometric radiographs, and to apply the new method to Brazilian subjects. The samples were taken from the patient files of Oral Radiological Clinics from the North, Northeast, Midwest and South regions of the country. A total of 717 subjects aged 7.0 to 15.9 years who had lateral cephalometric radiographs and hand-wrist radiographs were selected. A cervical vertebral computerized analysis was created in the Radiocef Studio 2 computer software for digital cephalometric analysis, and cervical vertebral bone age was calculated using the formulas developed by Caldas et al.17 (2007). Hand-wrist bone age was evaluated by the TW3 method. Analysis of variance (ANOVA) and the Tukey test were used to compare cervical vertebral bone age, hand-wrist bone age and chronological age (P < 0.05). No significant difference was found between cervical vertebral bone age and chronological age in all regions studied. When analyzing bone age, it was possible to observe a statistically significant difference between cervical vertebral bone age and hand-wrist bone age for female and male subjects in the North and Northeast regions, as well as for male subjects in the Midwest region. No significant difference was observed between bone age and chronological age in all regions except for male subjects in the North and female subjects in the Northeast. Using cervical vertebral bone age, it might be possible to evaluate skeletal maturation in an objective manner using cephalometric radiographs.

  13. [Drivers of advanced age in traffic accidents].

    PubMed

    Bilban, Marjan

    2002-12-01

    The elderly are vulnerable and potentially unpredictable active participants in traffic who deserve special attention. Longer life expectancy entails a greater number of senior drivers, that is, persons with various health problems and difficulties accompanying old age. At the turn of the millennium, the share of population aged 65 or more in Slovenia was around 13%, and in 25 years it will be near as much as 19%. The share of drivers from this age group was 28% a year ago, and it is expected to reach about 54%. Numerous studies have shown that there are many differences in driving attitude between the young and the elderly. The young are by large active victims, and their main offense and cause of accident is speeding, while the elderly are more passive and their main offense is ignoring and enforcing the right of way. This paper focuses on the differences in the occurrence and type of injuries between the young and the elderly drivers, based on an analysis of all road accidents in Slovenia in the period between 1998-2000. Older people (over 65) caused only 4.7% of all road accidents (16.7% of all accidents involving pedestrians, 11.5% of all involving cyclists, 2.7% involving motorcyclists and 5% of all accidents involving car drivers). Of all accidents, 89.3% were without injuries, and the fatal outcome was registered in 0.4% accidents. Among the elderly (65-74 years of age), however, this share was 1%, and rising to 2.7% with the age 75 and above. By calculating the weight index, which discriminates between minor and severe injuries, and the fatal outcome, it was established that age groups 65-74 and > or = 75 cause three and five times greater damage, respectively than age groups from 18 to 54 years. With years, psychophysical changes lead to a drop in driving ability, which in turn increases the risk of road accidents. It is true that elderly people cause less traffic accidents (and also drive less) than the young, but when they are involved in an accident

  14. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes.

    PubMed

    Yamagishi, Sho-ichi

    2011-04-01

    A non-enzymatic reaction between ketones or aldehydes and the amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and to the development and progression of various age-related disorders such as vascular complications of diabetes, Alzheimer's disease, cancer growth and metastasis, insulin resistance and degenerative bone disease. Under hyperglycemic and/or oxidative stress conditions, this process begins with the conversion of reversible Schiff base adducts, and then to more stable, covalently-bound Amadori rearrangement products. Over a course of days to weeks, these early glycation products undergo further reactions and rearrangements to become irreversibly crossed-linked, fluorescent protein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence that AGE and their receptor RAGE (receptor for AGEs) interaction elicits oxidative stress, inflammatory reactions and thrombosis, thereby being involved in vascular aging and damage. These observations suggest that the AGE-RAGE system is a novel therapeutic target for preventing diabetic vascular complications. In this paper, we review the pathophysiological role of the AGE-RAGE-oxidative stress system and its therapeutic intervention in vascular damage in diabetes. We also discuss here the potential utility of the restriction of food-derived AGEs in diabetic vascular complications.

  15. Age related changes in the bone tissue under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Podrushnyak, E. P.; Suslov, E. I.

    1980-01-01

    Microroentgenography of nine young people, aged 24-29, before and after hypokinesia (16-37 days strict bed rest), showed that the heel bone density of those with initially high bone density generally decreased and that of those with initially low bone density generally increased. X-ray structural analysis of the femurs of 25 corpses of accidentally killed healthy people, aged 18-70, data are presented and discussed, with the conclusion that the bone hydroxyapatite crystal structure stabilizes by ages 20 to 25, is stable from ages 25 to 60 and decreases in density after age 60. It is concluded that bone tissue structure changes, both with age, and in a comparatively short time in hypokinesia.

  16. Inhibition of CaMKK2 Reverses Age-Associated Decline in Bone Mass

    PubMed Central

    Pritchard, Zachary J.; Cary, Rachel L.; Yang, Chang; Novack, Deborah V.; Voor, Michael J.; Sankar, Uma

    2016-01-01

    Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2−/− mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral midshaft geometry, the

  17. Fully Automated Deep Learning System for Bone Age Assessment.

    PubMed

    Lee, Hyunkwang; Tajmir, Shahein; Lee, Jenny; Zissen, Maurice; Yeshiwas, Bethel Ayele; Alkasab, Tarik K; Choy, Garry; Do, Synho

    2017-03-08

    Skeletal maturity progresses through discrete phases, a fact that is used routinely in pediatrics where bone age assessments (BAAs) are compared to chronological age in the evaluation of endocrine and metabolic disorders. While central to many disease evaluations, little has changed to improve the tedious process since its introduction in 1950. In this study, we propose a fully automated deep learning pipeline to segment a region of interest, standardize and preprocess input radiographs, and perform BAA. Our models use an ImageNet pretrained, fine-tuned convolutional neural network (CNN) to achieve 57.32 and 61.40% accuracies for the female and male cohorts on our held-out test images. Female test radiographs were assigned a BAA within 1 year 90.39% and within 2 years 98.11% of the time. Male test radiographs were assigned 94.18% within 1 year and 99.00% within 2 years. Using the input occlusion method, attention maps were created which reveal what features the trained model uses to perform BAA. These correspond to what human experts look at when manually performing BAA. Finally, the fully automated BAA system was deployed in the clinical environment as a decision supporting system for more accurate and efficient BAAs at much faster interpretation time (<2 s) than the conventional method.

  18. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice.

    PubMed

    Rivas, Daniel; Li, Wei; Akter, Rahima; Henderson, Janet E; Duque, Gustavo

    2009-10-01

    Age-related bone loss is associated with changes in bone cellularity, which include marrow fat infiltration and decreasing levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although nuclear lamina alterations occur in premature aging syndromes that include changes in body fat and severe osteoporosis, the role of proteins of the nuclear lamina in age-related bone loss remains unknown. Using the Zmpste24-null progeroid mice (Zmpste24(-/-)), which exhibit nuclear lamina defects and accumulate unprocessed prelamin A, we identified several alterations in bone cellularity in vivo. We found that defective prelamin A processing induced accelerated features of age-related bone loss including lower osteoblast and osteocyte numbers and higher levels of marrow adipogenesis. In summary, processing of prelamin A could become a new approach to regulate osteoblastogenesis and bone turnover and thus for the prevention and treatment of senile osteoporosis.

  19. Predictors of Driving Outcomes in Advancing Age

    PubMed Central

    Emerson, Jamie L.; Johnson, Amy M.; Dawson, Jeffrey D.; Uc, Ergun Y.; Anderson, Steven W.

    2012-01-01

    This study aimed to develop predictive models for real-life driving outcomes in older drivers. Demographics, driving history, on-road driving errors, and performance on visual, motor, and neuropsychological test scores at baseline were assessed in 100 older drivers (ages 65–89 years [72.7]). These variables were used to predict time to driving cessation, first moving violation, or crash. Using Cox proportional hazards regression models, significant individual predictors for driving cessation were greater age and poorer scores on Near Visual Acuity, Contrast Sensitivity, Useful Field of View, Judgment of Line Orientation, Trail Making Test-Part A, Benton Visual Retention Test, Grooved Pegboard, and a composite index of overall cognitive ability. Greater weekly mileage, higher education, and “serious” on-road errors predicted moving violations. Poorer scores from Trail Making Test-Part B or Trail Making Test (B-A) and serious on-road errors predicted crashes. Multivariate models using “off-road” predictors revealed (1) age and Contrast Sensitivity as best predictors for driving cessation; (2) education, weekly mileage, and Auditory Verbal Learning Task-Recall for moving violations; and (3) education, number of crashes over the past year, Auditory Verbal Learning Task-Recall, and Trail Making Test (B-A) for crashes. Diminished visual, motor, and cognitive abilities in older drivers can be easily and noninvasively monitored with standardized off-road tests, and performances on these measures predict involvement in motor vehicle crashes and driving cessation, even in the absence of a neurological disorder. PMID:22182364

  20. Advances in the fracture mechanics of cortical bone.

    PubMed

    Bonfield, W

    1987-01-01

    As cortical bone is a semi-brittle solid, its fracture is dependent not only on the magnitude of the applied stress, but also on the nature of any intrinsic or introduced cracks. Consequently a variety of fracture mechanics techniques have been utilised to evaluate the fracture toughness of cortical bone, including the single edge notched, centre notched cylindrical and compact tension methods, and values have been established for the critical stress intensity factor (Kc) and the critical strain energy release rate (Gc). The Kc and Gc values obtained depend on the orientation of the cortical bone, as well as on bone density, the velocity of crack propagation and specimen geometry. The significance of these fracture mechanics parameters for cortical bone is critically reviewed.

  1. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  2. Primiparity at very advanced maternal age (≥ 45 years).

    PubMed

    Glasser, Saralee; Segev-Zahav, Aliza; Fortinsky, Paige; Gedal-Beer, Debby; Schiff, Eyal; Lerner-Geva, Liat

    2011-06-30

    This study describes maternal and birth outcomes of primiparae aged ≥ 45. High rates of pregnancy complications and poor birth outcomes were found, stressing that the personal risks and ramifications to the health system should be taken into account in establishing obstetric health policy regarding primiparity at advanced maternal age.

  3. Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats.

    PubMed

    Hooshmand, Shirin; Balakrishnan, Anju; Clark, Richard M; Owen, Kevin Q; Koo, Sung I; Arjmandi, Bahram H

    2008-08-01

    Postmenopausal bone loss is a major public health concern. Although drug therapies are available, women are interested in alternative/adjunct therapies to slow down the bone loss associated with ovarian hormone deficiency. The purpose of this study was to determine whether dietary supplementation of l-carnitine can influence bone density and slow the rate of bone turnover in an aging ovariectomized rat model. Eighteen-month-old Fisher-344 female rats were ovariectomized and assigned to two groups: (1) a control group in which rats were fed ad libitum a carnitine-free (-CN) diet (AIN-93M) and (2) another fed the same diet but supplemented with l-carnitine (+CN). At the end of 8 weeks of feeding, animals were sacrificed and bone specimens were collected for measuring bone mineral content (BMC) and density (BMD) using dual energy X-ray absorptiometry. Femoral microarchitectural properties were assessed by microcomputed tomography. Femoral mRNA levels of selected bone matrix proteins were determined by northern blot analysis. Data showed that tibial BMD was significantly higher in the rat fed the +CN diet than those fed the -CN (control) diet. Dietary carnitine significantly decreased the mRNA level of tartrate-resistant acid phosphatase (TRAP), an indicator of bone resorption by 72.8%, and decreased the mRNA abundance of alkaline phosphatase (ALP) and collagen type-1 (COL), measures of bone formation by 63.6% and 61.2%, respectively. The findings suggest that carnitine supplementation slows bone loss and improves bone microstructural properties by decreasing bone turnover.

  4. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration.

    PubMed

    Ambrosi, Thomas H; Scialdone, Antonio; Graja, Antonia; Gohlke, Sabrina; Jank, Anne-Marie; Bocian, Carla; Woelk, Lena; Fan, Hua; Logan, Darren W; Schürmann, Annette; Saraiva, Luis R; Schulz, Tim J

    2017-03-13

    Aging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.

  5. The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone.

    PubMed

    Milovanovic, Petar; Zimmermann, Elizabeth A; Vom Scheidt, Annika; Hoffmann, Björn; Sarau, George; Yorgan, Timur; Schweizer, Michaela; Amling, Michael; Christiansen, Silke; Busse, Björn

    2017-01-01

    Osteocytes-the central regulators of bone remodeling-are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno-canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high-resolution imaging and physics-based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.

  6. [The principal mechanisms of age-related involution of wrist bones].

    PubMed

    Pigolkin, Iu I; Fedulova, M V; Iurchenko, M A

    2012-01-01

    The objective of the present study was to elucidate the general mechanisms underlying age-specific changes in the bone tissue of the wrists by the assessment of the signs of their ageing on X-ray images. Roentgenograms of the left wrist of 261 men and 333 women at the age varying from 18 to 90 years were analysed by the planigraphic technique with the use of a scoring system for the estimation of the severity of the signs of ageing (osteoporosis, osteophytes). The study has shown that the signs of ageing in wrist bones become apparent approximately 4-6 years after the completion of ossification. The age-specific changes in the bones are characterized by a strong sexual dimorphism while both the rate of appearance and the intensity of expression of the markers of bone ageing depend on their localization on the radius and phalanges.

  7. Alfacalcidol increases cancellous bone in low turnover, fatty marrow sites in aged, orchidectomized rats.

    PubMed

    Tian, X Y; Chen, H Y; Setterberg, R B; Li, M; Jee, W S S

    2009-01-01

    The objectives of this study were to determine the responses of cancellous bone in the distal tibial metaphysis (DTM), a low turnover, fatty (yellow) marrow site, to sham-aged, orchidectomy (ORX) and alfacalcidol treatment in sham-aged and ORX rats. Eighteen-month-old male sham and ORX rats were treated with 0.1 and 0.2 microg/kg alfacalcidol 5 days/wk p.o. for 12 weeks, double fluorescent labeled, and the DTM were processed for bone histomorphometry analyses. The current study found the DTM in sham-aged male rats were resistant to age-related and ORX-induced cancellous bone loss and alfacalcidol-induced bone gain, findings that differ from that in the proximal tibial metaphysis (PTM) and lumbar vertebral body (LVB), two high turnover, red marrow bone sites. However, alfacalcidol treatment increased DTM bone mass in ORX rats where bone turnover was elevated by androgen deficiency. These results in concert with the previously positive findings in red marrow bone sites following alfacalcidol treatment suggest that alfacalcidol is more effective in increasing cancellous bone mass in the skeletal sites with higher bone turnover.

  8. Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone

    PubMed Central

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688

  9. Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy.

    PubMed

    Georgiou, Kristen R; Hui, Susanta K; Xian, Cory J

    2012-01-01

    The bone marrow is a complex environment that houses haematopoietic and mesenchymal cell populations and regulates bone turnover throughout life. The high proliferative capacity of these cell populations however, makes them susceptible to damage and injury, altering the steady-state of the bone marrow environment. Following cancer chemotherapy, irradiation and long-term glucocorticoid use, reduced bone and increased fat formation of marrow stromal progenitor cells results in a fatty marrow cavity, reduced bone mass and increased fracture risk. These bone and marrow defects are also observed in age-related complications such as estrogen deficiency and increased oxidative stress. Although the underlying mechanisms are yet to be clarified, recent investigations have suggested a switch in lineage commitment of bone marrow mesenchymal stem cells down the adipogenic lineage at the expense of osteogenic differentiation following such stress or injury. The Wnt/β-catenin signalling pathway is however has been recognized the key mechanism regulating stromal commitment, and its involvement in the osteogenic and adipogenic lineage commitment switch under the damaging conditions has been of great interest. This article reviews the effects of various types of stress or injury on the commitment to the adipogenic and osteogenic lineages of bone marrow stromal progenitor cells, and summarizes the roles of the Wnt/β-catenin and associated signalling pathways in the lineage commitment, switch, and recovery after damage, and as a therapeutic target.

  10. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  11. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The

  12. Age determination in manatees using growth-layer-group counts in bone

    USGS Publications Warehouse

    Marmontel, M.; O'Shea, T.J.; Kochman, H.I.; Humphrey, S.R.

    1996-01-01

    Growth layers were observed in histological preparations of bones of known-age, known minimum-age, and tetracycline-marked free-ranging and captive Florida manatees (Trichechus manatus latirostris), substantiating earlier preliminary findings of other studies. Detailed analysis of 17 new case histories showed that growth-layer group (GLG) counts in the periotic bone were consistent with known age, or time since tetracycline administration, but were less reliable in other bones. GLG counts were also made in periotic bones of 1,196 Florida manatees of unknown age found dead from 1974 through 1991. These counts were conducted in order to assess variability and to determine relationships among estimated age, size, sex, and degree of bone resorption. Resorption can interfere with accuracy of GLG counts. This effect does not occur until ages greater than about 15 yr and body lengths greater than 300 cm are attained. GLGs were also observed in periotic bones of Antillean manatees (Trichechus manatus manatus) but were not validated against known-age specimens. Use of GLG counts in the periotic bone is suitable for application to studies of population dynamics and other age-related aspects of manatee biology.

  13. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ganglia. (iv) Spinal cord. Vertebral column bones that enter the AMR system have tissues of spinal cord... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... section, and (2) Without the presence of any brain, trigeminal ganglia, spinal cord, or dorsal...

  14. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ganglia. (iv) Spinal cord. Vertebral column bones that enter the AMR system have tissues of spinal cord... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... section, and (2) Without the presence of any brain, trigeminal ganglia, spinal cord, or dorsal...

  15. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ganglia. (iv) Spinal cord. Vertebral column bones that enter the AMR system have tissues of spinal cord... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... section, and (2) Without the presence of any brain, trigeminal ganglia, spinal cord, or dorsal...

  16. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ganglia. (iv) Spinal cord. Vertebral column bones that enter the AMR system have tissues of spinal cord... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... section, and (2) Without the presence of any brain, trigeminal ganglia, spinal cord, or dorsal...

  17. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ganglia. (iv) Spinal cord. Vertebral column bones that enter the AMR system have tissues of spinal cord... than skulls or vertebral column bones of cattle 30 months of age and older as provided in § 310.22 of... section, and (2) Without the presence of any brain, trigeminal ganglia, spinal cord, or dorsal...

  18. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging.

    PubMed

    Bigelow, Robin T; Semenov, Yevgeniy R; Anson, Eric; du Lac, Sascha; Ferrucci, Luigi; Agrawal, Yuri

    2016-10-01

    Animal studies have demonstrated that experimentally induced vestibular ablation leads to a decrease in bone mineral density, through mechanisms mediated by the sympathetic nervous system. Loss of bone mineral density is a common and potentially morbid condition that occurs with aging, and we sought to investigate whether vestibular loss is associated with low bone mineral density in older adults. We evaluated this question in a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA), a large, prospective cohort study managed by the National Institute on Aging (N = 389). Vestibular function was assessed with cervical vestibular evoked myogenic potentials (cVEMPs), a measure of saccular function. Bone mineral density was assessed using dual-energy X-ray absorptiometry (DEXA). In two-way t test analysis, we observed that individuals with reduced vestibular physiologic function had significantly lower bone mineral density. In adjusted multivariate linear regression analyses, we observed that older individuals with reduced vestibular physiologic function had significantly lower bone mineral density, specifically in weight-bearing hip and lower extremity bones. These results suggest that the vestibular system may contribute to bone homeostasis in older adults, notably of the weight-bearing hip bones at greatest risk of osteoporotic fracture. Further longitudinal analysis of vestibular function and bone mineral density in humans is needed to characterize this relationship and investigate the potential confounding effect of physical activity.

  19. Age and gender effects on bone mass density variation: finite elements simulation.

    PubMed

    Barkaoui, Abdelwahed; Ben Kahla, Rabeb; Merzouki, Tarek; Hambli, Ridha

    2017-04-01

    Bone remodeling is a physiological process by which bone constantly adapts its structure to changes in long-term loading manifested by interactions between osteoclasts and osteoblasts. This process can be influenced by many local factors, via effects on bone cells differentiation and proliferation, which are produced by bone cells and act in a paracrine or autocrine way. The aim of the current work is to provide mechanobiological finite elements modeling coupling both cellular activities and mechanical behavior in order to investigate age and gender effects on bone remodeling evolution. A series of computational simulations have been performed on a 2D and 3D human proximal femur. An age- and gender-related impacts on bulk density alteration of trabecular bone have been noticed, and the major actors responsible of this phenomenon have been then discussed.

  20. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.

  1. Histological estimation of age at death from the compact bone of burned and unburned human ribs.

    PubMed

    Absolonova, Karolina; Veleminsky, Petr; Dobisikova, Miluse; Beran, Michal; Zocova, Jarmila

    2013-01-01

    This study describes the estimation of age at death from the compact bone of burned and unburned human ribs. Bone samples came from individuals of known age, sex, and cause of death. Each bone was divided into four sections; three sections were burned at 700, 800, and 1000°C. Undecalcified, unstained ground cross sections were photographed, and 28 variables were analyzed in the bones using SigmaScan Pro 5. Age-related as well as heat-induced microstructural changes were found. These changes were often very similar and made estimating the age at death difficult in the burned bones. Differences between the sexes were found in some variables, caused by both aging and also by the different behavior of some variables during burning. Regression equations were developed to estimate age at death for unburned bones (r² = 0.579 and 0.707), bones burned at 700°C (r² = 0.453 and 0.501), and 800°C (r² = 0.334 and 0.340).

  2. Anterior Palatal Island Advancement Flap for Bone Graft Coverage: Technical Note

    PubMed Central

    Rahpeyma, Amin; Khajehahmadi, Saeedeh

    2015-01-01

    Background: The most important step in bone graft management is soft tissue coverage. Dehiscence of the wound leads to graft exposure and subsequent problems. Purpose: This study introduces an axial pattern flap for bone graft coverage in anterior maxilla. Patients and Methods: Use of Anterior Palatal Island Advancement Flap is presented by the authors. It is a mucoperiosteal flap with axial pattern blood supply, based on nasopalatine artery. It is easy to raise and predictable. Results: Anterior Palatal Island Advancement Flap was effective in bone graft coverage in premaxillary edentulous area. Conclusion: It can be used as an aid for bone graft coverage of premaxillary edentulous ridge, where the need for mucosa is small in width but long in length. PMID:27512552

  3. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells.

    PubMed

    Schurman, L; McCarthy, A D; Sedlinsky, C; Gangoiti, M V; Arnol, V; Bruzzone, L; Cortizo, A M

    2008-06-01

    Advanced glycation endproducts (AGEs) are implicated in the complications of diabetes and ageing, affecting several tissues, including bone. Metformin, an insulin-sensitizer drug, reduces the risk of life-threatening macrovascular complications. We have evaluated the hypothesis that metformin can abrogate AGE-induced deleterious effects in osteoblastic cells in culture. In two osteoblast-like cell lines (UMR106 and MC3T3E1), AGE-modified albumin induced cell death, caspase-3 activity, altered intracellular oxidative stress and inhibited alkaline phosphatase activity. Metformin-treatment of osteoblastic cells prevented these AGE-induced alterations. We also assessed the expression of AGE receptors as a possible mechanism by which metformin could modulate the action of AGEs. AGEs-treatment of osteoblast-like cells enhanced RAGE protein expression, and this up-regulation was prevented in the presence of metformin. Although the precise mechanisms involved in metformin signaling are still elusive, our data implicate the AGE-RAGE interaction in the modulation of growth and differentiation of osteoblastic cells.

  4. Sirt1 is involved in decreased bone formation in aged apolipoprotein E-deficient mice

    PubMed Central

    Hong, Wei; Xu, Xiao-ya; Qiu, Zhao-hui; Gao, Jian-jun; Wei, Zhan-ying; Zhen, Li; Zhang, Xiao-li; Ye, Zhi-bing

    2015-01-01

    Aim: Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice. Methods: Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis. Results: Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs. Conclusion: In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice. PMID:26592520

  5. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture.

    PubMed

    Busse, Björn; Bale, Hrishikesh A; Zimmermann, Elizabeth A; Panganiban, Brian; Barth, Holly D; Carriero, Alessandra; Vettorazzi, Eik; Zustin, Josef; Hahn, Michael; Ager, Joel W; Püschel, Klaus; Amling, Michael; Ritchie, Robert O

    2013-07-10

    Vitamin D deficiency is a widespread medical condition that plays a major role in human bone health. Fracture susceptibility in the context of low vitamin D has been primarily associated with defective mineralization of collagenous matrix (osteoid). However, bone's fracture resistance is due to toughening mechanisms at various hierarchical levels ranging from the nano- to the microstructure. Thus, we hypothesize that the increase in fracture risk with vitamin D deficiency may be triggered by numerous pathological changes and may not solely derive from the absence of mineralized bone. We found that the characteristic increase in osteoid-covered surfaces in vitamin D-deficient bone hampers remodeling of the remaining mineralized bone tissue. Using spatially resolved synchrotron bone mineral density distribution analyses and spectroscopic techniques, we observed that the bone tissue within the osteoid frame has a higher mineral content with mature collagen and mineral constituents, which are characteristic of aged tissue. In situ fracture mechanics measurements and synchrotron radiation micro-computed tomography of the crack path indicated that vitamin D deficiency increases both the initiation and propagation of cracks by 22 to 31%. Thus, vitamin D deficiency is not simply associated with diminished bone mass. Our analyses reveal the aged nature of the remaining mineralized bone and its greatly decreased fracture resistance. Through a combination of characterization techniques spanning multiple size scales, our study expands the current clinical understanding of the pathophysiology of vitamin D deficiency and helps explain why well-balanced vitamin D levels are essential to maintain bone's structural integrity.

  6. PROGRESSIVE MECHANICAL BEHAVIOR OF HUMAN CORTICAL BONE IN TENSION FOR TWO AGE GROUPS

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Reyes, Michael J.; Wang, Xiaodu

    2007-01-01

    The capacity of bone for post-yield energy dissipation decreases with age. To gain information on the cause of such changes, we examined the mechanical behavior of human cadaveric bone as a function of progressive deformation. In this study, tensile specimens from tibiae of 9 middle aged and 8 elderly donors were loaded till failure in an incremental and cyclic (load-dwell-unload-dwell-reload) scheme. The elastic modulus, maximum stress, permanent strain, stress relaxation, viscoelastic time constant, plastic strain energy, elastic release strain energy, and hysteresis energy were determined at incremental strains of each loading cycle. Experimental results showed that elderly bone failed at much lower strains compared to middle aged bone, but little age-related differences were observed in the mechanical behavior of bone until the premature failure of elderly bone. Energy dissipation and permanent strain appeared to linearly increase with increasing strain, while non-linear changes occurred in the modulus loss and stress relaxation/time constant with increasing strain. Such changes suggest that two distinct stages may exist in the progressive deformation of bone. In Stage I, rapid damage accumulation and increased involvement of collagen in load bearing appeared to dominate the mechanical behavior of bone with limited energy dissipation (<20% of total energy dissipated), whereas Stage II is dominated by continuous plastic deformation, accompanied by major energy dissipation through all three pathways till failure. This study suggests that damaging mechanisms in bone vary with deformation and age affects the post-yield mechanisms causing a significant decline in the capacity of aged bone to dissipate energy. PMID:18437693

  7. Management and counseling of the male with advanced paternal age.

    PubMed

    Jennings, Michael O; Owen, Ryan C; Keefe, David; Kim, Edward D

    2017-02-01

    Increasing percentages of children are being born to older fathers. This has resulted in concerns about the potential adverse effects of advanced paternal age. To help clinicians counsel couples, a systemic review was performed to attempt to address questions that these couples may ask: Should routine sperm testing be performed in older males? Should preimplantation genetic diagnosis (PGD) be performed? How do providers counsel patients about risk? Should young males freeze sperm if they plan to delay paternity? Using the terms "advanced paternal age", "semen testing", "preimplantation genetic diagnosis/screening", and "cryopreservation", a comprehensive search was performed in PubMed and the Cochrane Library, and numerous international societal guidelines were reviewed. In total, 42 articles or guidelines were reviewed. There were no limits placed on the timing of the articles. Thirty articles were found to be relevant and beneficial to answering the above questions. Each question was answered separately by the supporting literature. While primary research exists to support the role of semen testing, PGD/preimplantation genetic screening, and sperm banking in males who may be affected by advancing age, comprehensive studies on the possible clinical benefit of these interventions have yet to be performed. As a result, societal guidelines have yet to incorporate distinct best-practice guidelines on advanced paternal age.

  8. Green tea polyphenols supplementation improves bone microstructure in orchidectomized middle-Aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent study shows that green tea polyphenols (GTP) attenuate trabecular bone loss in ovariectomized middle-aged female rats. To investigate whether GTP prevents bone loss in male rats, 40 rats with and without oriectomy (ORX) were assigned to 4 groups in a 2 (sham vs. ORX)× 2 (no GTP and 0.5% G...

  9. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  10. Age-related switch of bone mass in p47phox deficient mice through increased inflammatory milieu in bone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Excessive accumulation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and hydroxyl radicals, has been suggested to be the leading cause of many inflammatory and degener...

  11. Reproduction at an advanced maternal age and maternal health.

    PubMed

    Sauer, Mark V

    2015-05-01

    Advanced age is a risk factor for female infertility, pregnancy loss, fetal anomalies, stillbirth, and obstetric complications. These concerns are based on centuries-old observations, yet women are delaying childbearing to pursue educational and career goals in greater numbers than ever before. As a result, reproductive medicine specialists are treating more patients with age-related infertility and recurrent pregnancy loss, while obstetricians are faced with managing pregnancies often complicated by both age and comorbidities. The media portrayal of a youthful but older woman, able to schedule her reproductive needs and balance family and job, has fueled the myth that "you can have it all," rarely characterizing the perils inherent to advanced-age reproduction. Reproductive medicine specialists and obstetrician/gynecologists should promote more realistic views of the evidence-based realities of advanced maternal age pregnancy, including its high-risk nature and often compromised outcomes. Doctors should also actively educate both patients and the public that there is a real danger of childlessness if individuals choose to delay reproduction.

  12. Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats

    PubMed Central

    Singulani, Monique Patricio; Stringhetta-Garcia, Camila Tami; Santos, Leandro Figueiredo; Morais, Samuel Rodrigues Lourenço; Louzada, Mário Jefferson Quirino; Oliveira, Sandra Helena Penha; Chaves Neto, Antonio Hernandes; Dornelles, Rita Cássia Menegati

    2017-01-01

    The effects of strength training (ST) on the mechanical bone strength and osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) from adult, aged and exercised aged rats were determined. The exercised aged animals displayed higher values of areal bone mineral density, compression test, alkaline phosphatase activity (ALP) and biological mineralization, while oil red O staining for adipocytes was lower. ST increased gene expression of runt-related transcription factor 2 (Runx2), osterix (Osx) as well as bone matrix protein expression, and reduced expression of peroxisome proliferator-activated receptor gamma (Pparγ). The production of pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) was lower in BMSCs of the aged exercised group. The ST practice was able to improve the bone mechanical properties in aged female rats, increasing the potential for osteogenic differentiation of BMSCs, reducing the adipogenic differentiation and pro-inflammatory cytokine level. In summary, the data achieved in this study showed that strength training triggers physiological responses that result in changes in the bone microenvironment and bring benefits to biomechanical parameters of bone tissue, which could reduce the risk of fractures during senescent. PMID:28211481

  13. Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats.

    PubMed

    Singulani, Monique Patricio; Stringhetta-Garcia, Camila Tami; Santos, Leandro Figueiredo; Morais, Samuel Rodrigues Lourenço; Louzada, Mário Jefferson Quirino; Oliveira, Sandra Helena Penha; Chaves Neto, Antonio Hernandes; Dornelles, Rita Cássia Menegati

    2017-02-17

    The effects of strength training (ST) on the mechanical bone strength and osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) from adult, aged and exercised aged rats were determined. The exercised aged animals displayed higher values of areal bone mineral density, compression test, alkaline phosphatase activity (ALP) and biological mineralization, while oil red O staining for adipocytes was lower. ST increased gene expression of runt-related transcription factor 2 (Runx2), osterix (Osx) as well as bone matrix protein expression, and reduced expression of peroxisome proliferator-activated receptor gamma (Pparγ). The production of pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) was lower in BMSCs of the aged exercised group. The ST practice was able to improve the bone mechanical properties in aged female rats, increasing the potential for osteogenic differentiation of BMSCs, reducing the adipogenic differentiation and pro-inflammatory cytokine level. In summary, the data achieved in this study showed that strength training triggers physiological responses that result in changes in the bone microenvironment and bring benefits to biomechanical parameters of bone tissue, which could reduce the risk of fractures during senescent.

  14. [Cervico-omo-brachial pain and disability in a person of advanced age].

    PubMed

    Usui, M

    1997-07-01

    A person of advanced age usually has degenerative changes of bone, joint and ligament, which can be causes of cervico-omo-brachial pain and disability. He or she may also suffer from metastatic bone tumor of cervical spine or upper extremity. This article described pathology, signs and symptoms and recent treatment of these diseases. Cervical myelopathy and radiculopathy, which are most common causes of cervico-omo-brachial symptoms, are sometimes accompanied by peripheral entrapment neuropathy such as cubital tunnel syndrome or carpal tunnel syndrome (double crush syndrome). In this complicated situation, decompression of neural tissue in both cervical spine and carpal tunnel are necessary. In treatment for carpal tunnel syndrome, release of transverse carpal ligament under an arthroscope has proven to be useful and has been becoming popular. This minimally invasive surgery is also useful in shoulder surgery such as subacromial decompression in aged patients with rotator cuff tear and removal of calcium deposit in the shoulder joint. Osteoarthritis of the elbow also cause pain or disability of the elbow and the hand. Some metastatic bone tumors are treated by tumor resection and reconstruction with instruments, prosthesis or composite grafts, which are attempted not to cure the disease but to maintain or improve the quality of life of the patient.

  15. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.

    PubMed

    Abraham, Adam C; Agarwalla, Avinesh; Yadavalli, Aditya; Liu, Jenny Y; Tang, Simon Y

    2016-06-01

    The assessment of fracture risk often relies primarily on measuring bone mineral density, thereby accounting for only a single pathology: the loss of bone mass. However, bone's ability to resist fracture is a result of its biphasic composition and hierarchical structure that imbue it with high strength and toughness. Reference point indentation (RPI) testing is designed to directly probe bone mechanical behavior at the microscale in situ, although it remains unclear which aspects of bone composition and structure influence the results at this scale. Therefore, our goal in this study was to investigate factors that contribute to bone mechanical behavior measured by cyclic reference point indentation, impact reference point indentation, and three-point bending. Twenty-eight female cadavers (ages 57-97) were subjected to cyclic and impact RPI in parallel at the unmodified tibia mid-diaphysis. After RPI, the middiaphyseal tibiae were removed, scanned using micro-CT to obtain cortical porosity (Ct.Po.) and tissue mineral density (TMD), then tested using three-point bending, and lastly assayed for the accumulation of advanced glycation end-products (AGEs). Both the indentation distance increase from cyclic RPI (IDI) and bone material strength index from impact RPI (BMSi) were significantly correlated with TMD (r=-0.390, p=0.006; r=0.430, p=0.002; respectively). Accumulation of AGEs was significantly correlated with IDI (r=0.281, p=0.046), creep indentation distance (CID, r=0.396, p=0.004), and BMSi (r=-0.613, p<0.001). There were no significant relationships between tissue TMD or AGEs accumulation with the quasi-static material properties. Toughness decreased with increasing tissue Ct.Po. (r=-0.621, p<0.001). Other three-point bending measures also correlated with tissue Ct.Po. including the bending modulus (r=-0.50, p<0.001) and ultimate stress (r=-0.56, p<0.001). The effects of Ct.Po. on indentation were less pronounced with IDI (r=0.290, p=0.043) and BMSi (r=-0.299, p

  16. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng Meng; Jee, Webster S. S.; Ke, Hua Zhu; Lin, Bia Yun; Li, Qing Nan; Li, Xiao Jian

    1992-01-01

    Two-and-a half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 micron sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55% to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59%c at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9 month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated

  17. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng-Meng; Jee, Webster S. S.; Ke, Hua-Zhu; Lin, Bai-Yun; Li, Qing-Nan; Li, Xiao-Jian

    1992-01-01

    Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in

  18. Estimation of Age Using Alveolar Bone Loss: Forensic and Anthropological Applications.

    PubMed

    Ruquet, Michel; Saliba-Serre, Bérengère; Tardivo, Delphine; Foti, Bruno

    2015-09-01

    The objective of this study was to utilize a new odontological methodological approach based on radiographic for age estimation. The study was comprised of 397 participants aged between 9 and 87 years. A clinical examination and a radiographic assessment of alveolar bone loss were performed. Direct measures of alveolar bone level were recorded using CT scans. A medical examination report was attached to the investigation file. Because of the link between alveolar bone loss and age, a model was proposed to enable simple, reliable, and quick age estimation. This work added new arguments for age estimation. This study aimed to develop a simple, standardized, and reproducible technique for age estimation of adults of actual populations in forensic medicine and ancient populations in funeral anthropology.

  19. Vascular endothelial growth factor expression and bone formation in posterior glenoid fossa during stepwise mandibular advancement.

    PubMed

    Shum, Lily; Rabie, A B M; Hägg, Urban

    2004-02-01

    This study assessed the amount of vascular endothelial growth factor (VEGF) expression and related the findings to new bone formation in the posterior glenoid fossa during stepwise mandibular advancement. A total of 250 female Sprague-Dawley rats, 35 days old, were randomly divided into 10 groups, each including 5 control and 20 experimental rats. Within each group, 10 experimental rats were fitted with functional appliances with a 1-step advancement of 3.5 mm. Another 10 were fitted with stepwise appliances with an initial advancement of 2 mm and a subsequent increase to 3.5 mm on day 30. The rats in the experimental groups were killed on days 3, 7, 14, 21, 30, 33, 37, 44, 51, and 60, respectively. The matched controls were killed on the same time points. Sections (7 microm) were cut through the glenoid fossa sagittally and stained with anti-VEGF antibody. VEGF expression in the posterior glenoid fossa was evaluated with a computer-assisted image-analyzing system. Both VEGF expression and new bone formation were greater in the experimental rats than in the controls. During stepwise advancement, initial VEGF expression was less than that of 1-step advancement, but the second advancement elicited another peak on day 44. New bone formation was also less than that of 1-step advancement during early stages of stepwise advancement but then began to increase from day 37 onward. The maximum increase was observed on day 60. Stepwise advancement of the mandible delivers mechanical stimuli that produce a series of tissue responses that lead to increased vascularization and bone formation.

  20. Physical growth and bone age of survivors of protein energy malnutrition.

    PubMed Central

    Alvear, J; Artaza, C; Vial, M; Guerrero, S; Muzzo, S

    1986-01-01

    Early postnatal malnutrition produces delay in growth and developmental processes, and children from a low socioeconomical level where undernutrition is prevalent are shorter than those from higher socioeconomic levels. We examined the effects of severe and early protein energy malnutrition on growth and bone maturation. We studied 40 preschool children who had been admitted to hospital in infancy with protein energy malnutrition and 38 children from the same socioeconomic level, paired for age and sex, who had never been malnourished. Growth measurements were made over a period of 4-6 years, and bone age was determined in a subgroup through wrist roentgenograms. Results showed a correlation between protein energy malnutrition, birth weight of infants, and mother's height and head circumference. The group with protein energy malnutrition showed a significant delay in stature after four years, especially the girls (p less than 0.001). Weight:height ratio was reduced in boys compared with controls but not in girls. Both groups showed a delay in bone maturation, but there were no significant differences between them. We found a positive correlation between bone age and arm fat area in control boys and between bone age and height for age in boys with protein energy malnutrition. The finding that rehabilitated children were shorter than the control group but had similar bone age at follow up suggests that genetic or prenatal factors were important in their later poor growth, and this suggestion is supported by their smaller birth size and the smaller size of their mothers. PMID:3083790

  1. Age-related differences in the bone mineralization pattern of rats following exercise

    SciTech Connect

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-07-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process.

  2. Assessment of age and sex by means of DXA bone densitometry: application in forensic anthropology.

    PubMed

    Castillo, Rafael Fernández; Ruiz, Maria del Carmen López

    2011-06-15

    Today we are witnessing a genuine revolution in diagnostic imaging techniques. Dual X-ray absorptiometry (DEXA) quantifies bone mineral density (BMD) and bone mineral content (BMC). This technique has rarely been used in Forensic Anthropology, although its practical application has been demonstrated by various authors. In this article, we look into the conduct of bone mineral density in the femoral neck, the trochanter, the intertrochanter, the proximal femur and Ward's triangle, in relation to anthropometric age and sex parameters. The research was carried out on 70 persons - 38 men and 32 women - and the results obtained show significant correlations between bone mineral density measurements and anthropometric values. The research demonstrates bone mineral density to be a useful technique for sex and age data in forensic anthropology, particularly in the measurements observed in the Ward's triangle area.

  3. Changes in mechanical properties of bone within the mandibular condyle with age.

    PubMed

    Huja, Sarandeep S; Rummel, Andrew M; Beck, Frank M

    2008-02-01

    The purpose of the study was to compare indentation modulus (IM) and hardness of condylar bone in young and adult dogs. In addition we desired to examine histologic sections for bone formation activity in the two groups. Mandibular condyles were obtained from adult (1- to 2-year-old) and young (approximately 5-m old) dogs. Two sections/condyle were obtained and one was processed for histomorphometry and the other for mechanical analyses. Indents were made on moist condylar trabecular bone to a depth of 500 nm at a loading rate of 10 nm/s using a custom-made hydration system to obtain IM and hardness. Histomorphometric analyses measured the bone volume/total volume (BV/TV%) and ratio of labeled to unlabeled bone within the condyle. Data were analyzed using a repeated-measures factorial analysis of variance and Tukey-Kramer method. Overall, the IM of the adult condyles (10.0+/-3.4 GPa, Mean+/-SD) were significantly (P<0.0001) higher than in young dogs (5.6+/-2.6 GPa). There was a greater bone mass in the young (60.2%) versus the adult condyles (42%). Also, significantly more labeled bone in the young (66.1%) condylar bone suggested higher bone forming activity than in adult condyles (27.5%). With age there is a change in mass and material properties in the trabecular bone of the mandibular condyle in dogs.

  4. Lifestyle and osteoporosis in middle-aged and elderly women: Chiba bone survey.

    PubMed

    Tatsuno, Ichiro; Terano, Takashi; Nakamura, Mitsugu; Suzuki, Kiminori; Kubota, Kazuko; Yamaguchi, Jyunichi; Yoshida, Tomohiko; Suzuki, Sawako; Tanaka, Tomaki; Shozu, Makio

    2013-01-01

    Osteoporosis causes an enormous health and economic impact in Japan. We investigated the relation between lifestyle and bone fracture in middle-aged and elderly women. This was a population-based, multicenter, cross-sectional survey for postmenopausal osteoporosis in Chiba City, Japan (Chiba bone survey). This survey included 64,809 Japanese women aged > 40 years. All participants underwent anthropometric measurements including bone mineral density (BMD) and completed a structured, nurse-assisted, self-administered questionnaire also including patient lifestyle. Bone fracture during the recent 5 years was observed in 5.3%, and the fracture group had significantly higher age, BMI, and prevalence of delivery, family histories of kyphosis and hip fracture, diabetes mellitus (DM), dyslipidemia, kidney disease, exercise, fall, and osteoporosis, and had significantly lower BMD and proportion of menstruating participants. Logistic regression analysis revealed that bone fracture was closely associated with not only low bone mass but also age, fall, family histories of kyphosis and hip fracture, DM, kidney disease, menopause, and lifestyle factors of dieting, exercise, and alcohol. Women's health care focusing on lifestyle-related fracture risks such as dieting, exercise, and alcohol appears necessary to prevent bone fracture in postmenopausal osteoporosis.

  5. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  6. Digital hand atlas and computer-aided bone age assessment via the Web

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente

    1999-07-01

    A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.

  7. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  8. Vitamin D and bone health outcomes in older age.

    PubMed

    Hill, Tom R; Aspray, Terence J; Francis, Roger M

    2013-11-01

    The aim of this review is to summarise the evidence linking vitamin D to bone health outcomes in older adults. A plethora of scientific evidence globally suggests that large proportions of people have vitamin D deficiency and are not meeting recommended intakes. Older adults are at particular risk of the consequences of vitamin D deficiency owing to a combination of physiological and behavioural factors. Epidemiological studies show that low vitamin D status is associated with a variety of negative skeletal consequences in older adults including osteomalacia, reduced bone mineral density, impaired Ca absorption and secondary hyperparathyroidism. There seems to be inconsistent evidence for a protective role of vitamin D supplementation alone on bone mass. However, it is generally accepted that vitamin D (17·5 μg/d) in combination with Ca (1200 mg/d) reduces bone loss among older white subjects. Evidence for a benefit of vitamin D supplementation alone on reducing fracture risk is varied. According to a recent Agency for Healthcare Research and Quality review in the USA the evidence base shows mixed results for a beneficial effect of vitamin D on decreasing overall fracture risk. Limitations such as poor compliance with treatment, incomplete assessment of vitamin D status and large drop-out rates however, have been highlighted within some studies. In conclusion, it is generally accepted that vitamin D in combination with Ca reduces the risk of non-vertebral fractures particularly those in institutional care. The lack of data on vitamin D and bone health outcomes in certain population groups such as diverse racial groups warrants attention.

  9. Influence of age, sex and calendar year on lifetime accumulated red bone marrow dose from diagnostic radiation exposure.

    PubMed

    Hoffmann, Wolfgang; Meiboom, Merle Friederike; Weitmann, Kerstin; Terschüren, Claudia; von Boetticher, Heiner

    2013-01-01

    Our aim is to evaluate the relevance of different factors influencing lifetime accumulated red bone marrow dose, such as calendar year, age and sex. The lifetime dose was estimated for controls interviewed in person (N = 2811, 37.5% women) of the population-based representative Northern Germany Leukemia and Lymphoma Study. Data were assessed in standardized computer-assisted personal interviews. The calculation of doses is based on a comprehensive quantification model including calendar year, sex, kind of examination, and technical development. In multivariate regression models the annual red bone marrow dose was analyzed depending on age, sex and calendar year to consider simultaneously temporal changes in radiologic practice and individual risk factors. While the number of examinations continuously rises over time, the dose shows two peaks around 1950 and after 1980. Men are exposed to higher doses than woman. Until 1970 traditional examinations like conventional and mass screening examinations caused the main dose. They were then replaced by technically advanced examinations mainly computed tomography and cardiac catheter. The distribution of the red bone marrow dose over lifetime depends highly on the technical standards and radiation protection survey. To a lesser extent it is influenced by age and sex of the subjects. Thus epidemiological studies concerning the assessment of radiation exposure should consider the calendar year in which the examination was conducted.

  10. The Relationship Between Greater Prepubertal Adiposity, Subsequent Age of Maturation, and Bone Strength During Adolescence.

    PubMed

    Glass, Natalie A; Torner, James C; Letuchy, Elena M; Burns, Trudy L; Janz, Kathleen F; Eichenberger Gilmore, Julie M; Schlechte, Janet A; Levy, Steven M

    2016-07-01

    This longitudinal study investigated whether greater prepubertal adiposity was associated with subsequent timing of maturation and bone strength during adolescence in 135 girls and 123 boys participating in the Iowa Bone Development Study. Greater adiposity was defined using body mass index (BMI) data at age 8 years to classify participants as overweight (OW, ≥85th percentile for age and sex) or healthy weight (HW). Maturation was defined as the estimated age of peak height velocity (PHV) based on a series of cross-sectional estimates. Measurements were taken at ages 11, 13, 15, and 17 years for estimates of body composition by dual-energy X-ray absorptiometry (DXA), bone compression (bone strength index), and torsion strength (polar strength-strain index) at the radius and tibia by pQCT, and femoral neck bending strength (section modulus) by hip structural analysis. Bone strength in OW versus HW were evaluated by fitting sex-specific linear mixed models that included centered age (visit age - grand mean age of cohort) as the time variable and adjusted for change in fat mass, and limb length in model 1. Analyses were repeated using biological age (visit age - age PHV) as the time variable for model 1 with additional adjustment for lean mass in model 2. BMI was negatively associated with age of maturation (p < 0.05). OW versus HW girls had significantly greater bone strength (p < 0.001) in model 1, whereas OW versus HW boys had significantly greater bone strength (p < 0.001) at the tibia and femoral neck but not radius (p > 0.05). Analyses were repeated using biological age, which yielded reduced parameter estimates for girls but similar results for boys (model 1.) Differences were no longer present after adjustment for lean mass (model 2) in girls (p > 0.05) whereas differences at the tibia were sustained in boys (p < 0.05). These findings demonstrate sex- and site-specific differences in the associations between adiposity, maturation, and

  11. Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation

    PubMed Central

    Rauner, Martina; Sipos, Wolfgang

    2008-01-01

    Wnt signaling is vital for osteoblast differentiation and recently has been associated with aging. Because impaired osteoblastogenesis is a cellular characteristic of age-induced bone loss, we investigated whether this process is associated with an altered expression of Wnt signaling-related proteins in bone and osteoblasts. Bone marrow cells were isolated from male C57BL/6 mice, aged 6 weeks, 6 months, and 18 months, respectively. Osteogenic differentiation was induced for 3 weeks and assessed using alizarin red staining. Gene expression of Wnt1, 3a, 4, 5a, 5b, 7b, 9b, 10b, lipoprotein receptor-related protein (LRP)-5/6, as well as dickkopf-1 (Dkk-1), sclerostin, and secreted frizzled related protein-1 (sFRP-1) was determined in bone tissue and osteoblasts on days 7, 14, and 21 by real-time RT-PCR. Osteoblast differentiation was significantly reduced in aged mice compared with young and adult mice. In bone tissue, expression levels of all genes assessed were decreased in adult and old mice, respectively, compared with young mice. Mature osteoblasts of aged compared with those of young mice showed enhanced expression of Wnt9b, LRP-6, and Dkk-1, and decreased expression of Wnt5a and 7b. In early osteoblasts, mRNA levels of Wnt1, 5a, 5b, and 7b were increased significantly in aged mice. The expression of Wnt3a, 4, LRP-5, and sclerostin was not altered in aged osteoblasts. In conclusion, osteoblastic expression of each Wnt-related protein is regulated individually by aging. The overall decreased expression of Wnt-related proteins in bone tissue of aged mice underlines the newly discovered association of Wnt signaling with aging. PMID:19424851

  12. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs

    PubMed Central

    Lee, Eun Jung; Kim, Ji Young; Oh, Sang Ho

    2016-01-01

    Accumulation of advanced glycation end products (AGEs) is linked with development or aggravation of many degenerative processes or disorders, including aging and atherosclerosis. AGEs production in skin cells is known to promote stiffness and loss of elasticity through their buildup in connective tissue. However, the impact of AGEs has yet to be fully explored in melanocytes. In this study, we confirmed the existence of receptor for AGE (RAGE) in melanocytes in western blot and immunofluorescence along with increased melanin production in ex vivo skin organ culture and in vitro melanocyte culture following AGEs treatment. Cyclic AMP response element-binding protein (CREB) and extracellular signal-regulated kinases (ERK) 1/2 are considered as key regulatory proteins in AGEs-induced melanogenesis. In addition, blockage experiment using anti-RAGE blocking antibody has indicated that RAGE plays a pivotal role in AGE-mediated melanogenesis. Therefore, it is apparent that AGEs, known markers of aging, promote melanogenesis via RAGE. In addition, AGEs could be implicated in pigmentation associated with photoaging according to the results of increased secretion of AGEs from keratinocytes following UV irradiation. AGE-mediated melanogenesis may thus hold promise as a novel mean of altering skin pigmentation. PMID:27293210

  13. Is Animal Age a Factor In the Response of Bone to Spaceflight?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to

  14. Advances in measurements of periodontal bone and attachment loss.

    PubMed

    Jeffcoat, M K; Reddy, M S

    2000-01-01

    Periodontal probing and measurements using intraoral radiographs are widely utilized clinical techniques to measure attachment and bone levels, respectively. Determination of progressive disease, healing, or regeneration in clinical studies may require maximal sensitivity and attention to measurement error in order to assure that changes detected by new methodology are accurate. Both types of methods are susceptible to errors due to resolution, repeatability, and accuracy of the technique. While both probing and radiographic methods are useful in clinical trials they vary widely with respect to these errors. For example, manual probing is repeatable to within 1 mm better than 90% of the time, and state-of-the-art radiographic methods, such as digital subtraction radiography, can detect as little as 1 mg of bony change.

  15. Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves

    SciTech Connect

    Kinney, J

    2004-10-08

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, are responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging in the wake of the crack.

  16. Effect of aging on the toughness of human cortical bone:Evaluation by R-curves

    SciTech Connect

    Nalla, Ravi K.; Kruzic, Jamie J.; Kinney, John H.; Ritchie,Robert O.

    2005-04-05

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40 percent over 6 decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack.

  17. Effect of aging on the toughness of human cortical bone: evaluation by R-curves.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2004-12-01

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over 6 decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack.

  18. McCune-Albright syndrome revealed by hyperthyroidism at advanced age.

    PubMed

    Elhaï, Muriel; Meunier, Marine; Kahan, André; Cormier, Catherine

    2011-12-01

    We report a case of a 38-year-old woman admitted to our service for diagnosis of osteolytic lesions. She suffered from back, lumbar and costal pain at the time a hyperthyroidism, related to multinodular goiter, was diagnosed. The pain remained despite the cure of hyperthyroidism. Cutaneous examination revealed café au lait skin spots. Analysis of the phosphocalcic metabolism allowed the diagnosis of phosphate diabetes. X-ray showed lytic lesions involving the ribs with thinning of the cortex and vertebral fractures of the dorsal spine. The computed tomography revealed lytic lesions with a typical "ground glass" appearance involving the spine, ribs, sternum, iliac bones and sacrum. The presence of this clinical triad allowed the diagnosis of McCune-Albright syndrome (MAS). The treatment consisted in vitamin D supplementation, and high doses of both oral phosphate and calcitriol to treat the phosphate diabetes as well as cycles of intravenous pamidronate administration to relieve bone pain. We report an uncommon case of the diagnosis of MAS at an advanced age following hyperthyroidism. We believe that the disease was revealed by an increase in bone turnover due to hyperthyroidism.

  19. t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity.

    PubMed

    Rahman, Md M; Halade, Ganesh V; Williams, Paul J; Fernandes, Gabriel

    2011-09-01

    Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Earlier, we showed that CLA (equal mixture of c9t11-CLA and t10c12-CLA) could protect age-associated bone loss by modulating inflammatory markers and osteoclastogenesis. Since, c9t11-CLA and t10c12-CLA isomers differentially regulate functional parameters and gene expression in different cell types, we examined the efficacy of individual CLA isomers against age-associated bone loss using 12 months old C57BL/6 female mice fed for 6 months with 10% corn oil (CO), 9.5% CO + 0.5% c9t11-CLA, 9.5% CO + 0.5% t10c12-CLA or 9.5% CO + 0.25% c9t11-CLA + 0.25% t10c12-CLA. Mice fed a t10c12-CLA diet maintained a significantly higher bone mineral density (BMD) in femoral, tibial and lumbar regions than those fed CO and c9t11-CLA diets as measured by dual-energy-X-ray absorptiometry (DXA). The increased BMD was accompanied by a decreased production of osteoclastogenic factors, that is, RANKL, TRAP5b, TNF-alpha and IL-6 in serum. Moreover, a significant reduction of high fat diet-induced bone marrow adiposity was observed in t10c12-CLA fed mice as compared to that of CO and c9t11-CLA fed mice, as measured by Oil-Red-O staining of bone marrow sections. In addition, a significant reduction of osteoclast differentiation and bone resorbing pit formation was observed in t10c12-CLA treated RAW 264.7 cell culture stimulated with RANKL as compared to that of c9t11-CLA and linoleic acid treated cultures. In conclusion, these findings suggest that t10c12-CLA is the most potent CLA isomer and it exerts its anti-osteoporotic effect by modulating osteoclastogenesis and bone marrow adiposity.

  20. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies show that green tea polyphenols (GTP) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. However, it is not known if such an osteo-protective role of GTP is demonstrable in androgen-deficient aged rats, a mo...

  1. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  2. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  3. Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype.

    PubMed

    Haine, Elsa; Salles, Jean-Pierre; Khau Van Kien, Philippe; Conte-Auriol, Françoise; Gennero, Isabelle; Plancke, Aurélie; Julia, Sophie; Dulac, Yves; Tauber, Maithé; Edouard, Thomas

    2015-08-01

    Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutation in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1), leading to transforming growth factor-beta (TGF-β) signaling dysregulation. Although decreased axial and peripheral bone mineral density (BMD) has been reported in adults with MFS, data about the evolution of bone mass during childhood and adolescence are limited. The aim of the present study was to evaluate bone and muscle characteristics in children, adolescents, and young adults with MFS. The study population included 48 children and young adults (22 girls) with MFS with a median age of 11.9 years (range 5.3 to 25.2 years). The axial skeleton was analyzed at the lumbar spine using dual-energy X-ray absorptiometry (DXA), whereas the appendicular skeleton (hand) was evaluated using the BoneXpert system (with the calculation of the Bone Health Index). Muscle mass was measured by DXA. Compared with healthy age-matched controls, bone mass at the axial and appendicular levels and muscle mass were decreased in children with MFS and worsened from childhood to adulthood. Vitamin D deficiency (<50 nmol/L) was found in about a quarter of patients. Serum vitamin D levels were negatively correlated with age and positively correlated with lumbar spine areal and volumetric BMD. Lean body mass (LBM) Z-scores were positively associated with total body bone mineral content (TB-BMC) Z-scores, and LBM was an independent predictor of TB-BMC values, suggesting that muscle hypoplasia could explain at least in part the bone loss in MFS. Patients with a FBN1 premature termination codon mutation had a more severe musculoskeletal phenotype than patients with an inframe mutation, suggesting the involvement of TGF-β signaling dysregulation in the pathophysiologic mechanisms. In light of these results, we recommend that measurement of bone mineral status should be part of the longitudinal clinical investigation of MFS children.

  4. Ovariectomy-induced changes in aged beagles : histomorphometry of rib cortical bone.

    SciTech Connect

    Wilson, A. K.; Bhattacharyya, M. H.; Miller, S.; Sacco-Gibson, N.; Center for Mechanistic Biology and Biotechnology; Univ. of Utah; Procter & Gamble Pharmaceuticals

    1998-03-01

    Bone loss associated with estrogen depletion is well documented in cancellous bone but less well characterized in cortical bone. The effects of ovariectomy on the aged beagle skeleton were studied by histomorphometric analysis of the cortical bone in sequential rib biopsies. Biopsies were taken from each ovariectomized or sham-operated dog at the time of surgery and at 1, 4, and 8.5 months after surgery. Just prior to each postoperative biopsy, tetracycline, calcein, and xylenol orange, respectively, were administered by a fluorochrome labeling procedure (2d-10d-2d) to provide markers of bone formation. Analysis of sequential rib biopsies provided a means to follow the ovariectomy response over time and to compare each animal against its own baseline. Though ovariectomy did not influence histomorphometric indices at 1 month after surgery, a transient increase in cortical bone formation occurred thereafter, with a sixfold increase over that of sham-operated dogs at 4 months (P < 0.001) and a return to near control levels at 8.5 months. Cortical porosity increased by the fourth month after ovariectomy and remained high at 8.5 months. These data demonstrate for the first time that rib cortical bone is a responsive site for the effects of ovariectomy in aged female dogs.

  5. Aging and the 4-kHz Air-Bone Gap

    ERIC Educational Resources Information Center

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2012-01-01

    Purpose: In this study, the authors assessed age- and sex-related patterns in the prevalence and 10-year incidence of 4-kHz air-bone gaps and associated factors. Method: Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study ( Cruickshanks et al., 1998). An air-bone gap at 4 kHz was defined as an…

  6. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    into anabolic therapies for osteoporosis .1 Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a...research into anabolic therapies for osteoporosis .1 Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases...13. SUPPLEMENTARY NOTES 14. ABSTRACT Osteoporosis , both age-related and post-menopausal, is a huge health problem in the United States and indeed

  7. Detection of age-related duplications in mtDNA from human muscles and bones.

    PubMed

    Lacan, Marie; Thèves, Catherine; Keyser, Christine; Farrugia, Audrey; Baraybar, Jose-Pablo; Crubézy, Eric; Ludes, Bertrand

    2011-03-01

    Several studies have demonstrated the age-related accumulation of duplications in the D-loop of mitochondrial DNA (mtDNA) extracted from skeletal muscle. This kind of mutation had not yet been studied in bone. The detection of age-related mutations in bone tissue could help to estimate age at death within the context of legal medicine or/and anthropological identification procedures, when traditional osteological markers studied are absent or inefficient. As we detected an accumulation of a point mutation in mtDNA from an older individual's bones in a previous study, we tried here to identify if three reported duplications (150, 190, 260 bp) accumulate in this type of tissue. We developed a sensitive method which consists in the use of back-to-back primers during amplification followed by an electrophoresis capillary analysis. The aim of this study was to confirm that at least one duplication appears systematically in muscle tissue after the age of 20 and to evaluate the duplication age appearance in bones extracted from the same individuals. We found that the number of duplications increase from 38 years and that at least one duplicated fragment is present in 50% of cases after 70 years in this tissue. These results confirm that several age-related mutations can be detected in the D-loop of mtDNA and open the way for the use of molecular markers for age estimation in forensic and/or anthropological identification.

  8. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging

    PubMed Central

    2017-01-01

    The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, increases with weight gain, and decreases with weight loss. Additional studies have, however, shown that leptin is also produced by skeletal muscle, and leptin receptors are abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. These findings suggest that leptin may play an important role in muscle-bone crosstalk. Leptin treatment in vitro increases the expression of myogenic genes in primary myoblasts, and leptin treatment in vivo increases the expression of microRNAs involved in myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, central leptin resistance can increase with age, and low circulating levels of leptin have been observed among the frail elderly. Thus, aging appears to significantly alter leptin-mediated crosstalk among various organs and tissues. Aging is associated with bone loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of falls. Therapeutic interventions such as protein and amino acid supplementation that can increase muscle mass and muscle-derived leptin may have multiple benefits for the elderly that can potentially reduce the incidence of falls and fractures. PMID:28326295

  9. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging.

    PubMed

    Hamrick, Mark W

    2017-02-01

    The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, increases with weight gain, and decreases with weight loss. Additional studies have, however, shown that leptin is also produced by skeletal muscle, and leptin receptors are abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. These findings suggest that leptin may play an important role in muscle-bone crosstalk. Leptin treatment in vitro increases the expression of myogenic genes in primary myoblasts, and leptin treatment in vivo increases the expression of microRNAs involved in myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, central leptin resistance can increase with age, and low circulating levels of leptin have been observed among the frail elderly. Thus, aging appears to significantly alter leptin-mediated crosstalk among various organs and tissues. Aging is associated with bone loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of falls. Therapeutic interventions such as protein and amino acid supplementation that can increase muscle mass and muscle-derived leptin may have multiple benefits for the elderly that can potentially reduce the incidence of falls and fractures.

  10. The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate.

    PubMed

    Jepsen, Karl J; Andarawis-Puri, Nelly

    2012-09-01

    Although the continued periosteal apposition that accompanies age-related bone loss is a biomechanically critical target for prophylactic treatment of bone fragility, the magnitude of periosteal expansion required to maintain strength during aging has not been established. A new model for predicting periosteal apposition rate for men and women was developed to better understand the complex, nonlinear interactions that exist among bone morphology, tissue-modulus, and aging. Periosteal apposition rate varied up to eightfold across bone sizes, and this depended on the relationship between cortical area and total area, which varies with external size and among anatomical sites. Increasing tissue-modulus degradation rate from 0% to -4%/decade resulted in 65% to 145% increases in periosteal apposition rate beyond that expected for bone loss alone. Periosteal apposition rate had to increase as much as 350% over time to maintain stiffness for slender diaphyses, whereas robust bones required less than a 32% increase over time. Small changes in the amount of bone accrued during growth (ie, adult cortical area) affected periosteal apposition rate of slender bones to a much greater extent compared to robust bones. This outcome suggested that impaired bone growth places a heavy burden on the biological activity required to maintain stiffness with aging. Finally, sex-specific differences in periosteal apposition were attributable in part to differences in bone size between the two populations. The results indicated that a substantial proportion of the variation in periosteal expansion required to maintain bone strength during aging can be attributed to the natural variation in adult bone width. Efforts to identify factors contributing to variation in periosteal expansion will benefit from developing a better understanding of how to adjust clinical data to differentiate the biological responses attributable to size-effects from other genetic and environmental factors.

  11. Loss of the PGE2 receptor EP1 enhances bone acquisition, which protects against age and ovariectomy-induced impairments in bone strength.

    PubMed

    Zhang, Minjie; Feigenson, Marina; Sheu, Tzong-jen; Awad, Hani A; Schwarz, Edward M; Jonason, Jennifer H; Loiselle, Alayna E; O'Keefe, Regis J

    2015-03-01

    PGE2 exerts anabolic and catabolic effects on bone through the discrete actions of four prostanoid receptors (EP1-4). We have previously demonstrated that loss EP1 accelerates fracture repair by enhancing bone formation. In the present study we defined the role of EP1 in bone maintenance and homeostasis during aging and in response to ovariectomy. The femur and L4 vertebrae of wild type (WT) and EP1(-/-) mice were examined at 2-months, 6-months, and 1-year of age, and in WT and EP1(-/-) mice following ovariectomy (OVX) or sham surgery. Bone volume fraction, trabecular architecture and mechanical properties were maintained during aging in EP1(-/-) mice to a greater degree than age-matched WT mice. Moreover, significant increases in bone formation rate (BFR) (+60%) and mineral apposition rate (MAR) (+50%) were observed in EP1(-/-), relative to WT, while no change in osteoclast number and osteoclast surface were observed. Following OVX, loss of EP1 was protective against bone loss in both femur and L4 vertebrae, with increased bone volume/total volume (BV/TV) (+32% in femur) and max load at failure (+10% in femur) relative to WT OVX, likely resulting from the increased bone formation rate that was observed in these mice. Taken together these studies identify inhibition of EP1 as a potential therapeutic approach to suppress bone loss in aged or post-menopausal patients.

  12. Is Greulich and Pyle atlas still a good reference for bone age assessment?

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Tsao, Sinchai; Sayre, James W.; Gertych, Arkadiusz; Liu, Brent J.; Huang, H. K.

    2007-03-01

    The most commonly used method for bone age assessment in clinical practice is the book atlas matching method developed by Greulich and Pyle in the 1950s. Due to changes in both population diversity and nutrition in the United States, this atlas may no longer be a good reference. An updated data set becomes crucial to improve the bone age assessment process. Therefore, a digital hand atlas was built with 1,100 children hand images, along with patient information and radiologists' readings, of normal Caucasian (CAU), African American (BLK), Hispanic (HIS), and Asian (ASI) males (M) and females (F) with ages ranging from 0 - 18 years. This data was collected from Childrens' Hospital Los Angeles. A computer-aided-diagnosis (CAD) method has been developed based on features extracted from phalangeal regions of interest (ROIs) and carpal bone ROIs from this digital hand atlas. Using the data collected along with the Greulich and Pyle Atlas-based readings and CAD results, this paper addresses this question: "Do different ethnicities and gender have different bone growth patterns?" To help with data analysis, a novel web-based visualization tool was developed to demonstrate bone growth diversity amongst differing gender and ethnic groups using data collected from the Digital Atlas. The application effectively demonstrates a discrepancy of bone growth pattern amongst different populations based on race and gender. It also has the capability of helping a radiologist determine the normality of skeletal development of a particular patient by visualizing his or her chronological age, radiologist reading, and CAD assessed bone age relative to the accuracy of the P&G method.

  13. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while

  14. Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases.

    PubMed

    Grillo, M A; Colombatto, S

    2008-06-01

    Advanced glycation end-products (AGEs) are formed from the so-called Amadori products by rearrangement followed by other reactions giving rise to compounds bound irreversibly. The structure of some of them is shown and the mechanism of formation is described. Several AGE binding molecules (Receptors for AGE, RAGE) are known and it is thought that many of the effects caused by AGEs are mediated by RAGE. Some of these were shown to be toxic, and called TAGE. The mechanism of detoxification of glyoxal and methylglyoxal by the glyoxalase system is described and also the possibility to eliminate glycated proteins by deglycation enzymes. Compounds able to inhibit AGEs formation are also taken into consideration.

  15. Lessons from the Bone Chapter of the Malaysian Aging Men Study

    PubMed Central

    Chin, Kok-Yong; Wan Ngah, Wan Zurinah; Ima-Nirwana, Soelaiman

    2016-01-01

    Male osteoporosis in Malaysia is a largely neglected problem. Therefore, a bone health study in men using quantitative ultrasonometry was launched as part of the Malaysian Aging Men Study in 2009–2012. This review aimed to summarize the findings of the aforementioned bone health study. The study examined the bone health of Chinese and Malaysian men aged 20 years and above living in Kuala Lumpur using a quantitative ultrasound device. Participants answered a questionnaire on their demographic details and physical activity status. Body anthropometry of the participants was measured and their blood collected for biochemical analysis. Results showed that a significant proportion of the Malaysian Chinese and Malay men had suboptimal bone health indicated by calcaneal speed of sound and vitamin D status. Age-related decline of the calcaneal speed of sound in these men was gradual and biphasic without ethnic difference. Body anthropometry such as height, weight, body mass index, and body fat percentage contributed to the variation of the calcaneal speed of sound in Malaysian men. Age-related changes in testosterone, insulin-like growth factor 1, and thyroid stimulating hormone also influenced the calcaneal speed of sound in these men. This study serves as a reminder that male osteoporosis in Malaysia should be an issue of concern. It is also a basis for a more comprehensive study on bone health in men in the future. PMID:27231930

  16. Computer-aided bone age assessment for ethnically diverse older children using integrated fuzzy logic system

    NASA Astrophysics Data System (ADS)

    Ma, Kevin; Moin, Paymann; Zhang, Aifeng; Liu, Brent

    2010-03-01

    Bone Age Assessment (BAA) of children is a clinical procedure frequently performed in pediatric radiology to evaluate the stage of skeletal maturation based on the left hand x-ray radiograph. The current BAA standard in the US is using the Greulich & Pyle (G&P) Hand Atlas, which was developed fifty years ago and was only based on Caucasian population from the Midwest US. To bring the BAA procedure up-to-date with today's population, a Digital Hand Atlas (DHA) consisting of 1400 hand images of normal children of different ethnicities, age, and gender. Based on the DHA and to solve inter- and intra-observer reading discrepancies, an automatic computer-aided bone age assessment system has been developed and tested in clinical environments. The algorithm utilizes features extracted from three regions of interests: phalanges, carpal, and radius. The features are aggregated into a fuzzy logic system, which outputs the calculated bone age. The previous BAA system only uses features from phalanges and carpal, thus BAA result for children over age of 15 is less accurate. In this project, the new radius features are incorporated into the overall BAA system. The bone age results, calculated from the new fuzzy logic system, are compared against radiologists' readings based on G&P atlas, and exhibits an improvement in reading accuracy for older children.

  17. Effect of aging on the toughness of human cortical bone:Evaluation by R-curves

    SciTech Connect

    Nalla, Ravi K.; Kruzic, Jamie J.; Kinney, John H.; Ritchie,Robert O.

    2005-04-05

    Age-related deterioration of the fracture properties ofbone, coupled with increased life expectancy, is responsible forincreasing incidence of bone fracture in the elderly, and hence, anunderstanding of how its fracture properties degrade with age isessential. The present study describes ex vivo fracture experiments toquantitatively assess the effect of aging on the fracture toughnessproperties of human cortical bone in the longitudinal direction. Becausecortical bone exhibits rising crack-growth resistance with crackextension, unlike most previous studies, the toughness is evaluated interms of resistance-curve (R-curve) behavior, measured for bone takenfrom wide range of age groups (34-99 years). Using this approach, boththe ex vivo crack-initiation and crack-growth toughness are determinedand are found to deteriorate with age; the initiation toughness decreasessome 40 percent over 6 decades from 40 to 100 years, while the growthtoughness is effectively eliminated over the same age range. Thereduction in crack-growth toughness is considered to be associatedprimarily with a degradation in the degree of extrinsic toughening, inparticular, involving crack bridging in the wake of thecrack.

  18. sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss

    PubMed Central

    Haraguchi, Ryuma; Kitazawa, Riko; Mori, Kiyoshi; Tachibana, Ryosuke; Kiyonari, Hiroshi; Imai, Yuuki; Abe, Takaya; Kitazawa, Sohei

    2016-01-01

    sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling. PMID:27117872

  19. Age-related thermal stability and susceptibility to proteolysis of rat bone collagen.

    PubMed Central

    Danielsen, C C

    1990-01-01

    The shrinkage temperature (Ts) and the pepsin-solubilizability of collagen fibrils in bone matrix obtained from decalcified femur diaphysis from 2-, 5-, 15- and 25-month-old rats were found to decrease with age. Digestion with human fibroblast collagenase dissolved less than half of the collagen, whereas sequential treatment by pepsin followed by collagenase resulted in its complete dissolution. This result shows that collagenase and a telopeptide-cleaving enzyme, when acting in an appropriate sequence, have a great potential for the degradation of bone collagen. The 'melting' profile of the pepsin-solubilized collagen showed a biphasic transition with transition peak at 35.9 degrees C and 40.8 degrees C. With increasing age an increasing proportion of the collagen 'melted' in the transition peak at 35.9 degrees C (pre-transition), and the 'melting' temperature (Tm) of the collagen decreased in parallel with Ts in relation to age. Both Ts and Tm decreased by 3 degrees C in the age span investigated. The age-related change in Ts could therefore be accounted for by the decrease in molecular stability. The collagenase-cleavage products of the bone collagen obtained by the sequential treatment with pepsin and collagenase showed only one peak transition (at 35.1 degrees C), and the Tm for the products was independent of age. The results indicate that the pre-transition for the pepsin-solubilized collagen is due to an age-related decrease in thermal stability may have implications for the mechanical strength and turnover of the bone collagen. In contrast with bone collagen, soft-tissue collagen showed neither the age-dependency of thermal stability nor the characteristic biphasic 'melting' profile. PMID:2176474

  20. Gestational age, sex and maternal parity correlate with bone turnover in premature infants.

    PubMed

    Aly, Hany; Moustafa, Mohamed F; Amer, Hanna A; Hassanein, Sahar; Keeves, Christine; Patel, Kantilal

    2005-05-01

    Factors affecting bone turnover in premature infants are not entirely clear but certainly are different from those influencing bones of adults and children. To identify fetal and maternal factors that might influence bone turnover, we prospectively studied 50 infants (30 preterm and 20 full-term) born at Ain Shams University Obstetric Hospital in Cairo, Egypt. Maternal parity and medical history and infant's weight, gestational age, gender and anthropometrical measurements were recorded. Cord blood samples were collected and serum type I collagen C-terminal propeptide (PICP) was assessed as a marker for fetal bone formation. First morning urine samples were collected and pyridinoline cross-links of collagen (Pyd) were measured as an index for bone resorption. Serum PICP was higher in premature infants when compared with full-term infants (73.30 +/- 15.1 versus 64.3 +/- 14.7, p = 0.022) and was higher in male premature infants when compared with females (81.64 +/- 9.06 versus 66.0 +/- 15.7, p = 0.018). In a multiple regression model using PICP as the dependent variable and controlling for different infant and maternal conditions, PICP significantly correlated with infant gender (r = 8.26 +/- 4.1, p = 0.05) maternal parity (r = -2.106 +/- 0.99, p = 0.041) and diabetes (r = 22.488 +/- 8.73, p = 0.041). Urine Pyd tended to increase in premature infants (612 +/- 308 versus 434 +/- 146, p = 0.057) and correlated significantly with gestational age (r = -63.93 +/- 19.55, p = 0.002). Therefore, bone formation (PICP) is influenced by fetal age and gender, as well as maternal parity and diabetes. Bone resorption (Pyd) is mostly dependent on gestational age only. Further in-depth studies are needed to enrich management of this vulnerable population.

  1. Cohesive finite element modeling of age-related toughness loss in human cortical bone.

    PubMed

    Ural, Ani; Vashishth, Deepak

    2006-01-01

    Although the age-related loss of bone quality has been implicated in bone fragility, a mechanistic understanding of the relationship is necessary for developing diagnostic and treatment modalities in the elderly population at risk of fracture. In this study, a finite element based cohesive zone model is developed and applied to human cortical bone in order to capture the experimentally shown rising crack growth behavior and age-related loss of bone toughness. The cohesive model developed here is based on a traction-crack opening displacement relationship representing the fracture processes in the vicinity of a propagating crack. The traction-displacement curve, defining the cohesive model, is composed of ascending and descending branches that incorporate material softening and nonlinearity. The results obtained indicate that, in contrast to initiation toughness, the finite element simulations of crack growth in compact tension (CT) specimens successfully capture the rising R-curve (propagation toughness) behavior and the age-related loss of bone toughness. In close correspondence with the experimentally observed decrease of 14-15% per decade, the finite element simulation results show a decrease of 13% in the R-curve slope per decade. The success of the simulations is a result of the ability of cohesive models to capture and predict the parameters related to bone fracture by representing the physical processes occurring in the vicinity of a propagating crack. These results illustrate that fracture mechanisms in the process zone control bone toughness and any modification to these would cause age-related toughness loss.

  2. Neovascularization and bone formation in the condyle during stepwise mandibular advancement.

    PubMed

    Leung, F Y C; Rabie, A B M; Hägg, U

    2004-04-01

    The aims of this investigation were to identify the temporal expression of vascular endothelial growth factor (VEGF) in the mandibular condyle and to correlate it with the pattern of new bone formation during stepwise mandibular advancement. Two hundred and fifty female, 35-day-old Sprague-Dawley rats were randomly divided into 10 groups, with 10 rats allocated to the single-step bite-jumping subgroup, 10 rats to the stepwise advancement subgroup and five rats to the control subgroup. In the experimental groups, the mandibles were kept in a continuous forward position. The initial stepwise advancement commenced on day 35, whereas the second advancement started on day 65. The rats were sacrificed on experimental days 3, 7, 14, 21, 30, 33, 37, 44, 51 and 60. Sections (7 microm) were cut through the condyle in the parasagittal plane and stained with anti-VEGF antibody. Each section was counter-stained with haematoxylin for observation of the cellular response. The sections were digitized and quantitatively analysed with a computer-assisted image analysing system. The results showed that the initial advancement in the stepwise group led to significantly less expression of VEGF when compared with single advancement. However, the second advancement on day 30 resulted in a significant increase in VEGF expression when compared with the one-step group and the natural growth control group. Thus, it was concluded that changes in the amplitude of mechanical loading, produced by stepwise advancement, have a significant effect on the production of VEGF by the chondrocytes. During the later stages of advancement, more VEGF and more condylar bone was produced.

  3. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  4. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets.

    PubMed

    Dant, James T; Richardson, Richard B; Nie, Linda H

    2013-05-21

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of (223)Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of (223)Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from (223)Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, (153)Sm and (89)Sr. There is also a slightly lower dose from (223)Ra in forming bone to haematopoietic marrow than that from (153)Sm and (89)Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from (223)Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and (223)Ra may be a more

  5. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.

    PubMed

    Pearson, Osbjorn M; Lieberman, Daniel E

    2004-01-01

    The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the effects of aging processes on the relationship (if any) between cortical bone form and mechanical function. Experimental and comparative evidence suggests that cortical bone is primarily responsive to strain prior to sexual maturity, both in terms of the rate of new bone growth (modeling) as well as rates of turnover (Haversian remodeling). Rates of modeling and Haversian remodeling, however, vary greatly at different skeletal sites. In addition, there is no simple relationship between the orientation of loads in long bone diaphyses and their cross-sectional geometry. In combination, these data caution against assuming without testing adaptationist views about form-function relationships in order to infer adult activity patterns from skeletal features such as cross-sectional geometry, cortical bones density, and musculo-skeletal stress markers. Efforts to infer function from shape in the human skeleton should be based on biomechanical and developmental models that are experimentally tested and validated.

  6. Long term bone alterations in aged rats suffering type 1 diabetes.

    PubMed

    Sánchez, Luciana Marina; De Lucca, Romina Cármen; Lewicki, Marianela; Ubios, Ángela Matilde

    2016-12-01

    Increasing duration of type 1 diabetes mellitus alters bone metabolism. Clinical studies and experimental studies in long bones of rats with experimentally induced diabetes have reported a decrease in bone density. Few studies have explored this diabetes related alteration in the maxillae. Given that this finding could indicate the possible development of osteopenia in the maxilla in the long term, the present study sought to analyze alterations in alveolar bone in aged rats, 12, 18, and 24weeks after inducing diabetes, and compare alveolar bone response to that of tibial subchondral bone at the same experimental times. Thirty-six male Wistar rats, 130g body weight, were divided into 2 groups: an experimental group (E) receiving a single i.p. 60mg/kg dose of streptozotocin, and a control group (C). Both the control and experimental groups were divided into 3 sub-sets, according to the time of euthanasia: 12, 18 and 24weeks. The alveolar bone and tibiae were examined histologically and histomorphometrically. The results were analyzed using Student's t-test; a value of p<0.05 was considered statistically significant.

  7. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

  8. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.

    PubMed

    Linehan, Eimear; Dombrowski, Yvonne; Snoddy, Rachel; Fallon, Padraic G; Kissenpfennig, Adrien; Fitzgerald, Denise C

    2014-08-01

    Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.

  9. Definition of advanced age in HIV infection: looking for an age cut-off.

    PubMed

    Blanco, José R; Jarrín, Inmaculada; Vallejo, Manuel; Berenguer, Juan; Solera, Carmen; Rubio, Rafael; Pulido, Federico; Asensi, Victor; del Amo, Julia; Moreno, Santiago

    2012-09-01

    The age of 50 has been considered as a cut-off to discriminate older subjects within HIV-infected people according to the Centers for Disease Control and Prevention (CDC). However, the International AIDS Society (IAS) mentions 60 years of age and the Department of Health and Human Services (DHHS) makes no consideration. We aimed to establish an age cut-off that could differentiate response to highly active antiretroviral therapy (HAART) and, therefore, help to define advanced age in HIV-infected patients. CoRIS is an open, prospective, multicenter cohort of HIV adults naive to HAART at entry (January 2004 to October 2009). Survival, immunological response (IR) (CD4 increase of more than 100 cell/ml), and virological response (VR) (HIV RNA less than 50 copies/ml) were compared among 5-year age intervals at start of HAART using Cox proportional hazards models, stratified by hospital and adjusted for potential confounders. Among 5514 patients, 2726 began HAART. During follow-up, 2164 (79.4%) patients experienced an IR, 1686 (61.8%) a VR, and 54 (1.9%) died. Compared with patients aged <25 years at start of HAART, those aged 50-54, 55-59, 60-64, 65-59, and 70 or older were 32% (aHR: 0.68, 95% CI: 0.52-0.87), 29% (aHR: 0.71, 95% CI: 0.53-0.96), 34% (aHR: 0.66, 95% CI: 0.46-0.95), 39% (aHR: 0.61, 95% CI: 0.37-1.00), and 43% (aHR: 0.57, 95% CI: 0.31-1.04) less likely to experience an IR. The VR was similar across all age groups. Finally, patients aged 50-59 showed a 3-fold increase (aHR: 3.58; 95% CI: 1.07-11.99) in their risk of death compared to those aged <30 years. In HIV infection, patients aged ≥50 years have a poorer immunological response to HAART and a poorer survival. This age could be used to define medically advanced age in HIV-infected people.

  10. Definition of Advanced Age in HIV Infection: Looking for an Age Cut-Off

    PubMed Central

    Jarrín, Inmaculada; Vallejo, Manuel; Berenguer, Juan; Solera, Carmen; Rubio, Rafael; Pulido, Federico; Asensi, Victor; del Amo, Julia; Moreno, Santiago

    2012-01-01

    Abstract The age of 50 has been considered as a cut-off to discriminate older subjects within HIV-infected people according to the Centers for Disease Control and Prevention (CDC). However, the International AIDS Society (IAS) mentions 60 years of age and the Department of Health and Human Services (DHHS) makes no consideration. We aimed to establish an age cut-off that could differentiate response to highly active antiretroviral therapy (HAART) and, therefore, help to define advanced age in HIV-infected patients. CoRIS is an open, prospective, multicenter cohort of HIV adults naive to HAART at entry (January 2004 to October 2009). Survival, immunological response (IR) (CD4 increase of more than 100 cell/ml), and virological response (VR) (HIV RNA less than 50 copies/ml) were compared among 5-year age intervals at start of HAART using Cox proportional hazards models, stratified by hospital and adjusted for potential confounders. Among 5514 patients, 2726 began HAART. During follow-up, 2164 (79.4%) patients experienced an IR, 1686 (61.8%) a VR, and 54 (1.9%) died. Compared with patients aged <25 years at start of HAART, those aged 50–54, 55–59, 60–64, 65–59, and 70 or older were 32% (aHR: 0.68, 95% CI: 0.52–0.87), 29% (aHR: 0.71, 95% CI: 0.53–0.96), 34% (aHR: 0.66, 95% CI: 0.46–0.95), 39% (aHR: 0.61, 95% CI: 0.37–1.00), and 43% (aHR: 0.57, 95% CI: 0.31–1.04) less likely to experience an IR. The VR was similar across all age groups. Finally, patients aged 50–59 showed a 3-fold increase (aHR: 3.58; 95% CI: 1.07–11.99) in their risk of death compared to those aged <30 years. In HIV infection, patients aged ≥50 years have a poorer immunological response to HAART and a poorer survival. This age could be used to define medically advanced age in HIV-infected people. PMID:22607516

  11. Aging and loading rate effects on the mechanical behavior of equine bone

    NASA Astrophysics Data System (ADS)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  12. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression.

    PubMed

    Subramanian, Manikandan; Proto, Jonathan D; Matsushima, Glenn K; Tabas, Ira

    2016-12-13

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl(-/-) or wild-type mice were transplanted into lethally irradiated Ldlr(-/-) mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr(-/-) mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis.

  13. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression

    PubMed Central

    Subramanian, Manikandan; Proto, Jonathan D.; Matsushima, Glenn K.; Tabas, Ira

    2016-01-01

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl−/− or wild-type mice were transplanted into lethally irradiated Ldlr−/− mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr−/− mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis. PMID:27958361

  14. Simulated Interventions to Ameliorate Age-Related Bone Loss Indicate the Importance of Timing

    PubMed Central

    Proctor, Carole J.; Gartland, Alison

    2016-01-01

    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANK ligand/osteoprotegrin, and TGF-β, in response to stimuli, such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones, such as PTH, have a circadian rhythm, which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date, there are no models, which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH, and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach, which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions, such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time, which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing. PMID:27379013

  15. Synchrotron-based XRD from rat bone of different age groups.

    PubMed

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A(0)). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P63/m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution.

  16. Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population.

    PubMed

    Mueller, Thomas L; van Lenthe, G Harry; Stauber, Martin; Gratzke, Christian; Eckstein, Felix; Müller, Ralph

    2009-11-01

    An accurate prediction of bone strength in the human radius is of major interest because distal radius fractures are amongst the most common in humans. The objective of this study was to determine gender and age-related changes in bone morphometry at the radius and how these relate to bone strength. Specifically, our aims were to (i) analyze gender differences to get an insight into different bone quantities and qualities between women and men, (ii) to determine which microarchitectural bone parameters would best correlate with strength, (iii) to find the region of interest for the best assessment of bone strength, and (iv) to determine how loss of bone quality depends on age. Intact right forearms of 164 formalin-fixed cadavers from a high-risk elderly population were imaged with a new generation high-resolution pQCT scanner (HR-pQCT). Morphometric indices were derived for six different regions and were related to failure load as assessed by experimental uniaxial compression testing. Significant gender differences in bone quantity and quality were found that correlated well with measured failure load. The most relevant region to determine failure load based on morphometric indices assessed in this study was located just below the proximal end of the subchondral plate; this region differed from the one measured clinically today. Trends in bone changes with increasing age were found, even though for all morphometric indices the variation between subjects was large in comparison to the observed age-related changes. We conclude that HR-pQCT systems can determine how gender and age-related changes in morphometric parameters relate to bone strength, and that HR-pQCT is a promising tool for the assessment of bone quality in patient populations.

  17. [Observation of cervical vertebrae and estimation of their bone age].

    PubMed

    Zhang, Y; Wang, B

    1997-05-01

    There are two objectives in this study: the first is to estimate skeletal age by lateral cephalomatric roentgengram of cervical vertebrae instead of X-ray of handwrist, the second is to study the rules of cervical vertebrae's growth and development of children from Beijing. The Auto CAD 12.0 computer software was used in measuring lateral cephalomatric roentgengrams of cervical vertebrae of 280 children from Beijing aged 9-15. The shape of cervical vertebrae of children with that of adults on X-ray films was compared, and the growth and development of cervical vertebrae of 9-15 years old children from Beijing was observed. We found out that the rapid growth period of cervical vertebrae was 12-14 years old for girls and 14-15 years old for boys. During puberty, the change of vertebrae's shape has no difference between male and female. 42 female and 28 male teenagers from the 280 aged 9-13 years old were taken X-ray films of left handwrist. The comparison between the films and roentgengrams shows that the appearance of sesamoid of hand and the concavity of the second vertebrae body is at the same time, which means that the beginning of rapid growth period can be estimated by the lateral cephalometric roentgengrams of cervical vertebrae.

  18. A computerized image analysis system for estimating Tanner-Whitehouse 2 bone age.

    PubMed

    Tanner, J M; Gibbons, R D

    1994-01-01

    A method for assigning Tanner-Whitehouse 2 skeletal maturity scores (or bone ages) to hand-wrist X-rays by an image analysis computer system is described. An operator positions the relevant area of the X-ray on a light box beneath a video camera. Correct positioning is assured by computer templates of each bone stage. Thereafter the process is automatic; the computer, not the operator, rates the bones. The system produces continuous stage scores, not discrete ones such as B, C or D. Data are given which show that the computer-assisted skeletal age score is more repeatable than the usual manual (or unassisted) rating. The absolute difference between duplicates averaged 0.25 stages; differences of as much as 1.0 stage occurred in only 3% of duplicates compared with 15% obtained in manual ratings.

  19. Pubertal timing and bone phenotype in early old age: findings from a British birth cohort study

    PubMed Central

    Kuh, Diana; Muthuri, Stella G; Moore, Adam; Cole, Tim J; Adams, Judith E; Cooper, Cyrus; Hardy, Rebecca; Ward, Kate A

    2016-01-01

    Objectives To investigate the effect of pubertal timing, assessed in adolescence, on bone size, strength and density in men and women in early old age Design A British birth cohort study with prospective indicators of pubertal timing based on age at menarche, clinical assessment of pubertal stage, and growth tempo from serial height measures, and bone measures derived from peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) at 60-64 years on 866 women and 792 men. Methods A first set of regression models investigated the relationships between pubertal timing and bone size, strength and density, adjusting for current height and weight, smoking and adult socioeconomic position. To make an equivalent comparison between men and women, the percentage difference in bone outcomes was calculated for a five-year difference in age at menarche, and in men a comparison between those who were fully mature or pre-adolescent at 14.5 years. A second set of models investigated the percentage difference in bone outcomes for a 5-year difference in timing of peak height velocity (height tempo) derived from longitudinal growth modelling (SITAR). Results After adjustment for current height and weight, a 5-year increase in age at menarche was associated with an 8% (95% CI -17%, 0.5%, p=0.07) lower trabecular volumetric bone mineral density (vBMD); men who were pre-adolescent at 14.5 years had a 9%, (95%CI -14%,-4%; p=.001) lower trabecular vBMD compared with those who had been fully mature. Other confounders did not attenuate these estimates further. Patterns of association were similar but somewhat weaker for lumbar spine and total hip areal BMD. Age at peak height velocity was associated with even larger differences in BMD in men and women, and was negatively associated with bone size and strength. Conclusions The association between later puberty and lower BMD persists into early old age. The 9-10% lower trabecular vBMD in later compared with

  20. Changes in the stiffness, strength, and toughness of human cortical bone with age.

    PubMed

    Zioupos, P; Currey, J D

    1998-01-01

    Aging adversely affects the elastic and ultimate properties of human cortical bone as seen in uniaxial tests in quasi static loading, high strain rate impact or fatigue. Little is known about the full effects of aging on toughness and its relationship with strength. In the present article the elastic modulus (E), strength (sigma f), fracture toughness (KC and J-integral), and work of fracture (Wf) were determined in specimens of male human femoral bone aged between 35-92 years. In this way we investigated whether fracture of bone in three situations, allowing various amounts of damage prior to fracture, can provide a better insight into the fracture process and also the relative importance of these experimental methods for assessing the soundness of bone material. We found a steady and significant decrease with age for all these mechanical measures. E fell by 2.3%, from its value of 15.2 GPa at 35 years of age, per decade of later life; sigma f fell similarly from 170 MPa by 3.7%; KC from 6.4 MPa m1/2 by 4.1%; J-integral from 1.2 kJ m-2 by 3%, and the Wf from 3.4 kJ m-2 by 8.7%. In aging bone there was a deterioration in the elastic properties of the material. This reduced the (elastically calculated) critical stress intensity level (KC) required to initiate a macrocrack, or the nonlinear energy associated with the onset of fracture (J). The macrocrack was preceded by less damage, and once created needed less energy to drive through the tissue (Wf).

  1. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat.

    PubMed

    Ode, Andrea; Duda, Georg N; Geissler, Sven; Pauly, Stephan; Ode, Jan-Erik; Perka, Carsten; Strube, Patrick

    2014-01-01

    Among other stressors, age and mechanical constraints significantly influence regeneration cascades in bone healing. Here, our aim was to identify genes and, through their functional annotation, related biological processes that are influenced by an interaction between the effects of mechanical fixation stability and age. Therefore, at day three post-osteotomy, chip-based whole-genome gene expression analyses of fracture hematoma tissue were performed for four groups of Sprague-Dawley rats with a 1.5-mm osteotomy gap in the femora with varying age (12 vs. 52 weeks - biologically challenging) and external fixator stiffness (mechanically challenging). From 31099 analysed genes, 1103 genes were differentially expressed between the six possible combinations of the four groups and from those 144 genes were identified as statistically significantly influenced by the interaction between age and fixation stability. Functional annotation of these differentially expressed genes revealed an association with extracellular space, cell migration or vasculature development. The chip-based whole-genome gene expression data was validated by q-RT-PCR at days three and seven post-osteotomy for MMP-9 and MMP-13, members of the mechanosensitive matrix metalloproteinase family and key players in cell migration and angiogenesis. Furthermore, we observed an interaction of age and mechanical stimuli in vitro on cell migration of mesenchymal stromal cells. These cells are a subpopulation of the fracture hematoma and are known to be key players in bone regeneration. In summary, these data correspond to and might explain our previously described biomechanical healing outcome after six weeks in response to fixation stiffness variation. In conclusion, our data highlight the importance of analysing the influence of risk factors of fracture healing (e.g. advanced age, suboptimal fixator stability) in combination rather than alone.

  2. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    PubMed Central

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen. PMID:26797297

  3. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    NASA Astrophysics Data System (ADS)

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.

  4. Bisphosphonate-related osteonecrosis of jaws in advanced stage breast cancer was detected from bone scan: a case report

    PubMed Central

    Chirappapha, Prakasit; Thongjood, Thanaporn; Aroonroch, Rangsima

    2017-01-01

    Bisphosphonates (BPs) are indicated to treat skeletal-related events (SREs) for cancer patients with bone metastasis. We report a 79-year-old woman with advanced stage breast cancer with bone metastasis who was prescribed BPs (zoledronate), then developed osteonecrosis of jaw. We provide a brief review of the pathogenesis, diagnosis and treatment of this complication. PMID:28210558

  5. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    PubMed

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.

  6. Clinical utility of biochemical markers of bone metabolism for improving the management of patients with advanced multiple myeloma.

    PubMed

    Lipton, Allan; Cook, Richard J; Coleman, Robert E; Smith, Matthew R; Major, Pierre; Terpos, Evangelos; Berenson, James R

    2007-03-01

    Osteolytic bone lesions from advanced multiple myeloma (MM) result in significant skeletal morbidity. Therefore, biochemical markers of bone metabolism, such as the N-terminal and C-terminal telopeptides of type I collagen, bone-specific alkaline phosphatase, and osteocalcin, have been investigated as tools for evaluating the extent of bone disease, risk of skeletal morbidity, and response to antiresorptive treatment. Several studies have shown that the majority of biochemical markers of bone metabolism are increased in patients with MM with osteolytic bone lesions, thus reflecting changes in bone metabolism associated with tumor growth. There is also a growing body of evidence that markers of bone metabolism correlate with the risk of skeletal complications, disease progression, and death. In addition, bone markers could potentially be used as a tool for early diagnosis of bone lesions. The aim of this review is to improve our understanding of bone markers as a clinical tool for the management of malignant bone disease in patients with MM.

  7. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    PubMed

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in

  8. Effect of whole-body vibration on bone properties in aging mice.

    PubMed

    Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C

    2010-10-01

    Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0

  9. Lessons from Microglia Aging for the Link between Inflammatory Bone Disorders and Alzheimer's Disease.

    PubMed

    Wu, Zhou; Nakanishi, Hiroshi

    2015-01-01

    Bone is sensitive to overactive immune responses, which initiate the onset of inflammatory bone disorders, such as rheumatoid arthritis and periodontitis, resulting in a significant systemic inflammatory response. On the other hand, neuroinflammation is strongly implicated in Alzheimer's disease (AD), which can be enhanced by systemic inflammation, such as that due to cardiovascular disease and diabetes. There is growing clinical evidence supporting the concept that rheumatoid arthritis and periodontitis are positively linked to AD, suggesting that inflammatory bone disorders are risk factors for this condition. Recent studies have suggested that leptomeningeal cells play an important role in transducing systemic inflammatory signals to brain-resident microglia. More importantly, senescent-type, but not juvenile-type, microglia provoke neuroinflammation in response to systemic inflammation. Because the prevalence of rheumatoid arthritis and periodontitis increases with age, inflammatory bone disorders may be significant sources of covert systemic inflammation among elderly people. The present review article highlights our current understanding of the link between inflammatory bone disorders and AD with a special focus on microglia aging.

  10. A proteomic study of protein variation between osteopenic and age-matched control bone tissue.

    PubMed

    Chaput, Christopher D; Dangott, Lawrence J; Rahm, Mark D; Hitt, Kirby D; Stewart, Donald S; Wayne Sampson, H

    2012-05-01

    The focus of this study was to identify changes in protein expression within the bone tissue environment between osteopenic and control bone tissue of human femoral neck patients with osteoarthritis. Femoral necks were compared from osteopenic patients and age-matched controls. A new method of bone protein extraction was developed to provide a swift, clear view of the bone proteome. Relative changes in protein expression between control and osteopenic samples were quantified using difference gel electrophoresis (DIGE) technology after affinity chromatographic depletion of albumin and IgG. The proteins that were determined to be differentially expressed were identified using standard liquid chromatography mass spectrometry (LC/MS/MS) and database searching techniques. In order to rule out blood contamination, blood from age-matched osteoporotic, osteopenic and controls were analyzed in a similar manner. Image analysis of the DIGE gels indicated that 145 spots in the osteopenic bone samples changed at least ± 1.5-fold from the control samples (P < 0.05). Three of the proteins were identified by LC/MS/MS. Of the proteins that increased in the osteopenic femurs, two were especially significant: carbonic anhydrase I and phosphoglycerate kinase 1. Apolipoprotein A-I was the most prominent protein that significantly decreased in the osteopenic femurs. The blood samples revealed no significant differences between groups for any of these proteins. In conclusion, carbonic anhydrase I, phosphoglycerate kinase 1 and apolipoprotein A-I appeared to be the most significant variations of proteins in patients with osteopenia and osteoarthritis.

  11. Evaluation of bone remodeling in regard to the age of scaphoid non-unions

    PubMed Central

    Rein, Susanne; Hanisch, Uwe; Schaller, Hans-Eberhard; Zwipp, Hans; Rammelt, Stefan; Weindel, Stefan

    2016-01-01

    AIM: To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry. METHODS: Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP). Histological examination was performed in a blinded fashion. RESULTS: The number of multinuclear osteoclasts in the TRAP-staining correlated with the age of the SNU and was significantly higher in younger SNU (P = 0.034; r = 0.75). A higher number of OP-immunoreactive osteoblasts significantly correlated with a higher number of OC-immunoreactive osteoblasts (P = 0.001; r = 0.55). Furthermore, a greater number of OP-immunoreactive osteoblasts correlated significantly with a higher number of OP-immunoreactive multinuclear osteoclasts (P = 0.008; r = 0.43). SNU older than 6 mo showed a significant decrease of the number of fibroblasts (P = 0.04). Smoking and the age of the patients had no influence on bone remodeling in SNU. CONCLUSION: Multinuclear osteoclasts showed a significant decrease in relation to the age of SNU. However, most of the immunhistochemical findings of bone remodeling do not correlate with the age of the SNU. This indicates a permanent imbalance of bone formation and resorption as indicated by a concurrent increase in both osteoblast and osteoclast numbers. A clear histological differentiation into phases of bone remodeling in SNU is not possible. PMID:27458552

  12. Ages of fossil bones from British interglacial sites

    USGS Publications Warehouse

    Szabo, B. J.; Collins, D.

    1975-01-01

    THE time gap between the upper limit of radiocarbon dating (???60,000 yr BP) and the lower limit of dates generally obtainable using the K-Ar method (???250,000 yr BP) accounts for the scarcity of dates for the last two interglaciations (the Ipswichian and Hoxnian of Britain; the Eemian and Holsteinian of northern Europe). Accordingly, the ages of such important fossils as the Swanscombe and Steinheim skulls can only be guessed at. For that reason, the adaptation of a method that may date these interglacial periods is highly desirable. We discuss here the application of a uranium-series dating technique pertaining to that span of time. ?? 1975 Nature Publishing Group.

  13. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Kohn, David H.; Morris, Michael D.

    2012-01-01

    There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86–96% accuracy) as compared to using individual measures (59–79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single

  14. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  15. Advanced maternal age and risk perception: A qualitative study

    PubMed Central

    2012-01-01

    Background Advanced maternal age (AMA) is associated with several adverse pregnancy outcomes, hence these pregnancies are considered to be “high risk.” A review of the empirical literature suggests that it is not clear how women of AMA evaluate their pregnancy risk. This study aimed to address this gap by exploring the risk perception of pregnant women of AMA. Methods A qualitative descriptive study was undertaken to obtain a rich and detailed source of explanatory data regarding perceived pregnancy risk of 15 women of AMA. The sample was recruited from a variety of settings in Winnipeg, Canada. In-depth interviews were conducted with nulliparous women aged 35 years or older, in their third trimester, and with singleton pregnancies. Interviews were recorded and transcribed verbatim, and content analysis was used to identify themes and categories. Results Four main themes emerged: definition of pregnancy risk, factors influencing risk perception, risk alleviation strategies, and risk communication with health professionals. Conclusions Several factors may influence women's perception of pregnancy risk including medical risk, psychological elements, characteristics of the risk, stage of pregnancy, and health care provider’s opinion. Understanding these influential factors may help health professionals who care for pregnant women of AMA to gain insight into their perspectives on pregnancy risk and improve the effectiveness of risk communication strategies with this group. PMID:22988825

  16. Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections.

    PubMed

    Parra-Ruíz, F J; González-Gómez, A; Fernández-Gutiérrez, M; Parra, J; García-García, J; Azuara, G; De la Torre, B; Buján, J; Ibarra, B; Duocastella-Codina, L; Molina-Crisol, M; Vázquez-Lasa, B; San Román, J

    2017-02-28

    The incidence increase of infections in patients with hip or knee implants with resistant pathogens (mainly some S. coagulase-negative and gram positive bacteria) demands advanced antibiotic loaded formulations. In this paper, we report the design of new biantibiotic acrylic bone cements for in situ delivery. They include a last generation antibiotic (daptomycin or linezolid) in combination with vancomycin and are performed based on a novel modification of the Palacos R(®) acrylic bone cement, which is based on two components, a liquid (methyl methacrylate) and a solid (polymeric phase). Hence, the solid component of the experimental formulations include 45wt% of microparticles of poly(D,L-lactic-co-glycolic) acid, 55wt% of poly(methyl methacrylate) beads and supplements (10wt-% each) of antibiotics. These formulations provide a selective and excellent control of the local release of antibiotics during a long time period (up to 2 months), avoiding systemic dissemination. The antimicrobial activity of the advanced spacers tested against S. aureus shows that single doses would be enough for the control of the infection. In vitro biocompatibility of cements on human osteoblasts is ensured. This paper is mainly focused on the preparation and characterization of cements and the studies of elution kinetics and bactericidal effects. Developed formulations are proposed as spacers for the treatment of infected arthroplasties, but also, they could be applied in other antibiotic devices to treat relevant bone-related infection diseases.

  17. How can we utilize livers from advanced aged donors for liver transplantation for hepatitis C?

    PubMed

    Uemura, Tadahiro; Nikkel, Lucas E; Hollenbeak, Christopher S; Ramprasad, Varun; Schaefer, Eric; Kadry, Zakiyah

    2012-06-01

    Advanced age donors have inferior outcomes of liver transplantation for Hepatitis C (HCV). Aged donors grafts may be transplanted into young or low model for end stage liver disease (MELD) patients in order to offset the effect of donor age. However, it is not well understood how to utilize liver grafts from advanced aged donors for HCV patients. Using the UNOS database, we retrospectively studied 7508 HCV patients who underwent primary liver transplantation. Risk factors for graft failure and graft survival using advanced aged grafts (donor age ≥ 60 years) were analyzed by Cox hazards models, donor risk index (DRI) and organ patient index (OPI). Recipient's age did not affect on graft survival regardless of donor age. Advanced aged grafts had significant inferior survival compared to younger aged grafts regardless of MELD score (P < 0.0001). Risk factors of HCV patients receiving advanced aged grafts included donation after cardiac death (DCD, HR: 1.69) and recent hospitalization (HR: 1.43). Advanced aged grafts showed significant difference in graft survival of HCV patients with stratification of DRI and OPI. In conclusion, there was no offsetting effect by use of advanced aged grafts into younger or low MELD patients. Advanced aged grafts, especially DCD, should be judiciously used for HCV patients with low MELD score.

  18. Deep learning for automated skeletal bone age assessment in X-ray images.

    PubMed

    Spampinato, C; Palazzo, S; Giordano, D; Aldinucci, M; Leonardi, R

    2017-02-01

    Skeletal bone age assessment is a common clinical practice to investigate endocrinology, genetic and growth disorders in children. It is generally performed by radiological examination of the left hand by using either the Greulich and Pyle (G&P) method or the Tanner-Whitehouse (TW) one. However, both clinical procedures show several limitations, from the examination effort of radiologists to (most importantly) significant intra- and inter-operator variability. To address these problems, several automated approaches (especially relying on the TW method) have been proposed; nevertheless, none of them has been proved able to generalize to different races, age ranges and genders. In this paper, we propose and test several deep learning approaches to assess skeletal bone age automatically; the results showed an average discrepancy between manual and automatic evaluation of about 0.8 years, which is state-of-the-art performance. Furthermore, this is the first automated skeletal bone age assessment work tested on a public dataset and for all age ranges, races and genders, for which the source code is available, thus representing an exhaustive baseline for future research in the field. Beside the specific application scenario, this paper aims at providing answers to more general questions about deep learning on medical images: from the comparison between deep-learned features and manually-crafted ones, to the usage of deep-learning methods trained on general imagery for medical problems, to how to train a CNN with few images.

  19. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  20. Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival.

    PubMed

    Selesniemi, Kaisa; Lee, Ho-Joon; Niikura, Teruko; Tilly, Jonathan L

    2008-11-14

    The female reproductive axis is the first major organ system of the body to fail with advancing age. In addition to a permanent cessation of fertile potential, the loss of cyclic ovarian function in humans heralds the onset of menopause, which in turn underlies the emergence of a diverse spectrum of health issues in aging women. Recently, it was reported that bone marrow (BM) transplantation (BMT) into adult female mice conditioned a week earlier with highly cytotoxic drugs rescues ovarian function and fertility. Herein we show in mice receiving no prior conditioning regimen that once-monthly infusions of BM-derived cells retrieved from young adult female donors bearing an enhanced green fluorescent protein (EGFP) transgene sustain the fertile potential of aging wild-type females long past their time of normal reproductive senescence. The fertility-promoting effects of female donor BM are observed regardless whether the infusions are initiated in young adult or middle-aged females. Although the mechanism by which BM infusions benefit the reproductive performance of aging females remains to be elucidated, the absence of EGFP-expressing offspring suggests that it does not depend on development of mature eggs derived from germline-committed cells in the donor marrow. However, donor BM-derived somatic cells accumulate in the recipients, indicating efficient donor cell engraftment without prior conditioning. These findings provide a strong impetus to further explore development of adult stem cell-based technologies to safely extend function of the female reproductive axis into advanced age without the need for toxic pre-conditioning protocols routinely used in other models of stem cell delivery.

  1. AGE-RELATED EFFECT ON THE CONCENTRATION OF COLLAGEN CROSSLINKS IN HUMAN OSTEONAL AND INTERSTITIAL BONE TISSUE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Acuna, Rae L.; Gayle, Heather J.; Reyes, Michael J.; Tyler, Jerrod H.; Dean, David D.; Wang, Xiaodu

    2007-01-01

    Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: Middle aged (42–63 years of age) and Elderly (69–90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons (newly formed) and interstitial regions (biologically old) in the medial quadrant of the diaphysis were extracted using a custom-modified, computer numerical controlled machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline – HP and lysylpyridinoline – LP) and a non-enzymatic crosslink (pentosidine – PE) at these two bony sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the rate of non-enzymatic crosslinking may increase while the formation of maturate enzymatic crosslinks may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton. PMID:16962838

  2. Effects of age and loading rate on equine cortical bone failure.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates.

  3. Neuropeptide y and neuropeptide y y5 receptor interaction restores impaired growth potential of aging bone marrow stromal cells.

    PubMed

    Igura, Koichi; Haider, Husnain Kh; Ahmed, Rafeeq P H; Sheriff, Sulaiman; Ashraf, Muhammad

    2011-08-01

    Abstract improved growth characteristics of the aging bone marrow cells subsequent to neuropeptide Y (NPY)/neuropeptide Y Y5 receptor (NPY Y5R) ligand-receptor interaction. Bone marrow cells were isolated from neonatal (2-3 weeks), young (8-12 weeks), and old (24-28 months) rats on the basis of their preferential adherence to plastic surface. After culturing the cells at initial seeding density of 1×10(4) cells/cm(2), we found that the proliferation potential of bone marrow cells declined with age. Real-time polymerase chain reaction (PCR) and Western blotting showed that bone marrow cells in different age groups constitutively expressed NPY and NPY receptor subtypes (Y1R, Y2R, and Y5R). However, NPY and Y5R expression increased by more than 130-fold and decreased by 28-fold, respectively, in old bone marrow cells as compared to young bone marrow cells. NPY (10 nM) stimulated the proliferation of all bone marrow cells age groups, and their proliferation was blocked by Y5R antagonist. However, the pro-proliferative effect of NPY on old bone marrow cells was weaker than other cell groups due to lower Y5R expression. Y5R gene transfection of old bone marrow cells with subsequent NPY(3-36) (10 nM) treatment significantly increased proliferation of old bone marrow cells (>56%) as compared to green fluorescence protein-transfected control old bone marrow cells. Stimulation of old bone marrow cells by NPY treatment rejuvenated the growth characteristics of aging bone marrow cells as a result of Y5R overexpression.

  4. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.

    PubMed Central

    Parfitt, A M; Mathews, C H; Villanueva, A R; Kleerekoper, M; Frame, B; Rao, D S

    1983-01-01

    We devised a new method for examining the structural changes that occur in trabecular bone in aging and in osteoporosis. With simultaneous measurement of total perimeter and bone area in thin sections, indirect indices of mean trabecular plate thickness (MTPT) and mean trabecular plate density (MTPD) can be derived, such that trabecular bone volume = MTPD X MTPT. MTPD is an index of the probability that a scanning or test line will intersect a structural element of bone, and is the reciprocal of the mean distance between the midpoints of structural elements, multiplied by pi/2. We applied this method to iliac bone samples from 78 normal subjects, 100 patients with vertebral fracture, and 50 patients with hip fracture. The reduction in trabecular bone volume observed in normal subjects with increasing age was mainly due to a reduction in plate density, with no significant decrease in plate thickness. The further reduction in trabecular bone volume observed in patients with osteoporotic vertebral fracture was mainly due to a further reduction in plate density. There was a relatively smaller reduction in plate thickness that was statistically significant in males but not in females. Only in patients with hip fracture did trabecular thinning contribute substantially to the additional loss of trabecular bone in osteoporosis relative to age. These data indicate that age-related bone loss occurs principally by a process that removes entire structural elements of bone; those that remain are more widely separated and some may undergo compensatory thickening, but most slowly become reduced in thickness. We propose that the process of removal is initiated by increased depth of osteoclastic resorption cavities which leads to focal perforation of trabecular plates; this is followed by progressive enlargement of the perforations with conversion of plates to rods. The resulting structural changes are more severe in osteoporotic patients than in normal subjects, but have been

  5. Age-related changes in bone structure and strength in female and male BALB/c mice.

    PubMed

    Willinghamm, Mark D; Brodt, Michael D; Lee, Kristen L; Stephens, Abby L; Ye, Jiaxin; Silva, Matthew J

    2010-06-01

    Mice may be useful for studies of skeletal aging, but there are limited data on changes in bone structure and strength over their life span. We obtained bones from female and male BALB/c mice at ages 2, 4, 7, 12, and 20 months and evaluated their structural, densitometric, and mechanical properties. MicroCT of the mid-diaphysis of the femur and radius indicated that during skeletal growth (2-7 months) bone cross-sectional size (area, moment of inertia) increased rapidly; during aging (7-20 months) cortical area was maintained, while moment of inertia continued to increase. Bones from females were smaller than those from males at young ages but not at later ages. Changes in whole-bone stiffness and strength reflected the changes in bone size, with a rapid increase from 2 to 7 months, followed by little or no change. In contrast, energy-to-fracture declined with aging. Cortical tissue mineral density increased during growth and was maintained with aging. MicroCT of trabecular bone revealed age-related changes that were site-dependent. The proximal tibia showed a clear pattern of age-related decline in trabecular BV/TV, with progressive decreases after 4 months in both sexes; lumbar vertebra L5 had more modest age-related declines; in contrast, caudal vertebra Ca7 had increasing BV/TV with aging. Overall, we found no evidence that females had more pronounced age-related deterioration than males. We conclude that bones from aging female and male BALB/c mice exhibit many of the changes seen in humans and are therefore a clinically relevant model for studies of skeletal aging.

  6. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  7. Enhanced methods for assessment of the trace element composition of Iron Age bone.

    PubMed

    Shafer, Martin M; Siker, Malika; Overdier, Joel T; Ramsl, Peter C; Teschler-Nicola, Maria; Farrell, Philip M

    2008-08-15

    Modern, ultra-trace, analytical methods, coupled with magnetic sector ICP-MS (HR-ICP-MS), were applied to the determination of a large suite of major and trace elements in Iron Age bones. The high sensitivity and un-paralleled signal-to-noise characteristics of HR-ICP-MS enabled the accurate measurement of Ag, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, La, Li, Mg, Mn, Ni, P, Pb, Pt, Rb, Sr, U, V, and Zn in small bone sections (<75 mg). Critically, the HR-ICP-MS effectively addressed molecular interferences, which would likely have compromised data generated with quadrupole-based ICP-MS instruments. Contamination and diagenetic alteration of ancient bone are grave concerns, which if not properly addressed, may result in serious misinterpretation of data from bone archives. Analytical procedures and several chemical and statistical methods (Principal Components Analysis - PCA) were studied to assess their utility in identifying and correcting bone contamination and diagenetic alteration. Uncertainties in bone (femur) sampling were characterized for each element and longitudinal variation was found to be the dominant source of sampling variability. However the longitudinal variation in most trace elements levels was relatively modest, ranging between 9 and 17% RSD. Bone surface contamination was evaluated using sequential acid leaching. Calcium-normalized metal levels in brief, timed, dilute nitric acid leaches were compared with similarly normalized interior core metal levels to assess the degree of surface enrichment. A select group of metals (Mn, Co, Ni, Ag, Cd, and Pt) were observed to be enriched by up to a factor of 10 in the bone surface, indicating that that these elements may have a higher contamination component. However, the results of sequential acid leaching experiments indicated that the single acid leaching step was effective in removing most surface-enriched contaminants. While the leaching protocol was effective in removing contaminants associated with

  8. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone

    PubMed Central

    Borkowska, Aneta; Goryń, Tomasz; Pieńkowski, Andrzej; Wągrodzki, Michał; Jagiełło-Wieczorek, Ewelina; Rogala, Paweł; Szacht, Milena; Rutkowski, Piotr

    2016-01-01

    Giant cell tumor of bone (GCTB) is an osteolytic, locally aggressive tumor that rarely metastasizes and typically occurs in the bones. At present, the primary treatment for GCTB is curettage with local adjuvants. Giant cells express receptor activator of nuclear factor-κB ligand (RANKL). Denosumab, a RANKL inhibitor appears to present an effective therapeutic option in advanced cases of GCTB. The aim of the present study was to confirm the efficacy of denosumab in large group of patients with locally advanced GCTB. A total of 35 patients with histologically confirmed GCTB that were treated with denosumab with no participation in clinical trials between May 2013 and September 2015 were included in the present study. Denosumab treatment was administered until complete tumor resection was feasible or tumor progression or unacceptable toxicity had occurred. The mean denosumab treatment duration was 7.4 months. A total of 17 patients received surgery following denosumab treatment: 11 patients underwent wide en bloc resection with prosthesis implantation in 10 cases and 6 patients were treated with intralesional curettage. Tumor progression was observed in 2 patients that underwent intralesional curettage without prosthesis implantation. In addition, tumor progression was observed during denosumab treatment in 2 patients that had previously undergone radiotherapy. The overall 1-year progression-free survival rate was 92.8%. Thus, for patients with advanced, unresectable, progressive or symptomatic pretreated GCTB, denosumab provides a therapeutic option not previously available, which has become the standard therapy in multidisciplinary management of GCTB. PMID:28101196

  9. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone.

    PubMed

    Borkowska, Aneta; Goryń, Tomasz; Pieńkowski, Andrzej; Wągrodzki, Michał; Jagiełło-Wieczorek, Ewelina; Rogala, Paweł; Szacht, Milena; Rutkowski, Piotr

    2016-12-01

    Giant cell tumor of bone (GCTB) is an osteolytic, locally aggressive tumor that rarely metastasizes and typically occurs in the bones. At present, the primary treatment for GCTB is curettage with local adjuvants. Giant cells express receptor activator of nuclear factor-κB ligand (RANKL). Denosumab, a RANKL inhibitor appears to present an effective therapeutic option in advanced cases of GCTB. The aim of the present study was to confirm the efficacy of denosumab in large group of patients with locally advanced GCTB. A total of 35 patients with histologically confirmed GCTB that were treated with denosumab with no participation in clinical trials between May 2013 and September 2015 were included in the present study. Denosumab treatment was administered until complete tumor resection was feasible or tumor progression or unacceptable toxicity had occurred. The mean denosumab treatment duration was 7.4 months. A total of 17 patients received surgery following denosumab treatment: 11 patients underwent wide en bloc resection with prosthesis implantation in 10 cases and 6 patients were treated with intralesional curettage. Tumor progression was observed in 2 patients that underwent intralesional curettage without prosthesis implantation. In addition, tumor progression was observed during denosumab treatment in 2 patients that had previously undergone radiotherapy. The overall 1-year progression-free survival rate was 92.8%. Thus, for patients with advanced, unresectable, progressive or symptomatic pretreated GCTB, denosumab provides a therapeutic option not previously available, which has become the standard therapy in multidisciplinary management of GCTB.

  10. Inactivation of Vhl in Osteochondral Progenitor Cells Causes High Bone Mass Phenotype and Protects Against Age-Related Bone Loss in Adult Mice

    PubMed Central

    Weng, Tujun; Xie, Yangli; Huang, Junlan; Luo, Fengtao; Yi, Lingxian; He, Qifen; Chen, Di; Chen, Lin

    2014-01-01

    Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia-inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen-inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging-induced bone loss. Our data suggest that the VHL-mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research. PMID:23999831

  11. Clinical and Genetic Advances in Paget's Disease of Bone: a Review.

    PubMed

    Alonso, N; Calero-Paniagua, I; Del Pino-Montes, J

    2017-01-01

    Paget's disease of bone (PDB) is the second most common metabolic bone disorder, after osteoporosis. It is characterised by focal areas of increased and disorganised bone turnover, coupled with increased bone formation. This disease usually appears in the late stages of life, being slightly more frequent in men than in women. It has been reported worldwide, but primarily affects individuals of British descent. Majority of PDB patients are asymptomatic, but clinical manifestations include pain, bone deformity and complications, like pathological fractures and deafness. The causes of the disease are poorly understood and it is considered as a complex trait, combining genetic predisposition with environmental factors. Linkage analysis identified SQSTM1, at chromosome 5q35, as directly related to the disease. A number of mutations in this gene have been reported, pP392L being the most common variant among different populations. Most of these variants affect the ubiquitin-associated (UBA) domain of the protein, which is involved in autophagy processes. Genome-wide association studies enlarged the number of loci associated with PDB, and further fine-mapping studies, combined with functional analysis, identified OPTN and RIN3 as causal genes for Paget's disease. A combination of risk alleles identified by genome-wide association studies led to the development of a score to predict disease severity, which could improve the management of the disease. Further studies need to be conducted to elucidate other important aspects of the trait, such as its focal nature and the epidemiological changes found in some populations. In this review, we summarize the clinical characteristics of the disease and the latest genetic advances to identify susceptibility genes. We also list current available treatments and prospective options.

  12. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice

    SciTech Connect

    Zhang Wei; Zhang Guoping; Jin Huiming . E-mail: hmjin@shmu.edu.cn; Hu Renming

    2006-09-29

    Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117{sup +}CD34{sup +}Flk-1{sup +} by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117{sup +} stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice.

  13. Age-related changes in the bone marrow and spleen of SAS/4 mice.

    PubMed

    Coggle, J E; Gordon, M Y; Proukakis, C; Bogg, C E

    1975-01-01

    The total number of nucleated cells in the bone marrow of SAS/4 mice increase some twofold between 1 and 24 months of age but when related to body weight remains essentially constant over a wide range of ages. The concentration of CFU-S in femoral marrow is also constant with age and since other bones containing marrow appear, at least in young mice, to have the same CFU-S concentration as the femur it is concluded that the CFU-S compartment size of the whole bone marrow is independent of age when expressed on a body weight basis, In contrast, both the absolute number and the concentration of exogenous CFU-S in the spleen decline markedly in old mice. Smilary there is a decline in the number of endogenous colony-forming cells and the spleens of 24-month-old mice seem virtually devoid of such colonies. Not only were older mice less capable of supporting the growth of endogenous colonies, but their spleens also appear to provide a poorer environment for exogenous colony growth when compared with growth in younger recipient spleens.

  14. Effects of Eurycoma longifolia on Testosterone Level and Bone Structure in an Aged Orchidectomised Rat Model.

    PubMed

    Tajul Ariff, Abdul Shukor; Soelaiman, Ima Nirwana; Pramanik, J; Shuid, Ahmad Nazrun

    2012-01-01

    Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production.

  15. Effects of Eurycoma longifolia on Testosterone Level and Bone Structure in an Aged Orchidectomised Rat Model

    PubMed Central

    Tajul Ariff, Abdul Shukor; Soelaiman, Ima Nirwana; Pramanik, J.; Shuid, Ahmad Nazrun

    2012-01-01

    Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production. PMID:22966245

  16. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes.

    PubMed

    Krings, A; Rahman, S; Huang, S; Lu, Y; Czernik, P J; Lecka-Czernik, B

    2012-02-01

    Fat occupies a significant portion of bone cavity however its function is largely unknown. Marrow fat expands during aging and in conditions which affect energy metabolism, indicating that fat in bone is under similar regulatory mechanisms as other fat depots. On the other hand, its location may determine specific functions in the maintenance of the environment for bone remodeling and hematopoiesis. We have demonstrated that marrow fat has a distinctive phenotype, which resembles both, white and brown adipose tissue (WAT and BAT, respectively). Marrow adipocytes express gene markers of brown adipocytes at levels characteristic for the BAT, including transcription factor Prdm16, and regulators of thermogenesis such as deiodinase 2 (Dio2) and PGC1α. The levels of expression of BAT-specific gene markers are decreased in bone of 24 mo old C57BL/6 and in diabetic yellow agouti A(vy)/a mice implicating functional changes of marrow fat occurring with aging and diabetes. Administration of antidiabetic TZD rosiglitazone, which sensitizes cells to insulin and increases adipocyte metabolic functions, significantly increased both, BAT (UCP1, PGC1α, Dio2, β3AR, Prdm16, and FoxC2) and WAT (adiponectin and leptin) gene expression in marrow of normoglycemic C57BL/6 mice, but failed to increase the expression of BAT, but not WAT, gene markers in diabetic mice. In conclusion, the metabolic phenotype of marrow fat combines both BAT and WAT characteristics. Decrease in BAT-like characteristics with aging and diabetes may contribute to the negative changes in the marrow environment supporting bone remodeling and hematopoiesis.

  17. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat.

    PubMed

    Davis, Kathleen E; Prasad, Chandan; Vijayagopal, Parakat; Juma, Shanil; Adams-Huet, Beverley; Imrhan, Victorine

    2015-12-14

    The purpose of this pilot study was to determine whether macronutrient content (low-fat v. high-fat diet) influences an indicator of advanced glycation end products (AGE), N(ε) carboxymethyl-lysine (CML), in the context of a 1-d, high-AGE diet. The effect of the diets on inflammatory markers was also assessed. A total of nineteen overweight and obese adults (nine men and ten women) without known disease were recruited to participate in a crossover challenge of a high-fat, high-AGE (HFHA) and low-fat, high-AGE (LFHA) diet. In each phase patients had fasting blood drawn, followed by consumption of a high-fat or low-fat breakfast test meal, then three postprandial blood draws at 1, 2 and 3 h after consuming the test meal. After consuming high-AGE meals for the remainder of the day, participants returned the next day for a follow-up analysis. A different pattern in the 3-h post-meal CML and soluble receptor for AGE response to the two diets was observed (P=0·01 and 0·05, respectively). No change in serum CML was observed following consumption of a LFHA breakfast (535 (25th-75th percentile 451-790) to 495 (25th-75th percentile 391-682) ng/ml; P=0·36), whereas a rise in CML occurred after the HFHA breakfast (463 (25th-75th percentile 428-664) to 578 (25th-75th percentile 474-865) ng/ml; P=0·05). High sensitivity C-reactive protein and high molecular weight adiponectin were not affected by either diet. These findings suggest that dietary CML may not be as important in influencing serum CML as other dietary factors. In addition, acute exposure to dietary CML may not influence inflammation in adults without diabetes or kidney disease. This is contrary to previous findings.

  18. BEYOND DXA: ADVANCES IN CLINICAL APPLICATIONS OF NEW BONE IMAGING TECHNOLOGY

    PubMed Central

    Pawlowska, Monika; Bilezikian, John P.

    2017-01-01

    Dual-energy X-ray absorptiometry (DXA) is generally a very useful tool for assessing bone mineral density (BMD) and fracture risk. However, observational studies have shown that in certain instances, BMD as measured by DXA systematically over- or underestimates fracture risk. We herein describe the clinical conundrums encountered when assessing fracture risk by DXA in patients with primary hyperparathyroidism or type 2 diabetes and those of Chinese ethnicity. Furthermore, we discuss how advanced imaging technology that examines skeletal microarchitecture is furthering our understanding of fracture risk in these clinical situations. PMID:27214295

  19. Cod liver oil consumption at different periods of life and bone mineral density in old age.

    PubMed

    Eysteinsdottir, Tinna; Halldorsson, Thorhallur I; Thorsdottir, Inga; Sigurdsson, Gunnar; Sigurdsson, Sigurdur; Harris, Tamara; Launer, Lenore J; Gudnason, Vilmundur; Gunnarsdottir, Ingibjorg; Steingrimsdottir, Laufey

    2015-07-01

    Cod liver oil is a traditional source of vitamin D in Iceland, and regular intake is recommended partly for the sake of bone health. However, the association between lifelong consumption of cod liver oil and bone mineral density (BMD) in old age is unclear. The present study attempted to assess the associations between intake of cod liver oil in adolescence, midlife, and old age, and hip BMD in old age, as well as associations between cod liver oil intake in old age and serum 25-hydroxyvitamin D (25(OH)D) concentration. Participants of the Age, Gene/Environment Susceptibility-Reykjavik Study (age 66-96 years; n 4798), reported retrospectively cod liver oil intake during adolescence and midlife, as well as the one now in old age, using a validated FFQ. BMD of femoral neck and trochanteric region was measured by volumetric quantitative computed tomography, and serum 25(OH)D concentration was measured by means of a direct, competitive chemiluminescence immunoassay. Associations were assessed using linear regression models. No significant association was seen between retrospective cod liver oil intake and hip BMD in old age. Current intake of aged men was also not associated with hip BMD, while aged women with daily intakes had z-scores on average 0.1 higher, compared with those with an intake of < once/week. Although significant, this difference is small, and its clinical relevance is questionable. Intake of aged participants was positively associated with serum 25(OH)D: individuals with intakes of < once/week, one to six time(s)/week and daily intake had concentrations of approximately 40, 50 and 60 nmol/l respectively (P for trend < 0.001).

  20. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    PubMed Central

    Hubert, Patrice A.; Lee, Sang Gil; Lee, Sun-Kyeong; Chun, Ock K.

    2014-01-01

    Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM) has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss. PMID:26784669

  1. Bone Turnover Does Not Reflect Skeletal Aging in Older Hispanic Men with Type 2 Diabetes

    NASA Technical Reports Server (NTRS)

    Rianon, N.; McCormick, J.; Ambrose, C.; Smith, S. M.; Fisher-Hoch, S.

    2016-01-01

    The paradox of fragility fracture in the presence of non-osteoporotic bone mineral density in older patients with type 2 diabetes mellitus (DM2) makes it difficult to clinically predict fracture in this vulnerable group. Serum osteocalcin (OC), a marker of bone turnover, increases with normal skeletal aging indicating risk of fracture. However, OC has been reported to be lower in patients with DM2. An inverse association between higher glycated hemoglobin levels (HbA1c) and lower serum OC in older DM2 patients triggered discussions encouraging further investigation. A key question to be answered is whether changes in glucose metabolism is responsible for bone metabolic changes, ultimately leading to increased risk of fragility fractures in DM2 patients. While these studies were conducted among Caucasian and Asian populations, this has not been studied in Hispanic populations who suffer from a higher prevalence of DM2. The Cameron County Hispanic Cohort (CCHC) in Texas is a homogeneous Hispanic cohort known to have high prevalence of DM2 (30%). Our preliminary data from this cohort reported OC levels lower than the suggested threshold for fragility fracture in post-menopausal women. We further investigated whether bone turnover in older CCHC adults with DM2 show a normal pattern of skeletal aging. Samples and data were obtained from a nested cohort of 68 (21 men and 47 women) Hispanic older adults (=50 years) who had a diagnosis of DM2. Given high prevalence of uncontrolled DM2 in this cohort, we divided population into two groups: i) poor DM2 control with HbA1c level =8 (48% men and 38% women) and ii) good DM2 control with HbA1c level <8). A crosssectional analysis documented associations between serum OC and age adjusted HbA1c levels. There was no direct association between age and OC concentrations in our study. Higher HbA1c was associated with lower serum OC in men (odds ratio -6.5, 95% confidence interval -12.7 to - 0.3, p < 0.04). No significant associations

  2. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity.

    PubMed

    Vilayphiou, Nicolas; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Van Rietbergen, Bert; Chapurlat, Roland

    2016-02-01

    The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia.

  3. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    PubMed Central

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  4. Analysis of age-at-death estimation using data from a new, modern autopsy sample--part I: pubic bone.

    PubMed

    Hartnett, Kristen M

    2010-09-01

    This research tests the accuracy of age estimation from the pubic bone. Specimens were collected from decedents of known age, sex, and race at the Forensic Science Center (FSC) in Phoenix, Arizona. The collection consists of pubic bones and fourth rib ends from 419 males and 211 females, ranging in age from 18 to 99. Age-at-death was estimated by three observers using the Suchey-Brooks method. The correlation results indicate that there are significant differences in the observed versus actual ages (r = 0.68169, p < 0.001) and that there are significant interobserver differences. No significant differences were found in the intra-observer tests. The FSC pubic bones were sorted based on morphology without knowing age. New descriptions and age ranges were created. A phase seven was described and is comprised of males and females over 70 years of age-at-death.

  5. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    SciTech Connect

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-10-15

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  6. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging.

    PubMed

    Chen, Jin-Ran; Lazarenko, Oxana P; Blackburn, Michael L; Mercer, Kelly E; Badger, Thomas M; Ronis, Martin J J

    2015-06-05

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.

  7. Changes in bone tissue under conditions of hypokinesia and in connection with age

    NASA Technical Reports Server (NTRS)

    Podrushnyak, E. P.; Suslov, E. I.

    1980-01-01

    X-ray micrography was used to study the optical density of the blackening of X-ray photographs made of five bones in 9 young people (ages 24 to 29) before and after strict bed rest for 16 to 37 days. Photometric studies of the X-ray film determined the relative concentration of bone structure before and after hypokinesia. In addition, the bone tissues of 25 cadavers of practically healthy individuals (aged 18 to 70) who died from injuries were investigated using X-ray structural analysis. Results show that the reaction to the state of hypokinesia is not uniform in different individuals and is quite often directly reversed. It was established that pronounced osteoporosis can be found in a relatively short time after conditions of hypokinesia in healthy young individuals. Results show that the stabilization of the crystalline structure of hydroxyapatite, especially its crystal formation, is finished by the age of 20 to 25. From 25 to 60, the crystal lattice remains in stable condition but X-ray analysis shows a reduction in the hydroxyapatite density.

  8. AGE-RELATED FACTORS AFFECTING THE POST-YIELD ENERGY DISSIPATION OF HUMAN CORTICAL BONE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Tyler, Jerrod H.; Acuna, Rae L.; Gayle, Heather J.; Wang, Xiaodu

    2007-01-01

    The risk of bone fracture depends in part on the quality of the tissue, not just the size and mass. This study assessed the post-yield energy dissipation of cortical bone in tension as a function of age and composition. Tensile specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years old, n = 9) and elderly (72 to 90 years old, n = 8). By loading, unloading, and reloading a specimen with rest period inserted in between, tensile properties at incremental strain levels were assessed. In addition, the post-yield toughness was estimated and partitioned as follows: plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro and ultrastructural properties of the tissue. It was found that age affected all the energy terms plus strength but not elastic stiffness. The post-yield energy terms were correlated with porosity, pentosidine (a marker of non-enzymatic crosslinks), and collagen content, all of which significantly varied with age. General linear models with the highest possible R2 value suggested that the pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the post-yield energy dissipation of bone. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. PMID:17266142

  9. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors.

    PubMed

    Muschler, G F; Nitto, H; Boehm, C A; Easley, K A

    2001-01-01

    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be induced to express a bone phenotype in vitro. The number of osteoblastic progenitors can be estimated by counting the colony-forming units which express alkaline phosphatase (CFU-APs). This study was undertaken to test the hypothesis that human aging is associated with a significant change in the number or prevalence of osteoblastic progenitors in the bone marrow. Four 2-ml bone marrow aspirates were harvested bilaterally from the anterior iliac crest of 57 patients, 31 men (age 15-83) and 26 women (age 13-79). A mean of 64 million nucleated cells was harvested per aspirate. The mean prevalence of CFU-APs was found to be 55 per million nucleated cells. These data revealed a significant age-related decline in the number of nucleated cells harvested per aspirate for both men and women (P = 0.002). The number of CFU-APs harvested per aspirate also decreased significantly with age for women (P = 0.02), but not for men (P = 0.3). These findings are relevant to the harvest of bone marrow derived connective tissue progenitors for bone grafting and other tissue engineering applications, and may also be relevant to the pathophysiology of age-related bone loss and post-menopausal osteoporosis.

  10. Correlating chemical changes in subchondral bone mineral due to aging or defective type II collagen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dehring, Karen A.; Roessler, Blake J.; Morris, Michael D.

    2007-02-01

    We show that early indicators of osteoarthritis are observed in Raman spectroscopy by probing femur surfaces excised from mouse models of early-onset osteoarthritis. Current clinical methods to examine arthritic joints include radiological examination of the joint, but may not be capable of detecting subtle chemical changes in the bone tissue, which may provide the earliest indications of osteoarthritis. Recent research has indicated that the subchondral bone may have a more significant role in the onset of osteoarthritis than previously realized. We will report the effect of age and defective type II collagen on Raman band area ratios used to describe bone structure and function. The carbonate-to-phosphate ratio is used to assess carbonate substitution into the bone mineral and the mineral-to-matrix ratio is used to measure bone mineralization. Mineral-to-matrix ratios indicate that subchondral bone becomes less mineralized as both the wild-type and Del1 (+/-) transgenic mice age. Moreover, the mineral-to-matrix ratios show that the subchondral bone of Del1 (+/-) transgenic mice is less mineralized than that of the wild-type mice. Carbonate-to-phosphate ratios from Del1 (+/-) transgenic mice follow the same longitudinal trend as wild-type mice. The ratio is slightly higher in the transgenic mice, indicating more carbonate content in the bone mineral. Raman characterization of bone mineralization provides an invaluable insight into the process of cartilage degeneration and the relationship with subchondral bone at the ultrastructural level.

  11. Peripharyngeal tissue deformation, stress distributions, and hyoid bone movement in response to mandibular advancement.

    PubMed

    Amatoury, Jason; Kairaitis, Kristina; Wheatley, John R; Bilston, Lynne E; Amis, Terence C

    2015-02-01

    Mandibular advancement (MA) increases upper airway (UA) patency and decreases collapsibility. Furthermore, MA displaces the hyoid bone in a cranial-anterior direction, which may contribute to MA-associated UA improvements via redistribution of peripharyngeal tissue stresses (extraluminal tissue pressure, ETP). In the present study, we examined effects of MA on ETP distributions, deformation of the peripharyngeal tissue surface (UA geometry), and hyoid bone position. We studied 13 supine, anesthetized, tracheostomized, spontaneously breathing adult male New Zealand White rabbits. Graded MA was applied from 0 to ∼4.5 mm. ETP was measured at six locations distributed throughout three UA regions: tongue, hyoid, and epiglottis. Axial computed tomography images of the UA (nasal choanae to glottis) were acquired and used to measure lumen geometry (UA length; regional cross-sectional area) and hyoid displacement. MA resulted in nonuniform decreases in ETP (greatest at tongue region), ranging from -0.11 (-0.15 to -0.06) to -0.82 (-1.09 to -0.54) cmH2O/mm MA [linear mixed-effects model slope (95% confidence interval)], across all sites. UA length decreased by -0.5 (-0.8 to -0.2) %/mm accompanied by nonuniform increases in cross-sectional area (greatest at hyoid region) ranging from 7.5 (3.6-11.4) to 18.7 (14.9-22.5) %/mm. The hyoid bone was displaced in a cranial-anterior direction by 0.42 (0.36-0.44) mm/mm MA. In summary, MA results in nonuniform changes in peripharyngeal tissue pressure distributions and lumen geometry. Displacement of the hyoid bone with MA may play a pivotal role in redistributing applied MA loads, thus modifying tissue stress/deformation distributions and determining resultant UA geometry outcomes.

  12. Cortical Bone Water Concentration: Dependence of MR Imaging Measures on Age and Pore Volume Fraction

    PubMed Central

    Li, Cheng; Seifert, Alan C.; Rad, Hamidreza Saligheh; Bhagat, Yusuf A.; Rajapakse, Chamith S.; Sun, Wenli; Lam, Shing Chun Benny

    2014-01-01

    Purpose To quantify bulk bone water to test the hypothesis that bone water concentration (BWC) is negatively correlated with bone mineral density (BMD) and is positively correlated with age, and to propose the suppression ratio (SR) (the ratio of signal amplitude without to that with long-T2 suppression) as a potentially stronger surrogate measure of porosity, which is evaluated ex vivo and in vivo. Materials and Methods Human subject studies were conducted in compliance with institutional review board and HIPAA regulations. Healthy men and women (n = 72; age range, 20–80 years) were examined with a hybrid radial ultrashort echo time magnetic resonance (MR) imaging sequence at 3.0 T, and BWC was determined in the tibial midshaft. In a subset of 40 female subjects, the SR was measured with a similar sequence. Cortical volumetric BMD (vBMD) was measured by means of peripheral quantitative computed tomography (CT). The method was validated against micro-CT–derived porosity in 13 donor human cortical bone specimens. Associations among parameters were evaluated by using standard statistical tools. Results BWC was positively correlated with age (r = 0.52; 95% confidence interval [CI]: 0.22, 0.73; P = .002) and negatively correlated with vBMD at the same location (r = −0.57; 95% CI: −0.76, −0.29; P < .001). Data were suggestive of stronger associations with SR (r = 0.64, 95% CI: 0.39, 0.81, P < .001 for age; r = −0.67, 95% CI: −0.82, −0.43, P < .001 for vBMD; P < .001 for both), indicating that SR may be a more direct measure of porosity. This interpretation was supported by ex vivo measurements showing SR to be strongly positively correlated with micro-CT porosity (r = 0.88; 95% CI: 0.64, 0.96; P < .001) and with age (r = 0.87; 95% CI: 0.62, 0.96; P < .001). Conclusion The MR imaging–derived SR may serve as a biomarker for cortical bone porosity that is potentially superior to BWC, but corroboration in larger cohorts is indicated. © RSNA, 2014 PMID

  13. The impact of age at death on the lag time of radiocarbon values in human bone.

    PubMed

    Ubelaker, Douglas H; Thomas, Christian; Olson, Jacqueline E

    2015-06-01

    Analysis of modern bomb-pulse radiocarbon in human bone offers data needed to interpret the post-mortem interval in skeletonized human remains recovered from forensic contexts. Radiocarbon analysis of different tissues with distinct rates of remodeling allows proper placement of the values on the modern bomb-curve. However, the lag time between the date of intercept on the curve and the actual death date is largely affected by the age at death. Published data on radiocarbon analysis of individuals of known age at death and death dates indicate that this lag time increases with age until about 60 years. The lag time documented for each decade of life can be used to compensate for this age-related factor and increase the accuracy of interpretation of the death date. While this method could be greatly improved by original research with a larger sample size, this study provides an adequate point from which to launch further investigations into the subject.

  14. Monitoring Bone Health after Spaceflight: Data Mining to Support an Epidemiological Analysis of Age-related Bone Loss in Astronauts

    NASA Technical Reports Server (NTRS)

    Baker, K. S,; Amin, S.; Sibonga, Jean D.

    2009-01-01

    Through the epidemiological analysis of bone data, HRP is seeking evidence as to whether the prolonged exposure to microgravity of low earth orbit predisposes crewmembers to an earlier onset of osteoporosis. While this collaborative Epidemiological Project may be currently limited by the number of ISS persons providing relevant spaceflight medical data, a positive note is that it compares medical data of astronauts to data of an age-matched (not elderly) population that is followed longitudinally with similar technologies. The inclusion of data from non-ISS and non-NASA crewmembers is also being pursued. The ultimate goal of this study is to provide critical information for NASA to understand the impact of low physical or minimal weight-bearing activity on the aging process as well as to direct its development of countermeasures and rehabilitation programs to influence skeletal recovery. However, in order to optimize these results NASA needs to better define the requirements for long term monitoring and encourage both active and retired astronauts to contribute to a legacy of data that will define human health risks in space.

  15. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice.

    PubMed

    Nicolaije, Claudia; Diderich, Karin E M; Botter, S M; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Weinans, Harrie; Van der Eerden, Bram C; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-01-01

    Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.

  16. Are the new automated methods for bone age estimation advantageous over the manual approaches?

    PubMed

    De Sanctis, Vincenzo; Soliman, Ashraf T; Di Maio, Salvatore; Bedair, Said

    2014-12-01

    Bone Age Assessment (BAA) is performed worldwide for the evaluation of endocrine, genetic and chronic diseases, to monitor response to medical therapy and to determine the growth potential of children and adolescents. It is also used for consultation in planning orthopedic procedures, for determination of chronological age for adopted children, youth sports participation and in forensic settings. The main clinical methods for skeletal bone age estimation are the Greulich and Pyle (GP) and the Tanner and Whitehouse (TW) methods. Seventy six per cent (76%) of radiologists or pediatricians usually use the method of GP, 20% that of TW and 4% other methods. The advantages of using the TW method, as opposed to the GP method, are that it overcomes the subjectivity problem and results are more reproducible. However, it is complex and time consuming; for this reason its usage is just about 20% on a world-wide scale. Moreover, there are some evidences that bone age assignments by different physicians can differ significantly. Computerized and Quantitative Ultrasound Technologies (QUS) for assessing skeletal maturity have been developed with the aim of reducing many of the inconsistencies associated with radiographic investigations. In spite of the fact that the volume of automated methods for BAA has increased, the majotity of them are still in an early phase of development. QUS is comparable to the GP based method, but there is not enough established data yet for the healthy population. The Authors wish to stimulate the attention on the accuracy, reliability and consistency of BAA and to initiate a debate on manual versus automated approaches to enhance our assessment for skeletal matutation in children and adolescents.

  17. Premature aging in bone of fish from a highly polluted marine area.

    PubMed

    Scopelliti, Giovanna; Di Leonardo, Rossella; Tramati, Cecilia D; Mazzola, Antonio; Vizzini, Salvatrice

    2015-08-15

    Fish species have attracted considerable interest in studies assessing biological responses to environmental contaminants. In this study, the attention has been focussed on fishbone of selected fish species from a highly polluted marine area, Augusta Bay (Italy, Central Mediterranean) to evaluate if toxicant elements had an effect on the mineralogical structure of bones, although macroscopic deformations were not evident. In particular, an attempt was made to evaluate if bone mineral features, such as crystallinity, mineral maturity and carbonate/phosphate mineral content, determined by XR-Diffraction and FT-IR Spectroscopy, suffered negative effects due to trace element levels in fishbone, detected by ICP-OES. Results confirmed the reliability of the use of diffractometric and spectroscopic techniques to assess the degree of crystallinity and the mineral maturity in fishbone. In addition, in highly polluted areas, Hg and Cr contamination induced a process of premature aging of fishbone, altering its biochemical and mineral contents.

  18. TU-AB-204-03: Advances in CBCT for Orhtopaedics and Bone Health Imaging

    SciTech Connect

    Zbijewski, W.

    2015-06-15

    , significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and

  19. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage.

    PubMed

    Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J

    2016-04-01

    Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate.

  20. Women With Polycystic Ovary Syndrome Have Comparable Hip Bone Geometry to Age-Matched Control Women.

    PubMed

    McBreairty, Laura E; Zello, Gordon A; Gordon, Julianne J; Serrao, Shani B; Pierson, Roger A; Chizen, Donna R; Chilibeck, Philip D

    2016-12-26

    Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting women of reproductive age manifesting with polycystic ovaries, menstrual irregularities, hyperandrogenism, hirsutism, and insulin resistance. The oligomenorrhea and amenorrhea characteristic to PCOS are associated with low bone mineral density (BMD); conversely, the hyperandrogenism and hyperinsulinemia may elicit a protective effect on BMD. As bone geometric properties provide additional information about bone strength, the objective of this study was to compare measures of hip geometry in women with PCOS to a healthy female population. Using dual-energy X-ray absorptiometry, BMD and measures of hip geometry were determined in women with PCOS (n = 60) and healthy controls (n = 60) aged 18-35 years. Clinical biochemical measures were also determined in women with PCOS. Measures of hip geometry, including cross-sectional area, cross-sectional moment of inertia, subperiosteal width (SPW), and section modulus, were similar between groups following correction for body mass index (BMI) (all p > 0.05) with intertrochanter SPW significantly lower in women with PCOS (p < 0.05). BMI-corrected whole body BMD as well as the lumbar spine and regions of proximal femur were also comparable between groups. In women with PCOS, BMI-corrected correlations were found between insulin and femoral shaft SPW (r = 0.322, p < 0.05), glucose and femoral neck (r = 0.301, p < 0.05), and trochanter BMD (0.348, p < 0.05), as well as between testosterone and femoral neck BMD (0.376, p < 0.05) and narrow neck cross-sectional area (0.306, p < 0.05). This study demonstrates that women with PCOS may have compromised intertrochanter SPW while oligomenorrhea appears to have no detrimental effect on bone density or geometry in women with PCOS.

  1. Mitoxantrone, teniposide, chlorambucil and prednisone (MVLP) for relapsed non-Hodgkin's lymphoma. The impact of advanced age and performance status.

    PubMed

    Haak, H L; Gerrits, W B; Wijermans, P W; Kerkhofs, H

    1993-04-01

    Fifty-seven patients with relapsed non-Hodgkin's lymphoma (NHL) of low, intermediate and high-grade malignancy were treated with mitoxantrone, teniposide (Vm26), chlorambucil (Leukeran) and prednisone (MVLP). The median age was 71 years; none of the patients was excluded due to poor performance status (PS). Out of 44 patients with PS (according to WHO) < or = 2, 38 responded with a median progression free survival (PFS) of 21.5 months. Of 13 patients with PS > 2, 6 responded with a median PFS of 8.2 months. Haematopoietic toxicity was related to PS rather than to dose intensity or bone marrow involvement. Three patients died within a short time due to toxicity; another two died later as a result of cardiac failure probably due to accumulated toxicity of adriamycin and mitoxantrone. MVLP chemotherapy is effective and feasible and has only moderate toxicity in patients with relapsed NHL and PS < or = 2, despite advanced age.

  2. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  3. Reference point indentation study of age-related changes in porcine femoral cortical bone.

    PubMed

    Rasoulian, Ramin; Raeisi Najafi, Ahmad; Chittenden, Michael; Jasiuk, Iwona

    2013-06-21

    The reference point indentation (RPI) method is a microindentation technique involving successive indentation cycles. We employed RPI to measure average stiffness (Ave US), indentation distance increase (IDI), total indentation distance (TID), average energy dissipated (Ave ED), and creep indentation distance (CID) of swine femoral cortical bone (mid-diaphysis) as a function of age (1, 3.5, 6, 14.5, 24, and 48 months) and loading directions (longitudinal and transverse). The Ave US increases with animal age, while the IDI, TID, Ave ED, and CID decrease with age, for both longitudinal (transverse surface) and transverse (periosteal surface) loading directions. Longitudinal measurements generally give higher Ave US and lower IDI and TID values compared to transverse measurements. The RPI measurements show similar trends to those obtained using nanoindentation test, and ash and water content tests.

  4. Effects of age, sex, and ethnicity on bone health status of the elderly in Kuala Lumpur, Malaysia

    PubMed Central

    Chin, Kok-Yong; Kamaruddin, Alia Annessa Ain; Low, Nie Yen; Ima-Nirwana, Soelaiman

    2016-01-01

    Background Osteoporosis is a significant health problem in the developing countries and its prevalence data are important for the estimation of health care burden and policy making. This study aimed to determine the age-related changes in bone health and the prevalence of osteoporosis in males and females aged 50 years or above living in Kuala Lumpur, Malaysia. Methods A cross-sectional study was conducted between December 2014 and December 2015. Subjects answered a demographic questionnaire and underwent body anthropometric and bone health measurement. Assessment of bone health was performed using a quantitative ultrasound device that generated speed of sound, broadband ultrasound attenuation, stiffness index, and T-score based on stiffness index value as bone health indices. Results The prevalence of osteoporosis was 10.6% in males and 8.0% in females. Significant age-related decline of bone health indices (speed of sound, broadband ultrasound attenuation, stiffness index, and T-score) and a concurrent increase in the prevalence of osteoporosis and osteopenia were observed in females (P<0.05) but not in males (P>0.05). Ethnic differences in bone health indices and prevalence of osteoporosis/osteopenia were not observed (P>0.05). Conclusion A significant proportion of males and females age 50 years or above have suboptimal bone health. Preventive measures such as early screening should be implemented to retard the progression of osteoporosis. PMID:27358558

  5. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease.

    PubMed

    Coleman, Robert; Aksnes, Anne-Kirsti; Naume, Bjørn; Garcia, Camilo; Jerusalem, Guy; Piccart, Martine; Vobecky, Nancy; Thuresson, Marcus; Flamen, Patrick

    2014-06-01

    Radium-223 dichloride (radium-223) mimics calcium and emits high-energy, short-range alpha-particles resulting in an antitumor effect on bone metastases. This open-label, phase IIa nonrandomized study investigated safety and short-term efficacy of radium-223 in breast cancer patients with bone-dominant disease. Twenty-three advanced breast cancer patients with progressive bone-dominant disease, and no longer candidates for further endocrine therapy, were to receive radium-223 (50 kBq/kg IV) every 4 weeks for 4 cycles. The coprimary end points were change in urinary N-telopeptide of type 1 (uNTX-1) and serum bone alkaline phosphatase (bALP) after 16 weeks of treatment. Exploratory end points included sequential (18)F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) to assess metabolic changes in osteoblastic bone metastases. Safety data were collected for all patients. Radium-223 significantly reduced uNTX-1 and bALP from baseline to end of treatment. Median uNTX-1 change was -10.1 nmol bone collagen equivalents/mmol creatinine (-32.8 %; P = 0.0124); median bALP change was -16.7 ng/mL (-42.0 %; P = 0.0045). Twenty of twenty-three patients had FDG PET/CT identifying 155 hypermetabolic osteoblastic bone lesions at baseline: 50 lesions showed metabolic decrease (≥25 % reduction of maximum standardized uptake value from baseline) after 2 radium-223 injections [32.3 % metabolic response rate (mRR) at week 9], persisting after the treatment period (41.5 % mRR at week 17). Radium-223 was safe and well tolerated. Radium-223 targets areas of increased bone metabolism and shows biological activity in advanced breast cancer patients with bone-dominant disease.

  6. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology.

    PubMed

    Hruska, Keith A; Sugatani, Toshifumi; Agapova, Olga; Fang, Yifu

    2017-01-21

    The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. New advances in the causes of the CKD-MBD are discussed in this review. They demonstrate that repair and disease processes in the kidneys release factors to the circulation that cause the systemic complications of CKD. The discovery of WNT inhibitors, especially Dickkopf 1 (Dkk1), produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. This lead to the discovery that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, wherein it stimulates fibrosis, and decreases tubular klotho expression. Activin A binds to the type 2 activin A receptor, ActRIIA, which is variably affected by CKD in the vasculature. In diabetic/atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC), ActRIIA signaling is inhibited and contributes to CKD induced VSMC dedifferentiation, osteogenic transition and neointimal atherosclerotic calcification. In nondiabetic/nonatherosclerotic aortas, CKD increases VSMC ActRIIA signaling, and vascular fibroblast signaling causing the latter to undergo osteogenic transition and stimulate vascular calcification. In both vascular situations, a ligand trap for ActRIIA prevented vascular calcification. In the skeleton, activin A is responsible for CKD stimulation of osteoclastogenesis and bone remodeling increasing bone turnover. These studies demonstrate that circulating renal repair and injury factors are causal of the CKD-MBD and CKD associated cardiovascular disease.

  7. Cell based advanced therapeutic medicinal products for bone repair: Keep it simple?

    PubMed

    Leijten, J; Chai, Y C; Papantoniou, I; Geris, L; Schrooten, J; Luyten, F P

    2015-04-01

    The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex.

  8. [Usefulness of reductive surgery for elderly advanced breast cancer with bone metastases - a case report].

    PubMed

    Sakurai, Kenichi; Fujisaki, Shigeru; Nagashima, Saki; Maeda, Tetsuyo; Tomita, Ryouichi; Suzuki, Shuhei; Hara, Yukiko; Hirano, Tomohiro; Enomoto, Katsuhisa; Amano, Sadao

    2014-11-01

    We report the case of an elderly, advanced breast cancer patient with multiple bone metastases. Breast reduction surgery was useful for this patient. The patient was an 81-year-old woman who had a breast lump. A core needle biopsy for breast cancer led to a diagnosis of invasive ductal carcinoma. The mucinous carcinoma was estrogen receptor (ER) nd progesterone receptor (PgR) positive and HER2/neu negative. Due to patient complications, it was not possible to treat with chemotherapy. The patient was administrated aromatase inhibitors (AI) and zoledronic acid hydrate. However, the AI treatment was not effective, and so she was administered toremifene. Toremifene treatment was effective for 6 months, after which she received fulvestrant. Fulvestrant treatment maintained stable disease (SD)for 14 months. After 14 months of fulvestrant treatment, serum concentrations of the tumor markers CA15-3, CEA, and BCA225 increased. We therefore decided to perform surgical breast reduction surgery. The pathological diagnosis from the surgically resected specimen was mucinous carcinoma, positive for ER and HER2, and negative for PgR. After surgery, serum concentrations of the tumor markers decreased. Following surgery, the patient was administrated lapatinib plus denosumab plus fulvestrant. The patient remains well, without bone metastases, 2 years and 6 months after surgery.

  9. A CAD system and quality assurance protocol for bone age assessment utilizing digital hand atlas

    NASA Astrophysics Data System (ADS)

    Gertych, Arakadiusz; Zhang, Aifeng; Ferrara, Benjamin; Liu, Brent J.

    2007-03-01

    Determination of bone age assessment (BAA) in pediatric radiology is a task based on detailed analysis of patient's left hand X-ray. The current standard utilized in clinical practice relies on a subjective comparison of the hand with patterns in the book atlas. The computerized approach to BAA (CBAA) utilizes automatic analysis of the regions of interest in the hand image. This procedure is followed by extraction of quantitative features sensitive to skeletal development that are further converted to a bone age value utilizing knowledge from the digital hand atlas (DHA). This also allows providing BAA results resembling current clinical approach. All developed methodologies have been combined into one CAD module with a graphical user interface (GUI). CBAA can also improve the statistical and analytical accuracy based on a clinical work-flow analysis. For this purpose a quality assurance protocol (QAP) has been developed. Implementation of the QAP helped to make the CAD more robust and find images that cannot meet conditions required by DHA standards. Moreover, the entire CAD-DHA system may gain further benefits if clinical acquisition protocol is modified. The goal of this study is to present the performance improvement of the overall CAD-DHA system with QAP and the comparison of the CAD results with chronological age of 1390 normal subjects from the DHA. The CAD workstation can process images from local image database or from a PACS server.

  10. Assessment of Alveolar Bone Status in Middle Aged Chinese (40-59 Years) with Chronic Periodontitis — Using CBCT

    PubMed Central

    Zhao, Haijiao; Li, Chen; Lin, Li; Pan, Yaping; Wang, Hongyan; Zhao, Jian; Tan, Lisi; Pan, Chunling; Song, Jia; Zhang, Dongmei

    2015-01-01

    Objective This study used con-beam computed tomography (CBCT) to investigate the prevalence and severity of alveolar bone loss in middle-aged (40–59 years) Chinese with chronic periodontitis. Materials and Methods The study group comprised 145 dentate individuals aged 40 to 59 years residing in China who suffered from chronic periodontitis. CBCT and the application of NNT software were used to examine the level and location of alveolar bone loss. Results The study revealed that 40–59 year old patients with chronic periodontitis had severe bone loss. At 5,286 sites (34.7%), alveolar bone loss was mild; severe alveolar bone loss was found at 5,978 sites (39.2%). A comparison of bone loss in different jaws revealed that the area with the highest degree of bone loss was on the lingual side of the maxillary molar (56.3 ± 7.2%), and that the area with the lowest degree was primarily on the lingual side of the mandibular canine (27.5 ± 6.3%). There was a lower degree of alveolar bone loss in males than females. Differences were observed when comparing the incidence of bone loss between males and females (P < 0.05). Menopause in females and smoking in both genders may affect the level of bone loss. Male smokers experienced a greater degree of bone loss (41.67 ± 5.76%) than male non-smokers (32.95 ± 4.31%). A 42.23 ± 6.34% bone loss was found in menopausal females versus 31.35 ± 3.62% in non-menopausal females. Conclusions The study revealed that different sites and teeth exhibited a diverse degree of bone loss. In middle-aged patients with chronic periodontitis, the highest degrees of bone loss in the incisors, premolars, and molars were on the lingual side, mesial side and lingual side, respectively. Menopause in females and smoking may affect the level of bone loss. PMID:26431206

  11. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment

    PubMed Central

    Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi

    2016-01-01

    All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645

  12. Age-dependent effects of atorvastatin on biochemical bone turnover markers: a randomized controlled trial in postmenopausal women.

    PubMed

    Berthold, Heiner K; Unverdorben, Susanne; Zittermann, Armin; Degenhardt, Ralf; Baumeister, Bernhard; Unverdorben, Martin; Krone, Wilhelm; Vetter, Hans; Gouni-Berthold, Ioanna

    2004-06-01

    The use of HMG-CoA-reductase inhibitors (statins) has been associated with decreased risk of bone fractures in epidemiological studies. In vitro evidence suggests that statins may stimulate bone formation, but the data are still preliminary. We assessed the effects of the HMG-CoA-reductase inhibitor atorvastatin on biochemical parameters of bone metabolism in a multicenter, randomized, double-blind, placebo-controlled trial conducted between October 2001 and October 2002 in three hospital-based outpatient metabolism clinics. Forty-nine postmenopausal women, mean age 61 +/- 5 years, mean time postmenopause 12.6 +/- 8.8 years, were treated with atorvastatin, 20 mg per day ( n=24) or matching placebos ( n=25) for 8 weeks. Comparing the differences to baseline between the groups, there were no statistically significant effects of atorvastatin either on the bone formation markers intact osteocalcin and bone-specific alkaline phosphatase or on the bone resorption markers C-telopeptide and intact parathyroid hormone. The marker of bone fractures, undercarboxylated osteocalcin, was also unchanged. When analyzed in dependence of age, atorvastatin increased C-telopeptide and osteocalcin in the younger subjects, while it decreased them in older subjects. Most interestingly, in older subjects, atorvastatin caused a significant decrease in the ratio of C-telopeptide to osteocalcin, an indicator of bone remodeling, while the ratio was increased in younger subjects, suggesting beneficial effects on bone turnover exclusively in older individuals (approx. >63 years). In summary, the present data suggest that short-term treatment with atorvastatin may have age-dependent effects on biochemical markers of bone turnover in postmenopausal women.

  13. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast.

    PubMed

    Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

  14. Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

    PubMed Central

    Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami

    2016-01-01

    Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity. PMID:27194933

  15. The effects of strength training and raloxifene on bone health in aging ovariectomized rats.

    PubMed

    Stringhetta-Garcia, Camila Tami; Singulani, Monique Patrício; Santos, Leandro Figueiredo; Louzada, Mário Jefferson Quirino; Nakamune, Ana Cláudia Stevanato; Chaves-Neto, Antonio Hernandes; Rossi, Ana Cláudia; Ervolino, Edilson; Dornelles, Rita Cássia Menegati

    2016-04-01

    The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen

  16. Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect.

    PubMed

    Guimarães, Diana; Carvalho, Maria Luísa; Geraldes, Vera; Rocha, Isabel; Santos, José Paulo

    2012-01-01

    The accumulation of lead in several bones of Wistar rats with time was determined and compared for the different types of bones. Two groups were studied: a control group (n = 20), not exposed to lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly through mother's milk, and then directly through a diet containing lead acetate in drinking water (0.2%). Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of the collections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia-fibula and skull have been analysed by Energy Dispersive X-ray Fluorescence Technique (EDXRF). Samples of formaldehyde used to preserve the bone tissues were also analysed by Electrothermal Atomic Absorption (ETAAS), showing that there was no significant loss of lead from the tissue to the preservative. The bones mean lead concentration of exposed rats range from 100 to 300 μg g(-1) while control rats never exceeded 10 μg g(-1). Mean bone lead concentrations were compared and the concentrations were higher in iliac, femur and tibia-fibula and after that skull. However, of all the concentrations in the different collections, only those in the skull were statistically significantly different (p < 0.05) from the other types of bones. Analysis of a radar chart also allowed us to say that these differences tend to diminish with age. The Spearman correlation test applied to mean lead concentrations showed strong and very strong positive correlations between all different types of bones. This test also showed that mean lead concentrations in bones are negatively correlated with the age of the animals. This correlation is strong in iliac and femur and very strong in tibia-fibula and skull. It was also shown that the decrease of lead accumulation with age is made by three plateaus of accumulation, which coincide, in all analysed bones, between 2nd-3rd and 9th-10th months.

  17. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    PubMed Central

    Gallo, Sina; Vanstone, Catherine A.; Weiler, Hope A.

    2012-01-01

    For over 2 decades, dual-energy X-ray absorptiometry (DXA) has been the gold standard for estimating bone mineral density (BMD) and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation), weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada). Whole body (WB) as well as regional sites of the lumbar spine (LS 1–4) and femur was measured using DXA (QDR 4500A, Hologic Inc.) providing bone mineral content (BMC) for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0 ± 14.2 versus 227.0 ± 29.7 g), spine BMC by 130% (2.35 ± 0.42 versus 5.37 ± 1.02 g), and femur BMC by 190% (2.94 ± 0.54 versus 8.50 ± 1.84 g). Spine BMD increased by 14% (0.266 ± 0.044 versus 0.304 ± 0.044 g/cm2) during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals. PMID:23091773

  18. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential.

    PubMed

    Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique

    2017-04-01

    Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector.

  19. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.

    PubMed

    Khanarian, Nora T; Boushell, Margaret K; Spalazzi, Jeffrey P; Pleshko, Nancy; Boskey, Adele L; Lu, Helen H

    2014-12-01

    Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair.

  20. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition

    PubMed Central

    Meyers, Emily A.; Gobeske, Kevin T.; Bond, Allison M.; Jarrett, Jennifer C.; Peng, Chian-Yu; Kessler, John A.

    2015-01-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. PMID:26827654

  1. "Inflamm-aging" influences immune cell survival factors in human bone marrow.

    PubMed

    Pangrazzi, Luca; Meryk, Andreas; Naismith, Erin; Koziel, Rafal; Lair, Julian; Krismer, Martin; Trieb, Klemens; Grubeck-Loebenstein, Beatrix

    2017-03-01

    The bone marrow (BM) plays a key role in the long-term maintenance of immunological memory. However, the impact of aging on the production of survival factors for effector/memory T cells and plasma cells in the human BM has not been studied. We now show that the expression of molecules involved in the maintenance of immunological memory in the human BM changes with age. While IL-15, which protects potentially harmful CD8(+) CD28(-) senescent T cells, increases, IL-7 decreases. IL-6, which may synergize with IL-15, is also overexpressed. In contrast, a proliferation-inducing ligand, a plasma cell survival factor, is reduced. IFN-y, TNF, and ROS accumulate in the BM in old age. IL-15 and IL-6 expression are stimulated by IFN-y and correlate with ROS levels in BM mononuclear cells. Both cytokines are reduced by incubation with the ROS scavengers N-acetylcysteine and vitamin C. IL-15 and IL-6 are also overexpressed in the BM of superoxide dismutase 1 knockout mice compared to their WT counterparts. In summary, our results demonstrate the role of inflammation and oxidative stress in age-related changes of immune cell survival factors in the BM, suggesting that antioxidants may be beneficial in counteracting immunosenescence by improving immunological memory in old age.

  2. The Relationship between Greater Pre-Pubertal Adiposity, Subsequent Age of Maturation and Bone Strength during Adolescence†

    PubMed Central

    Glass, Natalie A.; Torner, James C.; Letuchy, Elena M.; Burns, Trudy L.; Janz, Kathleen F.; Gilmore, Julie M. Eichenberger; Schlechte, Janet A.; Levy, Steven M.

    2016-01-01

    This longitudinal study investigated whether greater pre-pubertal adiposity was associated with subsequent timing of maturation and bone strength during adolescence in 135 girls and 123 boys participating in the Iowa Bone Development Study. Greater adiposity was defined using BMI data at age 8 years to classify participants as overweight (OW, ≥85th percentile for age and sex) or healthy-weight, HW). Maturation was defined as the estimated age of peak height velocity (PHV) based on a series of cross-sectional estimates. Measurements were taken at ages 11, 13, 15 and 17 years for estimates of body composition by DXA, bone compression (bone strength index) and torsion strength (polar strength-strain index) at the radius and tibia by pQCT, and femoral neck bending strength (section modulus) by hip structural analysis. Bone strength in OW versus HW were evaluated by fitting sex-specific linear mixed models that included centered age (visit age – grand mean age of cohort) as the time variable and adjusted for change in fat mass, and limb length in Model 1. Analyses were repeated using biological age (visit ageage PHV) as the time variable for Model 1 with additional adjustment for lean mass in Model 2. BMI was negatively associated with age of maturation (p<0.05). OW versus HW girls had significantly greater bone strength (p<0.001) in Model 1, while OW versus HW boys had significantly greater bone strength (p<0.001) at the tibia and femoral neck, but not radius (p>0.05). Analyses were repeated using biological age, which yielded reduced parameter estimates for girls but similar results for boys (Model 1.) Differences were no longer present following adjustment for lean mass (Model 2) in girls (p>0.05) while differences at the tibia were sustained in boys (p<0.05). These findings demonstrate sex- and site-specific differences in the associations between adiposity, maturation and bone strength. PMID:26861036

  3. Cortical bone histomorphology of known‐age skeletons from the Kirsten collection, Stellenbosch university, South Africa

    PubMed Central

    Heinrich, Jarred; Beresheim, Amy; Alblas, Mandi

    2016-01-01

    ABSTRACT Objectives Normal human bone tissue changes predictably as adults get older, but substantial variability in pattern and pace remains unexplained. Information is needed regarding the characteristics of histological variables across diverse human populations. Methods Undecalcified thin sections from mid‐thoracic ribs of 213 skeletons (138 M, 75 F, 17–82 years, mean age 48 years), are used to explore the efficacy of an established age‐at‐death estimation method and methodological approach (Cho et al.: J Forensic Sci 47 (2002) 12‐18) and expand on it. The ribs are an age‐balanced sample taken from skeletonized cadavers collected from 1967 to 1999 in South Africa, each with recorded sex, age, cause of death and government‐defined population group (129 “Colored,” 49 “Black,” 35 “White”). Results The Ethnicity Unknown equation performs better than those developed for European‐Americans and African‐Americans, in terms of accuracy and bias. A new equation based solely on the study sample does not improve accuracy. Osteon population densities (OPD) show predicted values, yet secondary osteon areas (On.Ar) are smaller than expected for non‐Black subgroups. Relative cortical area (Ct.Ar/Tt.Ar) is low among non‐Whites. Conclusions Results from this highly diverse sample show that population‐specific equations do not increase estimate precision. While within the published range of error for the method (±24.44 years), results demonstrate a systematic under‐aging of young adults and over‐aging of older adults. The regression approach is inappropriate. The field needs fresh approaches to statistical treatment and to factors behind cortical bone remodeling. Am J Phys Anthropol 160:137–147, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. PMID:26865244

  4. Variation in the apparent density of human mandibular bone with age and dental status

    PubMed Central

    KINGSMILL, V. J.; BOYDE, A.

    1998-01-01

    This study examines the variability in the anatomy of mandibles of differing ages and different stages of tooth loss. Mandibles from individuals between 19 and 96 y were sectioned into 2 mm thick vertical plane-parallel slices and cleaned of marrow and periosteum. The apparent density (mass per unit volume in g/ml) from midline (MID) and mental foramen region (MF) sites was determined by weighing the slices and dividing by a volume calculated as the product of section thickness and the mean area of the 2 sides of the section. The cortical thickness of the inferior border and the basal and alveolar bone heights were measured in radiographs of the slices. Mandibular apparent density was negatively correlated with the cross sectional area (midline r=−0.48, mental foramen r=−0.45), and at the midline was significantly greater in edentulous than in dentate individuals (means (± s.e.m.) edentulous n=13: 1.43 (±0.07) g/ml; dentate n=17: 1.27 (±0.04) g/ml, P<0.05). Where a large enough age range was available, mandibular apparent bone density showed a significant increase with age (midline males: r=0.53, n=18) especially for dentate individuals (r=0.91, n=8). There was a correlation between the apparent densities at the two sites in the same mandible (r=0.64), with the values obtained for the midline being significantly greater than for the mental foramen region (midline 1.34 (±0.04) g/ml; mental foramen 1.19 (±0.04) g/ml, P<0.001, paired t test). The mandible shows great interindividual variability, but there may be a considerable reduction in cross sectional girth of the mandible following tooth loss, and, unlike postcranial sites, an increase in apparent density with age. PMID:9643424

  5. Bone cells and bone turnover in diabetes mellitus.

    PubMed

    Rubin, Mishaela R

    2015-06-01

    Substantial evidence exists that in addition to the well-known complications of diabetes, increased fracture risk is an important morbidity. This risk is probably due, at least in part, to altered bone remodeling and bone cell function in diabetes. Circulating biochemical markers of bone formation, including P1NP, osteocalcin and bone-specific alkaline phosphatase have been found to be decreased in type 2 diabetes (T2D) and may be predictive of fractures independently of bone mineral density (BMD). These findings have been corroborated by preliminary histomorphometric data. Reductions in the bone resorption marker serum CTx in T2D have also been reported. Serum sclerostin levels have been found to be increased in T2D and appear to be predictive of fracture risk independent of BMD. Other factors such as bone marrow fat saturation, advanced glycation endproduct (AGE) accumulation, and microarchitectural changes might also relate to bone cell function and fracture risk in diabetes.

  6. Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.

    PubMed

    Holguin, Nilsson; Brodt, Michael D; Sanchez, Michelle E; Silva, Matthew J

    2014-08-01

    Aging purportedly diminishes the ability of the skeleton to respond to mechanical loading, but recent data show that old age did not impair loading-induced accrual of bone in BALB/c mice. Here, we hypothesized that aging limits the response of the tibia to axial compression over a range of adult ages in the commonly used C57BL/6. We subjected the right tibia of old (22 month), middle-aged (12 month) and young-adult (5 month) female C57BL/6 mice to peak periosteal strains (measured near the mid-diaphysis) of -2200 με and -3000 με (n=12-15/age/strain) via axial tibial compression (4 Hz, 1200 cycles/day, 5 days/week, 2 weeks). The left tibia served as a non-loaded, contralateral control. In mice of every age, tibial compression that engendered a peak strain of -2200 με did not alter cortical bone volume but loading to a peak strain of -3000 με increased cortical bone volume due in part to woven bone formation. Both loading magnitudes increased total volume, medullary volume and periosteal bone formation parameters (MS/BS, BFR/BS) near the cortical midshaft. Compared to the increase in total volume and bone formation parameters of 5-month mice, increases were less in 12- and 22-month mice by 45-63%. Moreover, woven bone incidence was greatest in 5-month mice. Similarly, tibial loading at -3000 με increased trabecular BV/TV of 5-month mice by 18% (from 0.085 mm3/mm3), but trabecular BV/TV did not change in 12- or 22-month mice, perhaps due to low initial BV/TV (0.032 and 0.038 mm3/mm3, respectively). In conclusion, these data show that while young-adult C57BL/6 mice had greater periosteal bone formation following loading than middle-aged or old mice, aging did not eliminate the ability of the tibia to accrue cortical bone.

  7. Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones.

    PubMed

    Lacan, Marie; Thèves, Catherine; Amory, Sylvain; Keyser, Christine; Crubézy, Eric; Salles, Jean-Pierre; Ludes, Bertrand; Telmon, Norbert

    2009-03-01

    The aim of this study was to demonstrate the presence of the A189G age-related point mutation on DNA extracted from bone. For this, a peptide nucleic acid (PNA)/DNA sequencing method which can determine an age threshold for the appearance of the mutation was used. Initially, work was done in muscle tissue in order to evaluate the sensitivity of the technique and afterwards in bone samples from the same individuals. This method was also applied to ancient bones from six well-preserved skeletal remains. The mutation was invariably found in muscle, and at a rate of up to 20% in individuals over 60 years old. In modern bones, the mutation was detected in individuals aged 38 years old or more, at a rate of up to 1%, but its occurrence was not systematic (only four out of ten of the individuals over 50 years old carried the heteroplasmy). For ancient bones, the mutation was also found in the oldest individuals according to osteologic markers. The study of this type of age-related mutation and a more complete understanding of its manifestation has potentially useful applications. Combined with traditional age markers, it could improve identification accuracy in forensic cases or in anthropological studies of ancient populations.

  8. Lifecourse study of bone health at age 49–51 years: the Newcastle thousand families cohort study

    PubMed Central

    Pearce, M.; Birrell, F.; Francis, R.; Rawlings, D.; Tuck, S.; Parker, L.

    2005-01-01

    Objective: To quantify the direct and indirect effects of fetal (position in family, weight, and social class at birth), childhood (breast feeding, growth, infections, and social class in childhood, age at menarche), and adult life (social class, alcohol consumption, smoking, diet, reproductive history, exercise, hormone replacement therapy use), and adult size (height, weight) on bone health at age 49–51 years, as measured by bone mineral density, total scanned bone area of the hip and lumbar spine, and femoral neck shaft angle. Design: Follow up study of the Newcastle thousand families birth cohort established in 1947. Participants: 171 men and 218 women who attended for dual energy x ray absorptiometry scanning. Main results: Fetal life explained around 6% of variation in adult bone mineral density for men, but accounted for less than 1% for women. Adult lifestyle, including effects mediated through adult weight accounted for over 10% of variation in density for men and around 6% for women. Almost half of variation in bone area for men was explained by early life. However, most of this was mediated through achieved adult height and weight. In women, less than 5% of variation in bone area was accounted for by early life, after adjusting for adult size. Most of the variation in each of the indicators for both sexes was contributed either directly or indirectly by adult lifestyle and achieved adult height and weight. Conclusions: The effect of fetal life on bone health in adulthood seems to be mediated through achieved adult height. PMID:15911643

  9. Miscarriage at advanced maternal age and the search for meaning.

    PubMed

    Carolan, Marsha; Wright, Rebecca J

    2017-03-01

    Although it has been documented that miscarriage is a common pregnancy outcome and more likely to happen among women aged 35 years and older, there is very little research on the quality of such a lived experience. This study features phenomenological interviews of 10 women aged 35 years and older. Theoretical frameworks of ambiguous loss and feminism guide the design and analysis. The salient themes suggest that women experience miscarriage from a physical, emotional, temporal, and social context that includes intense loss and grief, having a sense of otherness, a continuous search for meaning, and feelings of regret and self-blame.

  10. Site-Specific Characteristics of Bone Marrow Mesenchymal Stromal Cells Modify the Effect of Aging on the Skeleton.

    PubMed

    Wang, Xing; Zou, Xuan; Zhao, Jing; Wu, Xia; E, Lingling; Feng, Lin; Wang, Dongsheng; Zhang, Guilan; Xing, Helin; Liu, Hongchen

    2016-03-15

    Bone is a self-renewing tissue. Bone marrow mesenchymal stromal cells (BMSCs) are located in the adult skeleton and are believed to be involved in the maintenance of skeletal homeostasis throughout life. With increasing age, the ability of the skeleton to repair itself decreases, possibly due to the reduced functional capacity of BMSCs. Recent evidence has suggested the existence of at least two populations of BMSCs with different embryonic origins that cannot be interchanged during stem cell recruitment: craniofacial BMSCs (neural crest origin) and appendicular BMSCs (mesoderm origin). Questions arise as to whether the site-specific characteristics alter the effect of aging on the skeleton. In this study, the effects of biological aging on human BMSCs were compared with BMSCs derived from the craniofacial bone versus those derived from the appendicular skeleton. The phenotype, proliferation, and functional characteristics (osteogenic differentiation, cytokine secretion, and bone formation in vivo) of the BMSCs were investigated. The results demonstrated that the proliferative capacity and osteogenic differentiation of the BMSCs decrease significantly with age both in vitro and in vivo. For age-matched groups, the osteogenic differentiation capacity of alveolar BMSCs was higher than that of femoral BMSCs in the middle-aged and old groups, while there was no significant difference for the young groups. Compared with old alveolar BMSCs, old femoral BMSCs had a significantly longer population doubling time, a smaller colony-forming population, and less bone formation in vivo, while there was no significant difference for the young and middle-aged groups. Distinct differences in the expression of cytokine factors were also found. In conclusion, human BMSCs display an age-related decrease in functional capacity, and embryonic origins may play a critical role in mediating the aging rate of BMSCs. These data provide novel insights into the skeletal site

  11. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2013-10-01

    mechanical loading (months 6-18): 2a. Strain gage analysis of bone strain during tibial compression (months 6-7) 2b. Capsaicin or vehicle treatment...of neonatal mice (months 6-8) 2c. Tibial compression of capsaicin- and vehicle-injected mice (months 8-10) 2d. Micro-computed tomography of mouse...the endosteal and periosteal surfaces. Capsaicin treatment altered bone formation rate parameters in the tibias of treated mice (Table 2). There

  12. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2014-10-01

    and peripheral neuropathy has been identified as an in- dependent predictor of low bone mass in the affected limb of diabetic subjects26. Despite...radial and sural nerves. J Neurol Neurosurg Psychiatry 1968;31:464-70. 9. Swallow M. Fibre size and content of the anterior tibial nerve of the foot ...Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 dia- betes. Diabetes Care 1999;22:827-31

  13. The need for T₂ correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence.

    PubMed

    Dieckmeyer, Michael; Ruschke, Stefan; Cordes, Christian; Yap, Samuel P; Kooijman, Hendrik; Hauner, Hans; Rummeny, Ernst J; Bauer, Jan S; Baum, Thomas; Karampinos, Dimitrios C

    2015-04-01

    Vertebral bone marrow fat quantification using single-voxel MRS is confounded by overlapping water-fat peaks and the difference in T2 relaxation time between water and fat components. The purposes of the present study were: (i) to determine the proton density fat fraction (PDFF) of vertebral bone marrow using single-voxel multi-TE MRS, addressing these confounding effects; and (ii) to investigate the implications of these corrections with respect to the age dependence of the PDFF. Single-voxel MRS was performed in the L5 vertebral body of 86 subjects (54 women and 32 men). To reliably extract the water peak from the overlying fat peaks, the mean bone marrow fat spectrum was characterized based on the area of measurable fat peaks and an a priori knowledge of the chemical triglyceride structure. MRS measurements were performed at multiple TEs. The T2 -weighted fat fraction was calculated at each TE. In addition, a T2 correction was performed to obtain the PDFF and the T2 value of water (T2w ) was calculated. The implications of the T2 correction were investigated by studying the age dependence of the T2 -weighted fat fractions and the PDFF. Compared with the PDFF, all T2 -weighted fat fractions significantly overestimated the fat fraction. Compared with the age dependence of the PDFF, the age dependence of the T2 -weighted fat fraction showed an increased slope and intercept as TE increased for women and a strongly increased intercept as TE increased for men. For women, a negative association between the T2 value of bone marrow water and PDFF was found. Single-voxel MRS-based vertebral bone marrow fat quantification should be based on a multi-TE MRS measurement to minimize confounding effects on PDFF determination, and also to allow the simultaneous calculation of T2w , which might be considered as an additional parameter sensitive to the composition of the water compartment.

  14. Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination.

    PubMed

    Rozenblut, Beata; Ogielska, Maria

    2005-09-01

    Differentiation and development of long bones were studied in European water frogs: Rana lessonae, R. ridibunda, and R. esculenta. The study included premetamorphic larvae (Gosner Stage 40) to frogs that were 5 years old. Femora, metatarsal bones, and proximal phalanges of the hindlimb exhibit the same pattern of periosteal bone differentiation and the same pattern of growth. Longitudinal and radial growth of these bones was studied by examination of the diaphyses and epiphyses, particularly where the edge of periosteal bone is inserted into the epiphysis. The periosteum seems to be responsible for both longitudinal and radial growth. Investigation of the formation, length, and arrangement of lines of arrested growth reveals that the first line is present only in the middle 25-35% of the length of the diaphysis of an adult bone; therefore, only the central portion of the diaphysis should be used for age estimation in skeletochronological studies. Comparison of the shapes and histological structures of epiphyses in the femur, metatarsal bones, and phalanges revealed that epiphyseal cartilages are composed of an inner and outer part. The inner metaphyseal cartilage has distinct zones and plugs the end of the periosteal bone cylinder; its role in longitudinal growth is questioned. The outer epiphyseal cartilage is composed of articular cartilages proper, in addition to lateral articular cartilages. Differences in the symmetry of the lateral articular cartilages of distal epiphyses of the femur and toes may reflect adaptations to different kinds of movements at the knee and in the foot.

  15. Transportation and Aging: A Research Agenda for Advancing Safe Mobility

    ERIC Educational Resources Information Center

    Dickerson, Anne E.; Molnar, Lisa J.; Eby, David W.; Adler, Geri; Bedard, Michel; Berg-Weger, Marla; Classen, Sherrilene; Foley, Daniel; Horowitz, Amy; Kerschner, Helen; Page, Oliver; Silverstein, Nina M.; Staplin, Loren; Trujillo, Leonard

    2007-01-01

    Purpose: We review what we currently know about older driver safety and mobility, and we highlight important research needs in a number of key areas that hold promise for achieving the safety and mobility goals for the aging baby boomers and future generations of older drivers. Design and Methods: Through the use of a framework for transportation…

  16. Recommendations for managing cutaneous disorders associated with advancing age

    PubMed Central

    Humbert, Philippe; Dréno, Brigitte; Krutmann, Jean; Luger, Thomas Anton; Triller, Raoul; Meaume, Sylvie; Seité, Sophie

    2016-01-01

    The increasingly aged population worldwide means more people are living with chronic diseases, reduced autonomy, and taking various medications. Health professionals should take these into consideration when managing dermatological problems in elderly patients. Accordingly, current research is investigating the dermatological problems associated with the loss of cutaneous function with age. As cell renewal slows, the physical and chemical barrier function declines, cutaneous permeability increases, and the skin becomes increasingly vulnerable to external factors. In geriatric dermatology, the consequences of cutaneous aging lead to xerosis, skin folding, moisture-associated skin damage, and impaired wound healing. These problems pose significant challenges for both the elderly and their carers. Most often, nurses manage skin care in the elderly. However, until recently, little attention has been paid to developing appropriate, evidence-based, skincare protocols. The objective of this paper is to highlight common clinical problems with aging skin and provide some appropriate advice on cosmetic protocols for managing them. A review of the literature from 2004 to 2014 using PubMed was performed by a working group of six European dermatologists with clinical and research experience in dermatology. Basic topical therapy can restore and protect skin barrier function, which relieves problems associated with xerosis, prevents aggravating moisture-associated skin damage, and enhances quality of life. In conclusion, the authors provide physicians with practical recommendations to assist them in implementing basic skin care for the elderly in an integrated care approach. PMID:26929610

  17. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells.

    PubMed

    Sui, Bingdong; Hu, Chenghu; Jin, Yan

    2016-04-01

    The proliferation and differentiation potential of bone marrow mesenchymal stem cells (BMMSCs) declines with age and with in vitro passages. However, the underlying mechanisms and putative approaches to maintain their function are not fully understood. Recent studies have revealed telomere attrition as the core initiator determining functional decline in aging of BMMSCs. Telomere attrition activates downstream p53 signaling and compromises mitochondrial metabolism via the peroxisome proliferator-activated receptor gamma co-activator 1α/β (PGC-1α/β), a key process possesses peculiarities in BMMSCs distinct from other stem cells and their mature derivatives. Despite of the shortened telomere, the mitochondrial failure could be overcome through metabolic regulation by caloric restriction (CR) and its mediator Sirtuin 1 (SIRT1). Researches have shown that mitochondrial metabolic reprogramming by CR and SIRT1 alleviates functional decline of BMMSCs in aging. In this review, we intend to summarize our understanding about how telomere attrition initiates and induces mitochondrial compromise in functional decline of BMMSCs in aging, and the potential therapeutic strategies based on metabolic reprogramming.

  18. Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice.

    PubMed

    Elbaz, Alexander; Rivas, Daniel; Duque, Gustavo

    2009-12-01

    Age-related bone loss has been associated with high levels of marrow adipogenesis. Estrogens (E2) are known to regulate the differentiation of marrow precursors into osteoblasts, however, their role in bone marrow adipogenesis remain unknown. E2 regulate adipocyte differentiation in subcutaneous and visceral fat through interaction with other nuclear receptors. This interaction has not been assessed in bone marrow adipocytes in vivo. In this study, we compared two groups of animals, young and old, after either oophorectomy (OVX) or oophorectomy plus E2 (OVX + E2) replacement. We found that absence of E2 was associated with higher levels of PPARc and lower levels of Sirt1 most significantly in the old group. In addition, old mice responded better to E2 replacement in terms of reducing adipogenesis and PPARc expression as well as increasing levels of Sirt1 expression. Our findings represent a new understanding of the role of E2 in age-related bone loss, which could be mediated through the regulation of Sirt1 expression within the bone marrow. In addition, this evidence suggests that old individuals may show a better response to E2 administration in terms of reverting the high levels of marrow fat seen in age-related bone loss.

  19. Middle-Aged Independent-Living African Americans' Selections for Advance Directives: A Case Study

    ERIC Educational Resources Information Center

    McDaniel, Brenda J.

    2013-01-01

    The purpose of this collective embedded qualitative case study was to examine the perspectives of three middle-aged independent-living African Americans who had participated in the process of advance care planning (ACP) and completed at least two advance directives (ADs), a Durable Power of Attorney for Health Care (DPAHC) and a Living Will (LW).…

  20. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion.

    PubMed

    Notsu, Masakazu; Yamaguchi, Toru; Okazaki, Kyoko; Tanaka, Ken-ichiro; Ogawa, Noriko; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2014-07-01

    In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.

  1. Osteocyte density in aging subjects is enhanced in bone adjacent to remodeling haversian systems.

    PubMed

    Power, J; Loveridge, N; Rushton, N; Parker, M; Reeve, J

    2002-06-01

    The osteocyte is a candidate regulatory cell for bone remodeling. Previously, we demonstrated that there is a substantial (approximately 50%) loss of osteocytes from their lacunae in the cortex of the elderly femoral neck. Higher occupancy was evident in tissue exhibiting high remodeling and high porosity. The present study examines the distribution of osteocytes within individual osteonal systems at differing stages of the remodeling cycle. In 22 subjects, lacunar density, osteocyte density, and their quotient, the percent lacunar occupancy, was assessed up to a distance of 65 microm from the canal surface in six quiescent, resorbing, and forming osteons. In both forming (p = 0.024) and resorbing (p = 0.034) osteons, osteocyte densities were significantly higher in cases of hip fracture than controls. However, there were no significant between-group differences in lacunar occupancy. In both cases and controls, osteocyte density (p < 0.0001; mean difference +/-SEM: 157 +/- 34/mm2) and lacunar occupancy (p = 0.025; mean difference: 8.1 +/- 3.4%) were shown to be significantly higher in forming compared with quiescent osteons. Interestingly, resorbing systems also exhibited significantly elevated osteocyte density in both the fracture and the control group combined (mean difference 76 +/- 23/mm2; p = 0.003). Lacunar occupancy was also greater in resorbing compared with quiescent osteons (both groups combined: p = 0.022; mean difference: 5.7 +/- 2.3%). Elevated osteocyte density and lacunar occupancy in forming compared with quiescent systems was expected because of the likely effects of aging on quiescent osteons. However, the higher levels of these parameters in resorbing compared with quiescent systems was the opposite of what we expected and suggests that, in addition to their postulated mechanosensory role in the suppression of remodeling and bone loss, osteocytes might also contribute to processes initiating or maintaining bone resorption.

  2. Advances in Protective Coatings and Their Application to Ageing Aircraft

    DTIC Science & Technology

    2000-04-01

    Materials for the Structure f Aging Aircraft [les Nouveaux Materiaux metalliques pour les structures des aeronefs d’ancienne generation] To order the...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...fluid resistance and greater flexibility. New methods of paint stripping and novel processes for the 2.1 Design repair of pre-treatments and metal

  3. Psychometrics in aging and dementia: advances in geropsychological assessments.

    PubMed

    Oswald, W D; Fleischmann, U M

    1985-12-01

    Description, explanation and prediction of changes occurring in old age, which are based on intervention, are outlined as a basic goal in gerontological research. Appropriate psychological assessment techniques are necessary to reach this goal. The Nuremberg Gerontopsychological Inventory (NAI) is introduced as a set of psychological measurements which enable reliable, valid and sensitive evaluation of intervention-induced changes in old age. Four independent assessment levels, i.e. standardized performance tests, observer-ratings, self-ratings and a personality rating are the core components of this inventory. All assessment techniques are adapted for elderly subjects. Standard scores are available for the age range 55-90 years. Interrelations between the applied independent assessment levels are reported and taken to link different aspects of intervention-induced changes. Measuring psychological performance thus gains practical significance, e.g. in terms of activities-of-daily-living. From 14 independent studies the drug sensitivity of the applied measurements is shown. Finally, some recommendations for future psychometrical research are given.

  4. Electrophysiological Advances on Multiple Object Processing in Aging

    PubMed Central

    Mazza, Veronica; Brignani, Debora

    2016-01-01

    EEG research conducted in the past 5 years on multiple object processing has begun to define how the aging brain tracks the numerosity of the objects presented in the visual field for different goals. We review the recent EEG findings in healthy older individuals (age range: 65–75 years approximately) on perceptual, attentional and memory mechanisms-reflected in the N1, N2pc and contralateral delayed activity (CDA) components of the EEG, respectively-during the execution of a variety of cognitive tasks requiring simultaneous processing of multiple elements. The findings point to multiple loci of neural changes in multi-object analysis, and suggest the involvement of early perceptual mechanisms, attentive individuation and working memory (WM) operations in the neural and cognitive modification due to aging. However, the findings do not simply reflect early impairments with a cascade effect over subsequent stages of stimulus processing, but in fact highlight interesting dissociations between the effects occurring at the various stages of stimulus processing. Finally, the results on older adults indicate the occurrence of neural overactivation in association to good levels of performance in easy perceptual contexts, thus providing some hints on the existence of compensatory phenomena that are associated with the functioning of early perceptual mechanisms. PMID:26973520

  5. Categories of manual asymmetry and their variation with advancing age.

    PubMed

    Teixeira, Luis A

    2008-06-01

    Manual asymmetries were analyzed in 18- to 63-year-old right-handers in different motor tasks. This analysis aimed at describing the asymmetry profile for each task and assessing their stability across ages. For this purpose, performance of the right and left hands were analyzed in the following aspects: simple reaction time, rate of sequential finger movements, maximum grip force, accuracy in anticipatory timing, rate of repetitive tapping, and rate of drawing movements. In addition, stability of manual preference across ages was assessed through the Edinburgh inventory (Oldfield, 1971). The results indicated different profiles of manual asymmetry, with identification of three categories across tasks: symmetric performance (asymmetry indices close to zero), inconsistent asymmetry (asymmetry indices variable in magnitude and direction), and consistent asymmetry (asymmetry indices favoring a single hand). The different profiles observed in the young adults were stable across ages with two exceptions: decreased lateral asymmetry for maximum grip force and increased asymmetry for sequential drawing in older individuals. These results indicate that manual asymmetries are task specific. Such task specificity is interpreted to be the result of different sensorimotor requirements imposed by each motor task in association with motor experiences accumulated over the lifetime. Analysis of manual preference showed that strength of preference for the right hand was greater in older individuals.

  6. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications.

    PubMed

    Hartog, Jasper W L; Voors, Adriaan A; Bakker, Stephan J L; Smit, Andries J; van Veldhuisen, Dirk J

    2007-12-01

    Advanced glycation end-products (AGEs) are molecules formed during a non-enzymatic reaction between proteins and sugar residues, called the Maillard reaction. AGEs accumulate in the human body with age, and accumulation is accelerated in the presence of diabetes mellitus. In patients with diabetes, AGE accumulation is associated with the development of cardiac dysfunction. Enhanced AGE accumulation is not restricted to patients with diabetes, but can also occur in renal failure, enhanced states of oxidative stress, and by an increased intake of AGEs. Several lines of evidence suggest that AGEs are related to the development and progression of heart failure in non-diabetic patients as well. Preliminary small intervention studies with AGE cross-link breakers in heart failure patients have shown promising results. In this review, the role of AGEs in the development of heart failure and the role of AGE intervention as a possible treatment for heart failure are discussed.

  7. Serum osteocalcin or bone Gla-protein, a biochemical marker for bone metabolism in horses: differences in serum levels with age.

    PubMed Central

    Lepage, O M; Marcoux, M; Tremblay, A

    1990-01-01

    Levels of alkaline phosphatase and osteocalcin or bone Gla-protein, a new marker of bone metabolism, were analyzed in blood samples of 50 clinically normal female Standardbred horses between four months and twenty years of age. Samples were collected in the morning before exercise. Serum osteocalcin was measured by radioimmunoassay using bovine antibodies. There was a significant inverse correlation between alkaline phosphatase, osteocalcin and the age of the animals up to 48 months. The decrease in osteocalcin levels in serum was very marked during the first 30 months of life. The mean osteocalcin concentration was respectively 47.3, 35.7 and 6.7 ng/mL for animals less than one year, between 1.5 and 2.5 years of age and older than 3.5 years. Alkaline phosphatase serum activity was higher in foals less than one year of age (means = 856 U/L) than in the two older groups (meansII = 339, meansIII = 351 U/L). We believe that osteocalcin is a useful parameter for the evaluation of bone metabolism in growing animals and in adults and is probably more specific than alkaline phosphatase. PMID:2357658

  8. Ecteinascidin-743: Evidence of Activity in Advanced, Pretreated Soft Tissue and Bone Sarcoma Patients

    PubMed Central

    Huygh, G.; Clement, Paul M. J.; Dumez, H.; Schöffski, P.; Wildiers, H.; Selleslach, J.; Jimeno, J. M.; Wever, I. De; Sciot, R.; Duck, L.; Van Oosterom, A. T.

    2006-01-01

    Purpose. To evaluate the activity and safety of ecteinascidin (ET-743) in pretreated patients with advanced or metastatic soft tissue and bone sarcoma. Patients or subjects. Eighty-nine patients received ET-743 as a 24-hour continuous infusion at a dose of 900–1500 μg/m2 every 3 weeks. Results. We observed one complete remission, 5 partial remissions, one minimal response, and 16 patients with a disease stabilization of 6 months or more. The objective response rate was 6.7% and the clinical benefit rate at 3 and 6 months was 37.7% and 23.4%, respectively. Responses were noted in patients with lipo-, leiomyo-, osteo-, and myogenic sarcoma, with a median duration of 9.85 months. Toxicity mainly involved an asymptomatic elevation of transaminases and neutropenia. Estimated 1- and 2-year survival rates were 39.4% and 15.8%. Median overall survival was 8.25 months. Discussion. This retrospective analysis confirms that ET-743 induces objective responses and progression arrest in a clinically relevant proportion of patients. PMID:17496996

  9. Side Effects of Bone-Targeted Therapies in Advanced Breast Cancer

    PubMed Central

    Domschke, Christoph; Schuetz, Florian

    2014-01-01

    Summary In up to 75% of cases, advanced breast cancer patients eventually develop bone metastases with often debilitating skeletal-related events (SREs). Osteoclast inhibitors are commonly used as therapeutic mainstay with clinical studies showing superiority of denosumab over bisphosphonates (e.g., zoledronate) for the prevention of SREs. The present review discusses the adverse event profile of these agents, and addresses the prevention and management of untoward side effects. Adverse events associated with osteoclast inhibitors comprise osteonecrosis of the jaw and hypocalcemia. Hypocalcemia is more common with denosumab, particularly in severe renal dysfunction. During therapy, the appropriate prevention of these adverse events includes close attention to dental health, avoidance of invasive dental procedures, supplementation with calcium and vitamin D unless patients are hypercalcemic, and regular monitoring of relevant serum values. Relating to the risk of nephrotoxicity, bisphosphonates but not denosumab have been incriminated. Therefore, serum creatinine levels should be checked prior to each dose of zoledronate, and in severe renal dysfunction (creatinine clearance < 30 ml/min) zoledronate is contraindicated anyway. Acute-phase reactions are particularly linked to bisphosphonates. Consequently, if these adverse events predominate, switching to denosumab is recommended. PMID:25759613

  10. Bone age and factors affecting skeletal maturation at diagnosis of paediatric Cushing's disease.

    PubMed

    Acharya, Shrikrishna V; Gopal, Raju A; Lila, Anurag; Menon, Padma S; Bandgar, Tushar R; Shah, Nalini S

    2010-12-01

    Paediatric Cushing's disease (CD) is usually associated with growth retardation, but there are only few published data on skeletal maturation at diagnosis. We analysed factors contributing to skeletal maturation and final height in Asian Indian patients with paediatric CD. We conducted retrospective analysis of 48 patients (29 males; 19 females) with mean age: 14.84 years at diagnosis (range 9-19 years). A single observer using the Greulich Pyle method determined the bone age (BA) of each child. BA delay, i.e. the difference between chronological age (CA) and BA, was compared with clinical and biochemical variables. BA delay was present in 35/48 (73%) patients (mean delay 1.6 years, range 0.5-5 years) and correlated negatively with height SDS (r = -0.594, P < 0.001) and positively with CA at diagnosis (r = 0.247, P < 0.05). There was no correlation with duration of symptoms before diagnosis, basal cortisol, midnight cortisol, ACTH or percentage suppression of low dose dexamethasone suppression cortisol (LDDST). We could not demonstrate any relationship between the duration of history before diagnosis and height SDS at final height. Mean final height SDS in patients was -1.84. We found that most children with CD had delayed BA and correlated significantly with CA and height SDS at diagnosis. Early diagnosis may reduce delay in skeletal maturation and thus contribute to optimal catch-up growth.

  11. Influence of age on rat bone-marrow mesenchymal stem cells potential.

    PubMed

    Fafián-Labora, J; Fernández-Pernas, P; Fuentes, I; De Toro, J; Oreiro, N; Sangiao-Alvarellos, S; Mateos, J; Arufe, M C

    2015-11-19

    Mesenchymal stem cells promising role in cell-based therapies and tissue engineering appears to be limited due to a decline of their regenerative potential with increasing donor age. Six age groups from bone marrow mesenchymal stem cells of Wistar rats were studied (newborn, infant, young, pre-pubertal, pubertal and adult). Quantitative proteomic assay was performance by iTRAQ using an 8-plex iTRAQ labeling and the proteins differentially expressed were grouped in pluripotency, proliferative and metabolism processes. Proliferation makers, CD117 and Ki67 were measure by flow cytometry assay. Real time polymerase chain reaction analysis of pluripotency markers Rex1, Oct4, Sox2 and Nanog were done. Biological differentiation was realized using specific mediums for 14 days to induce osteogenesis, adipogenesis or chondrogenesis and immunostain analysis of differentiated cell resulting were done. Enzimoimmunoassay analysis of several enzymes as L-lactate dehydrogenase and glucose-6-phosphate isomerase were also done to validate iTRAQ data. Taking together these results indicate for the first time that mesenchymal stem cells have significant differences in their proliferative, pluripotency and metabolism profiles and those differences are age depending.

  12. Influence of age on rat bone-marrow mesenchymal stem cells potential

    PubMed Central

    Fafián-Labora, J.; Fernández-Pernas, P.; Fuentes, I.; De Toro, J.; Oreiro, N.; Sangiao-Alvarellos, S.; Mateos, J.; Arufe, M.C.

    2015-01-01

    Mesenchymal stem cells promising role in cell-based therapies and tissue engineering appears to be limited due to a decline of their regenerative potential with increasing donor age. Six age groups from bone marrow mesenchymal stem cells of Wistar rats were studied (newborn, infant, young, pre-pubertal, pubertal and adult). Quantitative proteomic assay was performance by iTRAQ using an 8-plex iTRAQ labeling and the proteins differentially expressed were grouped in pluripotency, proliferative and metabolism processes. Proliferation makers, CD117 and Ki67 were measure by flow cytometry assay. Real time polymerase chain reaction analysis of pluripotency markers Rex1, Oct4, Sox2 and Nanog were done. Biological differentiation was realized using specific mediums for 14 days to induce osteogenesis, adipogenesis or chondrogenesis and immunostain analysis of differentiated cell resulting were done. Enzimoimmunoassay analysis of several enzymes as L-lactate dehydrogenase and glucose-6-phosphate isomerase were also done to validate iTRAQ data. Taking together these results indicate for the first time that mesenchymal stem cells have significant differences in their proliferative, pluripotency and metabolism profiles and those differences are age depending. PMID:26581954

  13. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  14. Advancing the Aging and Technology Agenda in Gerontology

    PubMed Central

    Schulz, Richard; Wahl, Hans-Werner; Matthews, Judith T.; De Vito Dabbs, Annette; Beach, Scott R.; Czaja, Sara J.

    2015-01-01

    Interest in technology for older adults is driven by multiple converging trends: the rapid pace of technological development; the unprecedented growth of the aging population in the United States and worldwide; the increase in the number and survival of persons with disability; the growing and unsustainable costs of caring for the elderly people; and the increasing interest on the part of business, industry, and government agencies in addressing health care needs with technology. These trends have contributed to the strong conviction that technology can play an important role in enhancing quality of life and independence of older individuals with high levels of efficiency, potentially reducing individual and societal costs of caring for the elderly people. The purpose of this “Forum” position article is to integrate what we know about older adults and technology systems in order to provide direction to this vital enterprise. We define what we mean by technology for an aging population, provide a brief history of its development, introduce a taxonomy for characterizing current technology applications to older adults, summarize research in this area, describe existing development and evaluation processes, identify factors important for the acceptance of technology among older individuals, and recommend future directions for research in this area. PMID:25165042

  15. Advancing the Aging and Technology Agenda in Gerontology.

    PubMed

    Schulz, Richard; Wahl, Hans-Werner; Matthews, Judith T; De Vito Dabbs, Annette; Beach, Scott R; Czaja, Sara J

    2015-10-01

    Interest in technology for older adults is driven by multiple converging trends: the rapid pace of technological development; the unprecedented growth of the aging population in the United States and worldwide; the increase in the number and survival of persons with disability; the growing and unsustainable costs of caring for the elderly people; and the increasing interest on the part of business, industry, and government agencies in addressing health care needs with technology. These trends have contributed to the strong conviction that technology can play an important role in enhancing quality of life and independence of older individuals with high levels of efficiency, potentially reducing individual and societal costs of caring for the elderly people. The purpose of this "Forum" position article is to integrate what we know about older adults and technology systems in order to provide direction to this vital enterprise. We define what we mean by technology for an aging population, provide a brief history of its development, introduce a taxonomy for characterizing current technology applications to older adults, summarize research in this area, describe existing development and evaluation processes, identify factors important for the acceptance of technology among older individuals, and recommend future directions for research in this area.

  16. [Bone and calcium update; diagnosis and therapy of metabolic bone disease update. Advances in clinical trials for osteoporosis in Japan].

    PubMed

    Nakamura, Toshitaka

    2011-12-01

    Microdensitometry of the metacarpal bone on radiograph was first set up as the endpoint of the treatment in clinical trials in Japan in 1980s. Then, radial bone mineral content obtained by single photon absorptiometry was used. In 1990s, lumbar spine BMD measured by DXA became the major endpoint of the study which was designed as prospective, randomized, double-blind, controlled trial. In 2000s, assessments on the incidences of the vertebral fractures have become mandatory as the primary endpoint of the placebo-controlled trial. The numbers of the subjects required in the study are getting larger and the subtleties in the study including adverse events more important along the progress of evidence-based medicine.

  17. Linear and Curvilinear Trajectories of Cortical Loss with Advancing Age and Disease Duration in Parkinson's Disease.

    PubMed

    Claassen, Daniel O; Dobolyi, David G; Isaacs, David A; Roman, Olivia C; Herb, Joshua; Wylie, Scott A; Neimat, Joseph S; Donahue, Manus J; Hedera, Peter; Zald, David H; Landman, Bennett A; Bowman, Aaron B; Dawant, Benoit M; Rane, Swati

    2016-05-01

    Advancing age and disease duration both contribute to cortical thinning in Parkinson's disease (PD), but the pathological interactions between them are poorly described. This study aims to distinguish patterns of cortical decline determined by advancing age and disease duration in PD. A convenience cohort of 177 consecutive PD patients, identified at the Vanderbilt University Movement Disorders Clinic as part of a clinical evaluation for Deep Brain Stimulation (age: M= 62.0, SD 9.3), completed a standardized clinical assessment, along with structural brain Magnetic Resonance Imaging scan. Age and gender matched controls (n=53) were obtained from the Alzheimer Disease Neuroimaging Initiative and Progressive Parkinson's Marker Initiative (age: M= 63.4, SD 12.2). Estimated changes in cortical thickness were modeled with advancing age, disease duration, and their interaction. The best-fitting model, linear or curvilinear (2(nd), or 3(rd) order natural spline), was defined using the minimum Akaike Information Criterion, and illustrated on a 3-dimensional brain. Three curvilinear patterns of cortical thinning were identified: early decline, late decline, and early-stable-late. In contrast to healthy controls, the best-fit model for age related changes in PD is curvilinear (early decline), particularly in frontal and precuneus regions. With advancing disease duration, a curvilinear model depicts accelerating decline in the occipital cortex. A significant interaction between advancing age and disease duration is evident in frontal, motor, and posterior parietal areas. Study results support the hypothesis that advancing age and disease duration differentially affect regional cortical thickness and display regional dependent linear and curvilinear patterns of thinning.

  18. [Cognitive capacity in advanced age: initial results of the Berlin Aging Study].

    PubMed

    Lindenberger, U; Baltes, P B

    1995-01-01

    This study reports data on intellectual functioning in old and very old age from the Berlin Aging Study (N = 516; age range = 70-103 years; mean age = 85 years). A psychometric battery of 14 tests was used to assess five cognitive abilities: reasoning, memory, and perceptual speed from the broad fluid-mechanical as well as knowledge and fluency from the broad crystallized-pragmatic domains. Cognitive abilities had a negative linear relationship with age, with more pronounced age-based reductions in fluid-mechanical than crystallized-pragmatic abilities. At the same time, ability intercorrelations formed a highly positive manifold, and did not follow the fluid-crystallized distinction. Interindividual variability was of about equal magnitude across the entire age range studied. There was, however, no evidence for substantial sex differences. As to origins of individual differences, indicators of sensory and sensorimotor functioning were more powerful predictors of intellectual functioning than cultural-biographical variables, and the two sets of predictors were, consistent with theoretical expectations, differentially related to measures of fluid-mechanical (perceptual speed) and crystallized pragmatic (knowledge) functioning. Results, in general indicative of sizeable and general losses with age, are consistent with the view that aging-induced biological influences are a prominent source of individual differences in intellectual functioning in old and very old age. Longitudinal follow-ups are underway to examine the role of cohort effects, selective mortality, and interindividual differences in change trajectories.

  19. High serum total bilirubin as a protective factor against hip bone loss in healthy middle-aged men.

    PubMed

    Kim, Beom-Jun; Koh, Jung-Min; Ahn, Seong Hee; Lee, Seung Hun; Kim, Eun Hee; Bae, Sung Jin; Kim, Hong-Kyu; Choe, Jae Won; Kim, Ghi Su

    2013-06-01

    Bilirubin is known to have a physiologic role as an antioxidant that efficiently scavenges peroxyl radicals and suppresses oxidation, and oxidative stress has detrimental effects on bone metabolism. In the present study, we performed a 3-year longitudinal study of healthy middle-aged men, investigating the association between serum total bilirubin concentrations and annualized changes in bone mineral density (BMD). The study enrolled a total of 917 Korean men aged 40 years or older who had undergone comprehensive routine health examinations with an average follow-up interval of 3 years. BMD at proximal femur sites was measured with dual-energy X-ray absorptiometry using the same equipment at baseline and follow-up. The overall mean annualized rates of bone loss at the total femur, femoral neck, and trochanter were -0.25 %/year, -0.34 %/year, and -0.44 %/year, respectively. After adjustment for potential confounders, the rates of bone loss at all proximal femur sites were significantly attenuated in a dose-response fashion across increasing bilirubin concentrations (P = 0.006-0.046). Moreover, compared to subjects in the lowest bilirubin quartile category, those in the highest bilirubin quartile category showed significantly less bone loss at all proximal femur sites after adjustment for confounding factors (P = 0.010-0.048). This study provides the first clinical evidence that serum total bilirubin could be a protective marker against future bone loss, especially in subjects without liver diseases.

  20. Study of Different Involutive Changes in Bone Mineral Density Measured in Ward's Triangle and Trabecular Volume Measured in Iliac Crest in Relation to Age

    PubMed Central

    Castillo, RF; Gallegos, RF

    2015-01-01

    ABSTRACT Background: The ageing process causes changes in the bone structure, in bone mineral density, and musculoskeletal disorders. Aims: The purpose of this study is to evaluate and compare involutive changes in bone structure that occur in relation to age in men and women through the study of bone mineral density at the Ward's triangle and trabecular volume. Subjects and Methods: In this study, we analysed bone mineral density at Ward's triangle in 70 people (38 men and 32 women) and did a histomorphometric study of trabecular volume at the right iliac crest in 66 samples (42 males and 24 females) obtained from autopsies of court cases, aged between 13 and 83 years. Results: The results show significant correlations between measurements of bone mineral density, trabecular volume values and anthropometric measures of age, gender and body mass index. Conclusions: This study shows involutional changes that occur in the bone mineral density and Ward's triangle in the bone structure during the process of ageing. In addition, both weight and height have a great influence on bone mineral density and changes in bone that occur; and body mass index is a very important determinant of bone mineral density. PMID:26360671

  1. T1 correlates age: A short-TE MR relaxometry study in vivo on human cortical bone free water at 1.5T.

    PubMed

    Akbari, Atena; Abbasi-Rad, Shahrokh; Rad, Hamidreza Saligheh

    2016-02-01

    Large pores of human cortical bone (>30μm) are filled with fluids, essentially consisting of water, suggesting that cortical bone free water can be considered as a reliable surrogate measure of cortical bone porosity and hence quality. Signal from such pores can be reliably captured using Short Echo Time (STE) pulse sequence with echo-time in the range of 1-1.5msec (which should be judiciously selected correspond to T2(⁎) value of free water molecules). Furthermore, it is well-known that cortical bone T1-relaxivity is a function of its geometry, suggesting that cortical bone free water increases with age. In this work, we quantified cortical bone free water longitudinal relaxation time (T1) by a Dual-TR technique using STE pulse sequence. In the sequel, we investigated relationship between STE-derived cortical bone free water T1-values and age in a group of healthy volunteers (thirty subjects covering the age range of 20-70years) at 1.5T. Preliminary results showed that cortical bone free water T1 highly correlates with age (r(2)=0.73, p<0.0001), representing cortical bone free water T1 as a reliable indicator of cortical bone porosity and age-related deterioration. It can be concluded that STE-MRI can be utilized as proper alternative in quantifying cortical bone porosity parameters in-vivo, with the advantages of widespread clinical availability and being cost-effective.

  2. Advanced glycation end products (AGEs) and its receptors in the pathogenesis of hyperthyroidism.

    PubMed

    Caspar-Bell, Gudrun; Dhar, Indu; Prasad, Kailash

    2016-03-01

    Oxidative stress has been implicated in the pathogenesis of hyperthyroidism and its complications. Interaction of advanced glycation end products (AGEs) with receptor RAGE (receptor for AGEs) generates reactive oxygen species. Soluble receptor for AGEs (sRAGE) competes with RAGE for binding with AGEs and attenuates the generation of ROS. Low levels sRAGE and high levels AGEs would generate more ROS leading to hyperthyroidism and its complications. The objectives are to determine if levels of serum sRAGE are low and the levels of AGEs and AGEs/sRAGE are high in patients with hyperthyroidism. The study subjects comprised of 33 patients with hyperthyroidism and 20 controls. Levels of serum sRAGE were lower, while that of AGEs and AGEs/sRAGE were higher in patients compared to controls, being significant only for sRAGE and AGEs/sRAGE. When the levels of sRAGE, AGEs, and AGEs/sRAGE were assessed for hyperthyroidism associated with different diseases, the levels of sRAGE were lower in Hashimoto disease, and levels of AGEs were higher in patients with Graves' disease compared to control. The levels of AGEs/sRAGE were elevated in an all except patients with Hashimoto disease. The levels of AGEs, sRAGE, or AGEs/RAGE were not correlated with age, weight, and blood pressures except systolic pressure which was inversely correlated with sRAGE. The levels of sRAGE were negatively correlated with AGEs and AGEs/sRAGE. The levels of AGEs/sRAGE were positively correlated with AGEs. In conclusion, low levels of sRAGE, and high levels of AGEs and AGEs/sRAGE are risk biomarkers in the pathogenesis hyperthyroidism and its complications.

  3. Age estimation of immature human skeletal remains from the diaphyseal length of the long bones in the postnatal period.

    PubMed

    Cardoso, Hugo F V; Abrantes, Joana; Humphrey, Louise T

    2014-09-01

    Age at death in immature human skeletal remains has been estimated from the diaphyseal length of the long bones, but few studies have actually been designed specifically for the purpose of age estimation and those which have, show important caveats. This study uses regression and classical calibration to model the relationship between age and diaphyseal length of the six long bones, in a sample of 184 known sex and age individuals (72 females and 112 males), younger than 13 years of age, selected from Portuguese and English skeletal collections. Age estimation models based on classical calibration were obtained for each of the six long bones, and separately for each sex and for the sexes combined, and also for the entire sample and when it is subdivided into two subsamples at the age of 2 years. Comparisons between inverse and classical calibration show there is a systematic bias in age estimations obtained from inverse calibration. In the classical calibration models, the length of the femur provides the most accurate estimates of age. Age estimates are more accurate for the male subsample and for individuals under the age of 2 years. These results and a test of previously published methods caution against inverse calibration as a technique for developing age estimation methods even from the immature skeleton. Age estimation methods developed using cemetery collections of identified human skeletons should not be uncritically applied to present-day populations from the same region since many populations have experienced dramatic secular trends in growth and adult height over the last century.

  4. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2015-12-01

    mice, despite a considerable and sustained decrease in sensory nerve activity. Physiological adaptations during development may allow mice to...Department of Anatomy, Physiology , & Cell Biology, USA Abstract Objectives: The present study sought to determine the effects of decreased peripheral...differences in bone parameters in capsaicin-treated mice, despite a considerable and sustained decrease in sensory nerve activity. Physiological

  5. Meta-analysis comparing denosumab and zoledronic acid for treatment of bone metastases in patients with advanced solid tumours.

    PubMed

    Zheng, G Z; Chang, B; Lin, F X; Xie, D; Hu, Q X; Yu, G Y; Du, S X; Li, X D

    2016-07-19

    The purpose of this meta-analysis was to evaluate the efficacy of denosumab, compared with zoledronic acid (ZA), in delaying skeletal-related events (SREs) and enhancing overall survival in patients with advanced solid tumours and bone metastases. A systematic literature search of several electronic databases, including PubMed, Medline, Embase, the Cochrane Library, CKNI and Web of Science with Conference Proceedings, was performed. Only randomised controlled trials assessing denosumab in comparison with ZA, in patients with advanced solid tumours and metastatic-stage disease, were included. The primary outcome was the time to first SRE. The risk of developing subsequent on-study SREs and overall survival were also evaluated. Three randomised controlled trials with a total of 5,544 patients with advanced solid tumours and bone metastases were included in the meta-analysis. There were 2,776 patients treated with denosumab and 2,768 treated with ZA. The pooled analysis showed that denosumab was superior to ZA in delaying time to first on-study SRE (odds ratio [OR]: 0.82; 95% CI: 0.75-0.89, p < 0.0001) and multiple SREs (risk ratio: 0.81; 95% CI: 0.74-0.88, p < 0.0001). However, no significant difference was found in overall survival improvement between denosumab and ZA (OR: 1.02; 95% CI: 0.91-1.15, p = 0.71). This meta-analysis indicates that denosumab is superior to ZA in delaying SREs for patients with bone metastases. No significant difference was observed between denosumab and ZA, regarding overall survival. We support denosumab as a potential novel treatment option for the management of bone metastases in advanced solid tumours.

  6. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age

    PubMed Central

    Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita

    2017-01-01

    Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner. PMID:28152064

  7. Bone Health and Osteoporosis: A Guide for Asian Women Aged 50 and Older

    MedlinePlus

    ... salmon with bones canned sardines with bones milk, yogurt, cheese, ice cream napa cabbage oysters sesame seeds ... The National Institutes of Health (NIH) is a component of the U.S. Department of Health and Human ...

  8. Stimulatory effect of menaquinone-7 on bone formation in elderly female rat femoral tissues in vitro: prevention of bone deterioration with aging.

    PubMed

    Yamaguchi, Masayoshi; Uchiyama, Satoshi; Tsukamoto, Yoshinori

    2002-12-01

    Menaquinone-7 (MK-7) is vitamin K2 which is a series of vitamins with multiisoprene units at the 3-position of the naphthoquinone. MK-7 has been shown to prevent bone loss in ovariectomized rats, an animal model for osteoporosis. This study was undertaken to determine whether MK-7 has a stimulatory effect on bone components of elderly female rats in vitro. The femoral-diaphyseal and -metaphyseal tissues obtained from young (4 weeks old) or elderly (50 weeks old) female rats were cultured for 48 h in a Dullbecco's modified Eagle's medium (high glucose, 4.5%) supplemented with antibiotics and bovine serum albumin. Calcium content, alkaline phosphatase activity and deoxyribonucleic acid (DNA) in the diaphyseal and metaphyseal tissues obtained from elderly rats were significantly decreased as compared with those of young rats, indicating that aging causes a deterioration of bone formation. The presence of MK-7 (10(-6) or 10(-5) M) caused a significant increase in biochemical components in the femoral-diaphyseal and -metaphyseal tissues obtained from elderly rat in vitro. The anabolic effect of MK-7 (10(-6) or 10(-5) M) on the femoral calcium content was significantly enhanced in the presence of phytoestrogen genistein (10(-6) or 10(-5) M), suggesting that the mode of action of MK-7 differ from that of genistein. The effect of MK-7 (10(-5) M) in increasing calcium content, alkaline phosphatase activity and DNA content in the diaphyseal and metaphyseal tissues was completely abolished in the presence of cycloheximide (10(-6) M), an inhibitor of protein synthesis in vitro. These findings demonstrate that MK-7 has a stimulatory effect on bone formation in the femoral tissues of elderly female rats in vitro. MK-7 may have a preventive role for bone deterioration with aging.

  9. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain

    PubMed Central

    Jimenez-Andrade, Juan M.; Mantyh, William G.; Bloom, Aaron P.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2010-01-01

    As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4 month old), middle-aged (13 month) and old (36 month) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP+ and NF200+ nerve fibers that innervate the bone remained remarkably unchanged as well as the severity of acute skeletal fracture pain. Thus, while bone mass, quality and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. PMID:20947214

  10. [The aging particularities of bone marrow composition, pineal gland and thymus functions in mice of different lines].

    PubMed

    Labunets, I F

    2013-01-01

    We investigated the amount of stromal precursor cells for colonies of fibroblasts (CFC-F) and progenitor cells for granulocyte-macrophage colonies (CFC-GM cells), blood content of thymulin and melatonin in bone marrow of young and old mice CBA/Ca and FVB/N lines. The CBA/Ca mice demonstrated only weak increasing amount of CFC-F and CFC-GM in bone marrow, but these indices in FVB/N mice are increased more significantly. Linear difference of age-related changes in the biological features of the cells of bone marrow are significantly associated with the characteristics and relationships of the function of epiphysis and the thymus in mice of different lines during aging.

  11. Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing

    PubMed Central

    Javaheri, B.; Carriero, A.; Staines, K.A.; Chang, Y.-M.; Houston, D.A.; Oldknow, K.J.; Millan, J.L.; Kazeruni, Bassir N.; Salmon, P.; Shefelbine, S.; Farquharson, C.; Pitsillides, A.A.

    2015-01-01

    PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay

  12. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide.

    PubMed

    Wang, Ying; Wehling-Henricks, Michelle; Samengo, Giuseppina; Tidball, James G

    2015-08-01

    Muscle aging is associated with changes in myeloid cell phenotype that may influence age-related changes in muscle structure. We tested whether preventing age-related reductions in muscle neuronal nitric oxide synthase (nNOS) would obviate age-related changes in myeloid cells in muscle. Our findings show that muscle aging is associated with elevations of anti-inflammatory M2a macrophages that can increase muscle fibrosis. Expression of a muscle-specific nNOS transgene in mice prevented age-related increases in M2a macrophages. Transgene expression also reduced expression of collagens and decreased muscle fibrosis. The nNOS transgene prevented age-related increases in arginase-1 but did not influence TGFβ expression, indicating that the transgene may prevent age-related muscle fibrosis by inhibiting the arginase-dependent profibrotic pathway. Although aged satellite cells or fibro-adipogenic precursor (FAPs) cells also promote fibrosis, transgene expression had no effect on the expression of key signaling molecules that regulate fibrogenic activity of those cells. Finally, we tested whether increases in M2a macrophages and the associated increase in fibrosis were attributable to aging of myeloid lineage cells. Young bone marrow cells (BMCs) were transplanted into young or old mice, and muscles were collected 8 months later. Muscles of young mice receiving young BMCs showed no effect on M2a macrophage number or collagen accumulation compared to age-matched, nontransplanted controls. However, muscles of old mice receiving young BMCs showed fewer M2a macrophages and less accumulation of collagen. Thus, the age-related increase in M2a macrophages in aging muscle and the associated muscle fibrosis are determined in part by the age of bone marrow cells.

  13. Implementation and statistical evaluation of a web-based software for bone age assessment.

    PubMed

    Yildiz, Metin; Guvenis, Albert; Guven, Esra; Talat, Didar; Haktan, Mahmut

    2011-12-01

    Bone age assessment is a tedious procedure carried out for assessing growth disorders of children using the left hand radiograph. The purpose of this work was to implement and evaluate a web-based software based on the Tanner and Whitehouse method in a pediatric endocrine department of a social security hospital processing 600-1,000 radiographs per year. The system was evaluated by using a statistical technique for comparing measurement methods in order to test the performance of the procedure and a time study to assess its feasibility under local conditions. It was found that the intra-observer variation for the web-based Tanner and Whitehouse method was smaller (95% confidence limits, -0.77 to 0.97 vs. -0.45 to 0.37) then the conventional Greulich and Pyle manual method and the average net time required for an age assessment was 2.4 min. We therefore concluded that the web-based system should be adopted for its higher precision and relatively low turnaround time for cases requiring serial readings on the same patient. The statistical method demonstrated in this study can also serve as an example for evaluating similar biomedical parameter assessing software.

  14. Aging accentuates and bone marrow transplantation ameliorates metabolic defects in Fabry disease mice

    PubMed Central

    Ohshima, Toshio; Schiffmann, Raphael; Murray, Gary J.; Kopp, Jeffrey; Quirk, Jane M.; Stahl, Stefanie; Chan, Chi-Chao; Zerfas, Patricia; Tao-Cheng, Jung-Hwa; Ward, J. M.; Brady, Roscoe O.; Kulkarni, Ashok B.

    1999-01-01

    Fabry disease is an X-linked metabolic disorder caused by a deficiency of α-galactosidase A (α-Gal A). The enzyme defect leads to the systemic accumulation of glycosphingolipids with α-galactosyl moieties consisting predominantly of globotriaosylceramide (Gb3). In patients with this disorder, glycolipid deposition in endothelial cells leads to renal failure and cardiac and cerebrovascular disease. Recently, we generated α-Gal A gene knockout mouse lines and described the phenotype of 10-week-old mice. In the present study, we characterize the progression of the disease with aging and explore the effects of bone marrow transplantation (BMT) on the phenotype. Histopathological analysis of α-Gal A −/0 mice revealed subclinical lesions in the Kupffer cells in the liver and macrophages in the skin with no gross lesions in the endothelial cells. Gb3 accumulation and pathological lesions in the affected organs increased with age. Treatment with BMT from the wild-type mice resulted in the clearance of accumulated Gb3 in the liver, spleen, and heart with concomitant elevation of α-Gal A activity. These findings suggest that BMT may have a potential role in the management of patients with Fabry disease. PMID:10339603

  15. The effect of intravertebral anesthesia on bone cement implantation syndrome in aged patients

    PubMed Central

    Chen, Qian; Huang, Chun; Zhang, Ya-Jun

    2016-01-01

    Abstract The aim of the study was to assess the effect of commonly used intravertebral anesthesia on bone cement implantation syndrome (BCIS) in aged patients undergoing hemiarthroplasty. The medical records of 1210 aged patients receiving hemiarthroplasty under intravertebral anesthesia were retrospectively reviewed. Anesthesia charts for all patients were reviewed for central venous pressure, mean arterial pressure, arterial oxygen saturation, and heart rate before, during, and after cementation. Each patient was classified into no BCIS (grade 0) or BCIS grade 1, 2, or 3 according to the degree of hypotension, arterial desaturation, or loss of consciousness around cementation. Changes in these grades after cementation were compared according to the ways of intravertebral anesthesia used. Among all included patients, 72.2% (874/1210) showed grade 1 or higher grade of BCIS after cementation. Compared with spinal-epidural anesthesia, single epidural anesthesia showed adjusted odds ratios (95% confidence interval) of 1.25 (1.13–1.43) for grade 1, 1.36 (0.83–2.06) for grade 2, and 3.55 (1.52–7.06) for marked postoperatively grade 3 of BCIS versus grade 0 (Type III P < 0.0001). Single epidural anesthesia was associated with increased odds for elevation of these grades after cementation compared with spinal-epidural anesthesia. PMID:27603378

  16. p47phox-Nox2-dependent ROS signaling inhibits early bone development in mice but protects against skeletal aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many ...

  17. A lifecourse study of bone resorption in men ages 49-51years: the Newcastle Thousand Families cohort study.

    PubMed

    Pearce, M S; Relton, C L; Groom, A; Peaston, R T; Francis, R M

    2010-04-01

    It has been suggested that bone health in adulthood is programmed by development in utero. Most previous investigations addressing this topic have focussed on bone mineral density or content, rather than other indicators of bone health, such as biochemical markers of bone turnover. This study investigated whether potential predictors, from different stages of life, influence bone resorption in men aged 49-51years in the Newcastle Thousand Families birth cohort. The cohort originally consisted of all 1142 births in the city of Newcastle upon Tyne, UK in May and June 1947. Detailed information was collected prospectively during childhood, including birth weight and socio-economic circumstances. At 49-51years of age, 574 study members completed a detailed 'Health and Lifestyle' questionnaire, including the European Prospective Investigation of Cancer (EPIC) food frequency questionnaire and 412 study members attended for clinical examination, including 172 men in whom bone resorption was assessed by measurement of serum beta C-telopeptide of type 1 collagen (CTX). A significant trend was seen between increasingly disadvantaged socio-economic status at birth and increased bone resorption (p=0.04, r-squared 2.6%). However, birth weight, standardised for sex and gestational age, was not associated with serum CTX (p=0.77, r-squared 0.05%). Significant trends were also seen between increasing total energy intake (p=0.03, r-squared 2.9%), dietary intake of saturated fat (p=0.02, r-squared 2.6%), protein (p=0.04, r-squared 2.5%) and carbohydrates (p=0.04, r-squared 2.6%) and higher serum CTX. However, on adjustment for total energy intake, none of the other dietary variables was significant at the univariate level maintained significance. Our findings suggest that early socio-economic disadvantage and later dietary factors may be associated with increased bone resorption in middle aged men. However, as little of the variance in serum CTX was explained by the variables

  18. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5-15 years: iowa bone development study.

    PubMed

    Janz, Kathleen F; Letuchy, Elena M; Francis, Shelby L; Metcalf, Kristen M; Burns, Trudy L; Levy, Steven M

    2014-01-01

    This study examined the association between physical activity (PA) and bone mineral content (BMC; gram) from middle childhood to middle adolescence and compared the impact of vigorous-intensity PA (VPA) over moderate- to vigorous-intensity PA (MVPA). Participants from the Iowa bone development study were examined at ages 5, 8, 11, 13, and 15 years (n = 369, 449, 452, 410, and 307, respectively). MVPA and VPA (minutes per day) were measured using ActiGraph accelerometers. Anthropometry was used to measure body size and somatic maturity. Spine BMC and hip BMC were measured via dual-energy x-ray absorptiometry. Sex-specific multi-level linear models were fit for spine BMC and hip BMC, adjusted for weight (kilogram), height (centimeter), linear age (year), non-linear age (year(2)), and maturity (pre peak height velocity vs. at/post peak height velocity). The interaction effects of PA × maturity and PA × age were tested. We also examined differences in spine BMC and hip BMC between the least (10th percentile) and most (90th percentile) active participants at each examination period. Results indicated that PA added to prediction of BMC throughout the 10-year follow-up, except MVPA, did not predict spine BMC in females. Maturity and age neither modify the PA effect for males nor females. At age 5, the males at the 90th percentile for VPA had 8.5% more hip BMC than males in the 10th percentile for VPA. At age 15, this difference was 2.0%. Females at age 5 in the 90th percentile for VPA had 6.1% more hip BMC than those in the 10th percentile for VPA. The age 15 difference was 1.8%. VPA was associated with BMC at weight-bearing skeletal sites from childhood to adolescence, and the effect was not modified by maturity or age. Our findings indicate the importance of early and sustained interventions that focus on VPA. Approaches focused on MVPA may be inadequate for optimal bone health, particularly for females.

  19. Prolonged survival in mice with advanced tumors treated with syngeneic or allogeneic intra-bone marrow-bone marrow transplantation plus fetal thymus transplantation.

    PubMed

    Hosaka, Naoki; Cui, Wenhao; Zhang, Yuming; Takaki, Takashi; Inaba, Muneo; Ikehara, Susumu

    2010-07-01

    Thymic function decreases in line with tumor progression in patients with cancer, resulting in immunodeficiency and a poor prognosis. In the present study, we attempted to restore thymic function by BALB/c (H-2(d)) syngeneic (Syn), or B6 (H-2(b)) allogeneic (Allo) bone marrow transplantation (BMT) using intra-bone marrow-bone marrow transplantation (IBM-BMT) plus Syn-, Allo- or C3H (H-2(k)) 3rd-party fetal thymus transplantation (TT). Although the BALB/c mice with advanced tumors (Meth-A sarcoma; H-2(d), >4 cm(2)) treated with either Syn- or Allo-BMT alone showed a slight improvement in survival compared with non-treated controls, the mice treated with BMT + TT showed a longer survival. The mice treated with Allo-BMT + Allo-TT or 3rd-party TT showed the longest survival. Interestingly, although there was no difference in main tumor size among the BMT groups, lung metastasis was significantly inhibited by Allo-BMT + Allo-TT or 3rd-party TT. Numbers of CD4(+) and CD8(+) T cells, Con A response, and IFN-gamma production increased significantly, whereas number of Gr-1(+)/CD11b(+) myeloid suppressor cells and the percentage of FoxP3(+) cells in CD4(+) T cells significantly decreased in these mice. Furthermore, there was a positive correlation between survival days and the number of T cells or T cell function, while there was a negative correlation between survival days and lung metastasis, the number of Gr-1(+)/CD11b(+) cells, or the percentage of FoxP3(+) cells. These results suggest that BMT + TT, particularly Allo-BMT + Allo-TT or 3rd-party TT, is most effective in prolonging survival as a result of the restoration of T cell function in hosts with advanced tumors.

  20. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential

    PubMed Central

    Chen, Yijia; Xu, Xiaomei; Tan, Zhen; Ye, Cui; Chen, Yangxi

    2012-01-01

    Introduction Aging people's bone regeneration potential is always impaired. Bone marrow stromal cells (MSCs) contain progenitors of osteoblasts. Donor age may affect MSCs’ proliferation and differentiation potential, but the genomic base is still unknown. Due to recent research's indication that a core circadian component, brain and muscle ARNT-like 1 protein (BMAL1), has a role in premature aging, we investigated the normal aging mechanism in mice with their MSCs and Bmal1 gene/protein level. Material and methods 1, 6 and 16 month old C57BL/6 mice were used and the bone marrow stromal cells were gained and cultured at early passage. Bmal1 gene and protein level were detected in these cells. Marrow stromal cells were also induced to differentiate to osteoblasts or adipocytes. Three groups of mice MSCs were compared on proliferation by flow cytometry, on cell senescence by SA-β-gal expression and after osteo-induction on osteogenic potential by the expression of osterix (Osx), alkaline phosphatase (ALP) and osteocalcin (OCN). Results Bmal1 gene and protein level as well as S-phase fraction of the cell cycle decreased in MSCs along with the aging process. At the same time, SA-β-gal+ levels increased, especially in the aged mice MSCs. When induced to be osteogenic, Osx gene expression and ALP activity declined in the mid-age and aged mice MSCs, while OCN protein secretion deteriorated in the aged mice MSCs. Conclusions These findings demonstrate that mouse MSCs changed with their proliferation and osteo-differentiation abilities at different aging stages, and that Bmal1 is related to the normal aging process in MSCs. PMID:22457671

  1. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease.

    PubMed

    Fuchs, Shmuel; Kornowski, Ran; Weisz, Giora; Satler, Lowell F; Smits, Peter C; Okubagzi, Petros; Baffour, Richard; Aggarwal, Anita; Weissman, Neil J; Cerqueira, Manuel; Waksman, Ron; Serrruys, Parrick; Battler, Alexander; Moses, Jeffrey W; Leon, Martin B; Epstein, Stephen E

    2006-03-15

    The present report contains the final results of a Phase I study that evaluated the feasibility, safety, and potential efficacy of intramyocardial injection of autologous bone marrow (BM) in "no-option" patients with refractory angina and myocardial ischemia. Twenty-seven patients underwent electromechanic mapping-guided transendomyocardial injections (n = 12, 0.2 ml each) of unfractionated autologous BM cells directed to ischemic, noninfarcted myocardial territory. Patients were injected with 28 +/- 27 x 10(6)/ml nucleated cells containing 2.2 +/- 1.4% CD34+ cells. The autologous BM injection procedure was successful in all patients and was associated with no adverse events. At 3 months, the Canadian Cardiovascular Society angina score (3.2 +/- 0.5 vs 2.0 +/- 0.91, p = 0.001) and treadmill exercise duration (418 +/- 136 vs 489 +/- 142 seconds, p = 0.017) had improved significantly. The stress-induced ischemia score within the injected territories (118 segments) had also improved (2.2 +/- 0.8 vs 1.7 +/- 1.1, p < 0.001). At 1 year, the clinical improvement was sustained, although 5 patients had undergone revascularization procedures. The number of total injected nucleated cells (CD45+), progenitor cells (CD34+), and the magnitude of secreted vascular endothelial growth factor and macrophage chemoattractant protein-1 by cultured BM cells failed to predict the clinical response. In conclusion, the 3- and 12-month study results have indicated the safety of catheter-based transendocardial delivery of autologous BM cells in patients with advanced symptomatic ischemic heart disease and may suggest sustained potential efficacy. The cellular and humeral characteristics of autologous BM cells did not predict the clinical response, underscoring the advisability of additional mechanistic exploration.

  2. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    PubMed

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  3. Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks.

    PubMed

    Kim, W K; Bloomfield, S A; Ricke, S C

    2011-11-01

    A study was conducted to evaluate the effects of age, vitamin D(3), and fructooligosaccharides (FOS) on bone mineral density (BMD), bone mineral content (BMC), cortical thickness, cortical and trabecular area, and mechanical properties in broiler chicks using peripheral quantitative computed tomography and mechanical testing. A total of 54 male broiler chicks (1 d old) were placed in battery brooders and fed a corn-soybean starter diet for 7 d. After 7 d, the chicks were randomly assigned to pens of 3 birds each. Each treatment was replicated 3 times. There were 6 treatments: 1) early age control (control 1); 2) control 2; 3) 125 µg/kg of vitamin D(3); 4) 250 µg/kg of vitamin D(3); 5) 2% FOS); and 6) 4% FOS. The control 1 chicks were fed a control broiler diet and killed on d 14 to collect femurs for bone analyses. The remaining groups were killed on d 21. Femurs from 3-wk-old chicks showed greater midshaft cortical BMD, BMC, bone area, thickness, and marrow area than those from 2-wk-old chicks (P = 0.016, 0.0003, 0.0002, 0.01, and 0.0001, respectively). Total, cortical, and trabecular BMD of chick proximal femurs were not influenced by age. However, BMC and bone area were significantly affected by age. The femurs of 2-wk-old chicks exhibited significantly lower stiffness and ultimate load than those of 3-wk-old chicks (P = 0.0001), whereas ultimate stress and elastic modulus of the femurs of 2-wk-old chicks were significantly higher than that of femurs of 3-wk-old chicks (P = 0.0001). Chicks fed 250 µg/kg of vitamin D(3) exhibited significantly greater midshaft cortical BMC (P = 0.04), bone area (P = 0.04), and thickness (P = 0.03) than control 2, 2% FOS, or 4% FOS chicks. In summary, our study suggests that high levels of vitamin D(3) can increase bone growth and mineral deposition in broiler chicks. However, FOS did not have any beneficial effects on bone growth and skeletal integrity. Age is an important factor influencing skeletal integrity and mechanical

  4. Selenium Status Is Positively Associated with Bone Mineral Density in Healthy Aging European Men

    PubMed Central

    Beukhof, Carolien M.; Medici, Marco; van den Beld, Annewieke W.; Hollenbach, Birgit; Hoeg, Antonia; Visser, W. Edward; de Herder, Wouter W.; Visser, Theo J.; Schomburg, Lutz; Peeters, Robin P.

    2016-01-01

    Objective It is still a matter of debate if subtle changes in selenium (Se) status affect thyroid function tests (TFTs) and bone mineral density (BMD). This is particularly relevant for the elderly, whose nutritional status is more vulnerable. Design and Methods We investigated Se status in a cohort of 387 healthy elderly men (median age 77 yrs; inter quartile range 75–80 yrs) in relation to TFTs and BMD. Se status was determined by measuring both plasma selenoprotein P (SePP) and Se. Results The overall Se status in our population was low normal with only 0.5% (2/387) of subjects meeting the criteria for Se deficiency. SePP and Se levels were not associated with thyroid stimulating hormone (TSH), free thyroxine (FT4), thyroxine (T4), triiodothyronine (T3) or reverse triiodothyronine (rT3) levels. The T3/T4 and T3/rT3 ratios, reflecting peripheral metabolism of thyroid hormone, were not associated with Se status either. SePP and Se were positively associated with total BMD and femoral trochanter BMD. Se, but not SePP, was positively associated with femoral neck and ward's BMD. Multivariate linear analyses showed that these associations remain statistically significant in a model including TSH, FT4, body mass index, physical performance score, age, smoking, diabetes mellitus and number of medication use. Conclusion Our study demonstrates that Se status, within the normal European marginally supplied range, is positively associated with BMD in healthy aging men, independent of thyroid function. Thyroid function tests appear unaffected by Se status in this population. PMID:27055238

  5. [Effect of age and anti-osteoporotic drugs on bone strength and structure of the distal radius].

    PubMed

    Uchiyama, Shigeharu

    2013-07-01

    The distal radius constitutes a proximal part of the wrist joint, which bears axial load from the carpal bones. Based on the biomechanical experiments, the load transmitted from the carpal bones to the distal articular surface of the radius is greater to the lunate fossa than the scaphoid fossa. The findings are consistent with the results obtained from HR-pQCT analysis of the distal radius. As ageing, bone mineral densities of the distal radius decrease, and structures of the cortical and trabecular bones also deteriorate. Such deterioration can be prevented by osteoporotic medicines such as PTH or bisphosphonate. Denosumab has been shown to increase mechanical indices of the bone structure of the distal radius. The distal radius of the individual is fractured when the load over approximately 5 times (2.5SD) of the weight is applied. It is possible to predict load of fracture in the distal radius from the results of DXA derived BMD or HR-pQCT derived bone parameters. We should not miss the opportunity of treatment for osteoporosis when the patients with fragility distal radius fracture are seen.

  6. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  7. Age- and sex-related differences of morphometric, densitometric and geometric parameters of tibiotarsal bone in Ross broiler chickens.

    PubMed

    Charuta, Anna; Dzierzecka, Małgorzata; Komosa, Marcin; Kalinowski, Łukasz; Pierzchała, Mariusz

    2013-01-01

    For the first time computed tomography has been used to analyze densitometric and geometric parameters in proximal metaphyses and the mid-diaphyses of tibiotarsal bones in broiler chickens in posthatching development as influenced by age and sex. The research was conducted on 60 tibial bones of 2-, 4- and 6-week-old broiler chickens (Ross 308) (10 males and 10 females in each age group). Statistical analysis has been conducted with the use of one-way ANOVA and Fisher's exact test. Calculations have been performed separately for each sex, with age as a differentiation variable and separately for each of the developmental stages, with sex as a differentiation factor. Pearson's correlation coefficient have been calculated. Also, relative bone density has been determined. It was observed that volumetric bone mineral density (vBMD) in the diaphyses was two times higher (app. 550 cm3) than in the proximal metaphyses (app. 230 cm ) of the tibiae in broiler chickens. In the proximal metaphyses of the tibiotarsal bones, densitometric and geometrical parameters increased with age of the birds. Densitometric parameters (vBMD, BMC) in 6-week-old males displayed (slightly) higher values than in females. It is worth emphasising that in both sexes bone mineral content (BMC) was higher in the tibial proximal metaphyses than in the diaphyses. At the mid-diaphysis, most of the densitometric and geometrical parameters, i.e. bone mineral content (BMC), Strength-Strain Index (SSI), periosteal circumference (PERI_C), endosteal circumference (ENDO_C), cortical area(CRT_A), trabecular area (TRAB_A) and bone area (TOT_A), tended to grow with the birds' age. vBMD (volumetric bone mineral density in situ) is the only parameter that did not grow with age. It was also observed that in males in 4 wk, vBMD in the proximal metaphyses displayed the lowest values during posthatching development (217.47 cm3). Also between 2 and 4 wk of the development, vBMD in the diaphyses decreased from 637.64 cm3

  8. Bone mineral density obtained by peripheral quantitative computed tomography (pQCT) in middle-aged and elderly Japanese.

    PubMed

    Tsuzuku, S; Niino, N; Ando, F; Shimokata, H

    2000-04-01

    To clarify age-related changes in bone mineral density (BMD) by peripheral quantitative computed tomography (pQCT), 1,124 Japanese middle-aged and elderly community-dwelling people were examined. The BMD of the trabecular bone was assessed at the distal part of the radius (D50), and the BMD of the cortical bone was assessed at the diaphysis of the radius (P100). P100 during age 40 to 49 was significantly higher in females (1359.6 +/- 10.7 mg/cm3, mean +/- SE) than in males (1253.5 +/- 9.5 mg/cm3), while there was no difference in D50, 245.3 +/- 5.1 mg/cm3 in females and 293.0 +/- 5.5 mg/cm3 in males. Females and males aged 50 to 59 lost 8.09 +/- 2.08 (mean +/- SE) mg/cm3 and 3.80 +/- 1.77 mg/cm3 of D50 every year, respectively. As for P100, females lost 25.1 +/- 4.48 mg/cm3, and males lost 6.37 +/- 3.89 mg/cm3 every year. Because of these gender differences, both D50 and P100 were significantly higher in males than in females aged 50 and over. Assuming that the average BMD between ages 40 and 44 was the maximum bone mineral density (BMD max), the percentage change from the BMD max with age was examined. Females aged 60 to 69 whose BMD were under 70% of the BMD max made up 73.9% in D50 and 23.2% in P100. Only 21.1% of males aged 60 to 69 showed less than 70% of the BMD max in D50 and only 3.8% in P100. The percentage decrease in BMD by age was larger in D50 than in P100 in both males and females. The individual difference in BMD was larger in D50 than in P100. These results suggest that pQCT may be useful to independently assess aging effects on cortical and trabecular bone density.

  9. Mortality Measurement at Advanced Ages: A Study of the Social Security Administration Death Master File.

    PubMed

    Gavrilov, Leonid A; Gavrilova, Natalia S

    2011-01-01

    Accurate estimates of mortality at advanced ages are essential to improving forecasts of mortality and the population size of the oldest old age group. However, estimation of hazard rates at extremely old ages poses serious challenges to researchers: (1) The observed mortality deceleration may be at least partially an artifact of mixing different birth cohorts with different mortality (heterogeneity effect); (2) standard assumptions of hazard rate estimates may be invalid when risk of death is extremely high at old ages and (3) ages of very old people may be exaggerated. One way of obtaining estimates of mortality at extreme ages is to pool together international records of persons surviving to extreme ages with subsequent efforts of strict age validation. This approach helps researchers to resolve the third of the above-mentioned problems but does not resolve the first two problems because of inevitable data heterogeneity when data for people belonging to different birth cohorts and countries are pooled together. In this paper we propose an alternative approach, which gives an opportunity to resolve the first two problems by compiling data for more homogeneous single-year birth cohorts with hazard rates measured at narrow (monthly) age intervals. Possible ways of resolving the third problem of hazard rate estimation are elaborated. This approach is based on data from the Social Security Administration Death Master File (DMF). Some birth cohorts covered by DMF could be studied by the method of extinct generations. Availability of month of birth and month of death information provides a unique opportunity to obtain hazard rate estimates for every month of age. Study of several single-year extinct birth cohorts shows that mortality trajectory at advanced ages follows the Gompertz law up to the ages 102-105 years without a noticeable deceleration. Earlier reports of mortality deceleration (deviation of mortality from the Gompertz law) at ages below 100 appear to be

  10. Mortality Measurement at Advanced Ages: A Study of the Social Security Administration Death Master File

    PubMed Central

    Gavrilov, Leonid A.; Gavrilova, Natalia S.

    2011-01-01

    Accurate estimates of mortality at advanced ages are essential to improving forecasts of mortality and the population size of the oldest old age group. However, estimation of hazard rates at extremely old ages poses serious challenges to researchers: (1) The observed mortality deceleration may be at least partially an artifact of mixing different birth cohorts with different mortality (heterogeneity effect); (2) standard assumptions of hazard rate estimates may be invalid when risk of death is extremely high at old ages and (3) ages of very old people may be exaggerated. One way of obtaining estimates of mortality at extreme ages is to pool together international records of persons surviving to extreme ages with subsequent efforts of strict age validation. This approach helps researchers to resolve the third of the above-mentioned problems but does not resolve the first two problems because of inevitable data heterogeneity when data for people belonging to different birth cohorts and countries are pooled together. In this paper we propose an alternative approach, which gives an opportunity to resolve the first two problems by compiling data for more homogeneous single-year birth cohorts with hazard rates measured at narrow (monthly) age intervals. Possible ways of resolving the third problem of hazard rate estimation are elaborated. This approach is based on data from the Social Security Administration Death Master File (DMF). Some birth cohorts covered by DMF could be studied by the method of extinct generations. Availability of month of birth and month of death information provides a unique opportunity to obtain hazard rate estimates for every month of age. Study of several single-year extinct birth cohorts shows that mortality trajectory at advanced ages follows the Gompertz law up to the ages 102–105 years without a noticeable deceleration. Earlier reports of mortality deceleration (deviation of mortality from the Gompertz law) at ages below 100 appear to be

  11. A review of recent advances in the assessment of bone porosity, permeability, and interstitial fluid flow

    PubMed Central

    Cardoso, Luis; Fritton, Susannah P.; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C.

    2012-01-01

    This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418

  12. Can bone age determination provide criteria for growth hormone treatment in adopted girls with early puberty?

    PubMed

    Proos, L A; Lönnerholm, T; Jonsson, B; Tuvemo, T

    2006-01-01

    In treatment of idiopathic central precocious puberty, GnRH analogues (GnRHa) have been accepted as the treatment of choice. Since growth velocity may be impaired with GnRHa treatment growth hormone (GH) treatment has been added in clinical trials. Recently, a study followed adopted girls with early or precocious puberty on GnRHa or combined GnRHa and GH treatment to final height. It was found that final height was significantly higher in the combined treatment group, although the difference was small. It was seen that patients that were extremely short at arrival and short at start of treatment seemed to be candidates for combined treatment. We have now analysed the data in order to define criteria for the sub-group in need of combined GnRHa-GH treatment in order to achieve normal final height, i.e. above -2 SDS. Bone ages of 46 patients at start of treatment, randomized to either GnRHa treatment or GnRHa treatment combined with GH, were examined blindly by the same radiologist and the PAH calculated. The methods according to Greulich-Pyle / Bayley-Pinneau (GP/BP) and Tanner-Whitehouse (TW2) were used. Predictions versus final height data were analysed. The accuracy of FH prediction was greatest for GnRHa treated group using the GP/BP method. The GP/BP method gave useful cut off limits for when combined treatment was necessary to possibly achieve normal height. If pre-treatment GP/PAH was > 157cm, the patients attained normal height with GnRHa treatment only. Ten out of 13 (77%) such girls could be correctly identified. Using TW2 with a cut off of 164 cm, 9 out of 13 could be selected. Using a multi regression equation of best fit the number of correctly selected cases for GnRHa treatment only, could not be further increased in this group. We conclude that bone age determination and adult height prediction with the Greulich-Pyle/Bayley-Pinneau method, provides useful criteria for selecting the subgroup of adopted girls with early puberty where combined treatment

  13. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.

    PubMed

    Yeni, Yener N; Zelman, Eric A; Divine, George W; Kim, Do-Gyoon; Fyhrie, David P

    2008-03-01

    Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were examined in order to establish the relationship between stress distribution parameters and trabecular architecture. Eighty cancellous bone specimens were cored from the anterior region of thoracic 12 and donor-matched lumbar 1 vertebrae from a randomly selected population of 40 cadavers. The specimens were scanned at 21-microm voxel size using microcomputed tomography (microCT) and reconstructed at 50microm. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), bone surface-to-volume ratio (BS/BV), degree of anisotropy (MIL1/MIL3), and connectivity density (-#Euler/Vol) were calculated directly from micro-CT images. Large-scale finite element models were constructed and superoinferior compressive loading was simulated. Apparent cancellous modulus (EFEM) was calculated. The average trabecular von Mises stress generated per uniaxial apparent stress (sigma (-)VM / sigmaapp) and coefficient of variation of trabecular von Mises stresses (COV) were calculated as measures of the magnitude and variability of shear stresses in the trabeculae. Mixed-models and regression were used for analysis. sigma(-)VM / sigmaapp and COV were not different between genders and vertebrae. Both sigma(-)VM / sigmaapp and COV increased with age accompanied by a decrease in BV/TV. Strong relationship of sigma(-)VM / sigmaapp with BV/TV was found whereas COV was strongly related to EFEM/(BV/TV). The results from T12 and L1 were not different and highly correlated with each other. The relationship of sigma(-)VM / sigmaapp with COV was observed to be

  14. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue.

    PubMed

    Gautieri, Alfonso; Passini, Fabian S; Silván, Unai; Guizar-Sicairos, Manuel; Carimati, Giulia; Volpi, Piero; Moretti, Matteo; Schoenhuber, Herbert; Redaelli, Alberto; Berli, Martin; Snedeker, Jess G

    2017-05-01

    Concurrent with a progressive loss of regenerative capacity, connective tissue aging is characterized by a progressive accumulation of Advanced Glycation End-products (AGEs). Besides being part of the typical aging process, type II diabetics are particularly affected by AGE accumulation due to abnormally high levels of systemic glucose that increases the glycation rate of long-lived proteins such as collagen. Although AGEs are associated with a wide range of clinical disorders, the mechanisms by which AGEs contribute to connective tissue disease in aging and diabetes are still poorly understood. The present study harnesses advanced multiscale imaging techniques to characterize a widely employed in vitro model of ribose induced collagen aging and further benchmarks these data against experiments on native human tissues from donors of different age. These efforts yield unprecedented insight into the mechanical changes in collagen tissues across hierarchical scales from molecular, to fiber, to tissue-levels. We observed a linear increase in molecular spacing (from 1.45nm to 1.5nm) and a decrease in the D-period length (from 67.5nm to 67.1nm) in aged tissues, both using the ribose model of in vitro glycation and in native human probes. Multiscale mechanical analysis of in vitro glycated tendons strongly suggests that AGEs reduce tissue viscoelasticity by severely limiting fiber-fiber and fibril-fibril sliding. This study lays an important foundation for interpreting the functional and biological effects of AGEs in collagen connective tissues, by exploiting experimental models of AGEs crosslinking and benchmarking them for the first time against endogenous AGEs in native tissue.

  15. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases.

  16. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice

    PubMed Central

    Ozkosem, Burak; Feinstein, Sheldon I.; Fisher, Aron B.; O’Flaherty, Cristian

    2015-01-01

    Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6−/− mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6−/− males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6−/− males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6−/− males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice. PMID:25796034

  17. Advancing Age, Advantaged Youth: Parental Age and the Transmission of Resources to Children

    ERIC Educational Resources Information Center

    Powell, Brian; Steelman, Lala Carr; Carini, Robert M.

    2006-01-01

    Using data from the National Education Longitudinal Study of 1988, we identify parental age as influential in the parental provision of economic resources, social capital and cultural capital to adolescents, as well as in parental educational expectations for their children. At the bivariate level, the relationship is curvilinear, suggesting that…

  18. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales

    PubMed Central

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager, Joel W.; Ritchie, Robert O.

    2011-01-01

    The structure of human cortical bone evolves over multiple length scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at near-millimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural scales typically below a micrometer and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple length scales. Using in situ small-angle X-ray scattering and wide-angle X-ray diffraction to characterize submicrometer structural changes and synchrotron X-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micrometer scales, we show how these age-related structural changes at differing size scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased nonenzymatic collagen cross-linking, which suppresses plasticity at nanoscale dimensions, and to an increased osteonal density, which limits the potency of crack-bridging mechanisms at micrometer scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking. PMID:21873221

  19. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  20. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency

    PubMed Central

    Jokihaara, Jarkko; Pörsti, Ilkka H.; Sievänen, Harri; Kööbi, Peeter; Kannus, Pekka; Niemelä, Onni; Turner, Russell T.; Iwaniec, Urszula T.; Järvinen, Teppo L. N.

    2016-01-01

    Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI. PMID:27658028

  1. Advancing Age and 30-Day Adverse Outcomes Following Non-Emergent General Surgical Operations

    PubMed Central

    Gajdos, Csaba; Kile, Deidre; Hawn, Mary T.; Finlayson, Emily; Henderson, William G.; Robinson, Thomas N.

    2014-01-01

    Background While some single center studies have demonstrated that major surgical operations are safe to perform in older adults, most multicenter database studies find advancing age to independently predict adverse postoperative outcomes. We hypothesized that thirty-day postoperative mortality, complications, failure to rescue rates and postoperative length of stay will increase with advancing age. Design Retrospective cohort study. Setting Hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) Participants Patients undergoing non-emergent major general surgical operations between 2005 and 2008 were studied. Measures Postoperative outcomes of interest were complications occurring within 30 days of the index operation, return to OR within 30 days, failure to rescue after a postoperative complication, post-surgical length of stay and 30 day mortality. Results A total of 165,600 patients were studied. The rates of postoperative mortality, overall morbidity, and each type of postoperative complication increased as age increased. The rates of failure to rescue after each type of postoperative complication also increased with age. Mortality rates in patients ≥80 following renal insufficiency (43.3%), stroke (36.5%), myocardial infarction (35.6%), and pulmonary complications (25-39%) were particularly high. Median postoperative length of stay increased with age following surgical site infection, UTI, pneumonia, return to OR, and overall morbidity, but not after venous thromboembolism, stroke, myocardial infarction, renal insufficiency, failure to wean from the ventilator or reintubations. Conclusion Thirty-day mortality, complications and failure to rescue rates increase with advancing age following non-emergent general surgical operations. Patients over 80 years of age have especially high mortality following renal, cardiovascular, and pulmonary complications. As patient age advances, surgeons need to be

  2. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    PubMed Central

    Dutta, D; Dharmshaktu, P; Aggarwal, A; Gaurav, K; Bansal, R; Devru, N; Garga, UC; Kulshreshtha, B

    2016-01-01

    Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD) loss in endocrinopathies [Graves’ disease (GD), type 1 diabetes mellitus (T1DM), hypogonadotrophic hypogonadism (HypoH), hypergonadotropic hypogonadism (HyperH), hypopituitarism, primary hyperparathyroidism (PHPT)] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO), andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126) were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%), HyperH (85%), and HypoH (79.59%) compared to age-related BMD loss (60.02%; P < 0.001). The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%), HyperH (85%), and HypoH (59.26%) compared to PMO (49.34%; P < 0.001). Z score at LS, TF, NOF, and greater trochanter (GT) was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67%) and HypoH (54.55%) compared to andropause (45.45%; P = 0.001). Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI) and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting. PMID:27241810

  3. [Combined spinal epidural anesthesia during endoprosthetic surgeries for bone tumors in old-age children].

    PubMed

    Matinian, N V; Saltanov, A I

    2005-01-01

    Thirty-five patients (ASA II-III) aged 12 to 17 years, diagnosed as having osteogenic sarcoma and Ewing's sarcoma localizing in the femur and tibia, were examined. Surgery was performed as sectoral resection of the affected bone along with knee joint endoprosthesis. Surgical intervention was made under combined spinal and epidural anesthesia (CSEA) with sedation, by using the methods for exact dosing of propofol (6-4 mg/kg x h). During intervention, a child's respiration remains is kept spontaneous with oxygen insufflation through a nasal catheter. CSEA was performed in two-segmental fashion. The epidural space was first catheterized. After administration of a test dose, 0.5% marcaine spinal was injected into dermatomas below the subarachnoidal space, depending on body weight (3.0-4.0 ml). Sensory blockade developed following 3-5 min and lasted 90-120 min, thereafter a local anesthetic (bupivacaine) or its mixture plus promedole was epidurally administered. ??Anesthesia was effective in all cases, motor blockade. During surgery, there was a moderate arterial hypotension that did not require the use of vasopressors. The acid-alkali balance suggested the adequacy of spontaneous respiration. The only significant complication we observed was atony of the bladder that requires its catheterization till the following day. An epidural catheter makes it possible to effect adequate postoperative analgesia.

  4. Mindful Sustainable Aging: Advancing a Comprehensive Approach to the Challenges and Opportunities of Old Age

    PubMed Central

    Nilsson, Håkan; Bülow, Pia H.; Kazemi, Ali

    2015-01-01

    The primary aim of this article is to present a new concept called mindful sustainable aging (MSA), which is informed by mindfulness practices that support the physical, the mental, and especially, the social and the existential dimensions of old life. The concept of MSA is discussed and compared with four influential psychosocial theories in the field of gerontology, i.e., activity theory, disengagement theory, successful aging theory and gerotranscendence theory. The article ends with reviewing research on how mindfulness practice can help to manage, diminish and/or improve a number of serious physical conditions that are common among older people. The potential of mindfulness when it comes to facilitating for older adults in their quest for spiritual and existential meaning is discussed extensively throughout the article. PMID:27247673

  5. Mindful Sustainable Aging: Advancing a Comprehensive Approach to the Challenges and Opportunities of Old Age.

    PubMed

    Nilsson, Håkan; Bülow, Pia H; Kazemi, Ali

    2015-08-01

    The primary aim of this article is to present a new concept called mindful sustainable aging (MSA), which is informed by mindfulness practices that support the physical, the mental, and especially, the social and the existential dimensions of old life. The concept of MSA is discussed and compared with four influential psychosocial theories in the field of gerontology, i.e., activity theory, disengagement theory, successful aging theory and gerotranscendence theory. The article ends with reviewing research on how mindfulness practice can help to manage, diminish and/or improve a number of serious physical conditions that are common among older people. The potential of mindfulness when it comes to facilitating for older adults in their quest for spiritual and existential meaning is discussed extensively throughout the article.

  6. Surface exposure dating of Little Ice Age ice cap advances on Disko Island, West Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Jomelli, Vincent; Rinterknecht, Vincent; Brunstein, Daniel; Schimmelpfennig, Irene; Swingedouw, Didier; Favier, Vincent; Masson-Delmotte, Valerie

    2015-04-01

    Little Ice Age (LIA: 1200-1920 AD) glacier advances in Greenland often form the most extensive positions of Greenland Ice Sheet (GrIS) ice cap and margins since the Early Holocene. Across Greenland these advances are commonly represented by un-vegetated moraines, usually within 1-5 km of the present ice margin. However, chronological constraints on glacier advances during this period are sparse, meaning that GrIS and ice cap behavior and advance/retreat chronology remains poorly understood during this period. At present the majority of ages are based on historical accounts, ice core data, and radiocarbon ages from proglacial threshold lakes. However, developments in the accuracy and precision of surface exposure methods allow dating of LIA moraine boulders, permitting an opportunity to better understand of ice dynamics during this period. Geomorphological mapping and surface exposure dating (36Cl) were used to interpret moraine deposits from the Lyngmarksbræen on Disko Island, West Greenland. A Positive Degree Day (PDD) model was used to estimate Equilibrium Line Altitude (ELA) and mass balance changes for two distinct paleo-glacial extents. Three moraines (M1, M2, and M3) were mapped in the field, and sampled for 36Cl surface exposure dating. The outermost moraine (M1) was of clearly different morphology to the inner moraines, and present only in small fragments. M2 and M3 were distinct arcuate termino-lateral moraines within 50 m of one another, 1.5 km from the present ice margin. The weighted average of four 36Cl ages from M1 returned an early Holocene age of 8.4 ± 0.6 ka. M2 (four samples) returned an age of 0.57 ± 0.04 ka (1441 AD) and M3 (four samples) returned an age of 0.28 ± 0.02 ka (1732 AD). These surface exposure ages represent the first robustly dated Greenlandic ice cap moraine sequence from the LIA. The two periods of ice cap advance and marginal stabilisation are similar to recorded periods of LIA GrIS advance in west Greenland, constrained

  7. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Li, Yingkui; Harbor, Jon; Liu, Gengnian; Yi, Chaolu; Caffee, Marc W.

    2016-04-01

    Presumed Little Ice Age (LIA) glacial advances, represented by a set of fresh, sharp-crested, boulder covered and compact moraines a few hundred meters downstream from modern glaciers, have been widely recognized in the Central Asian highlands. However, few studies have constrained the formation ages of these moraines. We report 31 10Be exposure ages from presumed LIA moraines in six glacial valleys in the Urumqi River headwater area and the Haxilegen Pass area of the eastern Tian Shan, China. Our results reveal that the maximum LIA glacial extent occurred mainly around 430 ± 100 yr, a cold and wet period as indicated by proxy data from ice cores, tree rings, and lake sediments in Central Asia. We also dated a later glacial advance to 270 ± 55 yr. However, 10Be exposure ages on several presumed LIA moraines in front of small, thin glaciers are widely scattered and much older than the globally recognized timing of the LIA. Historical topographic maps indicate that most glaciers were more extensive in the early 1960s, and two of our 10Be sample sites were located close to the ice front at that time. Boulders transported by these small and thin glaciers may be reworked from deposits originally formed prior to the LIA glacial advances, producing apparently old and widely scattered exposure ages due to varied nuclide inheritance. Other published ages indicated an earlier LIA advance around 790 ± 300 yr in the easternmost Tian Shan, but in our study area the more extensive advance around 430 ± 100 yr likely reworked or covered deposits from this earlier event.

  8. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur.

    PubMed

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A; Mantyh, Patrick W

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient's functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures.

  9. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  10. Denosumab Reduces Risk of Bone Side Effects in Advanced Prostate Cancer

    Cancer.gov

    The biological agent denosumab (Xgeva) is more effective than zoledronic acid at decreasing the risk of bone fractures and other skeletal-related events (SRE) in men with castration-resistant metastatic prostate cancer, according to results from a randomi

  11. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection

    PubMed Central

    Sharma, Anjali; Flom, Peter L.; Weedon, Jeremy; Klein, Robert S.

    2010-01-01

    Objective To investigate rates and predictors of change in bone mineral density (BMD) in a cohort of aging men with or at risk for HIV infection. Design Prospective cohort study among 230 HIV-infected and 159 HIV-uninfected men aged ≥49 years. Methods Longitudinal analyses of annual change in BMD at the femoral neck, total hip and lumbar spine. Results At baseline 46% of men had normal BMD, 42% had osteopenia, and 12% had osteoporosis. Of those men with normal BMD, 14% progressed to osteopenia and 86% continued to have normal BMD. Of the men initially with osteopenia, 12% progressed to osteoporosis, and 83% continued to have osteopenia. Osteopenia incidence per 100 person-years at risk (PYAR) was 2.6 for HIV-uninfected men and 7.2 for HIV-infected men; osteoporosis incidence was 2.2/100 PYAR among men with osteopenia, regardless of HIV status. In multivariable analysis of annual change in BMD at the femoral neck, we found a significant interaction between heroin use and AIDS diagnosis, such that the greatest bone loss occurred with both AIDS and heroin use (adjusted predicted mean annual bone loss 0.0196 gm/cm2). Hepatitis C virus seropositivity was also associated with femoral neck bone loss (p=.04). The interaction between AIDS and heroin use also was associated with bone loss at the total hip, as was current methadone use (p<.01). Conclusions We found an association of heroin use and AIDS with BMD change, suggesting that heroin users with AIDS may be at particular risk for bone loss. PMID:20683316

  12. Topographical variations in articular cartilage and subchondral bone of the normal rat knee are age-related.

    PubMed

    Hamann, Nina; Brüggemann, Gert-Peter; Niehoff, Anja

    2014-09-01

    In osteoarthritis animal models the rat knee is one of the most frequently investigated joint. However, it is unknown whether topographical variations in articular cartilage and subchondral bone of the normal rat knee exist and how they are linked or influenced by growth and maturation. Detailed knowledge is needed in order to allow interpretation and facilitate comparability of published osteoarthritis studies. For the first time, the present study maps topographical variations in cartilage thickness, cartilage compressive properties and subchondral bone microarchitecture between the medial and lateral tibial compartment of normal growing rat knees (7 vs. 13 weeks). Thickness and compressive properties (aggregate modulus) of cartilage were determined and the subchondral bone was analyzed by micro-computed tomography. We found that articular cartilage thickness is initially homogenous in both compartments, but then differentiates during growth and maturation resulting in greater cartilage thickness in the medial compartment in the 13-week-old animals. Cartilage compressive properties did not vary between the two sites independently of age. In both age-groups, subchondral plate thickness as well as trabecular bone volume ratio and trabecular thickness were greater in the medial compartment. While a high porosity of subchondral bone plate with a high topographical variation (medial/lateral) could be observed in the 7-week-old animals, the porosity was reduced and was accompanied by a reversion in topographical variation when reaching maturity. Our findings highlight that there is a considerable topographical variation in articular cartilage and subchondral bone within the normal rat knee in relation to the developmental status.

  13. THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM

    EPA Science Inventory

    THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM (CHC13). A McDonald, Y M Sey and J E Simmons. NHEERL, ORD, U.S. EPA, RTP, NC.
    Disinfection, by chlorination or by ozonation followed by treatment with either chlorine or chloramine, of water containi...

  14. Interrelationship of the Risser sign, knee epiphysis, and bone age in determining skeletal maturity: a case-control study.

    PubMed

    Kim, Hak Jun; Yoon, Jung-Ro; Modi, Chetna; Modi, Hitesh; Song, Hae-Ryong; Song, Sang-Youn

    2011-05-01

    The purpose of our study was to correlate the chronological age with Risser staging, knee epiphyseal closure, and bone age by the Tanner and Whitehouse (TW3) or Greulich and Pyle (GP) method simultaneously, to find out the most correlated methods used to calculate the age in a Korean population. A case-control study was carried out in 293 children between the age of 9 and 18 years. Skeletal age was estimated by using the atlas of the GP and TW3 methods; knee epiphysis closure and the Risser staging were also noted. Spearman's correlation coefficient test showed that in both the sexes the GP method is more correlated (r=0.58 for female patients, range: 0.55-0.61; and 0.58 for male patients, range: 0.54-0.61) with the Risser staging and physeal stages of the knee joint than the TW3 method (r=0.52 for female patients, range: 0.44-0.61; and 0.55 for male patients, range: 0.48-0.61) in Korean children. Our results suggested that by using the combination of Risser sign, knee epiphyseal closure, and GP bone age, one can calculate a person's chronological age most accurately.

  15. Advanced computational workflow for the multi-scale modeling of the bone metabolic processes.

    PubMed

    Dao, Tien Tuan

    2016-09-16

    Multi-scale modeling of the musculoskeletal system plays an essential role in the deep understanding of complex mechanisms underlying the biological phenomena and processes such as bone metabolic processes. Current multi-scale models suffer from the isolation of sub-models at each anatomical scale. The objective of this present work was to develop a new fully integrated computational workflow for simulating bone metabolic processes at multi-scale levels. Organ-level model employs multi-body dynamics to estimate body boundary and loading conditions from body kinematics. Tissue-level model uses finite element method to estimate the tissue deformation and mechanical loading under body loading conditions. Finally, cell-level model includes bone remodeling mechanism through an agent-based simulation under tissue loading. A case study on the bone remodeling process located on the human jaw was performed and presented. The developed multi-scale model of the human jaw was validated using the literature-based data at each anatomical level. Simulation outcomes fall within the literature-based ranges of values for estimated muscle force, tissue loading and cell dynamics during bone remodeling process. This study opens perspectives for accurately simulating bone metabolic processes using a fully integrated computational workflow leading to a better understanding of the musculoskeletal system function from multiple length scales as well as to provide new informative data for clinical decision support and industrial applications.

  16. A review on recent advances in numerical modelling of bone cutting.

    PubMed

    Marco, Miguel; Rodríguez-Millán, Marcos; Santiuste, Carlos; Giner, Eugenio; Henar Miguélez, María

    2015-04-01

    Common practice of surgical treatments in orthopaedics and traumatology involves cutting processes of bone. These operations introduce risk of thermo-mechanical damage, since the threshold of critical temperature producing thermal osteonecrosis is very low. Therefore, it is important to develop predictive tools capable of simulating accurately the increase of temperature during bone cutting, being the modelling of these processes still a challenge. In addition, the prediction of cutting forces and mechanical damage is also important during machining operations. As the accuracy of simulations depends greatly on the proper choice of the thermo-mechanical properties, an essential part of the numerical model is the constitutive behaviour of the bone tissue, which is considered in different ways in the literature. This paper focuses on the review of the main contributions in modelling of bone cutting with special attention to the bone mechanical behaviour. The aim is to give the reader a complete vision of the approaches commonly presented in the literature in order to help in the development of accurate models for bone cutting.

  17. Intravitreal Injection of Bone Marrow Mesenchymal Stem Cells in Patients with Advanced Retinitis Pigmentosa; a Safety Study

    PubMed Central

    Satarian, Leila; Nourinia, Ramin; Safi, Sare; Kanavi, Mozhgan Rezaei; Jarughi, Neda; Daftarian, Narsis; Arab, Leila; Aghdami, Nasser; Ahmadieh, Hamid; Baharvand, Hossein

    2017-01-01

    Purpose: To examine the safety of a single intravitreal injection of autologous bone Marrow Mesenchymal stem cells (MSCs) in patients with advanced retinitis pigmentosa (RP). Methods: A prospective, phase I, nonrandomized, open-label study was conducted on 3 eyes of 3 volunteers with advanced RP. Visual acuity, slit-lamp examination, fundus examination, optical coherence tomography, fundus auto-fluorescence, fluorescein angiography and multifocal electroretinography were performed before and after an intravitreal injection of approximately one-million MSCs. The patients were followed for one year. Further evaluation of MSCs was performed by injection of these cells into the mouse vitreous cavity. Results: No, adverse events were observed in eyes of 2 out of 3 patients after transplantation of MSCs. These patients reported improvements in perception of the light after two weeks, which lasted for 3 months. However, severe fibrous tissue proliferation was observed in the vitreous cavity and retrolental space of the third patient's eye, which led to tractional retinal detachment (TRD), iris neovascularization and formation of mature cataract. Injection of this patient's MSCs into the vitreous cavity of mice also resulted in fibrosis; however, intravitreal injections of the two other patients' cells into the mouse vitreous did not generate any fibrous tissue. Conclusion: Intravitreal injection of autologous bone marrow MSCs into patients' eyes with advanced RP does not meet safety standards. Major side effects of this therapy can include fibrosis and TRD. We propose thorough evaluation of MSCs prior to transplantation by intravitreal injection in the laboratory animals.\\ PMID:28299008

  18. Menopause and Bone Loss

    MedlinePlus

    ... You reach your highest bone mass (size and density) at about age 30. Then, sometime between age ... your bones, your doctor may do a bone density test (DEXA scan). This test gives exact measurements ...

  19. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutual interplay between energy homeostasis and bone metabolism is an important emerging concept. Ghrelin and leptin antagonize each other in regulating energy balance, but the role of this interaction in bone metabolism is unknown. Using ghrelin receptor and leptin-deficient mice, we show that ...

  20. AMS radiocarbon age for fossil bone by XAD-2 chromatography method

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Nakamura, Toshio

    2000-10-01

    The XAD-2 chromatography method was examined for its ability to efficiently eliminate exogenous organic matter from fossil bones and to improve the accuracy of radiocarbon ( 14C) dating and stable isotope determinations on bone proteins. The fossil bones used in the experiment were animal fossil bones collected from the Awazu submarine archaeological site, Shiga, Japan. For comparison, the gelatin-extraction method was also applied to the same samples. It was found that the gelatin-extraction method is sufficient for 14C dating on well-preserved bones, but insufficient on poorly preserved bones, containing less than 1% extractable gelatin. The XAD-2 resin is useful for the clean up of proteins especially from poorly preserved bones. The carbon stable isotope fractionation of around 1‰ by XAD-2 treatment on modern collagen standards was larger than reported previously. The isotopic variation by sequential extraction of bones probably originates from changes in the amino acid composition and seems to be less sensitive to the indication of the removal of organic contamination.

  1. Advanced Colorectal Adenomas in Patients Under 45 Years of Age Are Mostly Sporadic

    PubMed Central

    Nalbantoglu, ILKe; Watson, Rao; Goodwin, Jonathan; Safar, Elyas; Chokshi, Reena V.; Azar, Riad R.; Davidson, Nicholas O.

    2014-01-01

    Background The presence of advanced adenomas in younger individuals is a criterion for Lynch syndrome (LS). However, the utility of screening advanced adenomas for loss of mismatch repair (MMR) protein expression to identify suspected LS remains unclear. Aims Determine the prevalence of MMR defects to understand whether these patients harbor a defined genetic risk for CRC. Methods The study cohort included adult patients ≤45 years of age with advanced adenomas (villous histology, ≥1 cm in diameter, ≥3 polyps of any size) endoscopically removed between 2001 and 2011. Clinical records were reviewed along with detailed pathological review and immunohistochemical MMR analysis. Results A total of 76 (40.1 % male, age 40.6 ± 5.4 years) patients met inclusion and exclusion criteria. Indications for colonoscopy were gastrointestinal (GI) bleeding 39 (51.3 %), CRC in a first-degree relative 17 (22.4 %) and somatic GI symptoms 20 (26.3 %). Index colonoscopy revealed a median of 1 adenoma (range 1–4), mean diameter of 12.9 ±7.1 mm, 40 (52.6 %) with villous histology. The mean follow-up duration was 3.3 ± 2 years. Recurrent adenomas developed in 24 (31.6 %), of which 8 (10.5 %) were advanced adenomas; none of these patients developed CRC. One of 66 (1.5 %) adenomas available for immunohistochemical (IHC) testing revealed loss of MLH1 and PMS2. Conclusions IHC screening of advanced adenomas from patients younger than 45 years of age identified potential LS in one of 64 patients. The low yield of IHC screening in this population suggests that universal IHC screening of advanced adenomas from patients younger than 45 years of age for MMR defects is not an efficient strategy for identifying LS subjects. PMID:24925148

  2. Bone Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The danger of disuse osteoporosis under weightless condition in space led to extensive research into measurements of bone stiffness and mass by the Biomedical Research Division of Ames and Stanford University. Through its Technology Utilization Program, NASA funded an advanced SOBSA, a microprocessor-controlled bone probe system. SOBSA determines bone stiffness by measuring responses to an electromagnetic shaker. With this information, a physician can identify bone disease, measure deterioration and prescribe necessary therapy. The system is now undergoing further testing.

  3. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification.

    PubMed

    Li, Shi-Yan; Du, Min; Dolence, E Kurt; Fang, Cindy X; Mayer, Gabriele E; Ceylan-Isik, Asli F; LaCour, Karissa H; Yang, Xiaoping; Wilbert, Christopher J; Sreejayan, Nair; Ren, Jun

    2005-04-01

    Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.

  4. Implications of Advancing Paternal Age: Does It Affect Offspring School Performance?

    PubMed Central

    Svensson, Anna C.; Abel, Kathryn; Dalman, Christina; Magnusson, Cecilia

    2011-01-01

    Average paternal age is increasing in many high income countries, but the implications of this demographic shift for child health and welfare are poorly understood. There is equivocal evidence that children of older fathers are at increased risk of neurodevelopmental disorders and reduced IQ. We therefore report here on the relationship between paternal age and a composite indicator of scholastic achievement during adolescence, i.e. compulsory school leaving grades, among recent birth cohorts in Stockholm County where delayed paternity is notably common. We performed a record-linkage study comprising all individuals in Stockholm County who finished 9 years of compulsory school from 2000 through 2007 (n = 155,875). Data on school leaving grades and parental characteristics were retrieved from administrative and health service registers and analyzed using multiple linear regression. Advancing paternal age at birth was not associated with a decrease in school leaving grades in adolescent offspring. After adjustment for year of graduation, maternal age and parental education, country of birth and parental mental health service use, offspring of fathers aged 50 years or older had on average 0.3 (95% CI −3.8, 4.4) points higher grades than those of fathers aged 30–34 years. In conclusion, advancing paternal age is not associated with poorer school performance in adolescence. Adverse effects of delayed paternity on offspring cognitive function, if any, may be counterbalanced by other potential advantages for children born to older fathers. PMID:21957460

  5. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  6. Advanced BrainAGE in older adults with type 2 diabetes mellitus

    PubMed Central

    Franke, Katja; Gaser, Christian; Manor, Brad; Novak, Vera

    2013-01-01

    Aging alters brain structure and function and diabetes mellitus (DM) may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors, and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, which determines the complex multidimensional aging pattern within the whole brain by applying established kernel regression methods to anatomical brain magnetic resonance images (MRI). The “Brain Age Gap Estimation” (BrainAGE) score was then calculated as the difference between chronological age and estimated brain age. 185 subjects (98 with type 2 DM) completed an MRI at 3Tesla, laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM) also completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001), whereas within the control group, estimated brain age was similar to chronological age. As compared to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per follow-up year (p = 0.034), whereas the BrainAGE scores of controls did not change between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores were associated with greater smoking and alcohol consumption, higher tumor necrosis factor alpha (TNFα) levels, lower verbal fluency scores and more severe deprepession. Within the DM group, higher BrainAGE scores were associated with longer diabetes duration (r = 0.31, p = 0.019) and increased fasting blood glucose levels (r = 0.34, p = 0.025). In conclusion, type 2 DM is independently associated with structural changes in the brain that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of abnormal patterns of brain aging associated with type 2

  7. Tantalum is a good bone graft substitute in tibial tubercle advancement

    PubMed Central

    Querales, Virginia; Jakowlew, Alexander; Murcia, Antonio; Ballester, Jorge

    2009-01-01

    Background Porous tantalum is reportedly a good substitute for structural bone graft in several applications. So far, its use has not been reported in tibial tuberosity anteriorization (TTA) for treatment of isolated degenerative chondral lesions of the patellofemoral joint. Questions/Purposes We asked whether the use of this material would produce similar standardized functional scores, pain (VAS), fusion rates, complications, and patient satisfaction to those for bone graft. Patients and Methods We performed a randomized, controlled trial in 101 patients (108 knees) scheduled for TTA comparing a porous tantalum implant (57 knees) with an autologous local tibial bone graft (51 knees). The minimum followup was 5 years (mean, 6.2 years; range, 5–8 years). Results At the last followup, clinical scores, fusion rates, and maintenance of the anteriorization either were better or similar for the TTA using the tantalum implant depending on the respective parameter. The operative technique was easier and shorter with the tantalum device. Complication and failure rates were greater using bone graft. Patient satisfaction was greater using the tantalum implant. Conclusions Porous tantalum provided a reasonable alternative to bone graft in TTA. Level of Evidence Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19806411

  8. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases

    PubMed Central

    Ghishan, Fayez K.

    2011-01-01

    Chronic inflammatory disorders such as inflammatory bowel diseases (IBDs) affect bone metabolism and are frequently associated with the presence of osteopenia, osteoporosis, and increased risk of fractures. Although several mechanisms may contribute to skeletal abnormalities in IBD patients, inflammation and inflammatory mediators such as TNF, IL-1β, and IL-6 may be the most critical. It is not clear whether the changes in bone metabolism leading to decreased mineral density are the result of decreased bone formation, increased bone resorption, or both, with varying results reported in experimental models of IBD and in pediatric and adult IBD patients. New data, including our own, challenge the conventional views, and contributes to the unraveling of an increasingly complex network of interactions leading to the inflammation-associated bone loss. Since nutritional interventions (dietary calcium and vitamin D supplementation) are of limited efficacy in IBD patients, understanding the pathophysiology of osteopenia and osteoporosis in Crohn's disease and ulcerative colitis is critical for the correct choice of available treatments or the development of new targeted therapies. In this review, we discuss current concepts explaining the effects of inflammation, inflammatory mediators and their signaling effectors on calcium and phosphate homeostasis, osteoblast and osteoclast function, and the potential limitations of vitamin D used as an immunomodulator and anabolic hormone in IBD. PMID:21088237

  9. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study.

    PubMed

    Kim, Beom-Jun; Ahn, Seong Hee; Bae, Sung Jin; Kim, Eun Hee; Lee, Seung-Hun; Kim, Hong-Kyu; Choe, Jae Won; Koh, Jung-Min; Kim, Ghi Su

    2012-11-01

    Despite extensive experimental and animal evidence about the detrimental effects of iron and its overload on bone metabolism, there have been no clinical studies relating iron stores to bone loss, especially in nonpathologic conditions. In the present study, we performed a large longitudinal study to evaluate serum ferritin concentrations in relation to annualized changes in bone mineral density (BMD) in healthy Koreans. A total of 1729 subjects (940 postmenopausal women and 789 middle-aged men) aged 40 years or older who had undergone comprehensive routine health examinations with an average 3 years of follow-up were enrolled. BMD in proximal femur sites (ie, the total femur, femur neck, and trochanter) was measured with dual-energy X-ray absorptiometry using the same equipment at baseline and follow-up. The mean age of women and men in this study was 55.8 ± 6.0 years and 55.5 ± 7.8 years, respectively, and serum ferritin levels were significantly higher in men than in women (p < 0.001). The overall mean annualized rates of bone loss in the total femur, femur neck, and trochanter were -1.14%/year, -1.17%/year, and -1.51%/year, respectively, in women, and -0.27%/year, -0.34%/year, and -0.41%/year, respectively, in men. After adjustment for potential confounders, the rates of bone loss in all proximal femur sites in both genders were significantly accelerated in a dose-response fashion across increasing ferritin quartile categories (p for trend = 0.043 to <0.001). Consistently, compared with subjects in the lowest ferritin quartile category, those in the third and/or highest ferritin quartile category showed significantly faster bone loss in the total femur and femur neck in both genders (p = 0.023 to <0.001). In conclusion, these data provide the first clinical evidence that increased total body iron stores could be an independent risk factor for accelerated bone loss, even in healthy populations.

  10. Advanced glycation End-products (AGEs): an emerging concern for processed food industries.

    PubMed

    Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta

    2015-12-01

    The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

  11. Ewing Sarcoma of the Bone in Children under 6 Years of Age

    PubMed Central

    De Ioris, Maria Antonietta; Prete, Arcangelo; Cozza, Raffaele; Podda, Marta; Manzitti, Carla; Pession, Andrea; Schiavello, Elisabetta; Contoli, Benedetta; Balter, Rita; Fagioli, Franca; Bisogno, Gianni; Amoroso, Loredana

    2013-01-01

    Background Ewing Sarcoma Family Tumours (ESFT) are rare in early childhood. The aim of this study was to report the clinical characteristics and outcome of children under 6 years of age affected by ESFT of the bone in Italy. Methods The records of all the children diagnosed with osseous ESFT in centres members of the Associazione Italiana di Ematologia ed Oncologia Pediatrica (AIEOP) from 1990 to 2008 were reviewed. The Kaplan–Meier method was used for estimating overall and progression-free survival (OS, PFS) curves; multivariate analyses were performed using Cox proportional hazards regression model. Results This study includes 62 patients. An axial primary localization was present in 66% of patients, with the primary site in the chest wall in 34%. Fourteen (23%) patients presented metastatic disease. The 5-year OS and PFS were 73% (95% confidence interval, CI, 58–83%) and 72% (95% CI 57–83%) for patients with localized disease and 38% (95% CI 17–60%) and 21% (95% CI 5–45%) for patients with metastatic disease. Metastatic spread, skull/pelvis/spine primary localization, progression during treatment and no surgery predicted worse survival (P<0.01), while patients treated in the last decade had better survival (P  = 0.002). In fact, the 5-year OS and PFS for patients diagnosed in the period 2000–2008 were 89% (95% CI 71–96%) and 86% (95% CI 66–94%), respectively. Conclusion The axial localization is the most common site of ESFT in pre-scholar children. Patients treated in the most recent period have an excellent outcome. PMID:23382839

  12. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts.

    PubMed

    Li, D X; Deng, T Z; Lv, J; Ke, J

    2014-12-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80 ± 5.50%, P<0.01) and increased apoptosis (11.31 ± 1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  13. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly.

    PubMed

    Pastino, Alexandra K; Greco, Todd M; Mathias, Rommel A; Cristea, Ileana M; Schwarzbauer, Jean E

    2017-05-01

    Advanced glycation endproducts (AGEs) are a heterogeneous group of compounds that form via non-enzymatic glycation of proteins throughout our lifespan and at a higher rate in certain chronic diseases such as diabetes. AGEs contribute to the progression of fibrosis, in part by stimulating cellular pathways that affect gene expression. Long-lived ECM proteins are targets for non-enzymatic glycation but the question of whether the AGE-modified ECM leads to excess ECM accumulation and fibrosis remains unanswered. In this study, cellular changes due to AGE accretion in the ECM were investigated. Non-enzymatic glycation of proteins in a decellularized fibroblast ECM was achieved by incubating the ECM in a solution of methylglyoxal (MGO). Mass spectrometry of fibronectin (FN) isolated from the glycated matrix identified twenty-eight previously unidentified MGO-derived AGE modification sites including functional sites such as the RGD integrin-binding sequence. Mesangial cells grown on the glycated, decellularized matrix assembled increased amounts of FN matrix. Soluble AGE-modified bovine serum albumin (BSA) also stimulated FN matrix assembly and this effect was reduced by function-blocking antibodies against the receptor for AGE (RAGE). These results indicate that cells respond to AGEs by increasing matrix assembly and that RAGE is involved in this response. This raises the possibility that the accumulation of ECM during the progression of fibrosis may be enhanced by cell interactions with AGEs on a glycated ECM.

  14. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges.

    PubMed

    Mueller, S M; Glowacki, J

    2001-01-01

    Studies with human and animal culture systems indicate that a sub-population of bone marrow stromal cells has the potential to differentiate into osteoblasts. There are conflicting reports on the effects of age on human marrow-derived osteogenic cells. In this study, we used a three dimensional (3D) culture system and quantitative RT-PCR methods to test the hypothesis that the osteogenic potential of human bone marrow stromal cells decreases with age. Marrow was obtained from 39 men aged 37 to 86 years, during the course of total hip arthroplasty. Low-density mononuclear cells were seeded onto 3D collagen sponges and cultured for 3 weeks. Histological sections of sponges were stained for alkaline phosphatase activity and were scored as positive or negative. In the group < or = 50 years, 7 of 11 samples (63%) were positive, whereas only 5 of 19 (26%) of the samples in the group > or = 60 years were positive (p = 0.0504). As revealed by RT-PCR, there was no expression of alkaline phosphatase or collagen type I mRNA before culture, however there were strong signals after 3 weeks, an indication of osteoblast differentiation in vitro. We performed a quantitative, competitive RT-PCR assay with 8 samples (age range 38-80) and showed that the group < or = 50 years had 3-fold more mRNA for alkaline phosphatase than the group > or = 60 years (p = 0.021). There was a significant decrease with age (r = - 0.78, p = 0.028). These molecular and histoenzymatic data indicate that the osteogenic potential of human bone marrow cells decreases with age.

  15. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects.

    PubMed

    Forbes, Josephine M; Sourris, Karly C; de Courten, Maximilian P J; Dougherty, Sonia L; Chand, Vibhasha; Lyons, Jasmine G; Bertovic, David; Coughlan, Melinda T; Schlaich, Markus P; Soldatos, Georgia; Cooper, Mark E; Straznicky, Nora E; Kingwell, Bronwyn A; de Courten, Barbora

    2014-02-01

    It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6-31.0 kg/m(2)). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = -0.31; p < 0.05). In addition, fasting (r = -0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = -0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.

  16. Relationship of decrease in fecundity with advancing age to structural changes in mouse endometrium

    PubMed Central

    SHIMIZU, KIYOSHI; YAMADA, JINZO

    2000-01-01

    The aim of this study was to determine whether a relationship exists between decrease in fecundity and structural changes in the antimesometrial endometrium of the mouse. Fecundity was calculated as the number of animals showing a placental sign/number of copulated animals ×100 (%). Structural changes in the endometrium were examined by electron microscopy. A negative correlation between age and fecundity was found. Fecundity was 50% at 7 mo of age. At this age, amorphous material appeared in the region between the basement membrane deep to the luminal epithelium and the subepithelial cells. This material was sometimes attached to the basement membrane. It increased in amount with advancing age, as fecundity decreased. The structure of the uterine luminal epithelial cells did not alter with age. The results indicated that decrease in fecundity with advancing age is correlated with the appearance of amorphous material beneath the basal lamina of the endometrial epithelium. It is suggested that this could impair communication between the luminal epithelium and the endometrial stroma, which plays an important role in implantation. PMID:10697293

  17. Dietary phosphorus intake is negatively associated with bone formation among women and positively associated with some bone traits among men-a cross-sectional study in middle-aged Caucasians.

    PubMed

    Itkonen, Suvi T; Rita, Hannu J; Saarnio, Elisa M; Kemi, Virpi E; Karp, Heini J; Kärkkäinen, Merja U M; Pekkinen, Minna H; Laitinen, E Kalevi; Risteli, Juha; Koivula, Marja-Kaisa; Sievänen, Harri; Lamberg-Allardt, Christel J E

    2017-01-01

    High dietary phosphorus (P) intake has acute negative effects on calcium (Ca) and bone metabolism, but long-term clinical data are contradictory. We hypothesized that high P intake is associated with impaired bone health as suggested by earlier short-term studies on bone metabolism. In this cross-sectional study, we investigated associations between dietary P intake, bone traits in the radius and tibia, and bone turnover in a population-based sample of 37- to 47-year-old Caucasian premenopausal women (n=333) and men (n=179) living in Southern Finland (60°N). We used various regression models in an "elaboration approach" to elucidate the role of P intake in bone traits and turnover. The addition of relevant covariates to the models mainly removed the significance of P intake as a determinant of bone traits. In the final regression model (P intake, weight, height, age, Ca intake, serum 25-hydroxyvitamin D, physical activity, smoking, contraceptive use in women), P intake was slightly positively associated only with bone mineral content and cross-sectional cortical bone area in the tibia of men. Among women, inclusion of Ca removed all existing significance in the crude models for any bone trait. In women P intake was negatively associated with the bone formation marker serum intact pro-collagen type I amino-terminal propeptide, whereas no association was present between P intake and bone turnover in men. In conclusion, these findings disagree with the hypothesis; P intake was not deleteriously associated with bone traits; however, P intake may negatively contribute to bone formation among women.

  18. Younger Dryas Age advance of Franz Josef Glacier in the Southern Alps of New Zealand

    SciTech Connect

    Denton, G.H. ); Hendy, C.H. )

    1994-06-03

    A corrected radiocarbon age of 11,050 [+-] 14 years before present for an advance of the Franz Josef Glacier to the Waiho Loop terminal moraine on the western flank of New Zealand's Southern Alps shows that glacier advance on a South Pacific island was synchronous with initiation of the Younger Dryas in the North Atlantic region. Hence, cooling at the beginning of the Younger Dryas probably reflects global rather than regional forcing. The source for Younger Dryas climatic cooling may thus lie in the atmosphere rather than in a North Atlantic thermohaline switch. 36 refs., 2 figs., 1 tab.

  19. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age.

    PubMed

    Brubaker, Aleah L; Rendon, Juan L; Ramirez, Luis; Choudhry, Mashkoor A; Kovacs, Elizabeth J

    2013-02-15

    Advanced age is associated with alterations in innate and adaptive immune responses, which contribute to an increased risk of infection in elderly patients. Coupled with this immune dysfunction, elderly patients demonstrate impaired wound healing with elevated rates of wound dehiscence and chronic wounds. To evaluate how advanced age alters the host immune response to cutaneous wound infection, we developed a murine model of cutaneous Staphylococcus aureus wound infection in young (3-4 mo) and aged (18-20 mo) BALB/c mice. Aged mice exhibit increased bacterial colonization and delayed wound closure over time compared with young mice. These differences were not attributed to alterations in wound neutrophil or macrophage TLR2 or FcγRIII expression, or age-related changes in phagocytic potential and bactericidal activity. To evaluate the role of chemotaxis in our model, we first examined in vivo chemotaxis in the absence of wound injury to KC, a neutrophil chemokine. In response to a s.c. injection of KC, aged mice recruited fewer neutrophils at increasing doses of KC compared with young mice. This paralleled our model of wound infection, where diminished neutrophil and macrophage recruitment was observed in aged mice relative to young mice despite equivalent levels of KC, MIP-2, and MCP-1 chemokine levels at the wound site. This reduced leukocyte accumulation was also associated with lower levels of ICAM-1 in wounds from aged mice at early time points. These age-mediated defects in early neutrophil recruitment may alter the dynamics of the inflammatory phase of wound healing, impacting macrophage recruitment, bacterial clearance, and wound closure.

  20. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone.

    PubMed

    Milovanovic, Petar; Zimmermann, Elizabeth A; Riedel, Christoph; vom Scheidt, Annika; Herzog, Lydia; Krause, Matthias; Djonic, Danijela; Djuric, Marija; Püschel, Klaus; Amling, Michael; Ritchie, Robert O; Busse, Björn

    2015-03-01

    Characterization of bone's hierarchical structure in aging, disease and treatment conditions is imperative to understand the architectural and compositional modifications to the material and its mechanical integrity. Here, cortical bone sections from 30 female proximal femurs - a frequent fracture site - were rigorously assessed to characterize the osteocyte lacunar network, osteon density and patterns of bone matrix mineralization by backscatter-electron imaging and Fourier-transform infrared spectroscopy in relation to mechanical properties obtained by reference-point indentation. We show that young, healthy bone revealed the highest resistance to mechanical loading (indentation) along with higher mineralization and preserved osteocyte-lacunar characteristics. In contrast, aging and osteoporosis significantly alter bone material properties, where impairment of the osteocyte-lacunar network was evident through accumulation of hypermineralized osteocyte lacunae with aging and even more in osteoporosis, highlighting increased osteocyte apoptosis and reduced mechanical competence. But antiresorptive treatment led to fewer mineralized lacunae and fewer but larger osteons signifying rejuvenated bone. In summary, multiple structural and compositional changes to the bone material were identified leading to decay or maintenance of bone quality in disease, health and treatment conditions. Clearly, antiresorptive treatment reflected favorable effects on the multifunctional osteocytic cells that are a prerequisite for bone's structural, metabolic and mechanosensory integrity.

  1. Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands.

    PubMed

    Maruyama, Noriko; Shibata, Yo; Mochizuki, Ayako; Yamada, Atsushi; Maki, Koutaro; Inoue, Tomio; Kamijo, Ryutaro; Miyazaki, Takashi

    2015-04-01

    The nanoscale structure-function relationship is a key determinant of bone toughness or micro-fragility. The loss of bone toughness during the aging process has been accepted based on empirical evidence, but this concept has not yet been fully supported by evidence at the material level. Here, we demonstrate a reduction in bone toughening mechanism in mimetic aged cortical bone obtained from α-klotho deficient (α-klotho(-/-)) mice and assessed by in situ dynamic mechanical analysis. The strain-rate nanoindentation tests showed enhanced stiffening of the wild-type calvarial bone and a large dimensional recovery during rapid loading following the constant displacement test. Such strain-dependent stiffening was likely associated with nanoscale dilatational bands and subsequent strain-energy transfer to the superior wild-type cross-linked collagen matrix network. The absence of dilatational bands formed by hydroxyapatite crystals and non-collagenous proteins in the α-klotho(-/-) bone samples likely diminished the intrinsic bone toughening mechanisms almost independent of viscoelastic behaviors. Such nanoscale structural alternations that occur during aging processes lead to crack propagation and result in overall bone fractures under large external stresses. In addition, dynamic mechanical analysis using instrumented nanoindentation was useful for the evaluation of bone mechanical properties in this pathological model of a genetic knockout mouse.

  2. [Effect of peptide regulators on the structural and functional status of bone tissue in ageing rats].

    PubMed

    Povorozniuk, V V; Khavinson, V Kh; Makogonchuk, A V; Ryzhak, G A; Kreslov, E A; Gopkalova, I V

    2007-01-01

    The wide spread of osteoporosis in women in the post-menopausal period stipulates the need for new effective means of prevention and correction of pathologic alterations in the bone tissue. Effect of two peptide bioregulators: cartilages preparation based on the cartilaginous tissue extract and T-31 substance on the mineral density of rat bone tissue has been studied in the experimental model of osteoporosis. The study has revealed an osteoprotective effect of both studied substances, with significantly higher efficacy of the preparation based on cartilaginous tissue extract. The substances exerted both prophylactic effect on the status of the cartilaginous tissue, preventing the decrease of mineral density of the bone tissue in rats after ovariectomy, and corrective effect by increasing the bone tissue density, which was reduced as a result of ovariectomy.

  3. The detection of microscopic markers of hemorrhaging and wound age on dry bone: a pilot study.

    PubMed

    Cattaneo, Cristina; Andreola, Salvatore; Marinelli, Eloisa; Poppa, Pasquale; Porta, Davide; Grandi, Marco

    2010-03-01

    An example of the barriers and conceptual differences between forensic anthropology and pathology can be seen in determining the vitality of a wound. Pathology can make use of skin color and microscopic techniques; anthropology (as concerns the study of dry bone) needs different criteria. The diagnosis of the vitality of a wound (whether it is produced antemortem or postmortem) as well as determination of the time elapsed between the production of the wound and death is a crucial issue in forensic pathology. In fresh skin, the red-purplish coloration of a cut or bruise will reveal its vitality, whereas the change in coloration, from a macroscopic perspective, will reveal the time of survival. In more difficult cases, microscopic analyses can be performed. Bone follows similar "laws" as concerns the evolution of the histologic picture, but even if the beginning of healing processes (periosteal bone production and callus formation) can be detected macroscopically and radiologically, these processes require a long time.The scope of this pilot study was therefore to collect bone fractures from cadavers with a known time of survival, have them undergo a simulated putrefaction procedure until they became "dry or macerated bone" and perform macroscopic and microscopic analysis to verify the potential of histology in identifying "vital" processes in putrefied soft-tissue-free bone.A total of 6 samples of fractured bone (cranium, rib, and tibia) were taken from cadavers with known time of survival between trauma and death. Time intervals ranged from a few seconds after the bone fracture had been inflicted, to several hours, days, and weeks. A negative control was included (postmortem fracture). The bone was decalcified and stained with hematoxylin and eosin, Perls' (for the demonstration of hemosiderin deposits), Periodic Acid Schiff, phosphotungstic acid-hematoxylin, and Weigert (for the demonstration of fibrin). Immunohistochemistry was performed using a monoclonal

  4. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation.

  5. Favorable control of advanced colon adenocarcinoma with severe bone marrow metastasis: A case report

    PubMed Central

    Hanamura, Fumiyasu; Shibata, Yoshihiro; Shirakawa, Tsuyoshi; Kuwayama, Miyuki; Oda, Hisanobu; Ariyama, Hiroshi; Taguchi, Kenichi; Esaki, Taito; Baba, Eishi

    2016-01-01

    Colorectal cancer (CRC) has a propensity to metastasize to the liver, lungs and regional abdominal lymph nodes, but rarely to the bone marrow. A 60-year-old man presented to the National Hospital Organization Kyushu Cancer Center with a 4-week history of persistent lower back pain, anorexia and difficulty defecating. Complete blood count revealed severe thrombocytopenia and erythroblastosis, suggesting a hematological malignancy. However, the bone marrow examination demonstrated involvement by a moderately to poorly differentiated adenocarcinoma, but no hematopoietic abnormalities. A computed tomography scan revealed thickening of the wall of the sigmoid colon, with para-aortic, hilar, mediastinal and supraclavicular lymphadenopathy. The patient was thus diagnosed with sigmoid colon adenocarcinoma with lymph node and bone marrow metastasis. Modified FOLFOX6 was promptly initiated, with concurrent therapy for disseminated intravascular coagulation (DIC). An increased number of thrombocytes was observed on day 6. After 3 cycles of treatment, the patient recovered from DIC and the levels of serum carcinoembryonic antigen and cytokeratin 19 fragment were decreased. Tumor biopsy during colonoscopy following recovery from DIC demonstrated poorly differentiated adenocarcinoma with mucin production, without mutations in the RAS, BRAF or PIK3CA genes, and a cytokeratin (CK) 7-negative, CK20-positive phenotype. The patient has been treated with chemotherapy for 150 days without disease progression. However, the efficacy of chemotherapy for rarely encountered bone marrow metastasis from CRC is poor. The present case was favorably maintained on chemotherapy and survived for 10 months. PMID:27900088

  6. Age estimation of immature human skeletal remains using the post-natal development of the occipital bone.

    PubMed

    Cardoso, H F V; Gomes, J; Campanacho, V; Marinho, L

    2013-09-01

    Whenever age cannot be estimated from dental formation in immature human skeletal remains, other methods are required. In the post-natal period, development of the skeleton provides alternative age indicators, namely, those associated with skeletal maturity of the cranium. This study wishes to document the age at which the various ossification centres in the occipital bone fuse and provide readily available developmental probabilistic information for use in age estimation. A sample of 64 identified immature skeletons between birth and 8 years of age from the Lisbon collection was used (females = 29, males = 35). Results show that fusion occurs first in the posterior intra-occipital synchondrosis and between the jugular and condylar limbs of the lateral occipital to form the hypoglossal canal (1-4 years), followed by the anterior intra-occipital (3-7 years). Fusion of the post-natal occipital does not show differences in timing between males and females. Relative to other published sources, this study documents first and last ages of fusion of several ossification centres and the posterior probabilities of age given a certain stage of fusion. Given the least amount of overlap in stages of fusion, the closure of the hypoglossal canal provides the narrowest estimated age with the highest probability of age.

  7. The Megavoltage Radiation Therapy in Treatment of Patients With Advanced or Difficult Giant Cell Tumors of Bone

    SciTech Connect

    Ruka, Wlodzimierz; Ptaszynski, Konrad; Bylina, Elzbieta

    2010-10-01

    Purpose: To assess the outcomes of radiotherapy, in terms of local control and treatment complications, of advanced or difficult giant cell tumors of bone (GCTB) that could not be treated by surgery. Methods and Materials: Among 122 consecutive patients with confirmed GCTB from 1985 to 2007, 77 patients were treated by megavoltage radiotherapy because they were inappropriate candidates for surgery. We have performed analysis of all data in terms of progression-free survival (PFS) and treatment morbidity. Median follow-up time was 58 months. Results: In the irradiated group, maximal tumor size ranged from 5 to 18 cm (median, 8.5). Anatomic distribution was as follows: femur, 27 cases; tibia, 19; radial/ulnar bone, 12; sacrum, 9; pelvic bones, 5; other, 5. Twenty-one patients (27%) were referred for local recurrence after {>=}1 other treatment procedures. The radiation doses ranged from 26 to 89 Gy (median, 56; administered 1.8-2.0 Gy/fraction with average total duration of treatment of 5-7 weeks); 8 patients (10%) received <50 Gy. All patients tolerated treatment well without acute or late complications. All patients except two are alive. Local control was achieved in 65 patients (84%; bone recalcification/restitution of joint functions), 12 patients showed signs of local progression, all within irradiated fields (9 were treated successfully with salvage surgery). Five- and 10-year local PFS were 83% and 73%, respectively. Three patients developed lungs metastases. Malignant transformation of GCTB occurred in two patients. Conclusions: GCTB can be safely and effectively treated with megavoltage radiotherapy with local control rate >80% at 5 years. Our study confirms that radiotherapy of GCTB offers an alternative to difficult or complex surgery and may be an option of choice in the treatment of inoperable patients.

  8. Acetoacetate promotes the formation of fluorescent advanced glycation end products (AGEs).

    PubMed

    Bohlooli, Mousa; Ghaffari-Moghaddam, Mansour; Khajeh, Mostafa; Aghashiri, Zohre; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2016-12-01

    Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer's and Parkinson's disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs.

  9. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs.

    PubMed

    Xue, Jing; Ray, Rashmi; Singer, David; Böhme, David; Burz, David S; Rai, Vivek; Hoffmann, Ralf; Shekhtman, Alexander

    2014-05-27

    Diabetes-induced hyperglycemia increases the extracellular concentration of methylglyoxal. Methylglyoxal-derived hydroimidazolones (MG-H) form advanced glycation end products (AGEs) that accumulate in the serum of diabetic patients. The binding of hydroimidozolones to the receptor for AGEs (RAGE) results in long-term complications of diabetes typified by vascular and neuronal injury. Here we show that binding of methylglyoxal-modified albumin to RAGE results in signal transduction. Chemically synthesized peptides containing hydroimidozolones bind specifically to the V domain of RAGE with nanomolar affinity. The solution structure of an MG-H1-V domain complex revealed that the hydroimidazolone moiety forms multiple contacts with a positively charged surface on the V domain. The high affinity and specificity of hydroimidozolones binding to the V domain of RAGE suggest that they are the primary AGE structures that give rise to AGEs-RAGE pathologies.

  10. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin.

    PubMed

    Prasanna, Govindarajan; Saraswathi, N T

    2017-02-01

    In this study, we report the protective effects of linolenic acid towards the formation of early (HbA1c) and advanced glycation end-products (AGEs) based on fluorescence, circular dichroism, confocal microscopy and molecular interaction studies. Linolenic acid was found to be a potent inhibitor of AGEs formed by both glucose and fructose. The HbA1c (early glycation product) level was found to be reduced to 7.4% when compared to glycated control (8.4%). Similarly, linolenic acid also inhibited the methylglyoxal mediated AGEs formation. Circular dichroism spectroscopy studies suggested that the protective effect of linolenic acid for the helical structure of albumin. The molecular interaction studies showed that linolenic acid interacts with arginine residues of albumin with high affinity. Results suggested linolenic acid to be a potent antiglycation compound and also it could be a better lead compound for AGE inhibition.

  11. Loading dose of physical activity is related to muscle strength and bone density in middle-aged women.

    PubMed

    Chahal, Jaswinder; Lee, Raymond; Luo, Jin

    2014-10-01

    The aim of the current study was to investigate the association between loading dose of physical activity, muscle strength and bone density in middle-aged women. Thirty four healthy women (mean age=49.8±7.5years) were recruited. They were requested to wear an accelerometer for a period of 10h (from 9am to 7pm) on a day to record the acceleration. On a separate day their knee extension torque (KET) was measured using an isokinetic dynamometer and broadband ultrasound attenuation (BUA) at the heel by an ultrasound bone scanner. The loading dose of physical activity was calculated at four intensity categories - very light, light, moderate, and vigorous (intensities of <5BW/s, 5-10BW/s, 10-15BW/s and >15BW/s) and for three frequency bands - 0.1-2Hz, 2-4Hz, and 4-6Hz. Correlation analysis was used to examine the association between loading dose and age, KET, and BUA. With the increase of age, there tended to be a decrease in the loading dose of vigorous activity in 2-4 and 4-6Hz frequency bands (Kendall's tau=-.22, p<.1). The increase of loading dose in all three frequency bands in moderate or vigorous activity was associated with higher BUA (Kendall's tau=.27-.41, p<.05). The increase of loading dose in all frequency bands in light, moderate, or vigorous activity was associated with higher KET (Kendall's tau=.30-.45, p<.05). It is concluded that physical activity, especially that at high intensity level and high frequency range, may have beneficial effect on muscle strength and bone density in middle-aged women.

  12. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells.

    PubMed

    Díaz, David; Recio, Javier S; Weruaga, Eduardo; Alonso, José R

    2012-01-01

    Bone marrow-derived cells have different plastic properties, especially regarding cell fusion, which increases with time and is prompted by tissue injury. Several recessive mutations, including Purkinje Cell Degeneration, affect the number of Purkinje cells in homozygosis; heterozygous young animals have an apparently normal phenotype but they undergo Purkinje cell loss as they age. Our findings demonstrate that heterozygous pcd mice undergo Purkinje cell loss at postnatal day 300, this slow but steadily progressing cell death starting sooner than has been reported previously and without massive reactive gliosis or inflammation. Here, transplantation of bone marrow stem cells was performed to assess the arrival of bone marrow-derived cells in the cerebellum in these heterozygous mice. Our results reveal that a higher number of cell fusion events occurs in heterozygous animals than in the controls, on days 150 and 300 postnatally. In sum, this study indicates that mild cell death promotes the fusion of bone marrow-derived cells with surviving Purkinje neurons. This phenomenon suggests new therapies for long-lasting neurodegenerative disorders.

  13. Lower bone turnover and relative bone deficits in men with metabolic syndrome: a matter of insulin sensitivity? The European Male Ageing Study.

    PubMed

    Laurent, M R; Cook, M J; Gielen, E; Ward, K A; Antonio, L; Adams, J E; Decallonne, B; Bartfai, G; Casanueva, F F; Forti, G; Giwercman, A; Huhtaniemi, I T; Kula, K; Lean, M E J; Lee, D M; Pendleton, N; Punab, M; Claessens, F; Wu, F C W; Vanderschueren, D; Pye, S R; O'Neill, T W

    2016-11-01

    We examined cross-sectional associations of metabolic syndrome and its components with male bone turnover, density and structure. Greater bone mass in men with metabolic syndrome was related to their greater body mass, whereas hyperglycaemia, hypertriglyceridaemia or impaired insulin sensitivity were associated with lower bone turnover and relative bone mass deficits.

  14. An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language.

    PubMed

    Henshilwood, C S; d'Errico, F; Marean, C W; Milo, R G; Yates, R

    2001-12-01

    Twenty-eight bone tools were recovered in situ from ca. 70 ka year old Middle Stone Age levels at Blombos Cave between 1992 and 2000. These tools are securely provenienced and are the largest collection to come from a single African Middle Stone Age site. Detailed analyses show that tool production methods follow a sequence of deliberate technical choices starting with blank production, the use of various shaping methods and the final finishing of the artefact to produce "awls" and "projectile points". Tool production processes in the Middle Stone Age at Blombos Cave conform to generally accepted descriptions of "formal" techniques of bone tool manufacture. Comparisons with similar bone tools from the Later Stone Age at Blombos Cave, other Cape sites and ethnographic collections show that although shaping methods are different, the planning and execution of bone tool manufacture in the Middle Stone Age is consistent with that in the late Holocene. The bone tool collection from Blombos Cave is remarkable because bone tools are rarely found in African Middle or Later Stone Age sites before ca. 25 ka. Scarcity of early bone tools is cited as one strand of evidence supporting models for nonmodern behaviour linked to a lack of modern technological or cognitive capacity before ca. 50 ka. Bone artefacts are a regular feature in European sites after ca. 40 ka, are closely associated with the arrival of anatomically modern humans and are a key behavioural marker of the Upper Palaeolithic "symbolic explosion" linked to the evolution of modern behaviour. Taken together with recent finds from Klasies River, Katanda and other African Middle Stone Age sites the Blombos Cave evidence for formal bone working, deliberate engraving on ochre, production of finely made bifacial points and sophisticated subsistence strategies is turning the tide in favour of models positing behavioural modernity in Africa at a time far earlier than previously accepted.

  15. Angiogenic inhibitors for older patients with advanced colorectal cancer: Does the age hold the stage?

    PubMed Central

    Aprile, Giuseppe; Fontanella, Caterina; Lutrino, Eufemia Stefania; Ferrari, Laura; Casagrande, Mariaelena; Cardellino, Giovanni Gerardo; Rosati, Gerardo; Fasola, Gianpiero

    2013-01-01

    Although major progress has been achieved in the treatment of advanced colorectal cancer (CRC) with the employment of antiangiogenic agents, several questions remain on the use of these drugs in older patients. Since cardiovascular, renal and other comorbidities are common in the elderly, an accurate assessment of the patients’ conditions should be performed before a treatment decision is made. Since most CRC patients enrolled in clinical trials testing antiangiogenic drugs were aged < 65 years, the efficacy and tolerability of these agents in elderly patients has not been adequately explored. Data suggest that patients with advanced CRC derive similar benefit from bevacizumab treatment regardless of age, but the advantage of other antiangiogenic drugs in the same class of patients appears more blurred. Literature data suggest that specific antiangiogenic-related toxicities such as hypertension or arterial thromboembolic events may be higher in the elderly than in the younger patients. In addition, it should be emphasized that the patients included in the clinical studies discussed herein were selected and therefore may not be representative of the usual elderly population. Advanced age alone should not discourage the use of bevacizumab. However, a careful patients’ selection and watchful monitoring of toxicities are required to optimize the use of antiangiogenics in this population. PMID:23847406

  16. Cadmium, follicle-stimulating hormone, and effects on bone in women age 42-60 years, NHANES III

    SciTech Connect

    Gallagher, Carolyn M.; Moonga, Baljit S.; Kovach, John S.

    2010-01-15

    Background: Increased body burden of environmental cadmium has been associated with greater risk of decreased bone mineral density (BMD) and osteoporosis in middle-aged and older women, and an inverse relationship has been reported between follicle-stimulating hormone (FSH) and BMD in middle-aged women; however, the relationships between cadmium and FSH are uncertain, and the associations of each with bone loss have not been analyzed in a single population. Objectives: The objective of this study was to evaluate the associations between creatinine-adjusted urinary cadmium (UCd) and FSH levels, and the associations between UCd and FSH with BMD and osteoporosis, in postmenopausal and perimenopausal women aged 42-60 years. Methods: Data were obtained from the Third National Health Examination and Nutrition Survey, 1988-1994 (NHANES III). Outcomes evaluated were serum FSH levels, femoral bone mineral density measured by dual energy X-ray absorptiometry, and osteoporosis indicated by femoral BMD cutoffs based on the international standard. Urinary cadmium levels were analyzed for association with these outcomes, and FSH levels analyzed for association with bone effects, using multiple regression. Subset analysis was conducted by a dichotomous measure of body mass index (BMI) to proxy higher and lower adipose-synthesized estrogen effects. Results: UCd was associated with increased serum FSH in perimenopausal women with high BMI (n=642; {beta}=0.45; p{<=}0.05; R{sup 2}=0.35) and low BMI (n=408; {beta}=0.61; p{<=}0.01; R{sup 2}=0.34). Among perimenopausal women with high BMI, BMD was inversely related to UCd ({beta}=-0.04; p{<=}0.05) and FSH ({beta}=-0.03; p{<=}0.05). In postmenopausal women with low BMI, an incremental increase in FSH was associated with 2.78 greater odds for osteoporosis (109 with and 706 without) (OR=2.78; 95% CI=1.43, 5.42; p{<=}0.01). Conclusion: Long-term cadmium exposure at environmental levels is associated with increased serum FSH, and both FSH

  17. Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System

    PubMed Central

    Leong, Narita L.; Hurng, Jonathan M.; Djomehri, Sabra I.; Gansky, Stuart A.; Ryder, Mark I.; Ho, Sunita P.

    2012-01-01

    Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months

  18. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  19. Safety and efficacy of vismodegib in patients aged ≥65 years with advanced basal cell carcinoma.

    PubMed

    Chang, Anne Lynn S; Lewis, Karl D; Arron, Sarah T; Migden, Michael R; Solomon, James A; Yoo, Simon; Day, Bann-Mo; McKenna, Edward F; Sekulic, Aleksandar

    2016-11-15

    Because many patients with unresectable basal cell carcinoma (BCC) are aged ≥65 years, this study explores the efficacy and safety of vismodegib in these patients with locally advanced (la) or metastatic (m) basal cell carcinoma (BCC) in the ERIVANCE BCC trial and the expanded access study (EAS).We compared patients aged ≥65 years to patients aged <65 years taking vismodegib 150 mg/day, using descriptive statistics for response and safety. Patients aged ≥65 years (laBCC/mBCC) were enrolled in ERIVANCE BCC (33/14) and EAS (27/26). Investigator-assessed best overall response rate in patients ≥65 and <65 years was 46.7%/35.7% and 72.7%/52.6% (laBCC/mBCC), respectively, in ERIVANCE BCC and 45.8%/33.3% and 46.9%/28.6%, respectively, in EAS. These differences were not clinically meaningful. Safety was similar in both groups, although those aged ≥65 years had a higher percentage of grade 3-5 adverse events than those aged <65 years. Vismodegib demonstrated similar clinical activity and adverse events regardless of age.

  20. Safety and efficacy of vismodegib in patients aged ≥65 years with advanced basal cell carcinoma

    PubMed Central

    Chang, Anne Lynn S.; Lewis, Karl D.; Arron, Sarah T.; Migden, Michael R.; Solomon, James A.; Yoo, Simon; Day, Bann-Mo; McKenna, Edward F.; Sekulic, Aleksandar

    2016-01-01

    Because many patients with unresectable basal cell carcinoma (BCC) are aged ≥65 years, this study explores the efficacy and safety of vismodegib in these patients with locally advanced (la) or metastatic (m) basal cell carcinoma (BCC) in the ERIVANCE BCC trial and the expanded access study (EAS).We compared patients aged ≥65 years to patients aged <65 years taking vismodegib 150 mg/day, using descriptive statistics for response and safety. Patients aged ≥65 years (laBCC/mBCC) were enrolled in ERIVANCE BCC (33/14) and EAS (27/26). Investigator-assessed best overall response rate in patients ≥65 and <65 years was 46.7%/35.7% and 72.7%/52.6% (laBCC/mBCC), respectively, in ERIVANCE BCC and 45.8%/33.3% and 46.9%/28.6%, respectively, in EAS. These differences were not clinically meaningful. Safety was similar in both groups, although those aged ≥65 years had a higher percentage of grade 3-5 adverse events than those aged <65 years. Vismodegib demonstrated similar clinical activity and adverse events regardless of age. PMID:27764798

  1. Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry

    PubMed Central

    Stübinger, Stefan

    2010-01-01

    The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the widespread initial assumption that light amplification for stimulated emission of radiation (laser) osteotomy inevitably provokes profound tissue damage and delayed wound healing has been refuted. In addition, the supposed disadvantage of prolonged osteotomy times could be overcome by modern short-pulsed Er:YAG laser systems. Currently, the limiting factors for a routine application of lasers for bone ablation are mainly technical drawbacks such as missing depth control and a difficult and safe guidance of the laser beam. This article gives a short overview of the development process and current possibilities of noncontact Er:YAG laser osteotomy in oral and implant surgery. PMID:23662082

  2. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  3. Impact of admissions for bone fractures on the dependency ratio of adults over 65 years of age in Southern Spain.

    PubMed

    Calero-García, Maria José; Ortega, Ana Raquel; Navarro, Elena; Jimenez, Carmen; Calero, María Dolores

    2012-01-01

    Hospital admission for acute illness, as in the case of bone fractures, means for some elderly people a loss of autonomy, not always associated with the illness causing hospitalization. The factors and/or modulators contributing to this situation have not been sufficiently studied. The aim of this study was to describe the characteristics of hospitalized elderly patients diagnosed with bone fractures, after surgery is carried out, and to establish the associated variables to their cognitive and functional dependency at discharge. The outcomes show that functional deterioration significantly correlates (positively) to anxiety self-control at discharge and knowledge about the therapy at discharge and inversely (negatively), to the patient's age, polypharmacy, and length of inpatient stay until surgery. From our outcomes we conclude the need to design and apply actions leading toward a reduction of the pre-surgery inpatient stay, immediate mobilization programs as well as training and information about therapeutic procedures.

  4. Age- and Sex-Dependent Changes of Intra-articular Cortical and Trabecular Bone Structure and the Effects of Rheumatoid Arthritis.

    PubMed

    Simon, David; Kleyer, Arnd; Stemmler, Fabian; Simon, Christoph; Berlin, Andreas; Hueber, Axel J; Haschka, Judith; Renner, Nina; Figueiredo, Camille; Neuhuber, Winfried; Buder, Thomas; Englbrecht, Matthias; Rech, Juergen; Engelke, Klaus; Schett, Georg

    2016-10-27

    The objective of this cross-sectional study was to define normal sex- and age-dependent values of intra-articular bone mass and microstructures in the metacarpal heads of healthy individuals by high-resolution peripheral quantitative computed tomography (HR-pQCT) and test the effect of rheumatoid arthritis (RA) on these parameters. Human cadaveric metacarpal heads were used to exactly define intra-articular bone. Healthy individuals of different sex and age categories and RA patients with similar age and sex distribution received HR-pQCT scans of the second metacarpal head and the radius. Total, cortical, and trabecular bone densities as well as microstructural parameters were compared between 1) the different ages and sexes in healthy individuals; 2) between metacarpal heads and the radius; and 3) between healthy individuals and RA patients. The cadaveric study allowed exact definition of the intra-articular (intracapsular) bone margins. These data were applied in measuring intra-articular and radial bone parameters in 214 women and men (108 healthy individuals, 106 RA patients). Correlations between intra-articular and radial bone parameters were good (r = 0.51 to 0.62, p < 0.001). In contrast to radial bone, intra-articular bone remained stable until age 60 years (between 297 and 312 mg HA/cm(3) ) but decreased significantly (p < 0.001) in women thereafter (237.5 ± 44.3) with loss of both cortical and trabecular bone. Similarly, RA patients showed significant (p < 0.001) loss of intra-articular total (263.0 ± 44.8), trabecular (171.2 ± 35.6), and cortical bone (610.2 ± 62.0) compared with sex- and age-adjusted controls. Standard sex- and age-dependent values for physiological intra-articular bone were defined. Postmenopausal state and RA led to significant decrease of intra-articular bone. © 2016 American Society for Bone and Mineral Research.

  5. Surgical advances in bone and soft tissue sarcoma: 50 years of progress.

    PubMed

    Henshaw, Robert M

    2014-01-01

    As the American Society of Clinical Oncology celebrates its 50th anniversary, physicians can appreciate the significant advances made in the treatment of patients with sarcoma. Historically, these rare tumors have garnered great interest in the medical profession, due to their ability to reach extraordinary size, resulting in substantial deformities and disabilities. Fortunately, advances in surgical management, which have occurred concurrently with advances in imaging, diagnostic techniques, and both local and systemic adjuvant treatments, offer patients diagnosed with sarcoma significant hope for successful treatment and the expectation of a meaningful quality of life.

  6. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  7. Insufficient renal 1-alpha hydroxylase and bone homeostasis in aged rats with insulin resistance or type 2 diabetes mellitus.

    PubMed

    Chang-Quan, Huang; Bi-Rong, Dong; Ping, He; Zhen-Chan, Lu

    2008-01-01

    This study aimed to explore the relationship between insufficient renal 1-alpha hydroxylase (IRH) and bone homeostasis in type 2 diabetes mellitus (T2DM) or insulin resistance (IR) and to investigate whether IR plays a major role in the pathogenesis of both IRH and bone loss in T2DM. The experimental animal models of T2DM, IR, IR treated with vitamin D (VD), IR treated with 1-alpha hydroxyvitamin D (1alpha(OH) D, the product of renal 1-alpha hydroxylase), T2DM treated with VD, and T2DM treated with 1alpha(OH) D were established on 18-month-old male Wistar rats. For rats in each animal model and normal control rats, IR was detected by euglycemic insulin clamp technique (EICT) and glucose infusion rate (GIR, an index of IR) was calculated. Levels of serum 25-hydroxyvitamin D (25(OH)D) and serum active vitamin D (1,25(OH)(2)D) were determined by radioimmunoassay (RIA), and 1,25(OH)(2)D/25(OH)D ratio (1,25-25-R, an index of renal 1-alpha hydroxylase activity in vivo) was calculated; and bone mineral density (BMD) in femoral bone and lumbar vertebrae was measured by dual-energy X-ray absorption (DEXA). No significant difference was observed among the levels of 25(OH)D in all the rats. In IR rats, 1,25(OH)(2)D level, 1,25-25-R, and BMD level were significantly higher than those in T2DM rats and were lower than those in normal control rats. In the aged rats with T2DM or IR, administration of VD had no effect on 25(OH)D level, 1,25(OH)(2)D level, 1,25-25-R, and BMD level. Administration of 1alpha(OH) D had also no effect on 25(OH)D level but increased 1,25(OH)(2)D level, 1,25-25-R, and BMD level. For the aged rats with T2DM or IR, GIR positively correlated with both levels of 1,25(OH)(2)D and BMD, and 1,25-25-R positively and significantly correlated with levels of BMD. In T2DM or IR, IRH is a precipitating factor for bone loss. IR seems to play a major role in the pathogenesis of both IRH and bone loss in T2DM.

  8. Advancing paternal age and offspring violent offending: A sibling-comparison study

    PubMed Central

    Kuja-Halkola, Ralf; Pawitan, Yudi; D’Onofrio, Brian M; Långström, Niklas; Lichtenstein, Paul

    2013-01-01

    Children born to older fathers are at higher risk to develop severe psychopathology (e.g., schizophrenia and bipolar disorder), possibly due to increased de novo mutations during spermatogenesis with older paternal age. Since severe psychopathology is correlated with antisocial behavior, we examined possible associations between advancing paternal age and offspring violent offending. Interlinked Swedish national registers provided information on fathers’ age at childbirth and violent criminal convictions in all offspring born 1958–1979 (n=2,359,921). We used ever committing a violent crime and number of violent crimes as indices of violent offending. The data included information on multiple levels; we compared differentially exposed siblings in within-family analyses to rigor