Science.gov

Sample records for advanced breeding clones

  1. Marketing potential of advanced breeding clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  2. Screening of advanced potato breeding clones for resistance to cold-induced-sweetening (CIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advantages of processing potatoes from low temperature storage are well known. It had previously been reported that clones with A-II isozymes of UDP-glucose pyrophosphorylase (UGPase) and low vacuolar acid invertase (VAcInv) activity demonstrate increased resistance to CIS. This study reports o...

  3. Potential uses of cloning in breeding schemes: dairy cattle.

    PubMed

    Bousquet, D; Blondin, P

    2004-01-01

    Cloning by nuclear transfer has many potential applications in a dairy cattle breeding program. It can be used to increase the accuracy of selection and therefore the rate of genetic progress, to speed up the dissemination of the genes from animals of exceptionally high genetic merit to the commercial population, and to reproduce transgenic animals. Today, however, the main limitation of the use of cloning besides governmental regulations is its low success rate and consequently the high cost to produce an animal ready for reproduction. As a result cloning is mostly limited to the reproduction of animals of very high genetic merit or that carry genes of specific interest. Examples of this are top-ranked bulls which do not produce enough semen for the demand due to various reasons. A strategy that could be used by artificial insemination (AI) centers would be to create a bank of somatic cells for every bull entering AI facilities long before they are placed on the young sire proving program. The other use of cloning is to assist in the selection and reproduction of bull dams. Marker assisted selection (MAS) can substantially enhance the accuracy of selection for embryos or young animals without comprehensive performance records, and therefore can greatly increase the value of cloning such embryos or young animals.

  4. Recent advances in peanut breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most previous advances in peanut cultivar development have been made using conventional breeding methods for self-pollinated crops. Peanut has lagged behind many other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low le...

  5. Advances in Japanese pear breeding in Japan.

    PubMed

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan's history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars 'Chojuro' and 'Nijisseiki' around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars 'Niitaka' and 'Shinko' were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including 'Kosui', 'Hosui', and 'Akizuki', which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, 'Gold Nijisseiki' has become a leading cultivar. Moreover, 'Nansui' from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress.

  6. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  7. Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines.

    PubMed

    Jeong, Yeon Woo; Kim, Joung Joo; Hossein, Mohammad Shamim; Hwang, Kyu Chan; Hwang, In-sung; Hyun, Sang Hwan; Kim, Nam-Hyung; Han, Ho Jae; Hwang, Woo Suk

    2014-06-01

    Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P < 0.01). Perinatal mortality until weaning was significantly higher in small breeds (33.3%) compared with medium, large, or ultra-large breeds where no mortality was observed. The mean birth weight of cloned pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype.

  8. Clonal forestry, heterosis and advanced-generation breeding

    SciTech Connect

    Tuskan, G.A.

    1997-08-01

    This report discusses the clonal planting stock offers many advantages to the forest products industry. Advanced-generation breeding strategies should be designed to maximize within-family variance and at the same time allow the capture of heterosis. Certainly there may be a conflict in the choice of breeding strategy based on the trait of interest. It may be that the majority of the traits express heterosis due to overdominance. Alternatively, disease resistance is expressed as the lack of a specific metabolite or infection court then the homozygous recessive genotype may be the most desirable. Nonetheless, as the forest products industry begins to utilize the economic advantages of clonal forestry, breeding strategies will have to be optimized for these commercial plant materials. Here, molecular markers can be used to characterize the nature of heterosis and therefore define the appropriate breeding strategy.

  9. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  10. Advances in table grape breeding in Japan

    PubMed Central

    Yamada, Masahiko; Sato, Akihiko

    2016-01-01

    In Japan, few grape cultivars related to Vitis vinifera existed 200 years ago, on account of Japan’s high rainfall. Many V. labruscana and vinifera cultivars were introduced to Japan in the 19th century. Labruscana was grown instead of vinifera, mainly because of severe disease problems and a high incidence of berry cracking. Grape breeding for table use started in the 20th century, with the goal of combining the berry quality of vinifera with the ease of cultivation of labruscana. By 1945, three strategies were used: 1) crossing among introduced diploid vinifera and vinifera-related cultivars of Japanese origin, 2) interspecific crossing in tetraploid cultivars, and 3) interspecific crossing in diploid cultivars, resulting in ‘Neo Muscat’, ‘Kyoho’, and ‘Muscat Bailey A’. Later, tetraploid interspecific crossing over generations developed many ‘Kyoho’-related cultivars, including ‘Pione’, many of which have large berries, intermediate flesh texture between the two species, a labruscan or neutral flavor, and moderate disease resistance. Interspecific diploid crossing over generations developed ‘Shine Muscat’ in 2006, with large berries, crispy flesh, a muscat flavor, no cracking, seedless fruit by gibberellin application, and moderate resistance to downy mildew and ripe rot. PMID:27069389

  11. Advances in molecular breeding of flowering dogwood (Cornus florida L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the production and sales of ornamental crops represent significant contributions to the global economy, breeding and selection of ornamental plants using molecular markers lags far behind that used for agronomic crops. However, with the recent advances in molecular technologies including r...

  12. Implications of cloning for breed improvement strategies: are traditional methods of animal improvement obsolete?

    PubMed

    van Vleck, L D

    1999-01-01

    Can the optimum animal be defined? Will that definition change over time, by location, by market demand? First, assume what may be impossible, that the perfect animal can be defined or that only a limited number of definitions of "perfect" are needed. Then, can the "perfect" animal to match a definition be found? Suppose such an animal is found. Then the question to be answered before trying to clone as a method of genetic improvement becomes "Is the animal perfect because of phenotype or genotype?" In other words, the P = G + E problem exists, which requires traditional methods of genetic evaluation and testing to determine whether genotype (G) or random environmental (E) effects or a combination leads to the apparent perfection in the phenotype (P). For most traits, additive genetic variance accounts for 10 to 50% of total variance, a fraction denoted as heritability. With a simple model, the best prediction of genotypic value is to reduce the apparent phenotypic superiority by multiplying by heritability. Cloning the "perfect" animal also could capture optimum dominance and epistatic genetic effects that are otherwise difficult to select for. For some traits, maternal effects are important. In that case, clones as breeding animals must be "perfect" for both direct and maternal genotypes, or alternatively terminal and maternal clone lines would need to be developed. The use of clones to increase uniformity can be only partially successful. If heritability is 25%, then the standard deviation among clones would be 87% of that of uncloned animals. Only if heritability is 100% will clone mates have complete uniformity. Fixing the genotype could increase susceptibility to failure if environment changes or if the cloned genotype is susceptible to a new disease or if economic conditions change. Cloning, at best, is another tool for animal improvement that joins the list of previous biotechnological inventions, some of which have become cost-effective, such as artificial

  13. Cost and accuracy of advanced breeding trial designs in apple

    PubMed Central

    Harshman, Julia M; Evans, Kate M; Hardner, Craig M

    2016-01-01

    Trialing advanced candidates in tree fruit crops is expensive due to the long-term nature of the planting and labor-intensive evaluations required to make selection decisions. How closely the trait evaluations approximate the true trait value needs balancing with the cost of the program. Designs of field trials of advanced apple candidates in which reduced number of locations, the number of years and the number of harvests per year were modeled to investigate the effect on the cost and accuracy in an operational breeding program. The aim was to find designs that would allow evaluation of the most additional candidates while sacrificing the least accuracy. Critical percentage difference, response to selection, and correlated response were used to examine changes in accuracy of trait evaluations. For the quality traits evaluated, accuracy and response to selection were not substantially reduced for most trial designs. Risk management influences the decision to change trial design, and some designs had greater risk associated with them. Balancing cost and accuracy with risk yields valuable insight into advanced breeding trial design. The methods outlined in this analysis would be well suited to other horticultural crop breeding programs. PMID:27019717

  14. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system

    PubMed Central

    Tanaka, Junichi; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    A new plant breeding method—the biotron breeding system (BBS)—can rapidly produce advanced generations in rice (Oryza sativa L.) breeding. This method uses a growth chamber (biotron) with CO2 control, accompanied by tiller removal and embryo rescue to decrease the period before seed maturity. However, tiller removal and embryo rescue are laborious and impractical for large populations. We investigated the influences of increased CO2, tiller removal, and root restriction on the days to heading (DTH) from seeding in growth chambers. The higher CO2 concentration significantly decreased DTH, but tiller removal and root restriction had little effect on DTH and drastically reduced seed yield. Based on these findings, we propose a simplified BBS (the sBBS) that eliminates the need for tiller removal and embryo rescue, but controls CO2 levels and day-length and maintains an appropriate root volume. Using the sBBS, we could reduce the interval between generations in ‘Nipponbare’ to less than 3 months, without onerous manipulations. To demonstrate the feasibility of the sBBS, we used it to develop isogenic lines using ‘Oborozuki’ as the donor parent for the low-amylose allele Wx1-1 and ‘Akidawara’ as the recipient. We were able to perform four crossing cycles in a year. PMID:27795679

  15. Storage and processing evaluation of advanced potato breeding clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. Most, but not all, currently used potato cultivars are susceptible to Acold sweetening and are therefore stored at warmer temperatures that can accelerate disease p...

  16. Advanced potato breeding clones: Storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. Most, but not all, currently used potato cultivars are susceptible to Acold sweetening and are therefore stored at warmer temperatures that can accelerate disease p...

  17. Advances and applications of molecular cloning in clinical microbiology.

    PubMed

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents.

  18. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  19. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 38 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2012 for yield, seed grade and size, and resistance to Sclerotinia minor and Sclerotium rolfsii. Among the 14 Spanish entries, the cultivar Tamnut 06 (3258 lbs/acre) and breeding line 140-1O...

  20. The breeding systems of diploid and neoautotetraploid clones of Acacia mangium Willd. in a synthetic sympatric population in Vietnam.

    PubMed

    Griffin, A R; Vuong, T D; Vaillancourt, R E; Harbard, J L; Harwood, C E; Nghiem, C Q; Thinh, H H

    2012-12-01

    Colchicine-induced neoautotetraploid genotypes of Acacia mangium were cloned and planted in mixture with a set of diploid clones in an orchard in southern Vietnam. Following good general flowering, open-pollinated seed was collected from trees of both cytotypes and microsatellite markers were used to determine the breeding system as characterised by the proportion of outcrosses in young seedling progeny. As predicted from the literature, the progeny of diploid clones were predominantly outcrossed (t(m) = 0.97). In contrast, the progeny of the tetraploid clones were almost entirely selfs (t(m) = 0.02; 3 of 161 seedlings assayed were tetraploid outcrosses and there were no triploids). Segregation at loci heterozygous in the tetraploid mothers followed expected ratios, indicating sexual reproduction rather than apomixis. Post-zygotic factors are primarily responsible for divergence of the breeding systems. Commonly, less than 1 % of Acacia flowers mature as a pod, and after mixed pollination, diploid outcrossed seed normally develops at the expense of selfs. Selfs of the tetraploid trees appear to express less genetic load and have a higher probability of maturing. However, this does not fully explain the observed deficiency of outcross tetraploid progeny. Presumably, there are cytogenetic reasons which remain to be investigated. In nature, selfing would increase the probability of establishment of neotetraploids irrespective of cytotype frequency in the population. Breeders need to review their open-pollinated breeding and seed production strategies. It remains to be seen whether this is an ephemeral problem, with strong fertility selection restoring potential for outcrossing over generations.

  1. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  2. Advances to improve the eating and cooking qualities of rice by marker-assisted breeding.

    PubMed

    Phing Lau, Wendy Chui; Latif, Mohammad Abdul; Y Rafii, Mohd; Ismail, Mohd Razi; Puteh, Adam

    2016-01-01

    The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.

  3. Advanced phenotyping offers opportunities for improved breeding of forage and turf species

    PubMed Central

    Walter, Achim; Studer, Bruno; Kölliker, Roland

    2012-01-01

    Background and Aims Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining resources. Scope This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour, spectral reflection, chlorophyll-fluorescence, temperature and other properties, from which traits such as biomass, architecture, photosynthetic efficiency, stomatal aperture or stress resistance can be derived. Applications of these methods in the context of forage and turf breeding are discussed. Conclusions Progress in cutting-edge molecular breeding tools is beginning to be matched by progress in automated non-destructive imaging methods. Joint application of precise phenotyping machinery and molecular tools in optimized breeding schemes will improve forage and turf breeding in the near future and will thereby contribute to amended performance of managed grassland agroecosystems. PMID:22362662

  4. Advances towards a Marker-Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop

    PubMed Central

    Gedye, K. R.; Gonzalez-Hernandez, J. L.; Owens, V.; Boe, A.

    2012-01-01

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is an indigenous, perennial grass of North America that is being developed into a cellulosic biomass crop suitable for biofuel production. Limited research has been performed into the breeding of prairie cordgrass; this research details an initial investigation into the development of a breeding program for this species. Genomic libraries enriched for four simple sequence repeat (SSR) motifs were developed, 25 clones from each library were sequenced, identifying 70 SSR regions, and primers were developed for these regions, 35 of which were amplified under standard PCR conditions. These SSR markers were used to validate the crossing methodology of prairie cordgrass and it was found that crosses between two plants occurred without the need for emasculation. The successful cross between two clones of prairie cordgrass indicates that this species is not self-incompatible. The results from this research will be used to instigate the production of a molecular map of prairie cordgrass which can be used to incorporate marker-assisted selection (MAS) protocols into a breeding program to improve this species for cellulosic biomass production. PMID:23227036

  5. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2016

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut disease evaluations of advanced breeding lines are conducted annually to compare the agronomic traits (crop value, yield, seed grade, and characteristics) and disease resistance of cultivars that are currently available or close to being released for the Southwest. In 2016, a total of 21 com...

  6. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 20 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2015 for agronomic traits (crop value, yield, seed grade, and characteristics). Environmental conditions in 2015 were not favorable for Sclerotinia blight, southern bl...

  7. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 23 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2014 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to soilborne diseases. Among the 16 runner entries evaluated, Tamrun OL11...

  8. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 21 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2013 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to diseases (Sclerotinia blight, southern blight, and Pythium and Rhizoctonia pod rot). Among th...

  9. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  10. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  11. Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep.

    PubMed

    García-Sancho, Miguel

    2015-09-01

    This paper addresses the 1996 cloning of Dolly the sheep, locating it within a long-standing tradition of animal breeding research in Edinburgh. Far from being an end in itself, the cell-nuclear transfer experiment from which Dolly was born should be seen as a step in an investigative pathway that sought the production of medically relevant transgenic animals. By historicising Dolly, I illustrate how the birth of this sheep captures a dramatic redefinition of the life sciences, when in the 1970s and 1980s the rise of neo-liberal governments and the emergence of the biotechnology market pushed research institutions to show tangible applications of their work. Through this broader interpretative framework, the Dolly story emerges as a case study of the deep transformations of agricultural experimentation during the last third of the twentieth century. The reorganisation of laboratory practice, human resources and institutional settings required by the production of transgenic animals had unanticipated consequences. One of these unanticipated effects was that the boundaries between animal and human health became blurred. As a result of this, new professional spaces emerged and the identity of Dolly the sheep was reconfigured, from an instrument for livestock improvement in the farm to a more universal symbol of the new cloning age.

  12. DNA methylation errors in cloned mice disappear with advancement of aging.

    PubMed

    Senda, Sho; Wakayama, Teruhiko; Arai, Yoshikazu; Yamazaki, Yukiko; Ohgane, Jun; Tanaka, Satoshi; Hattori, Naka; Yanagimachi, Ryuzo; Shiota, Kunio

    2007-01-01

    Cloned animals have various health problems. Aberrant DNA methylation is a possible cause of the problems. Restriction landmark genomic scanning (RLGS) that enabled us to analyze more than 1,000 CpG islands simultaneously demonstrated that all cloned newborns had aberrant DNA methylation. To study whether this aberration persists throughout the life of cloned individuals, we examined genome-wide DNA methylation status of newborn (19.5 dpc, n=2), adult (8-11 months old, n=3), and aged (23-27 months old, n=4) cloned mice using kidney cells as representatives. In the adult and aged groups, cloning was repeated using cumulus cells of the adult founder clone of each group as nucleus donor. Two newborn clones had three with aberrantly methylated loci, which is consistent with previous reports that all cloned newborns had DNA methylation aberrations. Interestingly, we could detect only one aberrantly methylated locus in two of the three adult clones in mid-age and none of four senescent clones, indicating that errors in DNA methylation disappear with advancement of animals' aging.

  13. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  14. Cloning

    MedlinePlus

    ... that have been cloned from somatic cells include: cat, deer, dog, horse, mule, ox, rabbit and rat. ... with cell division. In other mammals, such as cats, rabbits and mice, the two spindle proteins are ...

  15. Advances in Breeding Management and Use of Ovulation Induction for Fixed-time AI.

    PubMed

    Kirkwood, R N; Kauffold, J

    2015-07-01

    The objective of the breeding herd is the predictable and consistent production of high quality pigs. To achieve this objective, an appropriate number of females need to be mated in each breeding week and they should maintain their pregnancy and deliver large litters. Many factors can impact achievement of optimal sow productivity, particularly breeding management. Most matings will involve artificial insemination (AI), and successful AI requires deposition into the cervix (or beyond) of sufficient viable high quality sperm at an appropriate time relative to ovulation. This is facilitated by improved knowledge of the sow's ovarian function prior to and during her oestrous period. Realization of the importance of establishing an adequate sperm reservoir in the oviduct at an appropriate time relative to ovulation has led to advances in the management of AI. The future of AI will likely involve insemination of single doses of high genetic merit semen, potentially having a reduced sperm concentration which is made possible by knowledge of the effect of site of sperm deposition on sow fertility. In particular, knowledge of when a sow is likely to ovulate during a natural or induced oestrous period will prove invaluable in the maintenance of herd productivity. This review will examine options for breeding management, including the control of oestrus and ovulation, on sow herd reproductive performance.

  16. Improved cellular thermotolerance in cloned Holstein cattle derived with cytoplasts from a thermotolerant breed.

    PubMed

    Lee, Jai-Wei; Li, Hung; Wu, Hung-Yi; Liu, Shyh-Shyan; Shen, Perng-Chin

    2016-03-01

    The objective of this study was to compare the thermotolerance of ear fibroblasts derived from various SCNT cattle. Specimens were produced from cloned embryos that had been reconstructed using donor cells (d) from the same Holstein cow (Hd) and the ooplasm (o) from Holstein cattle (Ho) or Taiwan yellow cattle (Yo). Polymorphism in the D-loop region of mitochondrial DNA in ear fibroblasts derived from SCNT cattle reconstructed with the Y ooplasm and H donor cells (SCNT-Yo-Hd) indicates that the cytoplasm originated from Bos indicus. The rates of apoptosis in heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle (1.9%) and purebred Y cattle (1.5%) were significantly (P < 0.05) lower than those of cells derived from SCNT cattle reconstructed with the H ooplasm (SCNT-Ho-Hd: 3.4%), donor cells (4.0%), and purebred Holstein (4.1%) cattle. At the protein level, the relative abundances of apoptosis-inducing factor, B cell lymphoma 2-associated X protein, endonuclease G, cytochrome c, cysteinyl aspartate-specific proteinases 3, 8 and 9 in ear fibroblasts derived from SCNT-Yo-Hd cattle were significantly (P < 0.05) lower than those of cells derived from SCNT-Ho-Hd cattle after heat shock. In contrast, the relative abundances of heat shock proteins 27, 70 and B cell lymphoma 2 in ear fibroblasts derived from SCNT-Yo-Hd cattle were higher (P < 0.05) than those of fibroblasts derived from SCNT-Ho-Hd cattle. Moreover, heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle have a significantly (P < 0.05) lower percentage of apoptosis-inducing factor-positive nuclei than do heat-shocked ear fibroblasts derived from SCNT-Ho-Hd cattle (11.1% vs. 18.5%). Taken together, these results report that ear fibroblasts derived from SCNT cattle reconstructed using the Y ooplasm are more thermotolerant than ear fibroblasts derived from SCNT cattle reconstructed using the H ooplasm. This is an indication that the cytoplasm may be a major determinant of thermal sensitivity in bovine

  17. Using microsatellite DNA markers to determine the genetic identity of parental clones used in the Louisiana sugarcane breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane propagates asexually through vegetative cuttings. To validate the genetic identity of sugarcane clones during shipping and handling, we produced molecular fingerprints based on 21 microsatellite (SSR) DNA markers for 116 Louisiana parental clones that were included in the crossing program...

  18. Reproductive cloning in humans and therapeutic cloning in primates: is the ethical debate catching up with the recent scientific advances?

    PubMed

    Camporesi, S; Bortolotti, L

    2008-09-01

    After years of failure, in November 2007 primate embryonic stem cells were derived by somatic cellular nuclear transfer, also known as therapeutic cloning. The first embryo transfer for human reproductive cloning purposes was also attempted in 2006, albeit with negative results. These two events force us to think carefully about the possibility of human cloning which is now much closer to becoming a reality. In this paper we tackle this issue from two sides, first summarising what scientists have achieved so far, then discussing some of the ethical arguments in favour and against human cloning which are debated in the context of policy making and public consultation. Therapeutic cloning as a means to improve and save lives has uncontroversial moral value. As to human reproductive cloning, we consider and assess some common objections and failing to see them as conclusive. We do recognise, though, that there will be problems at the level of policy and regulation that might either impair the implementation of human reproductive cloning or make its accessibility restricted in a way that could become difficult to justify on moral grounds. We suggest using the time still available before human reproductive cloning is attempted successfully to create policies and institutions that can offer clear directives on its legitimate applications on the basis of solid arguments, coherent moral principles, and extensive public consultation.

  19. Characterization of potato breeding clones to determine mechanisms conferring observed resistance/tolerance to zebra chip disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A haploid tuberosum x Solanum berthaultii hybrid clone and its progeny from backcrossing to cultivated potato were screened for resistance to adult potato psyllid, the insect vector of Candidatus Liberibacter solanacearum (syn. Ca. L. psyllaurous) which is associated with zebra chip (ZC) disease. Po...

  20. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  1. Total anthocyanins, total carotenoids, hydrophilic- and lipophilic-ORAC levels in diverse clones and breeding lines over six field environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven specialty clones were grown in six field locations and tuber samples were analyzed for total carotenoids, total anthocyanins, hydrophilic_Oxygen Radical Absorbance Capacity (ORAC), and lipophilic (ORAC). Four of the genotypes had red or purple pigmented flesh. The highest total anthocyanins ...

  2. Advances in Diagnostics and Therapeutic Techniques in Breeding Behavior Disorders in Stallions.

    PubMed

    McDonnell, Sue M

    2016-12-01

    Despite the suboptimal aspects of domestic breeding conditions compared with the natural conditions under which their reproductive behavior evolved, most domestic stallions can adapt to management and breeding programs. Most respond adequately or quickly learn to safely abide the restraint and direction of a human handler, and can adapt to changes in methods of breeding for semen collection. If not, the problems can range from inadequate or variable sexual interest and response to overenthusiastic or aggressive response beyond the ability of the handlers to safely direct and control. This article discusses veterinary evaluation as well as housing and handling strategies for addressing stallion breeding behavior problems.

  3. Using general and specific combining ability to further advance strawberry (Fragaria sp.) breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberry is one of the five fruit crops included in the USDA-funded multi-institutionaland trans-disciplinary project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae”. A Crop Reference Set (CRS) was developed of 900 genotypes and seedlings from 40 crosses representing the breadth of rele...

  4. Evaluation of verticillium wilt resistance in commercial cultivars and advanced breeding lines of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW), caused by Verticillium dahliae Kleb, is one of the most destructive diseases in cotton (Gossypium spp.). The most efficient and cost-effective method of controlling the disease is the use of resistant cotton cultivars. Most commercial cultivars and elite breeding lines are de...

  5. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival

    PubMed Central

    Wierucka, Kaja; Halupka, Lucyna; Klimczuk, Ewelina; Sztwiertnia, Hanna

    2016-01-01

    Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality. PMID:26934086

  6. Recent advances in universal TA cloning methods for use in function studies.

    PubMed

    Yao, Shuo; Hart, Darren J; An, Yingfeng

    2016-08-29

    As one of the simplest and most efficient cloning methods, T-vector-based TA cloning has been widely used for cloning of single genes and construction of DNA libraries. This approach is especially suitable for high-throughput cloning of diverse DNA fragments since inserts can be cloned without knowledge of their sequence; it is therefore an ideal tool for high-throughput analysis of protein structure and function. Although most of the currently available T-vectors can only be used for cloning purposes, some novel variants with improved functions have be developed. This review focuses on recent developments of universal TA cloning methods and T-vectors constructed for function studies.

  7. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  8. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  9. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.

  10. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.

    PubMed

    Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe

    2017-02-01

    Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.

  11. Gene cloning of an Actinobacillus actinomycetemcomitans Y4 antigen which reacts with peripheral blood sera in patients with advanced destructive periodontitis.

    PubMed

    Arakawa, S; Hata, S; Ishikawa, I; Tsuchida, N

    1990-01-01

    Actinobacillus actinomycetemcomitans has been implicated in the aetiology of juvenile periodontitis and advanced destructive periodontitis. Levels of IgG antibody against A. actinomycetemcomitans in peripheral blood sera of patients with advanced destructive periodontitis are high, as are those against Bacteroides gingivalis. To clone the genes of antigens reactive with sera of such patients, a library of the A. actinomycetemcomitans strain Y4 DNA in lambda L47 was constructed and then screened, using an immunochemical detection method, with serum from a patient with the advanced disease. Six clones from among nearly 1000 reacted with the serum and also with that of another patient. They were designated 3, 4, 6, 7, 8 and 9. Restriction enzyme and Southern blot analyses indicated that clones 8 and 9 were identical and that all the clones were overlapping because they shared in common the 4 and 5 kbp HincII DNA fragments of A. actinomycetemcomitans. The cloned DNA fragment hybridized to the DNA of two other strains of A. actinomycetemcomitans but not to those of six periodontopathic bacteria examined. These findings suggest that a DNA sequence encoding an A. actinomycetemcomitans strain Y4 antigen strongly reactive with sera of patients with advanced destructive periodontitis was cloned. This sequence is present specifically in A. actinomycetemcomitans but not in other bacteria isolated from patients with periodontal diseases. Thus, the cloned DNA could serve as a probe for the diagnosis of periodontitis.

  12. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  13. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes.

    PubMed

    Ilahy, Riadh; Piro, Gabriella; Tlili, Imen; Riahi, Anissa; Sihem, Rabaoui; Ouerghi, Imen; Hdider, Chafik; Lenucci, Marcello Salvatore

    2016-01-01

    This study investigates the antioxidant components [lycopene, total phenolics, total flavonoids, ascorbic acid (AsA) and dehydroascorbic acid (DHA)] as well as antioxidant activities of the hydrophilic and lipophilic fractions (AAHF and AALF) of peel, pulp and seed fractions isolated from red-ripe berries of the ordinary tomato cultivar Rio Grande and the two high-lycopene tomato breeding lines HLT-F61 and HLT-F62 simultaneously grown in an open-field of Northern Tunisia. Significant differences (p < 0.05) were found among cultivars for each trait studied. All fractions isolated from the red-ripe berries of HLT lines showed higher lycopene, total phenolics and total flavonoid contents, as well as higher AAHF and AALF, than those isolated from Rio Grande. Regardless of the fraction, HLT-F61 had the highest lycopene content (893.0 mg per kg fw, 280.0 mg per kg fw, and 47.5 mg per kg fw in peel, pulp and seed fractions, respectively) and total phenolics at least 2-fold and 3-fold higher than HLT-F62 and Rio Grande, respectively. Peel and seed fractions from HLT-F61 red-ripe tomato berries had the highest AsA content (345 mg per kg fw and 115 mg per kg fw, respectively), while no significant difference was found in the seed fraction between HLT-F62 and Rio Grande. The HLT-F62 pulp fraction showed the highest content of AsA (186 mg per kg fw) and DHA (151 mg per kg fw) among all the assayed cultivars. Except for the peel fraction, where HLT-F61 had similar AAHF values to HLT-F62, the high-lycopene line HLT-F61 showed higher AAHF values than HLT-F62 and Rio Grande. Regardless of the fraction, the highest AALF values were recorded in HLT-F61 berries. Thus, both HLT tomato lines are promising for the introduction, as advanced hybrids, in either fresh market or processing industry.

  14. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    PubMed

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  15. Statement on Human Cloning

    MedlinePlus

    ... form Search American Association for the Advancement of Science Statement on Human Cloning Tweet The American Association for the Advancement of Science (AAAS) recognizes the intense debates within our society ...

  16. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    PubMed

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  17. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines

    PubMed Central

    Jahoor, Ahmed; Orabi, Jihad; Andersen, Jeppe R.; Janss, Luc L.; Jensen, Just

    2017-01-01

    Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5–0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy. PMID:28081208

  18. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  19. [Recent advances in understanding the innate immune mechanisms and developing new disease resistance breeding strategies against the rice blast fungus Magnaporthe oryzae in rice].

    PubMed

    He, Feng; Zhang, Hao; Liu, Jinling; Wang, Zhilong; Wang, Guoliang

    2014-08-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases in rice. Utilization of resistant cultivars is the most effective and economic strategy against the disease. Recently, rice blast has become an advanced model system for elucidating the molecular mechanisms of plant-fungal interactions. Significant progress has been made in the molecular biology, genomics and proteomics of the rice-M. oryzae interaction and host resistance in the last few years. In this review, we summarize the recent advances in understanding the molecular basis of PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) in rice against M. oryzae, and propose the new strategies for blast resistance molecular breeding. We also discuss the new challenges for future investigations.

  20. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning.

  1. Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants.

    PubMed

    Ishida-Fujii, Keiko; Goto, Shingo; Sugiyama, Hiroki; Takagi, Yoshio; Saiki, Takashi; Takagi, Masamichi

    1998-10-01

    A nonflocculent industrial polyploid yeast strain, Saccharomyces cerevisiae 396-9-6V, was converted to a flocculent one by introducing a functional FLO1 gene at the URA3 locus. The flocculent strain FSC27 obtained was a so-called self-cloned strain, having no bacterial DNA. FSC27 cells could be easily recovered for reuse from fermentation mash without any physical energy. The strain produced a concentration of alcohol as high as 396-9-6V, although the fermentation rate of FSC27 was slightly lower than that of 396-9-6V. When uracil was added to the medium or when URA3 was reintroduced into FSC27 (named FSCU-L18), the fermentation rate and the growth rate increased, and the ethanol concentration produced was higher than that produced by the parent strain. The stable flocculation and high ethanol productivity were observed by using FSCU-L18 during 10 cycles of repeated-batch fermentation test.

  2. Apricot Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apricot orchard area and fruit production are increasing worldwide. Breeding programs engage in apricot development to provide new varieties to meet needs of producers and consumers. Over the last 20 years, breeders have used new techniques to assist in variety development and to increase breeding...

  3. Molecular breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of molecular and genomic tools to assist selection of parents or progeny has become an integral part of modern cotton breeding. In this chapter, the basic components of molecular cotton breeding are described. These components include: molecular marker development, genetic and physical map const...

  4. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  5. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  6. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: opportunities they offer for sustainable productivity.

    PubMed

    Bowles, Dianna

    2015-01-01

    Locally adapted breeds of livestock are of considerable interest since they represent potential reservoirs of adaptive fitness traits that may contribute to the future of sustainable productivity in a changing climate. Recent research, involving three hill sheep breeds geographically concentrated in the northern uplands of the UK has revealed the extent of their genetic diversity from one another and from other breeds. Results from the use of SNPs, microsatellites, and retrovirus insertions are reviewed in the context of related studies on sheep breeds world-wide to highlight opportunities offered by the genetic resources of locally adapted hill breeds. One opportunity concerns reduced susceptibility to Maedi Visna, a lentivirus with massive impacts on sheep health and productivity globally. In contrast to many mainstream breeds used in farming, each of the hill breeds analyzed are likely to be far less susceptible to the disease threat. A different opportunity, relating specifically to the Herdwick breed, is the extent to which the genome of the breed has retained primitive features, no longer present in other mainland breeds of sheep in the UK and offering a new route for discovering unique genetic traits of use to agriculture.

  7. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  8. Why Clone?

    MedlinePlus

    ... for tens of millions of years to clone dinosaurs. They run into trouble, however, when they realize ... and fiercer than expected. Could we really clone dinosaurs? In theory? Yes. You would need: A well- ...

  9. Advances in breeding at USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower genetic research is ever increasing with more insect and disease problems nationwide. Preliminary data on...

  10. [Cloning - controversies].

    PubMed

    Twardowski, T; Michalska, A

    2001-01-01

    Cloning of the human being is not only highly controversial; in the opinion of the authors it is impossible - we are not able to reproduce human behaviour and character traits. Reproduction through cloning is limited to personal genome resources. The more important is protection of genomic characteristics as private property and taking advantage of cloning for production of the human organs directly or through xenotransplants. In this paper we present the legislation related to cloning in Poland, in the European Union and other countries. We also indicate who and why is interested in cloning.

  11. The development and application of the modern reproductive technologies to horse breeding.

    PubMed

    Allen, W R

    2005-08-01

    Although the horse was probably the first animal to experience and benefit from artificial insemination, it trailed the field somewhat with regard to the application of embryo transfer and other oocyte and embryo-related modern breeding technologies. But with a late run it is now back in mid-field and gaining fast on the other large domestic species in the application of the many technological advances of the past 20 years to sound breeding practice. Improvements in extenders and cryoprotectants have resulted in a veritable upsurge in the transport and insemination of cooled and frozen stallion semen, and parallel improvements in ovulation induction and synchrony, exogenous gonadotrophic stimulation of multiple fertile ovulations and simplified, more efficient methods for non-surgical transfer of embryos to recipient mares, coupled with relaxation of breed society registration restrictions, have together contributed to a similar upsurge in the application of embryo transfer to all breeds and athletic types of horses worldwide, with the continuing and notable exception of the Thoroughbred. Although conventional in vitro fertilization remains something of an unjumped fence in equids, other modern breeding technologies like hysteroscopic low-dose insemination, fluorescence-activated sex sorting of stallion spermatozoa, between-species embryo transfer, embryo freezing and bisection, transvaginal ultrasound-guided oocyte collection, intracytoplasmic sperm injection for fertilization (ICSI), gamete intrafallopian transfer (GIFT) and now nuclear transfer (cloning), have all been applied to equids with encouraging success. Cloning, especially, holds enormous promise for the Sporthorse industry to re-create champion geldings in stallion form for breeding purposes.

  12. A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites.

    PubMed

    Fraser, Kevin C; Silverio, Cassandra; Kramer, Patrick; Mickle, Nanette; Aeppli, Robert; Stutchbury, Bridget J M

    2013-01-01

    The decline of long distance migratory songbirds has been linked to an increasing mismatch between spring arrival date and timing of food availability caused by climate change. It is unclear to what extent individuals can adjust migration timing or en route rate in response to annual variation in temperature at breeding sites. We tracked the ca. 7300 km spring migration of 52 purple martins Progne subis from the Amazon basin to two breeding sites in eastern North America. Spring 2012 was the warmest on record in eastern North America, but contrary to predictions, this did not result in earlier departure, faster migration, or earlier arrival at breeding areas compared with earlier years. Temperatures and rainfall in the Amazon basin at the time of departure were not higher in 2012, and conditions along migration routes did not give consistent signals of a warmer spring at the breeding site. Once in North America, individuals likely had limited opportunity to speed up their migration because this final portion of the journey was already very rapid (570 km/d; 4-5 d in duration). Migration timing over the entire journey was best predicted by breeding latitude and sex and was not sensitive to ecological cues (temperature and rainfall amount) at departure from South American overwintering sites or en route, in contrast to recent studies of other songbirds. Our results provide the first direct evidence for a mismatch between higher spring temperatures at breeding sites and departure schedules of individual songbirds, and suggest phenotypic responses to short-term climatic warming may be limited for some species. Further direct-tracking data with greater geographic and temporal scope is needed to test for individual plasticity in response to temperature and rainfall along migratory routes for this, and other, species.

  13. Sugarcane Improvement Through Breeding and Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  14. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  15. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  16. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…

  17. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  18. Wildlife conservation and reproductive cloning.

    PubMed

    Holt, William V; Pickard, Amanda R; Prather, Randall S

    2004-03-01

    Reproductive cloning, or the production of offspring by nuclear transfer, is often regarded as having potential for conserving endangered species of wildlife. Currently, however, low success rates for reproductive cloning limit the practical application of this technique to experimental use and proof of principle investigations. In this review, we consider how cloning may contribute to wildlife conservation strategies. The cloning of endangered mammals presents practical problems, many of which stem from the paucity of knowledge about their basic reproductive biology. However, situations may arise where resources could be targeted at recovering lost or under-represented genetic lines; these could then contribute to the future fitness of the population. Approaches of this type would be preferable to the indiscriminate generation of large numbers of identical individuals. Applying cloning technology to non-mammalian vertebrates may be more practical than attempting to use conventional reproductive technologies. As the scientific background to cloning technology was pioneered using amphibians, it may be possible to breed imminently threatened amphibians, or even restore extinct amphibian species, by the use of cloning. In this respect species with external embryonic development may have an advantage over mammals as developmental abnormalities associated with inappropriate embryonic reprogramming would not be relevant.

  19. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  20. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  1. A genome-wide association study of malting quality across eight U.S. barley breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study leverages the breeding data of 1,862 breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The breeding lines were six-row and two-row barley advanced breeding lines from eight barley breeding populations established at six pub...

  2. Meat and milk compositions of bovine clones

    PubMed Central

    Tian, X. Cindy; Kubota, Chikara; Sakashita, Kunihito; Izaike, Yoshiaki; Okano, Ryoichi; Tabara, Norio; Curchoe, Carol; Jacob, Lavina; Zhang, Yuqin; Smith, Sadie; Bormann, Charles; Xu, Jie; Sato, Masumi; Andrew, Sheila; Yang, Xiangzhong

    2005-01-01

    The technology is now available for commercial cloning of farm animals for food production, but is the food safe for consumers? Here, we provide data on >100 parameters that compare the composition of meat and milk from beef and dairy cattle derived from cloning to those of genetic- and breed-matched control animals from conventional reproduction. The cloned animals and the comparators were managed under the same conditions and received the same diet. The composition of the meat and milk from the clones were largely not statistically different from those of matched comparators, and all parameters examined were within the normal industry standards or previously reported values. The data generated from our match-controlled experiments provide science-based information desired by regulatory agencies to address public concerns about the safety of meat and milk from somatic animal clones. PMID:15829585

  3. Molecular cloning.

    PubMed

    Lessard, Juliane C

    2013-01-01

    This protocol describes the basic steps involved in conventional plasmid-based cloning. The goals are to insert a DNA fragment of interest into a receiving vector plasmid, transform the plasmid into E. coli, recover the plasmid DNA, and check for correct insertion events.

  4. Cassava Breeding I: The Value of Breeding Value

    PubMed Central

    Ceballos, Hernán; Pérez, Juan C.; Joaqui Barandica, Orlando; Lenis, Jorge I.; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H.

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials—UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  5. The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia.

    PubMed

    Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor

    2014-08-01

    Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate.

  6. Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials.

    PubMed

    Wang, Gui-xiang; Tang, Yu; Yan, Hong; Sheng, Xiao-guang; Hao, Wei-Wei; Zhang, Li; Lu, Kun; Liu, Fan

    2011-10-01

    Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC(3)) and selfed (S(3)) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC(3) plants (originated from somatic hybrids 3, 4, 10) with 2-8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.

  7. Transcriptome Analysis of a Breeding Program Pedigree Reveals Target Genes for the Improvement of Malting Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The University of Minnesota barley-breeding program is a good example of advanced cycle breeding that has achieved genetic gains for agronomic and malting quality traits but with a proven reduction in genetic diversity. However, there are no studies examining the effect of advanced cycle breeding on...

  8. Telomeres and the ethics of human cloning.

    PubMed

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  9. [Eugenics and human cloning].

    PubMed

    Boloz, W

    2001-01-01

    Because of legislative bans there are still no reports of human cloning. However eager public debate is currently running, concerning medical, legal, social and ethical aspects of human cloning. Arguments for and against human cloning are presented. An important argument against cloning is the danger of eugenic tendencies connected with cloning, which could lead to genetic discrimination.

  10. Human cloning: Eastern Mediterranean Region perspective.

    PubMed

    Abdur Rab, M; Khayat, M H

    2006-01-01

    Recent advances in genomics and biotechnology have ushered in a new era in health development. Therapeutic cloning possesses enormous potential for revolutionizing medical and therapeutic techniques. Cloning technology, however, is perceived as having the potential for reproductive cloning, which raises serious ethical and moral concerns. It is important that the Islamic countries come to a consensus on this vital issue. Developing science and technology for better health is a religious and moral obligation. There is an urgent need for Muslim scholars to discuss the issue of stem cell research and cloning rationally; such dialogue will not only consider the scientific merits but also the moral, ethical and legal implications.

  11. Tritium breeding in fusion reactors

    SciTech Connect

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

  12. Breeding and genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn breeding has been historically remarkably successful. Much research has investigated optimal breeding procedures, which are detailed here. A smaller effort has been put into identifying useful genetic resources for maize and how to best use them, but results from long-term base broadening effor...

  13. Tritium breeding materials

    SciTech Connect

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  14. Sexual Reproduction and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  15. Technological Literacy and Human Cloning. Resources in Technology.

    ERIC Educational Resources Information Center

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  16. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  17. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring

    PubMed Central

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo

    2016-01-01

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs. PMID:26435541

  18. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring.

    PubMed

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo; Lee, Byeong Chun

    2016-09-30

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.

  19. Welfare in horse breeding

    PubMed Central

    Campbell, M. L. H.; Sandøe, P.

    2015-01-01

    Welfare problems related to the way horses are bred, whether by coitus or by the application of artificial reproduction techniques (ARTs), have been given no discrete consideration within the academic literature. This paper reviews the existing knowledge base about welfare issues in horse breeding and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations. PMID:25908746

  20. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  1. [Mystery and problems of cloning].

    PubMed

    Nikitin, V A

    2010-01-01

    The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.

  2. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    PubMed

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  3. Dogs cloned from adult somatic cells.

    PubMed

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  4. Developments in European horse breeding and consequences for veterinarians in equine reproduction.

    PubMed

    Aurich, J; Aurich, C

    2006-08-01

    The liberalization of European animal breeding legislation and an increasing diversity of equestrian sports have led to a constant rise in the number of horse breeds and breed registries. In addition to the trend towards more and smaller breed registries, there is another trend towards an international expansion of the bigger established sport horse breeds. Regional breeds, at least in smaller countries, may no longer be able to run an independent breeding programme. The typical horse breeder, in the future, will be a female and qualified in equestrian sports. Artificial insemination (AI) mainly with fresh or cooled-transported semen has become a major breeding tool, allowing breeders all over Europe to benefit from the best stallions of most breeds. New AI techniques such as low-dose insemination may remain restricted to individual stallions and also the interest of breeding programmes in sex determination of foals via semen sorting is limited. Embryo transfer and associated techniques, although allowed by most breeds, have not contributed significantly to genetic progress in European sport horses so far. A potential use of cloning may be to produce gonad-intact copies from geldings that have performed to a superior level. With a more open and international structure of horse breeding and increased use of AI, equine reproduction and biotechnology should be emphasized by veterinary curricula and continuing professional education programmes.

  5. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition.

  6. Molecular genetics: DNA analysis of a putative dog clone.

    PubMed

    Parker, Heidi G; Kruglyak, Leonid; Ostrander, Elaine A

    2006-03-09

    In August 2005, Lee et al. reported the first cloning of a domestic dog from adult somatic cells. This putative dog clone was the result of somatic-cell nuclear transfer from a fibroblast cell of a three-year-old male Afghan hound into a donor oocyte provided by a dog of mixed breed. In light of recent concerns regarding the creation of cloned human cell lines from the same institution, we have undertaken an independent test to determine the validity of the claims made by Lee et al..

  7. Allele mining and enhanced genetic recombination for rice breeding.

    PubMed

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources.

  8. Statistical inference for classification of RRIM clone series using near IR reflectance properties

    NASA Astrophysics Data System (ADS)

    Ismail, Faridatul Aima; Madzhi, Nina Korlina; Hashim, Hadzli; Abdullah, Noor Ezan; Khairuzzaman, Noor Aishah; Azmi, Azrie Faris Mohd; Sampian, Ahmad Faiz Mohd; Harun, Muhammad Hafiz

    2015-08-01

    RRIM clone is a rubber breeding series produced by RRIM (Rubber Research Institute of Malaysia) through "rubber breeding program" to improve latex yield and producing clones attractive to farmers. The objective of this work is to analyse measurement of optical sensing device on latex of selected clone series. The device using transmitting NIR properties and its reflectance is converted in terms of voltage. The obtained reflectance index value via voltage was analyzed using statistical technique in order to find out the discrimination among the clones. From the statistical results using error plots and one-way ANOVA test, there is an overwhelming evidence showing discrimination of RRIM 2002, RRIM 2007 and RRIM 3001 clone series with p value = 0.000. RRIM 2008 cannot be discriminated with RRIM 2014; however both of these groups are distinct from the other clones.

  9. 1980 breeding bird censuses

    SciTech Connect

    Raynor, G.S.

    1980-09-01

    As part of a program to characterize the plant and animal life of the Laboratory site and the surrounding region, the two breeding bird censuses originated in 1977 were continued in 1980. Coverage was below that of previous years due to illness and travel of some participants, but 11 trips were made to the BNL plot and 8 to the Westhampton plot. Each was censused by separate teams of three volunteer observers. The number of breeding species and number of territorial males on the BNL plot have progressively declined since 1977 but little change has taken place in either number of territories or species composition on the Westhampton plot.

  10. Keeping up with the cloneses--issues in human cloning.

    PubMed

    Rollin, B E

    1999-01-01

    The advent of cloning animals has created a maelstrom of social concern about the "ethical issues" associated with the possibility of cloning humans. When the "ethical concerns" are clearly examined, however, many of them turn out to be less matters of rational ethics than knee-jerk emotion, religious bias, or fear of that which is not understood. Three categories of real and spurious ethical concerns are presented and discussed: 1) that cloning is intrinsically wrong, 2) that cloning must lead to bad consequences, and 3) that cloning harms the organism generated. The need for a rational ethical framework for discussing biotechnological advances is presented and defended.

  11. Uncertain breeding: a short history of reproduction in monotremes.

    PubMed

    Temple-Smith, P; Grant, T

    2001-01-01

    Although much is known about the biology of monotremes, many important aspects of their reproduction remain unclear. Studies over the last century have provided valuable information on various aspects of monotreme reproduction including the structure and function of their reproductive system, breeding behaviour, sex determination and seasonality. All three living genera of monotremes have been successfully maintained in captivity, often for long periods, yet breeding has been rare and unpredictable. When breeding has occurred, however, significant gains in knowledge have ensued; for example a more accurate estimate of the gestation period of the platypus and the incubation period for the Tachyglossus egg. One of the great challenges for zoos has been to understand why breeding of monotremes is difficult to achieve. Analysis of breeding successes of platypuses and short-beaked echidnas provides some insights. The evidence suggests that although annual breeding seasons are regionally predictable, individual adult females breed unpredictably, with some showing breeding intervals of many years. The reason for this variation in individual breeding intervals may be resource-dependant, influenced by social factors or may even be genetically induced. Better knowledge of factors that influence breeding intervals may improve the success of monotreme captive breeding programmes. More certainty in captive breeding is also an important issue for enterprises wishing to trade in Australian wildlife since current legislation limits export of Australian fauna for display to at least second-generation captive-bred individuals. Given their unique evolutionary position, knowledge of reproduction in monotremes needs to be gained in advance of any future population declines so that appropriate strategies can be developed to ensure their survival.

  12. Research on reproduction is essential for captive breeding of endangered carnivore species.

    PubMed

    Jewgenow, K; Braun, B C; Dehnhard, M; Zahmel, J; Goeritz, F

    2017-04-01

    Assisted reproductive technology (ART) has great potential for conservation, but its successful application in captive breeding programmes of endangered species is often compromised by limited background on species' biology. Although carnivore species benefit from knowledge obtained in domesticated species (dogs, cats and ferrets), the focus of research is different. In pet animals, research in reproduction has mainly been focused on ovarian function and contraception, although substantial progress has also been made in the field of in vitro embryo production, transgenic embryos and cloning to aid relevant medical models. In endangered species, however, research should focus on characterizing reproductive traits (cyclicity and seasonality) to unravel species-specific endocrine principles of reproduction physiology. Based on this knowledge, it is crucial to enhance the ability to manipulate female reproductive cycles, especially those of embryo recipients. Furthermore, research conducted on molecular and cellular mechanisms of gamete and embryo development, as well as on cryopreservation protocols of gametes and embryos, is required for successful implementation of advanced ART to wild carnivores. This review will provide a summary on the state of the art with focus on ART contributing to conservation breeding of endangered carnivores.

  13. Multipartite asymmetric quantum cloning

    SciTech Connect

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-10-15

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

  14. Healthy ageing of cloned sheep

    PubMed Central

    Sinclair, K. D.; Corr, S. A.; Gutierrez, C. G.; Fisher, P. A.; Lee, J.-H.; Rathbone, A. J.; Choi, I.; Campbell, K. H. S.; Gardner, D. S.

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7–9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals. PMID:27459299

  15. Duration of gestation in pregnant dogs carrying cloned fetuses.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Park, Eun Jung; Jo, Young Kwang; Lee, Byeong Chun

    2013-01-15

    The aim of this study was to investigate gestation duration and the physiologic characteristics of pregnant dogs bearing cloned fetuses, especially in the prepartum period. A retrospective study was performed to compare gestation duration in females pregnant with cloned (somatic cell nuclear transfer) fetuses (cloned group) with those bearing noncloned fetuses (control group), and effects of litter size, birth weight, and breed of somatic cell donors on gestation duration in the cloned group were evaluated. Clinical delivery onset signs associated with serum progesterone concentration and rectal temperature were also compared in both groups. The gestation duration calculated from day of ovulation was significantly longer in the cloned (62.8 ± 0.3 days) versus the control group (60.9 ± 0.5 days; P < 0.001). There was a negative correlation between litter size and gestation duration including both groups (r = -0.59; P < 0.01), but there were no differences between birth weights or breed of cell donors and gestation duration in the cloned group. Even though the basal rectal temperature in the prepartum period was not different between control and cloned groups (36.9 ± 0.1 °C and 37.2 ± 0.1 °C, respectively), serum progesterone concentration on delivery day was significantly higher in the cloned group (2.2 ± 0.4 ng/ml) compared with the control group (0.5 ± 0.1 ng/ml; P < 0.05). The longer gestation duration of pregnant dogs bearing cloned fetuses might be because of the smaller litter size in this group. Also, the weaker drop in serum progesterone levels in the prepartum period in cloned dog pregnancies indicates that the parturition signaling process might be altered resulting in longer gestation periods.

  16. Benefits and problems with cloning animals.

    PubMed Central

    Smith, L C; Bordignon, V; Babkine, M; Fecteau, G; Keefer, C

    2000-01-01

    Animal cloning is becoming a useful technique for producing transgenic farm animals and is likely to be used to produce clones from valuable adults. Other applications will also undoubtedly be discovered in the near future, such as for preserving endangered breeds and species. Although cloning promises great advantages for commerce and research alike, its outcome is not always certain due to high pregnancy losses and high morbidity and mortality during the neonatal period. Research into the mechanisms involved in the reprogramming of the nucleus is being conducted throughout the world in an attempt to better understand the molecular and cellular mechanisms involved in correcting these problems. Although the cause of these anomalies remains mostly unknown, similar phenotypes have been observed in calves derived through in vitro fertilization, suggesting that culture conditions are involved in these phenomena. In the meantime, veterinarians and theriogenologists have an important role to play in improving the efficiency of cloning by finding treatments to assure normal gestation to term and to develop preventative and curative care for cloned neonates. Images Figure 1. PMID:11143925

  17. Hop Cultivars and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in hops varies among cultivars. Historically, the primary objective of hop breeding programs has been to increase the yield or characteristics associated with either bittering (high alpha-acids) or aroma (unique volatile oil profiles) cultivars. Other factors consid...

  18. Lettuce and spinach breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges. This report to the California Leafy Greens Research Program annual meeting provides an update by the ‘Genetic Enhancement of Lettuce, Spinach, Melon, and Related Species’ project at Salinas on the genetics and breeding...

  19. Raspberry Breeding and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the origin, speciation, and history of improvement of the raspberries, Rubus section idaeobatus. The world industry in North America, Australasia, China, Europe, Eastern Europe, Africa, and South America and the breeding objectives of programs in those areas are discussed. Ger...

  20. Animal Cloning and Food Safety

    MedlinePlus

    ... milk from clones of cattle, swine (pigs), and goats, and the offspring of clones from any species ... composition of food products from cattle, swine, and goat clones, or the offspring of any animal clones, ...

  1. A Gateway MultiSite Recombination Cloning Toolkit

    PubMed Central

    Petersen, Lena K.; Stowers, R. Steven

    2011-01-01

    The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org). PMID:21931740

  2. High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC).

    PubMed

    Camilo, Cesar M; Polikarpov, Igor

    2014-07-01

    Recent advances in DNA sequencing techniques have led to an explosion in the amount of available genome sequencing data and this provided an inexhaustible source of uncharacterized glycoside hydrolases (GH) to be studied both structurally and enzymatically. Ligation-Independent Cloning (LIC), an interesting alternative to traditional, restriction enzyme-based cloning, and commercial recombinatorial cloning, was adopted and optimized successfully for a high throughput cloning, expression and purification pipeline. Using this platform, 130 genes encoding mainly uncharacterized glycoside hydrolases from 13 different organisms were cloned and submitted to a semi-automated protein expression and solubility screening in Escherichia coli, resulting in 73 soluble targets. The high throughput approach proved to be a powerful tool for production of recombinant glycoside hydrolases for further structural and biochemical characterization and confirmed that thioredoxin fusion tag (TRX) is a better choice to increase solubility of recombinant glycoside hydrolases expressed in E. coli, when compared to His-tag alone.

  3. Ethical issues regarding human cloning: a nursing perspective.

    PubMed

    Dinç, Leyla

    2003-05-01

    Advances in cloning technology and successful cloning experiments in animals raised concerns about the possibility of human cloning in recent years. Despite many objections, this is not only a possibility but also a reality. Human cloning is a scientific revolution. However, it also introduces the potential for physical and psychosocial harm to human beings. From this point of view, it raises profound ethical, social and health related concerns. Human cloning would have an impact on the practice of nursing because it could result in the creation of new physiological and psychosocial conditions that would require nursing care. The nursing profession must therefore evaluate the ethics of human cloning, in particular the potential role of nurses. This article reviews the ethical considerations of reproductive human cloning, discusses the main reasons for concern, and reflects a nursing perspective regarding this issue.

  4. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  5. The cloning of T lymphocytes.

    PubMed

    Schwartz, R H

    1982-02-01

    A new era of cellular immunology is clearly at hand. It is now possible, with a little bit of effort, to isolate monoclonal populations of T cells specific for any given antigen. The implications o f this technological advance are enormous in terms of applications to basic research and clinical medicine. In this article the two basic approaches that have been used to clone T lymphocytes are outlined, the pros and cons of each technique discussed and examples are given of recent experiments which have exploited this technology to gain new insights into T-cell specificity.

  6. Application of Genomic Tools in Plant Breeding

    PubMed Central

    Pérez-de-Castro, A.M.; Vilanova, S.; Cañizares, J.; Pascual, L.; Blanca, J.M.; Díez, M.J.; Prohens, J.; Picó, B.

    2012-01-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, ‘breeding by design’, or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the ‘superdomestication’ of crops and the genetic dissection and breeding for complex traits. PMID:23115520

  7. Brain size-related breeding strategies in a seabird.

    PubMed

    Jaatinen, Kim; Öst, Markus

    2016-01-01

    The optimal compromise between decision speed and accuracy may depend on cognitive ability, associated with the degree of encephalization: larger brain size may select for accurate but slow decision-making, beneficial under challenging conditions but costly under benign ones. How this brain size-dependent selection pressure shapes avian breeding phenology and reproductive performance remains largely unexplored. We predicted that (1) large-brained individuals have a delayed breeding schedule due to thorough nest-site selection and/or prolonged resource acquisition, (2) good condition facilitates early breeding independent of relative brain size, and (3) large brain size accrues benefits mainly to individuals challenged by environmental or intrinsic constraints. To test these predictions, we examined how the relative head volume of female eiders (Somateria mollissima) of variable body condition correlated with their breeding schedule, hatching success and offspring quality. The results were consistent with our predictions. First, large head size was associated with a progressively later onset of breeding with increasing breeding dispersal distance. Second, increasing body condition advanced the timing of breeding, but this effect was significantly weaker in large-brained females. Third, larger head volume was associated with increased hatching success mainly among late breeders and those in poor body condition, and duckling body condition was positively related to maternal head volume, but only in poor-condition mothers. Our study is, to our knowledge, the first to demonstrate the presence of brain size-related differences in reproductive strategies within a single natural population.

  8. Targeted Proteomics Approach for Precision Plant Breeding.

    PubMed

    Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik

    2016-02-05

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.

  9. The inadequacies of absolute prohibition of reproductive cloning.

    PubMed

    Lee, Martin Lishexian

    2004-02-01

    This study reviews debates on human cloning and its benefits, considers international and domestic laws, and argues that the choice of reproductive means is a human right. In exercise of this right, a balanced approach should be adopted, in order to benefit human society while protecting human dignity adequately. The immaturity of cloning techniques indicates that at the present time human reproductive cloning is too risky. Thus a temporary ban on such cloning is appropriate, but the ban on relevant scientific research and animal experimentation is inappropriate as it denies the spirit of freedom of scientific inquiry, and hinders making the benefits of scientific advancement available to human society as a whole.

  10. Genome Mapping and Molecular Breeding of Tomato

    PubMed Central

    Foolad, Majid R.

    2007-01-01

    The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989

  11. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  12. Breed-Predispositions to Cancer in Pedigree Dogs

    PubMed Central

    Dobson, Jane M.

    2013-01-01

    Cancer is a common problem in dogs and although all breeds of dog and crossbred dogs may be affected, it is notable that some breeds of pedigree dogs appear to be at increased risk of certain types of cancer suggesting underlying genetic predisposition to cancer susceptibility. Although the aetiology of most cancers is likely to be multifactorial, the limited genetic diversity seen in purebred dogs facilitates genetic linkage or association studies on relatively small populations as compared to humans, and by using newly developed resources, genome-wide association studies in dog breeds are proving to be a powerful tool for unravelling complex disorders. This paper will review the literature on canine breed susceptibility to histiocytic sarcoma, osteosarcoma, haemangiosarcoma, mast cell tumours, lymphoma, melanoma, and mammary tumours including the recent advances in knowledge through molecular genetic, cytogenetic, and genome wide association studies. PMID:23738139

  13. Use of BAC clones as standardized reagents for Marek’s disease virus research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cloning of the Marek’s disease virus (MDV) genome as an infectious bacterial artificial chromosome (BAC) clone have led to major advances through our ability to study individual gene function by making precise insertions and deletions in the viral genome. We believe that MDV BAC clones will repl...

  14. RosBREED: Enabling Marker-Assisted Breeding In Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RosBREED will create a national, dynamic, sustained effort in research, infrastructure establishment, training, and extension for applying marker-assisted breeding (MAB) to deliver improved plant materials more efficiently and rapidly. The Rosaceae family (including apple, peach, sweet and tart cher...

  15. Photonic Programmable Tele-Cloning Network

    PubMed Central

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838

  16. Photonic Programmable Tele-Cloning Network

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Ming-Cheng

    2016-06-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  17. Photonic Programmable Tele-Cloning Network.

    PubMed

    Li, Wei; Chen, Ming-Cheng

    2016-06-29

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  18. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  19. M6: A diploid potato inbred line for use in breeding and genetics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    M6 is a vigorous, homozygous breeding line derived by self-pollinating the diploid wild potato relative Solanum chacoense for seven generations. While most wild Solanum species are self-incompatible, this clone is homozygous for the dominant self-incompatibility inhibitor gene Sli. It is homozygous ...

  20. Procreative liberty, enhancement and commodification in the human cloning debate.

    PubMed

    Shapshay, Sandra

    2012-12-01

    The aim of this paper is to scrutinize a contemporary standoff in the American debate over the moral permissibility of human reproductive cloning in its prospective use as a eugenic enhancement technology. I shall argue that there is some significant and under-appreciated common ground between the defenders and opponents of human cloning. Champions of the moral and legal permissibility of cloning support the technology based on the right to procreative liberty provided it were to become as safe as in vitro fertilization and that it be used only by adults who seek to rear their clone children. However, even champions of procreative liberty oppose the commodification of cloned embryos, and, by extension, the resulting commodification of the cloned children who would be produced via such embryos. I suggest that a Kantian moral argument against the use of cloning as an enhancement technology can be shown to be already implicitly accepted to some extent by champions of procreative liberty on the matter of commodification of cloned embryos. It is in this argument against commodification that the most vocal critics of cloning such as Leon Kass and defenders of cloning such as John Robertson can find greater common ground. Thus, I endeavor to advance the debate by revealing a greater degree of moral agreement on some fundamental premises than hitherto recognized.

  1. [Human cloning or cannibalism].

    PubMed

    Sokolowski, L M

    2001-01-01

    In this article I develop the idea presented in my previous work that human cloning would be of little practical use since almost any aim that one would like to attain by multiple cloning of a concrete man or a group of people, are unattainable or it might be achieved by easier, cheaper and more efficient traditional methods. For this reason cloning of a man is unlikely to occur on a larger scale and only few people will decide to clone themselves. In this sense no social effects of human cloning will be disastrous for the human population. Yet investigations in human genetics are very important since they may provide medical applications far more important than human cloning. It is argued that the main trend of modern medicine: organ transplantation from an alien donor, will become socially dangerous in near future since the number of donors will be drastically smaller than the number of potential patients waiting for transplantations. This in turn may cause social conflicts and a form of medical cannibalism may arise. These problems and conflicts will be avoided if organ transplantation from an alien donor is replaced by organ cloning, i.e. by transplanting an organ developed from the patient.

  2. On cloning human beings.

    PubMed

    de Melo-Martin, Inmaculada

    2002-06-01

    The purpose of this paper is to show that arguments for and against cloning fail to make their case because of one or both of the following reasons: 1) they take for granted customary beliefs and assumptions that are far from being unquestionable; 2) they tend to ignore the context in which human cloning is developed. I will analyze some of the assumptions underlying the main arguments that have been offered for and against cloning. Once these assumptions are critically analyzed, arguments both rejecting and supporting human cloning seem to lose weight. I will first briefly present the main arguments that have been proposed against cloning and I will argue that they fail to establish their case. In the next section I will evaluate some of the positive arguments that have been offered supporting such technology. This analysis will show that the case for cloning also fails. Finally, I will maintain that because critics and especially supporters of this technology neglect the context in which human cloning is developed and might be implemented, their arguments are far from compelling.

  3. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6,834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in t...

  4. Do Managers Clone Themselves?

    ERIC Educational Resources Information Center

    Baron, Alma S.

    1981-01-01

    A recent questionnaire survey provides statistics on male managers' views of female managers. The author recommends that male managers break out of their cloning behavior and that the goal ought to be a plurality in management. (Author/WD)

  5. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  6. Breed- and age-related differences in canine mammary tumors.

    PubMed

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-04-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted.

  7. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  8. Twins: A cloning experience.

    PubMed

    Prainsack, Barbara; Spector, Tim D

    2006-11-01

    Drawing upon qualitative interviews with monozygotic (identical) twins sharing 100% of their genes, and with dizygotic (fraternal) twins and singletons as control groups, this paper explores what it means to be genetically identical. (The twins interviewed were from the TwinsUK register in London.) In the context of the ongoing debate on human reproductive cloning, it examines questions such as: To what extent do identical twins perceive their emotional and physical bond to be a result of their genetic makeup? What would they think if they had been deliberately created genetically identical? How would they feel about being genetically identical to a person who was born a few years earlier or later? First, our respondents ascribed no great significance to the role of genes in their understanding of what it means to be identical twins. Second, the opinion that human reproductive cloning would "interfere with nature", or "contradict God's will", was expressed by our respondents exclusively on the abstract level. The more our respondents were able to relate a particular invented cloning scenario to their own life-worlds, the lower the prevalence of the argument. Third, for all three groups of respondents, the scenario of having been born in one of the other groups was perceived as strange. Fourth, the aspect that our respondents disliked about cloning scenarios was the potential motives of the cloners. Without equating monozygotic twins directly with "clones", these results from "naturally" genetically identical individuals add a new dimension to what a future cloning situation could entail: The cloned person might possibly (a) perceive a close physical and emotional connection to the progenitor as a blessing; (b) suffer from preconceptions of people who regard physical likeness as a sign of incomplete individuality; and (c) perceive the idea of not having been born a clone of a particular person as unpleasant.

  9. A cloned toy poodle produced from somatic cells derived from an aged female dog.

    PubMed

    Jang, G; Hong, S G; Oh, H J; Kim, M K; Park, J E; Kim, H J; Kim, D Y; Lee, B C

    2008-03-15

    To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed recipient female dogs.

  10. Sugars in peach fruit: a breeding perspective

    PubMed Central

    Cirilli, Marco; Bassi, Daniele; Ciacciulli, Angelo

    2016-01-01

    The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in ‘omics’ sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders. PMID:26816618

  11. RosBREED: Enabling Marker-Assisted Breeding in Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics research has not yet been translated into routine practical application in breeding Rosaceae fruit crops (peach, apple, strawberry, cherry, apricot, pear, raspberry, etc.). Through dedicated efforts of many researchers worldwide, a wealth of genomics resources has accumulated, including ES...

  12. Competitor phenology as a social cue in breeding site selection.

    PubMed

    Samplonius, Jelmer M; Both, Christiaan

    2017-05-01

    Predicting habitat quality is a major challenge for animals selecting a breeding patch, because it affects reproductive success. Breeding site selection may be based on previous experience, or on social information from the density and success of competitors with an earlier phenology. Variation in animal breeding phenology is often correlated with variation in habitat quality. Generally, animals breed earlier in high-quality habitats that allow them to reach a nutritional threshold required for breeding earlier or avoid nest predation. In addition, habitat quality may affect phenological overlap between species and thereby interspecific competition. Therefore, we hypothesized that competitor breeding phenology can be used as social cue by settling migrants to locate high-quality breeding sites. To test this hypothesis, we experimentally advanced and delayed hatching phenology of two resident tit species on the level of study plots and studied male and female settlement patterns of migratory pied flycatchers Ficedula hypoleuca. The manipulations were assigned at random in two consecutive years, and treatments were swapped between years in sites that were used in both years. In both years, males settled in equal numbers across treatments, but later arriving females avoided pairing with males in delayed phenology plots. Moreover, male pairing probability declined strongly with arrival date on the breeding grounds. Our results demonstrate that competitor phenology may be used to assess habitat quality by settling migrants, but we cannot pinpoint the exact mechanism (e.g. resource quality, predation pressure or competition) that has given rise to this pattern. In addition, we show that opposing selection pressures for arrival timing may give rise to different social information availabilities between sexes. We discuss our findings in the context of climate warming, social information use and the evolution of protandry in migratory animals.

  13. Best of Breed

    NASA Technical Reports Server (NTRS)

    Lohn, Jason

    2004-01-01

    No team of engineers, no matter how much time they took or how many bottles of cabernet they consumed, would dream up an antenna that looked like a deer antler on steroids. Yet that's what a group at NASA Ames Research Center came up with-thanks to a little help from Darwin. NASA's Space Technology 5 nanosatellites, which are scheduled to start measuring Earth's magnetosphere in late 2004, requires an antenna that can receive a wide range of frequencies regardless of the spacecraft's orientation. Rather than leave such exacting requirements in the hands of a human, the engineers decided to breed a design using genetic algorithms and 32 Linux PCs. The computers generated small antenna-constructing programs (the genotypes) and executed them to produce designs (the phenotypes). Then the designs were evaluated using an antenna simulator. The team settled on the form pictured here. You won't find this kind of antenna in any textbook, design guide, or research paper. But its innovative structure meets a challenging set of specifications. If successfully deployed, it will be the first evolved antenna to make it out of the lab and the first piece of evolved hardware ever to fly in space.

  14. Animal breeding and disease

    PubMed Central

    Nicholas, Frank W

    2005-01-01

    Single-locus disorders in domesticated animals were among the first Mendelian traits to be documented after the rediscovery of Mendelism, and to be included in early linkage maps. The use of linkage maps and (increasingly) comparative genomics has been central to the identification of the causative gene for single-locus disorders of considerable practical importance. The ‘score-card’ in domestic animals is now more than 100 disorders for which the molecular lesion has been identified and hence for which a DNA test is available. Because of the limited lifespan of any such test, a cost-effective and hence popular means of protecting the intellectual property inherent in a DNA test is not to publish the discovery. While understandable, this practice creates a disconcerting precedent. For multifactorial disorders that are scored on an all-or-none basis or into many classes, the effectiveness of control schemes could be greatly enhanced by selection on estimated breeding values for liability. Genetic variation for resistance to pathogens and parasites is ubiquitous. Selection for resistance can therefore be successful. Because of the technical and welfare challenges inherent in the requirement to expose animals to pathogens or parasites in order to be able to select for resistance, there is a very active search for DNA markers for resistance. The first practical fruits of this research were seen in 2002, with the launch of a national scrapie control programme in the UK. PMID:16048793

  15. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  16. [Exaggerated breed characteristics in dogs].

    PubMed

    Wilting, M M; Endenburg, N

    2012-01-01

    Dutch dog owners seem to be aware of bad dog breeding practices with regard to exaggerated breed characteristics that are detrimental to the dog's welfare. Yet they do not always look for these features when buying a dog. Most dog owners think that veterinarians could have an important role in preventing these exaggerated physical traits, by providing information about these traits and taking action in their capacity as veterinarian. Articles 36 and 55 of the Dutch GWWD (animal health and welfare law) provide opportunities to act against the breeding of dogs with exaggerated genetic traits.

  17. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.

    PubMed

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.

  18. Alloreactive T cell clones.

    PubMed

    Fitch, F W

    1984-01-01

    T cell clones are useful models for studying lymphocyte function both at the level of the individual cell and in interacting systems. Murine cytolytic and non- cytolyic T cell clones have been obtained with relative ease, and the particular procedure used to derive and maintain T cell clones may influence profoundly the characteristics of the resulting cells. The method of choice depends on the specific question to be asked. Although some clones have characteristics that would have been expected on the basis of results observed with bulk cell populations, other clones have rather unexpected properties. Although most T cell clones appear to be either cytolytic or non-cytolytic, this distinction is not always absolute. A high proportion of both cytolytic and non-cytolytic T cell clones have dual reactivity. This is true for cells which by other criteria appear to be true clones. The frequency of such cells is high enough to suggest that most if not all T cells may have reactivity for more than one antigenic determinant or that antigenic determinants recognized by T cells are shared widely and unexpectedly. It is not clear whether one or two different antigen receptors account for such dual reactivity. The nature of the T cell receptor for antigen remains obscure. T cell clones, because of their homogeneous nature, should make it easier to answer these important immunological questions. Although it remains to be determined how many distinct molecules account for the numerous biological activities found in the culture supernatants from antigen-stimulated T cell clones, it is clear that these factors influence several different types of cells that are involved directly and indirectly in immune responses. IL-2 stimulates both cytolytic and non-cytolytic T cells to proliferate. BCSF causes polyclonal activation of B cells, and there may be other factors which influence B cell responses to antigenic stimulation. IL-3 apparently stimulates maturation of immature T cells

  19. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802.

    PubMed

    Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan

    2010-02-01

    Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.

  20. Therapeutic cloning and the constitution--a Canadian perspective.

    PubMed

    Muscati, S A

    2001-08-01

    Recent developments in the field of therapeutic cloning have been welcomed by many in the medical community as important breakthroughs that may help provide a better understanding of a variety of human diseases. Nevertheless, research in this field appears to have struck a sensitive nerve in society. A large amount of social debate has been generated regarding the validity of therapeutic cloning, and there are many seeking legislation to have the practice restricted. It is unclear, however, whether such restrictions can be legally justified. Analysing cloning in such a social and legal context raises a number of questions. What scientific procedures are behind therapeutic cloning? What is the legal status of the cultured or unimplanted embryo? Can cloning be considered an aspect of reproductive liberty as protected by the constitution? What medical advances might therapeutic cloning further? What social benefits and harms might arise from its promotion or restriction? Such questions, and the broader debate surrounding human therapeutic cloning, are addressed in this paper in three parts. Part 1 presents an overview of the basic biological principles behind cloning and the science behind the therapeutic cloning of specific cells and tissues. Part 2 analyses ss. 7, 2, 15(1) and 1 of the Canadian Charter of Rights and Freedoms and how they may be implicated by legal incursions into the field of human cloning. Several Charter-based arguments, both for and against the practice, are presented. Finally, Part 3 assesses some recent scientific developments in cloning technology, and how they affect the debate over the constitutionality of human therapeutic cloning.

  1. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding

    PubMed Central

    Wang, Wenqin; Le, Hien T. T.

    2016-01-01

    Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding. PMID:28097123

  2. Breeding gravitational lenses

    NASA Astrophysics Data System (ADS)

    Liesenborgs, J.; de Rijcke, S.; Dejonghe, H.; Bekaert, P.

    2011-03-01

    Gravitational lenses are a spectacular astrophysical phenomenon, a cosmic mirage caused by the gravitational deflection of light in which multiple images of a same background object can be seen. Their beauty is only exceeded by their usefulness, as the gravitational lens effect is a direct probe of the total mass of the deflecting object. Furthermore, since the image configuration arising from the gravitational lens effect depends on the exact gravitational potential of the deflector, it even holds the promise of learning about the distribution of the mass. In this presentation, a method for extracting the information encoded in the images and reconstructing the mass distribution is presented. Being a non-parametric method, it avoids making a priori assumptions about the shape of the mass distribution. At the core of the procedure lies a genetic algorithm, an optimization strategy inspired by Darwin's principle of ``survival of the fittest''. One only needs to specify a criterion to decide if one particular trial solution is deemed better than another, and the genetic algorithm will ``breed'' appropriate solutions to the problem. In a similar way, one can create a multi-objective genetic algorithm, capable of optimizing several fitness criteria at the same time. This provides a very flexible way to incorporate all the available information in the gravitational lens system: not only the positions and shapes of the multiple images are used, but also the so-called ``null space'', i.e. the area in which no such images can be seen. The effectiveness of this approach is illustrated using simulated data, which allows one to compare the reconstruction to the true mass distribution.

  3. Efficient Breeding by Genomic Mating.

    PubMed

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  4. Efficient Breeding by Genomic Mating

    PubMed Central

    Akdemir, Deniz; Sánchez, Julio I.

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population. PMID:27965707

  5. Hybrid breeding in autogamous cereals.

    PubMed

    Longin, Carl Friedrich Horst; Mühleisen, Jonathan; Maurer, Hans Peter; Zhang, Hongliang; Gowda, Manje; Reif, Jochen Christoph

    2012-10-01

    Hybrid breeding in autogamous cereals has a long history of attempts with moderate success. There is a vast amount of literature investigating the potential problems and solutions, but until now, market share of hybrids is still a niche compared to line varieties. Our aim was to summarize the status quo of hybrid breeding efforts for the autogamous cereals wheat, rice, barley, and triticale. Furthermore, the research needs for a successful hybrid breeding in autogamous cereals are intensively discussed. To our opinion, the basic requirements for a successful hybrid breeding in autogamous cereals are fulfilled. Nevertheless, optimization of the existing hybridization systems is urgently required and should be coupled with the development of clear male and female pool concepts. We present a quantitative genetic framework as a first step to compare selection gain of hybrid versus line breeding. The lack of precise empirical estimates of relevant quantitative genetic parameters, however, is currently the major bottleneck for a robust evaluation of the potential of hybrid breeding in autogamous cereals.

  6. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  7. Mini review: breeding Awassi and Assaf sheep for diverse management conditions.

    PubMed

    Gootwine, Elisha

    2011-10-01

    The Local Awassi, a triple-purpose breed for meat, milk, and carpet-wool production, is a low-prolific, hardy breed that is well adapted to the unfavorable conditions of the Middle East, where it is managed under traditionally extensive to semi-extensive conditions. Breeding work with the Awassi has included within-breed selection, crossbreeding, and gene introgression. Those efforts resulted in a variety of Awassi-derived genotypes that successfully occupy semi-intensive as well as intensive production systems. Thus, within-breed selection resulted in development of the "Improved Awassi"-a dairy-type Awassi strain which, under intensive management, produces over 500 l milk/ewe annually; crossbreeding with the East Friesian breed led to the development of the Assaf dairy breed, which exceeds the Improved Awassi in prolificacy and in year-round breeding activity, and introgression of the B allele of the FecB locus into the Awassi and Assaf breeds resulted in the formation of the prolific Afec Awassi and Afec Assaf strains, with prolificacies of 1.9 and 2.5 lambs born per ewe lambing, respectively. Advanced molecular genetics tools have enabled a better understanding of how the Awassi breed was formed during domestication and have uncovered differences in its genetic structure compared to other breeds. Implementing large-scale selection schemes that implement emerging new information on the sheep genome, overcoming threats of inbreeding depression, and further breeding for high uterine capacity are the new breeding goals for the Awassi, Assaf, and their derivatives.

  8. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop.

    PubMed

    Ordonio, Reynante; Ito, Yusuke; Morinaka, Yoichi; Sazuka, Takashi; Matsuoka, Makoto

    2016-01-01

    Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.

  9. Age of first breeding interacts with pre- and post-recruitment experience in shaping breeding phenology in a long-lived gull.

    PubMed

    Bosman, Davy S; Vercruijsse, Harry J P; Stienen, Eric W M; Vincx, Magda; Lens, Luc

    2013-01-01

    Individual variation in timing of breeding is a key factor affecting adaptation to environmental change, yet our basic understanding of the causes of such individual variation is incomplete. This study tests several hypotheses for age-related variation in the breeding timing of Lesser Black-backed Gulls, based on a 13 year longitudinal data set that allows to decouple effects of age, previous prospecting behavior, and years of breeding experience on arrival timing at the colony. At the population level, age of first breeding was significantly associated with timing of arrival and survival, i.e. individuals tended to arrive later if they postponed their recruitment, and individuals recruiting at the age of 4 years survived best. However, up to 81% of the temporal variation in arrival dates was explained by within-individual effects. When excluding the pre-recruitment period, the effect of increasing age on advanced arrival was estimated at 11 days, with prior breeding experience accounting for a 7 days advance and postponed breeding for a 4 days delay. Overall, results of this study show that delayed age of first breeding can serve to advance arrival date (days after December 1(st)) in successive breeding seasons throughout an individual's lifetime, in large part due to the benefits of learning or experience gained during prospecting. However, prospecting and the associated delay in breeding also bear a survival cost, possibly because prospectors have been forced to delay through competition with breeders. More generally, results of this study set the stage for exploring integrated temporal shifts in phenology, resource allocation and reproductive strategies during individual lifecycles of long-lived migratory species.

  10. To clone alone: the United Nations' Human Cloning Declaration.

    PubMed

    Isasi, Rosario M; Annas, George J

    2006-01-01

    The United Nations labored for almost four years to create a treaty governing human cloning. In 2005 that effort was abandoned, and instead the United Nations' General Assembly adopted a "Declaration on Human Cloning".

  11. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    PubMed Central

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  12. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives.

    PubMed

    Boukar, Ousmane; Fatokun, Christian A; Huynh, Bao-Lam; Roberts, Philip A; Close, Timothy J

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  13. Experience-dependent natal philopatry of breeding greater flamingos.

    PubMed

    Balkiz, Ozge; Béchet, Arnaud; Rouan, Lauriane; Choquet, Rémi; Germain, Christophe; Amat, Juan A; Rendón-Martos, Manuel; Baccetti, Nicola; Nissardi, Sergio; Ozesmi, Uygar; Pradel, Roger

    2010-09-01

    1. Contrary to the generally high level of natal philopatry (i.e. likelihood that individuals breed at their natal colony) found in first-breeding colonial birds, little is known of natal philopatry later in life. Most hypotheses advanced to explain natal philopatry are valid at all ages. However, for young and inexperienced birds, the benefits of natal philopatry may be counterbalanced by the costs of intraspecific competition at the natal colony making dispersal temporarily advantageous. In turn, experience may increase competitive ability and make natal philopatry advantageous again. 2. We evaluated this hypothesis on the large-scale dispersal of greater flamingos Phoenicopterus roseus breeding among three colonies comprising >85% of the Western Mediterranean metapopulation. The Camargue (France) and Fuente de Piedra (Spain) are large and saturated colonies while Molentargius (Sardinia) is a recent and growing colony. 3. We used a 20-year capture-mark-resighting dataset of 4900 flamingos ringed as chicks in Camargue and Fuente de Piedra and breeding at the three colonies. We assessed the effects of natal colony and breeding experience (first-time observed breeders versus confirmed experienced breeders) on dispersal using multistate capture-recapture models. Dispersal to an unobservable state accounted for temporary emigration. 4. Fidelity was higher at the natal colony (>84%) than elsewhere. Fidelity increased with experience in the two large colonies (Camargue and Fuente de Piedra) suggesting a large-scale experience-related despotic distribution. Breeding dispersal was significant (up to 61% and 52% for first-time breeders and experienced breeders, respectively) so that colony dynamics is affected by exchanges with other colonies. Except for Fuente-born breeders leaving Molentargius, dispersal to the natal colony was higher than to any other colonies. 5. Survival was not higher at the natal colony. Inexperienced birds likely had lower breeding success at the

  14. Nuclear reprogramming of cloned embryos produced in vitro.

    PubMed

    Han, Y M; Kang, Y K; Koo, D B; Lee, K K

    2003-01-01

    Despite the fact that cloned animals derived from somatic cells have been successfully generated in a variety of mammalian species, there are still many unsolved problems with current cloning technology. Somatic cell nuclear transfer has shown several developmental aberrancies, including a high rate of abortion during early gestation and increased perinatal death. One cause of these developmental failures of cloned embryos may reside in the epigenetic reprogramming of somatic donor genome. In mammals, DNA methylation is an essential process in the regulation of transcription during embryonic development and is generally associated with gene silencing. A genome-wide demethylation may be a prerequisite for the formation of pluripotent stem cells that are important for later development. We analyzed methylation patterns in cloned bovine embryos to monitor the epigenetic reprogramming process of donor genomic DNA. Aberrant methylation profiles of cloned bovine embryos were observed in various genomic regions, except in single-copy gene sequences. The overall genomic methylation status of cloned embryos was quite different from that of normal embryos produced in vitro or in vivo. These results suggest that the developmental failures of cloned embryos may be due to incomplete epigenetic reprogramming of donor genomic DNA. We expect that advances in understanding the molecular events for reprogramming of donor genome will contribute to clarify the developmental defects of cloned embryos.

  15. Secure the Clones

    NASA Astrophysics Data System (ADS)

    Jensen, Thomas; Kirchner, Florent; Pichardie, David

    Exchanging mutable data objects with untrusted code is a delicate matter because of the risk of creating a data space that is accessible by an attacker. Consequently, secure programming guidelines for Java stress the importance of using defensive copying before accepting or handing out references to an internal mutable object. However, implementation of a copy method (like clone()) is entirely left to the programmer. It may not provide a sufficiently deep copy of an object and is subject to overriding by a malicious sub-class. Currently no language-based mechanism supports secure object cloning. This paper proposes a type-based annotation system for defining modular copy policies for class-based object-oriented programs. A copy policy specifies the maximally allowed sharing between an object and its clone. We present a static enforcement mechanism that will guarantee that all classes fulfill their copy policy, even in the presence of overriding of copy methods, and establish the semantic correctness of the overall approach in Coq. The mechanism has been implemented and experimentally evaluated on clone methods from several Java libraries.

  16. Applications of quantum cloning

    NASA Astrophysics Data System (ADS)

    Pomarico, E.; Sanguinetti, B.; Sekatski, P.; Zbinden, H.; Gisin, N.

    2011-10-01

    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detectors.

  17. The Cloning of America.

    ERIC Educational Resources Information Center

    Dobson, Judith E.; Dobson, Russell L.

    1981-01-01

    Proposes that the U.S. school system purports to prize human variability, but many educators are engaged in activities that seek to homogenize students. Describes these activities, including diagnosis, labeling, ability grouping, and positive reinforcement. Presents suggestions for counselors to combat sources of cloning and self-validation. (RC)

  18. Nutrient reserve dynamics of breeding canvasbacks

    USGS Publications Warehouse

    Barzen, J.A.; Serie, J.R.

    1990-01-01

    We compared nutrients in reproductive and nonreproductive tissues of breeding Canvasbacks (Aythya valisineria) to assess the relative importance of endogenous reserves and exogenous foods. Fat reserves of females increased during rapid follicle growth and varied more widely in size during the early phase of this period. Females began laying with ca. 205 g of fat in reserve and lost 1.8 g of carcass fat for every 1 g of fat contained in their ovary and eggs. Females lost body mass (primarily fat) at a declining rate as incubation advanced. Protein reserves increased directly with dry oviduct mass during rapid follicle growth. This direct relationship was highly dependent upon data from 2 birds and likely biased by structural size. During laying, protein reserves did not vary with the combined mass of dry oviduct and dry egg protein. Between laying and incubation, mean protein reserves decreased by an amount equal to the protein found in 2.1 Canvasback eggs. Calcium reserves did not vary with the cumulative total of calcium deposited in eggs. Mean calcium reserve declined by the equivalent content of 1.2 eggs between laying and incubation. We believe that protein and calcium were stored in small amounts during laying, and that they were supplemented continually by exogenous sources. In contrast, fat was stored in large amounts and contributed significantly to egg production and body maintenance. Male Canvasbacks lost fat steadily--but not protein or calcium--as the breeding season progressed.

  19. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  20. [Nuclear transfer and therapeutic cloning].

    PubMed

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  1. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  2. Diet of canvasbacks during breeding

    USGS Publications Warehouse

    Austin, J.E.; Serie, J.R.; Noyes, J.H.

    1990-01-01

    We examined diets of canvasbacks (Aythya valisineria) breeding in southwestern Manitoba during 1977-81. Percent volume of animal foods consumed did not differ between males and females nor among prenesting, rapid follicle growth, laying, incubation, and renesting periods in females (mean = 50.1%). Tubers and shoots of fennelleaf pondweed (Potamogeton pectinatus) and midge larvae (Chironomidae) were the predominant foods, comprising on average 45% and 23% of the diet volume, respectively. Continued importance of plant foods to canvasbacks throughout reproduction contrasts with the mostly invertebrate diets of other prairie-breeding ducks, and does not fit current theories of nutritional ecology of breeding anatids (i.e., females meet the protein requirements of reproduction by consuming a high proportion of animal foods).

  3. Emperor penguins breeding on iceshelves.

    PubMed

    Fretwell, Peter T; Trathan, Phil N; Wienecke, Barbara; Kooyman, Gerald L

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin's reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as "near threatened" in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species.

  4. Water relations of populus clones

    SciTech Connect

    Pallardy, S.G.; Kozlowski, T.T.

    1981-02-01

    Stomatal aperture and water balance in the field of eight Populus clones varying in growth rate were closely related to environmental factors and clonal differences were clearly expressed. Leaf water potential (psi) was influenced by solar radiation, leaf conductance, evaporative demand, and soil moisture content. The effects of soil moisture on psi were greatly modified by atmospheric conditions and stomatal conductance. Several slow-growing clones exhibited extended periods of psi below that of rapidly growing clones, despite high evaporative demand and the much greater transpiring surfaces of the fast-growing clones. Stomata of all clones responded to changes in light intensity and vapor pressure gradient (VPG). Pronounced stomatal sensitivity to VPG of two rapidly growing clones of common parentage, and the resultant capacity of these clones to moderate water deficits under high evaporative demand, were associated with drought resistance in one of the parents. Seasonal maximum leaf conductance was positively related to growth in several clones, suggesting that rapidly growing clones possess the capacity to carry on higher rates of gas exchange under favorable conditions. Analysis of changes in psi with changes in transpirational flux density (TFD) showed that for four clones, psi change per unit change in TFD decreased as TFD increased, indicating plant adaptation for prevention of damaging psi even at high TFD. More rapidly growing clones exhibited a larger initial rate of decline in psi with TFD, but reduced the rate of decline more than slow-growing clones as TFD increased. (Refs. 41).

  5. Cloning Components of Human Telomerase.

    DTIC Science & Technology

    1998-07-01

    nuclear factor NF90 homolog. (5 clones). RNA binding protein. Poorly understood. 3. FRG1 . Poorly understood. 4. DEK. Weak homology to Tetrahymena p95...least some of the clones for poorly understood genes (e.g. Hax-1, FRG1 , NF90, NF45, KIAA0098, KIAA0026, BAC397c4). Aim II. Functional Cloning of the

  6. Breeding monkeys for biomedical research

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  7. Breed base representation in dairy animals of 5 breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of DNA from different dairy breeds can be determined by genotyping, just as individual ancestors such as parents, grandparents, or even great grandparents can be identified correctly in a high percentage of the cases by genotyping even if not reported or reported incorrectly in pedigrees...

  8. Three concepts of cloning in human beings.

    PubMed

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  9. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    PubMed

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes.

  10. Transcriptome analysis of a breeding program pedigree examines gene expression diversity and reveals target genes for malting quality improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced cycle breeding utilizes crosses among elite lines and is a successful method to develop new inbreds. However, it results in a reduction in genetic diversity within the breeding population. The development of malting barley varieties requires the adherence to a narrow malting quality profile...

  11. The evolution of potato breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cultivars in most regions of the world are tetraploid and clonally propagated. For over a century, the breeding strategy has been phenotypic recurrent selection. However, the polyploid nature of the crop prevents breeders from eliminating deleterious alleles and assembling positive alleles fo...

  12. Breeding and propagating oakleaf hydrangeas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An oakleaf hydrangea breeding program at the U.S. National Arboretum’s worksite in McMinnville, Tenn. was started in 1996 for the purpose of developing attractive, compact oakleaf hydrangea cultivars suitable for use in small residential gardens. ‘Ruby Slippers’ and ‘Munchkin’ oakleaf hydrangeas we...

  13. USDA lettuce breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lettuce industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The USDA lettuce breeding and genetics project aims to incorporate valuable traits into crisphead, mixed...

  14. Recent progress and problems in animal cloning.

    PubMed

    Tsunoda, Y; Kato, Y

    2002-01-01

    It is remarkable that mammalian somatic cell nuclei can form whole individuals if they are transferred to enucleated oocytes. Advancements in nuclear transfer technology can now be applied for genetic improvement and increase of farm animals, rescue of endangered species, and assisted reproduction and tissue engineering in humans. Since July 1998, more than 200 calves have been produced by nuclear transfer of somatic cell nuclei in Japan, but half of them were stillborn or died within several months of parturition. Morphologic abnormalities have also been observed in cloned calves and embryonic stem cell-derived mice. In this review, we discuss the present situation and problems with animal cloning and the possibility for its application to human medicine.

  15. Probabilistic cloning of equidistant states

    SciTech Connect

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-08-15

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  16. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  17. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  18. Conservation priorities for Ethiopian sheep breeds combining threat status, breed merits and contributions to genetic diversity

    PubMed Central

    Gizaw, Solomon; Komen, Hans; Windig, Jack J; Hanotte, Olivier; van Arendonk, Johan AM

    2008-01-01

    Prioritizing livestock breeds for conservation needs to incorporate both genetic and non-genetic aspects important for the survival of the breeds. Here, we apply a maximum-utility-strategy to prioritize 14 traditional Ethiopian sheep breeds based on their threat status, contributions to farmer livelihoods (current breed merits) and contributions to genetic diversity. Contributions of the breeds to genetic diversity were quantified using Eding's marker-estimated kinship approaches. Non-genetic aspects included threats (e.g. low population size, low preferences by farmers) and current merits (economic, ecological and cultural merits). Threat analysis identified eight of the 14 breeds as threatened. Analysis of current merits showed that sub-alpine and arid-lowland breeds contribute most to farmer livelihoods in comparison to other breeds. The highest contribution to the genetic diversity conserved was from the Simien breed. Simien showed high between-breed (low between-breed kinship = 0.04) as well as high within-breed diversity (low within-breed kinship = 0.09 and high HE = 0.73 and allelic richness = 6.83). We combined the results on threat status, current breed merits and contributions to genetic diversity to produce a ranking of the 14 breeds for conservation purposes. Our results balance the trade-offs between conserving breeds as insurance against future uncertainties and current sustainable utilization. The ranking of breeds provides a basis for conservation strategies for Ethiopian sheep and contributes to a regional or global conservation plan. PMID:18558075

  19. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds

    PubMed Central

    Keller, G. G.; Famula, T. R.

    2017-01-01

    Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into

  20. Climate change has affected the breeding date of tree swallows throughout North America

    PubMed

    Dunn; Winkler

    1999-12-22

    Increasing evidence suggests that climate change has affected the breeding and distribution of wildlife. If such changes are due to global warming, then we should expect to see large-scale effects. To explore for such effects on avian reproduction, we examined 3450 nest records of tree swallows from across North America. The egg-laying date in tree swallows advanced by up to nine days during 1959-1991. This advance in phenology was associated with increasing surface air temperatures at the time of breeding. Our analysis controlled for several potentially confounding variables such as latitude, longitude, breeding density and elevation. We conclude that tree swallows across North America are breeding earlier and that the most likely cause is a long-term increase in spring temperature.

  1. Does food supplementation really enhance productivity of breeding birds?

    PubMed

    Harrison, Timothy J E; Smith, Jennifer A; Martin, Graham R; Chamberlain, Dan E; Bearhop, Stuart; Robb, Gillian N; Reynolds, S James

    2010-10-01

    Food availability influences multiple stages of the breeding cycle of birds, and supplementary feeding has helped in its understanding. Most supplementation studies have reported advancements of laying, whilst others, albeit less numerous, have also demonstrated fitness benefits such as larger clutches, shorter incubation periods, and greater hatching success. Relatively few studies, however, have investigated the effects of supplementary feeding for protracted periods across multiple stages of the breeding cycle. These effects are important to understand since long-term food supplementation of birds is recommended in urban habitats and is used as a tool to increase reproductive output in endangered species. Here, we compare the breeding phenology and productivity of blue tits Cyanistes caeruleus and great tits Parus major breeding in food-supplemented and non-supplemented blocks in a broadleaf woodland in central England over three seasons (2006-2008). Supplementation was provided continuously from several weeks pre-laying until hatching, and had multiple significant effects. Most notably, supplementation reduced brood size significantly in both species, by half a chick or more at hatching (after controlling for year and hatching date). Reduced brood sizes in supplemented pairs were driven by significantly smaller clutches in both species and, in blue tits, significantly lower hatching success. These are novel and concerning findings of food supplementation. As expected, supplementary feeding advanced laying and shortened incubation periods significantly in both species. We discuss the striking parallels between our findings and patterns in blue and great tit reproduction in urban habitats, and conclude that supplementary feeding may not always enhance the breeding productivity of birds.

  2. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  3. Ultra-sensitive detection of rare T cell clones.

    PubMed

    Robins, Harlan; Desmarais, Cindy; Matthis, Jessica; Livingston, Robert; Andriesen, Jessica; Reijonen, Helena; Carlson, Christopher; Nepom, Gerold; Yee, Cassian; Cerosaletti, Karen

    2012-01-31

    Advances in high-throughput sequencing have enabled technologies that probe the adaptive immune system with unprecedented depth. We have developed a multiplex PCR method to sequence tens of millions of T cell receptors (TCRs) from a single sample in a few days. A method is presented to test the precision, accuracy, and sensitivity of this assay. T cell clones, each with one fixed productive TCR rearrangement, are doped into complex blood cell samples. TCRs from a total of eleven samples are sequenced, with the doped T cell clones ranging from 10% of the total sample to 0.001% (one cell in 100,000). The assay is able to detect even the rarest clones. The precision of the assay is demonstrated across five orders of magnitude. The accuracy for each clone is within an overall factor of three across the 100,000 fold dynamic range. Additionally, the assay is shown to be highly repeatable.

  4. Islamic perspective on human cloning and stem cell research.

    PubMed

    Larijani, B; Zahedi, F

    2004-12-01

    Recent advances in the field of cloning and stem cell research have introduced new hope for treatment of serious diseases. But this promise has been accompanied by enormous questions. Currently, cloning is a matter of public discussion. It is rare that a field of science causes debate and challenge not only among scientists but also among ethicists, religious scholars, governments, and politicians. One important concern is religious arguments. Various religions have different attitudes toward the morality of these subjects; even within a particular religious tradition there is a diversity of opinions. The following article briefly reviews Islamic perspectives about reproductive/therapeutic cloning and stem cell research. The majority of Muslim jurists distinguish between reproductive and therapeutic cloning. The moral status of the human embryo, the most sensitive and disputed point in this debate, is also discussed according to Holy Quran teachings.

  5. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding.

    PubMed

    Zhou, Degui; Chen, Wei; Lin, Zechuan; Chen, Haodong; Wang, Chongrong; Li, Hong; Yu, Renbo; Zhang, Fengyun; Zhen, Gang; Yi, Junliang; Li, Kanghuo; Liu, Yaoguang; Terzaghi, William; Tang, Xiaoyan; He, Hang; Zhou, Shaochuan; Deng, Xing Wang

    2016-02-01

    Analyses of genome variations with high-throughput assays have improved our understanding of genetic basis of crop domestication and identified the selected genome regions, but little is known about that of modern breeding, which has limited the usefulness of massive elite cultivars in further breeding. Here we deploy pedigree-based analysis of an elite rice, Huanghuazhan, to exploit key genome regions during its breeding. The cultivars in the pedigree were resequenced with 7.6× depth on average, and 2.1 million high-quality single nucleotide polymorphisms (SNPs) were obtained. Tracing the derivation of genome blocks with pedigree and information on SNPs revealed the chromosomal recombination during breeding, which showed that 26.22% of Huanghuazhan genome are strictly conserved key regions. These major effect regions were further supported by a QTL mapping of 260 recombinant inbred lines derived from the cross of Huanghuazhan and a very dissimilar cultivar, Shuanggui 36, and by the genome profile of eight cultivars and 36 elite lines derived from Huanghuazhan. Hitting these regions with the cloned genes revealed they include numbers of key genes, which were then applied to demonstrate how Huanghuazhan were bred after 30 years of effort and to dissect the deficiency of artificial selection. We concluded the regions are helpful to the further breeding based on this pedigree and performing breeding by design. Our study provides genetic dissection of modern rice breeding and sheds new light on how to perform genomewide breeding by design.

  6. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops

    PubMed Central

    van Nocker, Steve; Gardiner, Susan E

    2014-01-01

    Woody perennial plants, including trees that produce fruits and nuts of horticultural value, typically have long breeding cycles, and development and introduction of improved cultivars by plant breeders may require many breeding cycles and dozens of years. However, recent advances in biotechnologies and genomics have the potential to accelerate cultivar development greatly in all crops. This mini-review summarizes approaches to reduce the number and the duration of breeding cycles for horticultural tree crops, and outlines the challenges that remain to implement these into efficient breeding pipelines. PMID:26504538

  7. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product qua...

  8. Ethical issues in animal cloning.

    PubMed

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  9. Genetic Diversity of US Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic relationships between US sheep breeds is useful in developing conservation strategies and actions. A broad sampling of individual sheep from 28 breeds was performed. Breed types included: fine wool, meat types, long wool, hair, prolific, and fat tailed. Blood and semen samp...

  10. Can I compare EPD's across breeds?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper comparison of the genetic merit of animals across breeds can be difficult and confusion for beef cattle producers. With the advent of a new genetic evaluation system where several breeds are evaluated in the same genetic analysis, confusion on direct comparison of animals across breeds has i...

  11. Population structure of ice-breeding seals.

    PubMed

    Davis, Corey S; Stirling, Ian; Strobeck, Curtis; Coltman, David W

    2008-07-01

    The development of population genetic structure in ice-breeding seal species is likely to be shaped by a combination of breeding habitat and life-history characteristics. Species that return to breed on predictable fast-ice locations are more likely to exhibit natal fidelity than pack-ice-breeding species, which in turn facilitates the development of genetic differentiation between subpopulations. Other aspects of life history such as geographically distinct vocalizations, female gregariousness, and the potential for polygynous breeding may also facilitate population structure. Based on these factors, we predicted that fast-ice-breeding seal species (the Weddell and ringed seal) would show elevated genetic differentiation compared to pack-ice-breeding species (the leopard, Ross, crabeater and bearded seals). We tested this prediction using microsatellite analysis to examine population structure of these six ice-breeding species. Our results did not support this prediction. While none of the Antarctic pack-ice species showed statistically significant population structure, the bearded seal of the Arctic pack ice showed strong differentiation between subpopulations. Again in contrast, the fast-ice-breeding Weddell seal of the Antarctic showed clear evidence for genetic differentiation while the ringed seal, breeding in similar habitat in the Arctic, did not. These results suggest that the development of population structure in ice-breeding phocid seals is a more complex outcome of the interplay of phylogenetic and ecological factors than can be predicted on the basis of breeding substrate and life-history characteristics.

  12. [The evaluation of breed-specific defects in dog breeds from an animal welfare viewpoint].

    PubMed

    Peyer, N; Steiger, A

    1998-01-01

    Issues of breed defects such as morphology, physiology or behaviour in pure-breed dogs, are briefly discussed. Suggestions for various kinds of improvements are made, particularly concerning legislation, analysis of pedigree to avoid undesirable breed characteristics and what breeding clubs, individual breeders, judges, future dog owners and veterinarians could and should do about these problems; these are followed by summary conclusions.

  13. Emperor Penguins Breeding on Iceshelves

    PubMed Central

    Fretwell, Peter T.; Trathan, Phil N.; Wienecke, Barbara; Kooyman, Gerald L.

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species. PMID:24416381

  14. To clone or not to clone--whither the law?

    PubMed

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind.

  15. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  16. TILLING in forage grasses for gene discovery and breeding improvement.

    PubMed

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics.

  17. Lessons learned from cloning dogs.

    PubMed

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals.

  18. Therapeutic cloning and reproductive liberty.

    PubMed

    Sparrow, Robert

    2009-04-01

    Concern for "reproductive liberty" suggests that decisions about embryos should normally be made by the persons who would be the genetic parents of the child that would be brought into existence if the embryo were brought to term. Therapeutic cloning would involve creating and destroying an embryo, which, if brought to term, would be the offspring of the genetic parents of the person undergoing therapy. I argue that central arguments in debates about parenthood and genetics therefore suggest that therapeutic cloning would be prima facie unethical unless it occurred with the consent of the parents of the person being cloned. Alternatively, if therapeutic cloning is thought to be legitimate, this undermines the case for some uses of reproductive cloning by implying that the genetic relation it establishes between clones and DNA donors does not carry the same moral weight as it does in cases of normal reproduction.

  19. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    PubMed

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  20. Path analysis of the energy density of wood in eucalyptus clones.

    PubMed

    Couto, A M; Teodoro, P E; Trugilho, P F

    2017-03-16

    Path analysis has been used for establishing selection criteria in genetic breeding programs for several crops. However, it has not been used in eucalyptus breeding programs yet. In the present study, we aimed to identify the wood technology traits that could be used as the criteria for direct and indirect selection of eucalyptus genotypes with high energy density of wood. Twenty-four eucalyptus clones were evaluated in a completely randomized design with five replications. The following traits were assessed: basic wood density, total extractives, lignin content, ash content, nitrogen content, carbon content, hydrogen content, sulfur content, oxygen content, higher calorific power, holocellulose, and energy density. After verifying the variability of all evaluated traits among the clones, a two-dimensional correlation network was used to determine the phenotypic patterns among them. The obtained coefficient of determination (0.94) presented a higher magnitude in relation to the effect of the residual variable, and it served as an excellent model for explaining the genetic effects related to the variations observed in the energy density of wood in all eucalyptus clones. However, for future studies, we recommend evaluating other traits, especially the morphological traits, because of the greater ease in their measurement. Selecting clones with high basic density is the most promising strategy for eucalyptus breeding programs that aim to increase the energy density of wood because of its high heritability and magnitude of the cause-and-effect relationship with this trait.

  1. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  2. Therapeutic cloning: The ethical limits

    SciTech Connect

    Whittaker, Peter A. . E-mail: p.whittaker@lancaster.ac.uk

    2005-09-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated.

  3. Migratory double breeding in Neotropical migrant birds.

    PubMed

    Rohwer, Sievert; Hobson, Keith A; Rohwer, Vanya G

    2009-11-10

    Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants.

  4. Migratory double breeding in Neotropical migrant birds

    PubMed Central

    Rohwer, Sievert; Hobson, Keith A.; Rohwer, Vanya G.

    2009-01-01

    Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants. PMID:19858484

  5. Breeding Experience Might Be a Major Determinant of Breeding Probability in Long-Lived Species: The Case of the Greater Flamingo

    PubMed Central

    Pradel, Roger; Choquet, Rémi; Béchet, Arnaud

    2012-01-01

    The probability of breeding is known to increase with age early in life in many long-lived species. This increase may be due to experience accumulated through past breeding attempts. Recent methodological advances allowing accounting for unobserved breeding episodes, we analyzed the encounter histories of 14716 greater flamingos over 25 years to get a detailed picture of the interactions of age and experience. Survival did not improve with experience, seemingly ruling out the selection hypothesis. Breeding probability varied within three levels of experience : no breeding experience, 1 experience, 2+ experiences. We fitted models with and without among-individual differences in breeding probabilities by including or not an additive individual random effect. Including the individual random effect improved the model fit less than including experience but the best model retained both. However, because modeling individual heterogeneity by means of an additive static individual random effect is currently criticized and may not be appropriate, we discuss the results with and without random effect. Without random effect, breeding probability of inexperienced birds was always times lower than that of same age experienced birds, and breeding probability increased more with one additional experience than with one additional year of age. With random effects, the advantage of experience was unequivocal only after age 9 while in young having experience was penalizing. Another pattern, that breeding probability of birds with experiences dropped after some age (8 without random effect; up to 11 with it), may point to differences in the timing of reproductive senescence or to the existence of a sensitive period for acquiring behavioral skills. Overall, the role of experience appears strong in this long-lived species. We argue that overlooking the role of experience may hamper detection of trade-offs and assessment of individual heterogeneity. However, manipulative experiments are

  6. Breeding experience might be a major determinant of breeding probability in long-lived species: the case of the greater flamingo.

    PubMed

    Pradel, Roger; Choquet, Rémi; Béchet, Arnaud

    2012-01-01

    The probability of breeding is known to increase with age early in life in many long-lived species. This increase may be due to experience accumulated through past breeding attempts. Recent methodological advances allowing accounting for unobserved breeding episodes, we analyzed the encounter histories of 14716 greater flamingos over 25 years to get a detailed picture of the interactions of age and experience. Survival did not improve with experience, seemingly ruling out the selection hypothesis. Breeding probability varied within three levels of experience : no breeding experience, 1 experience, 2+ experiences. We fitted models with and without among-individual differences in breeding probabilities by including or not an additive individual random effect. Including the individual random effect improved the model fit less than including experience but the best model retained both. However, because modeling individual heterogeneity by means of an additive static individual random effect is currently criticized and may not be appropriate, we discuss the results with and without random effect. Without random effect, breeding probability of inexperienced birds was always [Formula: see text] times lower than that of same age experienced birds, and breeding probability increased more with one additional experience than with one additional year of age. With random effects, the advantage of experience was unequivocal only after age 9 while in young having [Formula: see text] experience was penalizing. Another pattern, that breeding probability of birds with [Formula: see text] experiences dropped after some age (8 without random effect; up to 11 with it), may point to differences in the timing of reproductive senescence or to the existence of a sensitive period for acquiring behavioral skills. Overall, the role of experience appears strong in this long-lived species. We argue that overlooking the role of experience may hamper detection of trade-offs and assessment of

  7. Tumor clone dynamics in lethal prostate cancer.

    PubMed

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.

  8. Tumor clone dynamics in lethal prostate cancer

    PubMed Central

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; de Bono, Johann S.; Demichelis, Francesca; Attard, Gerhardt

    2015-01-01

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers. PMID:25232177

  9. Beyond promiscuity: mate-choice commitments in social breeding

    PubMed Central

    Boomsma, Jacobus J.

    2013-01-01

    Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241

  10. Breeding without breeding: is a complete pedigree necessary for efficient breeding?

    PubMed

    El-Kassaby, Yousry A; Cappa, Eduardo P; Liewlaksaneeyanawin, Cherdsak; Klápště, Jaroslav; Lstibůrek, Milan

    2011-01-01

    Complete pedigree information is a prerequisite for modern breeding and the ranking of parents and offspring for selection and deployment decisions. DNA fingerprinting and pedigree reconstruction can substitute for artificial matings, by allowing parentage delineation of naturally produced offspring. Here, we report on the efficacy of a breeding concept called "Breeding without Breeding" (BwB) that circumvents artificial matings, focusing instead on a subset of randomly sampled, maternally known but paternally unknown offspring to delineate their paternal parentage. We then generate the information needed to rank those offspring and their paternal parents, using a combination of complete (full-sib: FS) and incomplete (half-sib: HS) analyses of the constructed pedigrees. Using a random sample of wind-pollinated offspring from 15 females (seed donors), growing in a 41-parent western larch population, BwB is evaluated and compared to two commonly used testing methods that rely on either incomplete (maternal half-sib, open-pollinated: OP) or complete (FS) pedigree designs. BwB produced results superior to those from the incomplete design and virtually identical to those from the complete pedigree methods. The combined use of complete and incomplete pedigree information permitted evaluating all parents, both maternal and paternal, as well as all offspring, a result that could not have been accomplished with either the OP or FS methods alone. We also discuss the optimum experimental setting, in terms of the proportion of fingerprinted offspring, the size of the assembled maternal and paternal half-sib families, the role of external gene flow, and selfing, as well as the number of parents that could be realistically tested with BwB.

  11. Breeding Dispersal by Birds in a Dynamic Urban Ecosystem

    PubMed Central

    Marzluff, John M.; DeLap, Jack H.; Oleyar, M. David; Whittaker, Kara A.; Gardner, Beth

    2016-01-01

    Changes in land cover during urbanization profoundly affect the diversity of bird communities, but the demographic mechanisms affecting diversity are poorly known. We advance such understanding by documenting how urbanization influences breeding dispersal—the annual movement of territorial adults—of six songbird species in the Seattle, WA, USA metropolitan area. We color-banded adults and mapped the centers of their annual breeding activities from 2000–2010 to obtain 504 consecutive movements by 337 adults. By comparing movements, annual reproduction, and mate fidelity among 10 developed, 5 reserved, and 11 changing (areas cleared and developed during our study) landscapes, we determined that adaptive breeding dispersal of sensitive forest species (Swainson’s Thrush and Pacific wren), which involves shifting territory and mate after reproductive failure, was constrained by development. In changing lands, sensitive forest specialists dispersed from active development to nearby forested areas, but in so doing suffered low annual reproduction. Species tolerant of suburban lands (song sparrow, spotted towhee, dark-eyed junco, and Bewick’s wren) dispersed adaptively in changing landscapes. Site fidelity ranged from 0% (Pacific wren in changing landscape) to 83% (Bewick’s wren in forest reserve). Mate fidelity ranged from 25% (dark-eyed junco) to 100% (Bewick’s wren). Variation in fidelity to mate and territory was consistent with theories positing an influence of territory quality, asynchronous return from migration, prior productivity, and reproductive benefits of retaining a familiar territory. Costly breeding dispersal, as well as reduced reproductive success and lowered survival cause some birds to decline in the face of urbanization. In contrast, the ability of species that utilize edges and early successional habitats to breed successfully, disperse to improve reproductive success after failure, and survive throughout the urban ecosystem enables them

  12. Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations

    PubMed Central

    Grinberg, Nastasiya F.; Lovatt, Alan; Hegarty, Matt; Lovatt, Andi; Skøt, Kirsten P.; Kelly, Rhys; Blackmore, Tina; Thorogood, Danny; King, Ross D.; Armstead, Ian; Powell, Wayne; Skøt, Leif

    2016-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield. Genetic gain for traits such as biomass yield has been relatively modest. This has been attributed to its long breeding cycle, and the necessity to use population based breeding methods. Thanks to recent advances in genotyping techniques there is increasing interest in genomic selection from which genomically estimated breeding values are derived. In this paper we compare the classical RRBLUP model with state-of-the-art machine learning techniques that should yield themselves easily to use in GS and demonstrate their application to predicting quantitative traits in a breeding population of L. perenne. Prediction accuracies varied from 0 to 0.59 depending on trait, prediction model and composition of the training population. The BLUP model produced the highest prediction accuracies for most traits and training populations. Forage quality traits had the highest accuracies compared to yield related traits. There appeared to be no clear pattern to the effect of the training population composition on the prediction accuracies. The heritability of the forage quality traits was generally higher than for the yield related traits, and could partly explain the difference in accuracy. Some population structure was evident in the breeding populations, and probably contributed to the varying effects of training population on the predictions. The average linkage disequilibrium between adjacent markers ranged from 0.121 to 0.215. Higher marker density and larger training population closely related with the test population are likely to improve the prediction accuracy. PMID:26904088

  13. High genetic diversity in gametophyte clones of Undaria pinnatifida from Vladivostok, Dalian and Qingdao revealed using microsatellite analysis

    NASA Astrophysics Data System (ADS)

    Shan, Tifeng; Pang, Shaojun; Liu, Feng; Xu, Na; Zhao, Xiaobo; Gao, Suqin

    2012-03-01

    Breeding practice for Undaria pinnatifida (Harvey) Suringar requires the screening of a large number of offspring from gametophyte crossings to obtain an elite variety for large-scale cultivation. To better understand the genetic relationships of different gametophyte cultures isolated from different sources, 20 microsatellite loci were screened and 53 gametophyte clone cultures analyzed for U. pinnatifida isolated from wild sporophytes in Vladivostok, Russia and from cultivated sporophytes from Dalian and Qingdao, China. One locus was abandoned because of poor amplification. At the sex-linked locus of Up-AC-2A8, 3 alleles were detected in 25 female gametophyte clones, with sizes ranging from 307 to 316 bp. At other loci, 3 to 7 alleles were detected with an average of 4.5 alleles per locus. The average number of alleles at each locus was 1.3 and 3.7 for Russian and Chinese gametophyte clones, respectively. The average gene diversity for Russian, Chinese, and for the combined total of gametophyte clones was 0.1, 0.4, and 0.5, respectively. Russian gametophyte clones had unique alleles at 7 out of the 19 loci. In cluster analysis, Russian and Chinese gametophyte clones were separated into two different groups according to genetic distance. Overall, high genetic diversity was detected in gametophyte clones isolated from the two countries. These gametophyte cultures were believed to be appropriate parental materials for conducting breeding programs in the future.

  14. Farmed deer: new domestic animals defined by controlled breeding.

    PubMed

    Fletcher, T J

    2001-01-01

    The domestication of plants and animals is recognized as pivotal in mankind's social evolution. Yet, surprisingly few species have actually been farmed, prompting speculation as to which attributes are needed for successful domestication. Although red deer were the staple source of meat throughout Europe in the mesolithic, they have not been widely domesticated, leading many ethologists to argue that they are behaviourally unsuitable. Recently, the most widely accepted criterion of domestication, the ability of farmers to control the breeding of a species, has been fulfilled in red and other species of deer with the widespread adoption of even the most technologically advanced methods of artificial breeding. Simultaneously and conversely, the population growth of wild deer in many temperate parts of the world has stimulated a search for contraceptive techniques.

  15. Towards social acceptance of plant breeding by genome editing.

    PubMed

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients.

  16. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  17. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.

  18. [Scientific ethics of human cloning].

    PubMed

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  19. In planta cloning of geminiviral DNA: the true Sida micrantha mosaic virus.

    PubMed

    Jeske, Holger; Gotthardt, Diether; Kober, Sigrid

    2010-02-01

    The circular single-stranded DNAs of geminiviruses are multiplied efficiently and preferentially by rolling circle amplification (RCA), and can be diagnosed readily by restriction fragment length polymorphism (RFLP) and direct sequencing of the RCA product. Two strategies are described for cloning geminiviruses from plants harboring mixed infections by using RCA and RFLP with plant-derived nucleic acids without the need for bacterial amplification. By combining both these approaches, the true Sida micrantha mosaic virus was identified. The advantages of maintaining the quasispecies nature of a virus during in planta cloning is discussed with respect to reliable virus identification and resistance breeding.

  20. The global governance of human cloning: the case of UNESCO

    PubMed Central

    Langlois, Adèle

    2017-01-01

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting “all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life”. It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO’s Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance. PMID:28382210

  1. The global governance of human cloning: the case of UNESCO.

    PubMed

    Langlois, Adèle

    2017-03-21

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting "all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life". It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO's Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance.

  2. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  3. Cloning the mammoth: a complicated task or just a dream?

    PubMed

    Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna

    2014-01-01

    Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved.

  4. The past, present and future of breeding rust resistant wheat

    PubMed Central

    Ellis, Jeffrey G.; Lagudah, Evans S.; Spielmeyer, Wolfgang; Dodds, Peter N.

    2014-01-01

    Two classes of genes are used for breeding rust resistant wheat. The first class, called R (for resistance) genes, are pathogen race specific in their action, effective at all plant growth stages and probably mostly encode immune receptors of the nucleotide binding leucine rich repeat (NB-LRR) class. The second class is called adult plant resistance genes (APR) because resistance is usually functional only in adult plants, and, in contrast to most R genes, the levels of resistance conferred by single APR genes are only partial and allow considerable disease development. Some but not all APR genes provide resistance to all isolates of a rust pathogen species and a subclass of these provides resistance to several fungal pathogen species. Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins. Two APR genes, Lr34 and Yr36, have been cloned from wheat and their products are an ABC transporter and a protein kinase, respectively. Lr34 and Sr2 have provided long lasting and widely used (durable) partial resistance and are mainly used in conjunction with other R and APR genes to obtain adequate rust resistance. We caution that some APR genes indeed include race specific, weak R genes which may be of the NB-LRR class. A research priority to better inform rust resistance breeding is to characterize further APR genes in wheat and to understand how they function and how they interact when multiple APR and R genes are stacked in a single genotype by conventional and GM breeding. An important message is do not be complacent about the general durability of all APR genes. PMID:25505474

  5. [Pain caused by breeding in dogs].

    PubMed

    Reetz, I C

    1997-02-01

    According to German animal protection law it is not aloud to breed animals if it has to be expected that the offspring will suffer pain caused by hereditary characters. This paper deals with those hereditary defects which are used directly or indirectly (because of linkage to other desirable traits) in dog breeding. By the patho-physiological symptoms and the genetics of selected hereditary defects recommendations are exemplified how these defects should be handled in breeding that pain can be avoided.

  6. The Breeding Bird Survey, 1966

    USGS Publications Warehouse

    Robbins, C.S.; Van Velzen, W.T.

    1967-01-01

    A Breeding Bird Survey of a large section on North America was conducted during June 1966. Cooperators ran a total of 585 Survey routes in 26 eastern States and 4 Canadian Provinces. Future coverage of established routes will enable changes in the abundance of North American breeding birds to be measured. Routes are selected at random on the basis of one-degree blocks of latitude and longitude. Each 241/2-mile route, with 3-minute stops spaced one-half mile apart, is driven by automobile. All birds heard or seen at the stops are recorded on special forms and the data are then transferred to machine punch cards. The average number of birds per route is tabulated by State, along with the total number of each species and the percent of routes and stops upon which they were recorded. Maps are presented showing the range and abundance of selected species. Also, a year-to-year comparison is made of populations of selected species on Maryland routes in 1965 and 1966.

  7. [New technology in maize breeding].

    PubMed

    Konstantinov, K; Mladenović, S; Stojkov, S; Delić, N; Gosić, S; Petrović, R; Lević, J; Denić, M

    1992-01-01

    Results obtained by several approaches in the application of Biotechnology in maize breeding are reviewed. RFLP technology in the determination of genetic variation; gene transfer by the use of different methods of gene delivery and the determination of gene integration. Three technologies for foreign gene introduction have been applied; injection of plasmid pRT100 neo into archesporial tissue before micro and macro sporogenesis, slightly modified pollen-tube pathway technology and dry seed incubation in plasmid DNA solution. NPTII gene integration was followed by dot-blot and Southern blot analysis of plant DNA of both T1 and T2 plants. Gene expression was analysed by neomycin phosphotransferase activity. Transformed plants contained the selective NPTII gene sequence in an active form. Bacterial gene integration induced several heritable changes of plant phenotype. As an important change, alteration of the flowering time has been used as a criterion for selection and plant propagation to keep transformed progeny. Besides plant genome transformation, endogenous bacteria living in different maize tissue were found. As a perspective approach for biotechnology application in maize breeding biological vaccine construction has been selected. Therefore, antagonistic effect of gram positive bacterial strains to several pathogenic fungi was investigated. Results obtained after in vivo experiments are discussed.

  8. Advances in Understanding the Biosynthesis of Fumonisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are a group of economically important mycotoxins that are derived polyketides. Since the cloning of the fumonisin polyketide synthase (PKS) gene from Fusarium verticillioides in 1999, significant advances have been made in understanding the molecular mechanisms for fumonisin biosynthesis...

  9. Advances in metabolomic applications in plant genetics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolomics is a systems biology discipline wherein abundances of endogenous metabolites from biological samples are identified and quantitatively measured across a large range of metabolites and/or a large number of samples. Since all developmental, physiological and response to the environment ph...

  10. Molecular breeding of advanced microorganisms for biofuel production.

    PubMed

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  11. Advances in proteomics research for peanut genetics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop trait improvement aimed at increased yield and quality relies on an understanding of the biology of the plant, particular protein-protein interactions. In this regard, the application of “-omics” techniques combined with field-level agronomy is poised to deliver novel insight into previously u...

  12. Breeding and quantitative genetics advances in sunflower Sclerotinia research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...

  13. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  14. Prospects for advanced late blight resistance breeding in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato late blight pathogen, Phytophthora infestans, is able to rapidly evolve to overcome resistance genes. The pathogen accomplishes this by secreting an arsenal of proteins, termed effectors, that function to modify host cells. Although hundreds of candidate effectors have been identified in ...

  15. Chemical classification of cattle. 1. Breed groups.

    PubMed

    Baker, C M; Manwell, C

    1980-01-01

    From approximately 1000 papers with data on protein polymorphism in some 216 breeds of cattle, 10 polymorphic proteins were compared in means and variances of gene frequencies (arcsin p 1/2) for ten well-recognized breed groups for 196 of the breeds. The polymorphic proteins were alpha-lactalbumin, beta-lactoglobulin, caseins (alpha s1, beta and chi), serum albumin, transferrin, haemoglobin, amylase I and carbonic anhydrase II. The breed groups were North European, Pied Lowland, European Red brachyceros, Channel Island brachyceros, Upland brachyceros, primigenius-brachyceros mixed, primigenius, Indian Zebu, African Humped (with Zebu admixture), and African Humped (Sanga). The coherence within groups and the differences between groups are often impressive. Only carbonic anhydrase II fails to differentiate at least some of the major breed groups. In some cases paradoxical distributions of rare genetic variants can be explained by a more detailed inspection of breed history. The chemical data support the morphological and geographical divisions of cattle into major breed groups. There are three distinct but related brachyceros groups; for some polymorphisms the two Channel Island breeds, the Jersey and the Guernsey, are quite divergent. Although some authorities have considered the Pied Lowland as primigenius, it is a very distinct breed group.

  16. Differentiation among Spanish sheep breeds using microsatellites

    PubMed Central

    Arranz, Juan-José; Bayón, Yolanda; Primitivo, Fermín San

    2001-01-01

    Genetic variability at 18 microsatellites was analysed on the basis of individual genotypes in five Spanish breeds of sheep – Churra, Latxa, Castellana, Rasa-Aragonesa and Merino -, with Awassi also being studied as a reference breed. The degree of population subdivision calculated between Spanish breeds from FST diversity indices was around 7% of total variability. A high degree of reliability was obtained for individual-breed assignment from the 18 loci by using different approaches among which the Bayesian method provided to be the most efficient, with an accuracy for nine microsatellites of over 99%. Analysis of the Bayesian assignment criterion illustrated the divergence between any one breed and the others, which was highest for Awassi sheep, while no great differences were evident among the Spanish breeds. Relationships between individuals were analysed from the proportion of shared alleles. The resulting dendrogram showed a remarkable breed structure, with the highest level of clustering among members of the Spanish breeds in Latxa and the lowest in Merino sheep, the latter breed exhibiting a peculiar pattern of clustering, with animals grouped into several closely set nodes. Analysis of individual genotypes provided valuable information for understanding intra- and inter-population genetic differences and allowed for a discussion with previously reported results using populations as taxonomic units. PMID:11712973

  17. Lean breed Landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs.

    PubMed

    Luo, Yu-heng; Su, Yong; Wright, André-Denis G; Zhang, Ling-li; Smidt, Hauke; Zhu, Wei-yun

    2012-01-01

    The diversity of fecal methanogens of Erhualian (obese type) and Landrace (lean type) pigs was examined using separate 16S rRNA gene libraries for each breed. A total of 763 clones were analyzed; 381 from the Erhualian library and 382 from the Landrace library were identified belonging to the genus Methanobrevibacter. Others were identified belonging to the genus Methanosphaera. The two libraries showed significant differences in diversity (P < 0.05) and composition (P < 0.0001). Only two operational taxonomic units (OTUs) were found in both libraries, whereas six OTUs were found only in the Erhualian library and 23 OTUs were found only in the Landrace library. Real-time PCR showed that the abundance of fecal methanogens in Landrace pigs was significantly higher than that in Erhualian pigs (P < 0.05). Results showed that the Landrace pig (lean) harbored a greater diversity and higher numbers of methanogen mcrA gene copies than the Erhualian pig (obese). These differences may be related to the fatness or leanness in these two pig breeds. The results provide new leads for further investigations on the fat storage of pigs or even humans.

  18. Seamless Ligation Cloning Extract (SLiCE) cloning method.

    PubMed

    Zhang, Yongwei; Werling, Uwe; Edelmann, Winfried

    2014-01-01

    SLiCE (Seamless Ligation Cloning Extract) is a novel cloning method that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (15-52 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from bacterial artificial chromosomes or other sources. SLiCE is highly cost-effective and demonstrates the versatility as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. We established a DH10B-derived E. coli strain expressing an optimized λ prophage Red recombination system, termed PPY, which facilitates SLiCE with very high efficiencies.

  19. Biomimetic Cloning of Quantum Observables

    PubMed Central

    Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.

    2014-01-01

    We propose a bio-inspired sequential quantum protocol for the cloning and preservation of the statistics associated to quantum observables of a given system. It combines the cloning of a set of commuting observables, permitted by the no-cloning and no-broadcasting theorems, with a controllable propagation of the initial state coherences to the subsequent generations. The protocol mimics the scenario in which an individual in an unknown quantum state copies and propagates its quantum information into an environment of blank qubits. Finally, we propose a realistic experimental implementation of this protocol in trapped ions. PMID:24809937

  20. Biomimetic Cloning of Quantum Observables

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.

    2014-05-01

    We propose a bio-inspired sequential quantum protocol for the cloning and preservation of the statistics associated to quantum observables of a given system. It combines the cloning of a set of commuting observables, permitted by the no-cloning and no-broadcasting theorems, with a controllable propagation of the initial state coherences to the subsequent generations. The protocol mimics the scenario in which an individual in an unknown quantum state copies and propagates its quantum information into an environment of blank qubits. Finally, we propose a realistic experimental implementation of this protocol in trapped ions.

  1. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    PubMed

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  2. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  3. Blast resistance in rice: a review of conventional breeding to molecular approaches.

    PubMed

    Miah, G; Rafii, M Y; Ismail, M R; Puteh, A B; Rahim, H A; Asfaliza, R; Latif, M A

    2013-03-01

    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast

  4. Human cloning, stem cell research. An Islamic perspective.

    PubMed

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  5. Atlantic salmon brood stock management and breeding handbook

    USGS Publications Warehouse

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  6. Charge state breeding experiences and plans at TRIUMF

    SciTech Connect

    Ames, F. Marchetto, M.; Mjøs, A.; Morton, A. C.

    2016-02-15

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  7. Charge state breeding experiences and plans at TRIUMF

    NASA Astrophysics Data System (ADS)

    Ames, F.; Marchetto, M.; Mjøs, A.; Morton, A. C.

    2016-02-01

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  8. Charge state breeding experiences and plans at TRIUMF.

    PubMed

    Ames, F; Marchetto, M; Mjøs, A; Morton, A C

    2016-02-01

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  9. Cloning of a quantum measurement

    SciTech Connect

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal

    2011-10-15

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.

  10. A Clone of Your Own.

    ERIC Educational Resources Information Center

    Bilodeau, Kirsten

    1997-01-01

    Describes an activity used at the Washington Park Arboretum that helps students understand cloning through plant propagation. Students also learn how to make a pot from recycled newspapers and how to make soil that is appropriate for the plants. (DDR)

  11. Human Cloning: Let's Discuss It.

    ERIC Educational Resources Information Center

    Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.

    1999-01-01

    Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)

  12. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.

  13. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    PubMed

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  14. Breeding sugarcane for temperate and cold environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana represents one of the world’s more temperate environments where sugarcane is commercially grown. Since its inception in the 1920s, The USDA-ARS breeding program at the Sugarcane Research Laboratory in Houma, Louisiana, U.S.A. has focused on breeding varieties adapted to this unique envir...

  15. Breeding commercial sugarcane varieties for the industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent literature suggests that sugarcane breeding in the United States has reached a sugar yield plateau. If so, this could have huge implications for the future of the industry and breeding per se because yield improvement might have to be achieved through secondary, non-sugar-related traits, or t...

  16. Breeding Perspectives and Programs at East Lansing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS sugar beet breeding activities for both Aphanomyces resistance and CMS/O-type conversion at East Lansing reach back to the 1940’s, with variety testing activities at Michigan State University reaching back to circa 1911. Many of those contributions are well known in the sugar beet breeding ...

  17. Breed-specific dog-dandruff allergens.

    PubMed

    Lindgren, S; Belin, L; Dreborg, S; Einarsson, R; Påhlman, I

    1988-08-01

    Fifty-one patients with clinical history of dog allergy were skin prick tested with eight individual standardized dog breed-allergen preparations, one mixed breed-allergen preparation (Poodle/Alsatian), dog-serum albumin, and histamine hydrochloride, 1 mg/ml. All extracts were characterized by crossed immunoelectrophoresis and crossed radioimmunoelectrophoresis with a pool of sera from patients clinically sensitive to dog. The dog-breed extracts contained common antigens/allergens, as well as components represented only in one or two dog-breed extracts. The concentration corresponding 1000 BU/ml varied from 16 to 100 micrograms of protein per milliliter. The sensitivity of skin prick test was 67% to 88% for the various dog breed-allergen preparations, but only 18% for dog-serum albumin. Significant difference between the skin test response to different dog breed-allergen preparations indicating dog breed-specific allergens was obtained in 15% of the patients. There was no significant correlation between skin prick test results and symptoms related to a specific dog breed.

  18. Mean EPDs reported by different breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle genetic evaluations result in expected progeny differences (EPDs), which can be used to select animals for growth, productivity, carcass composition, and, most recently, economic value. Breed averages allow producers to compare the genetic value of potential breeding stock against their ...

  19. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations.

  20. Islamic perspectives on human cloning.

    PubMed

    Sadeghi, Mahmoud

    2007-01-01

    The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.

  1. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  2. Genomic selection in animal breeding programs.

    PubMed

    van der Werf, Julius

    2013-01-01

    Genomic selection can have a major impact on animal breeding programs, especially where traits that are important in the breeding objective are hard to select for otherwise. Genomic selection provides more accurate estimates for breeding value earlier in the life of breeding animals, giving more selection accuracy and allowing lower generation intervals. From sheep to dairy cattle, the rates of genetic improvement could increase from 20 to 100 % and hard-to-measure traits can be improved more effectively.Reference populations for genomic selection need to be large, with thousands of animals measured for phenotype and genotype. The smaller the effective size of the breeding population, the larger the DNA segments they potentially share and the more accurate genomic prediction will be. The relative contribution of information from relatives in the reference population will be larger if the baseline accuracy is low, but such information is limited to closely related individuals and does not last over generations.

  3. Endometritis: Managing Persistent Post-Breeding Endometritis.

    PubMed

    Canisso, Igor F; Stewart, Jamie; Coutinho da Silva, Marco A

    2016-12-01

    Endometritis was rated as the third most common medical problem encountered in adult horses in North America. It is the leading cause of subfertility in broodmares and is a major contributor to economic loss in the horse breeding industry, with pregnancy rates reported to be as low as 21% in mares with severe endometritis. Endometritis may be categorized as: endometrosis (chronic degenerative endometritis), acute, chronic, active, dormant, subclinical, clinical, and persistent post-breeding. These classifications are not mutually exclusive, and mares may change categories within breeding seasons or estrous cycles or may fit in multiple classifications. This chapter will focus on discussing etiology and management strategies for mares affected by persistent post-breeding endometritis. Overall, these mares are considered subfertile but acceptable pregnancy and foaling rates can be achieved with appropriate breeding management.

  4. Breeding habitat associations and predicted distribution of an obligate tundra-breeding bird, Smith's Longspur

    USGS Publications Warehouse

    Wild, Teri C.; Kendall, Steven J.; Guldager, Nikki; Powell, Abby N.

    2015-01-01

    Smith's Longspur (Calcarius pictus) is a species of conservation concern which breeds in Arctic habitats that are expected to be especially vulnerable to climate change. We used bird presence and habitat data from point-transect surveys conducted at 12 sites across the Brooks Range, Alaska, 2003–2009, to identify breeding areas, describe local habitat associations, and identify suitable habitat using a predictive model of Smith's Longspur distribution. Smith's Longspurs were observed at seven sites, where they were associated with a variety of sedge–shrub habitats composed primarily of mosses, sedges, tussocks, and dwarf shrubs; erect shrubs were common but sparse. Nonmetric multidimensional scaling ordination of ground cover revealed positive associations of Smith's Longspur presence with sedges and mosses and a negative association with high cover of shrubs. To model predicted distribution, we used boosted regression trees to relate landscape variables to occurrence. Our model predicted that Smith's Longspurs may occur in valleys and foothills of the northeastern and southeastern mountains and in upland plateaus of the western mountains, and farther west than currently documented, over a predicted area no larger than 15% of the Brooks Range. With climate change, shrubs are expected to grow larger and denser, while soil moisture and moss cover are predicted to decrease. These changes may reduce Smith's Longspur habitat quality and limit distribution in the Brooks Range to poorly drained lowlands and alpine plateaus where sedge–shrub tundra is likely to persist. Conversely, northward advance of shrubs into sedge tundra may create suitable habitat, thus supporting a northward longspur distribution shift.

  5. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  6. Plant breeding with genomic selection: potential gain per unit time and cost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advancements in genotyping are rapidly decreasing marker costs and increasing genome coverage. This is facilitating the use of marker-assisted selection (MAS) in plant breeding. Commonly employed MAS strategies, however, are not well suited for complex traits, requiring extra time for field-based ph...

  7. Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts.

    PubMed

    Jónás, D; Ducrocq, V; Fritz, S; Baur, A; Sanchez, M-P; Croiseau, P

    2017-02-01

    An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5-11% more accurate than a pedigree-based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single-breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation.

  8. Patterns of molecular genetic variation among cat breeds.

    PubMed

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  9. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird

    PubMed Central

    Soukup, Sheryl Swartz; Drilling, Nancy E.; Eckerle, Kevin P.; Sakaluk, Scott K.; Thompson, Charles F.

    2016-01-01

    Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. PMID:27859132

  10. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  11. Local cloning of two product states

    SciTech Connect

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-09-15

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  12. Domestic dogs and cancer research: a breed-based genomics approach.

    PubMed

    Davis, Brian W; Ostrander, Elaine A

    2014-01-01

    Domestic dogs are unique from other animal models of cancer in that they generally experience spontaneous disease. In addition, most types of cancer observed in humans are found in dogs, suggesting that canines may be an informative system for the study of cancer genetics. Domestic dogs are divided into over 175 breeds, with members of each breed sharing significant phenotypes. The breed barrier enhances the utility of the model, especially for genetic studies where small numbers of genes are hypothesized to account for the breed cancer susceptibility. These facts, combined with recent advances in high-throughput sequencing technologies allows for an unrivaled ability to use pet dog populations to find often subtle mutations that promote cancer susceptibility and progression in dogs as a whole. The meticulous record keeping associated with dog breeding makes the model still more powerful, as it facilitates both association analysis and family-based linkage studies. Key to the success of these studies is their cooperative nature, with owners, scientists, veterinarians and breed clubs working together to avoid the cost and unpopularity of developing captive populations. In this article we explore these principals and advocate for colony-free, genetic studies that will enhance our ability to diagnose and treat cancer in dogs and humans alike.

  13. Pedigree and herd characterization of a donkey breed vulnerable to extinction.

    PubMed

    Quaresma, M; Martins, A M F; Rodrigues, J B; Colaço, J; Payan-Carreira, R

    2014-03-01

    Most donkey and local horse breeds are vulnerable to extinction as mechanization of agriculture progress throughout the world. The present study analyzed the pedigree and herd records of the donkey Asinina de Miranda breed (RAM), identifying genealogical and human factors that may affect the breed genetic diversity in the future and suggesting suitable strategies to breed preservation, early on the conservation program. The breeding rate was very low, with a ratio of foaling/live animals of 0.23 (178/760). The estimated number of founders and ancestors contributing to the reference population was 128 and 121. The number of founder herds in the reference population was 64, with an effective number of founder herds for the reference population of 7.6. The mean age of herd owners was 65.50 ± 0.884 years, with a negative association among the herd size and owner's age (P<0.001). In contrast, the size of the herd and the ownership of a male were both positively associated (P<0.001) with the herd number of in-born foals. Both the owners' age and the herd location (RAM home region v. dispersal region) were negatively associated with the foaling number (P<0.001). The main identified risk factors were: low breeding rates; low number of males and their unequal contribution to the genetic pool; unequal contribution of the herds to genetic pool; and advanced age of herd owners.

  14. Local cloning of entangled states

    SciTech Connect

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-08-15

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  15. Breeding objectives for Targhee sheep.

    PubMed

    Borg, R C; Notter, D R; Kuehn, L A; Kott, R W

    2007-11-01

    Breeding objectives were developed for Targhee sheep under rangeland production conditions. Traits considered were those for which EPD were available from the US National Sheep Improvement Program and included direct and maternal effects on 120-d weaning weight (WW and MM, respectively); yearling weight (YW); yearling fleece weight, fiber diameter, and staple length; and percent lamb crop (PLC), measured as the number of lambs born per 100 ewes lambing. A bioeconomic model was used to predict the effects of a change of 1 additive SD in EPD for each trait, holding all other traits constant at their mean, on animal performance, feed requirements, feed costs, and economic returns. Resulting economic weightings were then used to derive selection indexes. Indexes were derived separately for 3 prolificacy levels (1.41, 1.55, and 1.70 lambs/ewe lambing), 2 triplet survival levels (50 and 67%), 2 lamb pricing policies (with or without discounting of prices for heavy feeder lambs), and 3 forage cost scenarios (renting pasture, purchasing hay, or reducing flock size to accommodate increased nutrient requirements for production). Increasing PLC generally had the largest impact on profitability, although an increase in WW was equally important, with low feed costs and no discounting of prices for heavy feeder lambs. Increases in PLC were recommended at all 3 prolificacy levels, but with low triplet survival the value of increasing PLC eventually declined as the mean litter size increased to approximately 2.15 lambs/ewe lambing and above. Increasing YW (independent of WW) increased ewe maintenance costs and reduced profitability. Predicted changes in breeding values for WW and YW under index selection varied with lamb pricing policy and feed costs. With low feed costs or no discounts for heavy lambs, YW increased at a modest rate in association with increasing WW, but with high feed costs or discounting of heavy lambs, genetic trends in WW were reduced by approximately 50% to

  16. Genetic structure of European sheep breeds.

    PubMed

    Lawson Handley, L-J; Byrne, K; Santucci, F; Townsend, S; Taylor, M; Bruford, M W; Hewitt, G M

    2007-12-01

    Large-scale evaluations of genetic diversity in domestic livestock populations are necessary so that region-specific conservation measures can be implemented. We performed the first such survey in European sheep by analysing 820 individuals from 29 geographically and phenotypically diverse breeds and a closely related wild species at 23 microsatellite loci. In contrast to most other domestic species, we found evidence of widespread heterozygote deficit within breeds, even after removing loci with potentially high frequency of null alleles. This is most likely due to subdivision among flocks (Wahlund effect) and use of a small number of rams for breeding. Levels of heterozygosity were slightly higher in southern than in northern breeds, consistent with declining diversity with distance from the Near Eastern centre of domestication. Our results highlight the importance of isolation in terms of both geography and management in augmenting genetic differentiation through genetic drift, with isolated northern European breeds showing the greatest divergence and hence being obvious targets for conservation. Finally, using a Bayesian cluster analysis, we uncovered evidence of admixture between breeds, which has important implications for breed management.

  17. Precision breeding of grapevine (Vitis vinifera L.) for improved traits.

    PubMed

    Gray, Dennis J; Li, Zhijian T; Dhekney, Sadanand A

    2014-11-01

    This review provides an overview of recent technological advancements that enable precision breeding to genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termed "cisgenic" or "intragenic" genetic improvement, necessitates a better understanding and use of genomic resources now becoming accessible. Although it is now a relatively simple task to identify genetic elements and genes from numerous "omics" databases, the control of major agronomic and enological traits often involves the currently unknown participation of many genes and regulatory machineries. In addition, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus, it is critical to functionally test each of these genetic entities to determine their real-world functionality or contribution to trait attributes. Toward this goal, several diverse techniques now are in place, including cell culture systems to allow efficient plant regeneration, advanced gene insertion techniques, and, very recently, resources for genomic analyses. Currently, these techniques are being used for high-throughput expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envisioned that future research efforts will be extended to the study of promoters and genes functioning to enhance other important traits, such as fruit quality and vigor.

  18. Piglets born from handmade cloning, an innovative cloning method without micromanipulation.

    PubMed

    Du, Y; Kragh, P M; Zhang, Y; Li, J; Schmidt, M; Bøgh, I B; Zhang, X; Purup, S; Jørgensen, A L; Pedersen, A M; Villemoes, K; Yang, H; Bolund, L; Vajta, G

    2007-11-01

    Porcine handmade cloning (HMC), a simplified alternative of micromanipulation based traditional cloning (TC) has been developed in multiple phases during the past years, but the final evidence of its biological value, births of piglets was missing. Here we report the first births of healthy piglets after transfer of blastocysts produced by HMC. As a cumulative effect of technical optimization, 64.3+/-2.3 (mean+/-S.E.M.) reconstructed embryos from 151.3+/-4.8 oocytes could be obtained after 3-4h manual work, including 1h pause between fusion and activation. About half (50.1+/-2.8%, n=16) of HMC reconstructed embryos developed to blastocysts with an average cell number of 77+/-3 (n=26) after 7 days in vitro culture (IVC). According to our knowledge, this is the highest in vitro developmental rate after porcine somatic cell nuclear transfer (SCNT). A total of 416 blastocysts from HMC, mixed with 150 blastocysts from TC using a cell line from a different breed were transferred surgically to nine synchronized recipients. Out of the four pregnancies (44.4%) two were lost, while two pregnancies went to term and litters of 3 and 10 piglets were delivered by Caesarean section, with live birth/transferred embryo efficiency of 17.2% (10/58) for HMC. Although more in vivo experiments are still needed to further stabilize the system, our data proves that porcine HMC may result in birth of healthy offspring. Future comparative examinations are required to prove the value of the new technique for large-scale application.

  19. Lysine Fermentation: History and Genome Breeding.

    PubMed

    Ikeda, Masato

    2016-11-11

    Lysine fermentation by Corynebacterium glutamicum was developed in 1958 by Kyowa Hakko Kogyo Co. Ltd. (current Kyowa Hakko Bio Co. Ltd.) and is the second oldest amino acid fermentation process after glutamate fermentation. The fundamental mechanism of lysine production, discovered in the early stages of the process's history, gave birth to the concept known as "metabolic regulatory fermentation," which is now widely applied to metabolite production. After the development of rational metabolic engineering, research on lysine production first highlighted the need for engineering of the central metabolism from the viewpoints of precursor supply and NADPH regeneration. Furthermore, the existence of active export systems for amino acids was first demonstrated for lysine in C. glutamicum, and this discovery has resulted in the current recognition of such exporters as an important consideration in metabolite production. Lysine fermentation is also notable as the first process to which genomics was successfully applied to improve amino acid production. The first global "genome breeding" strategy was developed using a lysine producer as a model; this has since led to new lysine producers that are more efficient than classical industrial producers. These advances in strain development technology, combined with recent systems-level approaches, have almost achieved the optimization of entire cellular systems as cell factories for lysine production. In parallel, the continuous improvement of the process has resulted not only in fermentation processes with reduced load on downstream processing but also in commercialization of various product forms according to their intended uses. Nowadays lysine fermentation underpins a giant lysine demand of more than 2 million metric tons per year.

  20. Interspecific reciprocity explains mobbing behaviour of the breeding chaffinches, Fringilla coelebs.

    PubMed Central

    Krams, Indrikis; Krama, Tatjana

    2002-01-01

    When prey animals discover a predator close by, they mob it while uttering characteristic sounds that attract other prey individuals to the vicinity. Mobbing causes a predator to vacate its immediate foraging area, which gives an opportunity for prey individuals to continue their interrupted daily activity. Besides the increased benefits, mobbing behaviour also has its costs owing to injuries or death. The initiator of mobbing may be at increased risk of predation by attracting the predator's attention, especially if not joined by other neighbouring prey individuals. Communities of breeding birds have always been considered as temporal aggregations. Since an altruist could not prevent cheaters from exploiting its altruism in an anonymous community, this excluded any possibility of explaining mobbing behaviour in terms of reciprocal altruism. However, sedentary birds may have become acquainted since the previous non-breeding season. Migrant birds, forming anonymous communities at the beginning of the breeding season, may also develop closer social ties during the course of the breeding season. We tested whether a male chaffinch, a migrant bird, would initiate active harassment of a predator both at the beginning of the breeding season and a week later when it has become a member of a non-anonymous multi-species aggregation of sedentary birds. We expected that male chaffinches would be less likely to initiate a mob at the beginning of the breeding season when part of an anonymous multi-species aggregation of migratory birds. However, their mobbing activity should increase as the breeding season advances. Our results support these predictions. Cooperation among individuals belonging to different species in driving the predator away may be explained as interspecific reciprocity based on interspecific recognition and temporal stability of the breeding communities. PMID:12495502

  1. Interspecific reciprocity explains mobbing behaviour of the breeding chaffinches, Fringilla coelebs.

    PubMed

    Krams, Indrikis; Krama, Tatjana

    2002-11-22

    When prey animals discover a predator close by, they mob it while uttering characteristic sounds that attract other prey individuals to the vicinity. Mobbing causes a predator to vacate its immediate foraging area, which gives an opportunity for prey individuals to continue their interrupted daily activity. Besides the increased benefits, mobbing behaviour also has its costs owing to injuries or death. The initiator of mobbing may be at increased risk of predation by attracting the predator's attention, especially if not joined by other neighbouring prey individuals. Communities of breeding birds have always been considered as temporal aggregations. Since an altruist could not prevent cheaters from exploiting its altruism in an anonymous community, this excluded any possibility of explaining mobbing behaviour in terms of reciprocal altruism. However, sedentary birds may have become acquainted since the previous non-breeding season. Migrant birds, forming anonymous communities at the beginning of the breeding season, may also develop closer social ties during the course of the breeding season. We tested whether a male chaffinch, a migrant bird, would initiate active harassment of a predator both at the beginning of the breeding season and a week later when it has become a member of a non-anonymous multi-species aggregation of sedentary birds. We expected that male chaffinches would be less likely to initiate a mob at the beginning of the breeding season when part of an anonymous multi-species aggregation of migratory birds. However, their mobbing activity should increase as the breeding season advances. Our results support these predictions. Cooperation among individuals belonging to different species in driving the predator away may be explained as interspecific reciprocity based on interspecific recognition and temporal stability of the breeding communities.

  2. [Cloning and law in Hungary].

    PubMed

    Julesz, Máté

    2015-03-01

    Reproductive human cloning is prohibited in Hungary, as in many other countries. Therapeutic human cloning is not prohibited, just like in many other countries. Stem cell therapy is also allowed. Article III, paragraph (3) of the Hungarian basic law (constitution) strictly forbids total human cloning. Article 1 of the Additional Protocol to the Oviedo Convention, on the Prohibition of Cloning Human Beings (1998) stipulates that any intervention seeking to create a human being genetically identical to another human being, whether living or dead, is prohibited. In Hungary, according to Article 174 of the Criminal Code, total human cloning constitutes a crime. Article 180, paragraph (3) of the Hungarian Act on Health declares that embryos shall not be brought about for research purposes; research shall be conducted only on embryos brought about for reproductive purposes when this is authorized by the persons entitled to decide upon its disposal, or when the embryo is damaged. Article 180, paragraph (5) of the Hungarian Act on Health stipulates that multiple individuals who genetically conform to one another shall not be brought about. According to Article 181, paragraph (1) of the Hungarian Act on Health, an embryo used for research shall be kept alive for not longer than 14 days, not counting the time it was frozen for storage and the time period of research.

  3. Flow cytometry in plant breeding.

    PubMed

    Ochatt, Sergio J

    2008-07-01

    Since the first report on the flow cytometric study of plant material 35 years ago, analyzing the nuclear DNA content of field bean, an ever increasing number of applications of FCM has been developed and applied in plant science and industry, but a similar length of time elapsed before the appearance of the first complete volume devoted to FCM of plant cells. Most published information on the uses of FCM addresses various aspects of animal (including human) cell biology, thus failing to provide a pertinent substitute. FCM represents an ideal means for the analysis of both cells and subcellular particles, with a potentially large number of parameters analyzed both rapidly, simultaneously, and quantitatively, thereby furnishing statistically exploitable data and allowing for an accurate and facilitated detection of subpopulations. It is, indeed, the summation of these facts that has established FCM as an important, and sometimes essential, tool for the understanding of fundamental mechanisms and processes underlying plant growth, development, and function. In this review, special attention is paid to FCM as applied to plant cells in the context of plant breeding, and some new and less well-known uses of it for plants will be discussed.

  4. Breeding bald eagles in captivity

    USGS Publications Warehouse

    Maestrelli, J.R.; Wiemeyer, Stanley N.

    1975-01-01

    A 7-year-old female Bald Eagle from Alabama was paired with a 4-year-old Alaskan male in a large flight pen during December 1969. Both birds were free of physical defects when originally placed in the pen but the female was blind in one eye prior to the 1973 breeding season.....Nesting first occurred during 1971 when at least two eggs were laid; all but one, which showed no sign of embryonic development after being incubated for 56 days, were broken by the adult birds. Two of three eggs laid in 1972 hatched. Both young died a few days after hatching following a period of inclement weather. Three eggs were laid and hatched during 1973. Antagonism between the nestlings was observed soon after hatching and may have been responsible for the unobserved death of one nestling, two days after the third young hatched. The two remaining young were raised by the adult birds and eventually left the nest 85 days after the first egg hatched. Incubation periods for the 1972-73 clutches averaged 35 days. No renesting attempts were made by the eagles during the 3.year period.

  5. Breeding season survival and breeding incidence of female Mottled Ducks on the upper Texas gulf coast

    USGS Publications Warehouse

    Rigby, Elizabeth A.; Haukos, David A.

    2012-01-01

    Previous Mottled Duck (Anas fulvigula) studies suggested that high female breeding season survival may be caused by low nesting effort, but few breeding season estimates of survival associated with nesting effort exist on the western Gulf Coast. Here, breeding season survival (N = 40) and breeding incidence (N = 39) were estimated for female Mottled Ducks on the upper Texas coast, 2006–2008. Females were fitted with backpack radio transmitters and visually relocated every 3–4 days. Weekly survival was estimated using the Known Fate procedure of program MARK with breeding incidence estimated as the annual proportion of females observed nesting or with broods. The top-ranked survival model included a body mass covariate and held weekly female survival constant across weeks and years (SW = 0.986, SE = 0.006). When compared to survival across the entire year estimated from previous band recovery and age ratio analysis, survival rate during the breeding season did not differ. Breeding incidence was well below 100% in all years and highly variable among years (15%–63%). Breeding season survival and breeding incidence were similar to estimates obtained with implant transmitters from the mid-coast of Texas. The greatest breeding incidence for both studies occurred when drought indices indicated average environmental moisture during the breeding season. The observed combination of low breeding incidence and high breeding season survival support the hypothesis of a trade-off between the ecological cost of nesting effort and survival for Mottled Duck females. Habitat cues that trigger nesting are unknown and should be investigated.

  6. Identification of potato breeding clones that confer high levels of late blight resistance to their progeny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1996, potato seedling minitubers derived from greenhouse crosses have been grown out under heavy late blight pressure in Toluca, Mexico. A total of 2500 individuals were planted each year along with cv. Alpha as a susceptible control. Percent defoliation readings were taken on a weekly basis u...

  7. Breeding behavior of immature mourning doves

    USGS Publications Warehouse

    Irby, H.D.; Blankenship, L.H.

    1966-01-01

    Some immature mourning doves (Zenaidura mncroura) are capable of breeding in their first (calendar) year of life. The breeding activities of immatures observed in this study included calling, copulating, and nesting. Development of sexual structures such as cloacal papillae, oviduct openings, and gonads was also regarded as evidence of breeding potential. Immatures were identified principally by white-tipped wing coverts. Sexes were distinguished by behavioral characteristics. Males coo, perform flights, carry nest material, and attend nests during the day and females attend nests at night. Immatures were involved in at least ten nestings on two areas near Tucson, Arizona, in 1963. Five young fledged from these nests.

  8. Management and Breeding Soundness of Mature Bulls.

    PubMed

    Palmer, Colin W

    2016-07-01

    Mature bulls must be fed a balanced ration, vaccinated appropriately, and undergo a breeding soundness evaluation to ensure they meet what is required of a short, but intense breeding season. To be classified as a satisfactory potential breeder, minimum standards for physical soundness, scrotal circumference, sperm motility, and sperm morphology must be achieved using an accepted bull-breeding soundness evaluation format. Sperm production requires approximately 70 days. Heat and stress are the most common insults to spermatogenesis, causing an increase in morphologic abnormalities with obesity-associated scrotal fat accumulation being the most frequent cause of elevated testicular temperature in mature bulls.

  9. Book review: Oklahoma Breeding Bird Atlas

    USGS Publications Warehouse

    Peterjohn, Bruce G.

    2004-01-01

    The first North American breeding bird atlases were initiated during the 1970s. With atlases completed or ongoing in more than 40 U.S. states and most Canadian provinces, these projects are now familiar to professional ornithologists and amateur birders. This book provides the results of the Oklahoma Breeding Bird Atlas, the data for which were collected during 1997–2001. Its appearance less than 3 years after completing fieldwork is remarkable and everyone associated with its timely publication should be congratulated for their efforts.Review info: Oklahoma Breeding Bird Atlas. By Dan L. Reinking, 2004. ISBN: 0806136146, 528 pp.

  10. First charge breeding results at CARIBU EBIS

    SciTech Connect

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  11. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.

  12. ANALYSIS OF GENOMIC DNA METHYLATION AND GENE EXPRESSION IN CHINESE CABBAGE (Brassica rapa L. ssp. pekinensis) AFTER CONTINUOUS SEEDLING BREEDING.

    PubMed

    Tao, L; Wang, X L; Guo, M H; Zhang, Y W

    2015-08-01

    Vernalization plays a key role in the bolting and flowering of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plants can switch from vegetative to reproductive growth and then bolt and flower under low temperature induction. The economic benefits of Chinese cabbage will decline significantly when the bolting happens before the vegetative body fully grows due to a lack of the edible value. It was found that continuous seedling breeding reduced the heading of Chinese cabbage and led to bolt and flower more easily. In the present study, two inbred lines, termed A161 and A105, were used as experiment materials. These two lines were subjected to vernalization and formed four types: seeds-seedling breeding once, seedling breeding twice, seedling breeding thrice and normal type. Differences in plant phenotype were compared. DNA methylation analysis was performed based on MSAP method. The differential fragments were cloned and analyzed by qPCR. Results showed that plants after seedling breeding thrice had a loosen heading leaves, elongated center axis and were easier to bolt and flower. It is suggested that continuous seedling breeding had a weaker winterness. It was observed that genome methylation level decreased with increasing generation. Four differential genes were identified, short for BraAPC1, BraEMP3, BraUBC26, and BraAL5. Fluorescent qPCR analysis showed that expression of four genes varied at different reproduction modes and different vernalization time. It is indicated that these genes might be involve in the development and regulation of bolting and flowering of plants. Herein, the molecular mechanism that continuous seedling breeding caused weaker winterness was analyzed preliminarily. It plays an important guiding significance for Chinese cabbage breeding.

  13. The topsy-turvy cloning law.

    PubMed

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  14. Human cloning and human dignity.

    PubMed

    Birnbacher, Dieter

    2005-03-01

    Judging from the official documents dealing with the moral and legal aspects of human reproductive cloning there seems to be a nearly worldwide consensus that reproductive cloning is incompatible with human dignity. The certainty of this judgement is, however, not matched by corresponding arguments. Is the incompatibility of reproductive with human dignity an ultimate moral intuition closed to further argument? The paper considers several ways by which the intuition might be connected with more familiar applications of the concept of human dignity, and argues that there is no such connection. It concludes that the central objections to human reproductive cloning are not objections relating to dignity but objections relating to risk, especially the risks imposed on children born in the course of testing the method's safety.

  15. Durum wheat and allelopathy: toward wheat breeding for natural weed management.

    PubMed

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-09-24

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control.

  16. Durum wheat and allelopathy: toward wheat breeding for natural weed management

    PubMed Central

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-01-01

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control. PMID:24065979

  17. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations.

    PubMed

    Lipinski, Monika J; Froenicke, Lutz; Baysac, Kathleen C; Billings, Nicholas C; Leutenegger, Christian M; Levy, Alon M; Longeri, Maria; Niini, Tirri; Ozpinar, Haydar; Slater, Margaret R; Pedersen, Niels C; Lyons, Leslie A

    2008-01-01

    The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing 17 random-bred populations from five continents and 22 breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese bobtail were more aligned with European/American than with Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity; however, this loss did not correlate with breed popularity or age.

  18. Familiar neighbors enhance breeding success in birds.

    PubMed Central

    Beletsky, L D; Orians, G H

    1989-01-01

    We tested the hypothesis that long-term familiarity with neighbors is advantageous by determining whether male red-winged blackbirds (Agelaius phoeniceus) breeding adjacent to familiar neighbors have better reproductive success than other males. Using data gathered during a 10-yr study of breeding success, we found that males with familiar neighbors fledged, on average, significantly more offspring annually than males without familiar neighbors. We also found that the same males, breeding in different years on the same territories, had significantly larger harems in the years they had familiar neighbors. Improved reproductive success was due to the males' abilities to attract more females to nest in their territories. Alternative hypotheses to explain the positive relationship between familiar neighbors and breeding success were not supported by our data. Relatively high reproductive success for breeders with long-term neighbors may provide a basis for the evolution of cooperative behavior in this and other species. PMID:2813369

  19. Cloning of Plasmodium yoelii Genes Expressing Three Different Sporozoite-Specific Antigens

    DTIC Science & Technology

    1989-01-01

    advances in the development of a recombinant vaccine against Plasmodium falcipatum sporozoites, there is still an urgent need for a reliable rodent model to...carry out complex vaccine protocols difficult to perform in primates or man. The purpose of this research was to clone the P. yoelii genes coding for...sporozoite antigens that have potential as vaccine candidates in a rodent model. Results our positive clones (B10, 885, B143 and 8155) were identified

  20. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies

    PubMed Central

    Gopal, Murali; Gupta, Alka

    2016-01-01

    microRNA transfer method – for realizing this next-generation plant breeding approach. Our aim, thus, is to bring closer the information accrued through the advanced nucleotide sequencing and bioinformatics in conjunction with conventional culture-dependent isolation method for practical application in plant breeding and overall agriculture. PMID:28003808

  1. The U.S. Food and Drug Administration should solidify the legal basis for its authority over reproductive cloning.

    PubMed

    Siegel, Bernard; Friede, Arnold I

    2013-12-01

    The promise and potential of stem cell research is apparent. However, ethical questions still linger. There is as yet no consensus in the U.S. Congress on how to address the issue of reproductive cloning and media confusion of this and the quite separate issue of therapeutic cloning inhibits therapeutic advance. This paper outlines the need for the FDA to undertake a deliberate process, with input from all stakeholders, to authoritatively establish its jurisdiction over human reproductive cloning so as to foster the life-saving potential of therapeutic cloning.

  2. Economic evaluation of genomic breeding programs.

    PubMed

    König, S; Simianer, H; Willam, A

    2009-01-01

    The objective of this study was to compare a conventional dairy cattle breeding program characterized by a progeny testing scheme with different scenarios of genomic breeding programs. The ultimate economic evaluation criterion was discounted profit reflecting discounted returns minus discounted costs per cow in a balanced breeding goal of production and functionality. A deterministic approach mainly based on the gene flow method and selection index calculations was used to model a conventional progeny testing program and different scenarios of genomic breeding programs. As a novel idea, the modeling of the genomic breeding program accounted for the proportion of farmers waiting for daughter records of genotyped young bulls before using them for artificial insemination. Technical and biological coefficients for modeling were chosen to correspond to a German breeding organization. The conventional breeding program for 50 test bulls per year within a population of 100,000 cows served as a base scenario. Scenarios of genomic breeding programs considered the variation of costs for genotyping, selection intensity of cow sires, proportion of farmers waiting for daughter records of genotyped young bulls, and different accuracies of genomic indices for bulls and cows. Given that the accuracies of genomic indices are greater than 0.70, a distinct economic advantage was found for all scenarios of genomic breeding programs up to factor 2.59, mainly due to the reduction in generation intervals. Costs for genotyping were negligible when focusing on a population-wide perspective and considering additional costs for herdbook registration, milk recording, or keeping of bulls, especially if there is no need for yearly recalculation of effects of single nucleotide polymorphisms. Genomic breeding programs generated a higher discounted profit than a conventional progeny testing program for all scenarios where at least 20% of the inseminations were done by genotyped young bulls without

  3. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    PubMed

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality.

  4. Anatomy of a media event: how arguments clashed in the 2001 human cloning debate.

    PubMed

    Nerlich, Brigitte; Clarke, David D

    2003-04-01

    This paper studies the distinctive role that staged media events play in the public understanding of genetics: they can focus the attention of the media, scientists and the public on the risks and benefits of genetic advances, in our case, cloning; they can accelerate policy changes by exposing scientific, legal and ethical uncertainties; the use of images, metaphors, cliches, and cultural narratives by scientists and the media engaged in this event can reinforce stereotypical representations of cloning, but can also expose fundamental clashes in arguments about cloning. The media event staged by two fertility experts in 2001 is here analysed as a case study.

  5. [Pain caused by breeding: definition, judgment, pathogenesis].

    PubMed

    Herzog, A

    1997-02-01

    Special terms of the "German Animal Protection Law (section 11b)"and the "European Agreement for Protection of Domestic Animals" particularly "torture-breeding, genetic characteristics, well-being, soundness, pains, injuries and specific use" are commented. Examples of torture-breedings are discussed: Dog (Merle-faktor, brachycephalie, atrichosis), cat (Mans-factor, W-gene, folded-ears), birds (tuffs, ear-drops, tailesness, hypertrophy of bill-warts, abnormal position of tarsal-joints, hypertrophy of imposing behavior).

  6. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  7. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  8. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  9. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  10. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  11. Clone Poems and the Microcomputer.

    ERIC Educational Resources Information Center

    Irizarry, Estelle

    1989-01-01

    Describes how students can use the computer to study and create clone poems (altering original Spanish-language poems by substituting words and expressions), and how students can gain a deeper appreciation of the original poem's poetic structure and semantics. (CB)

  12. Breeding in peach, cherry and plum: from a tissue culture, genetic, transcriptomic and genomic perspective.

    PubMed

    Carrasco, Basilio; Meisel, Lee; Gebauer, Marlene; Garcia-Gonzales, Rolando; Silva, Herman

    2013-01-01

    This review is an overview of traditional and modern breeding methodologies being used to develop new Prunus cultivars (stone fruits) with major emphasis on peach, sweet cherry and Japanese plum. To this end, common breeding tools used to produce seedlings, including in vitro culture tools, are discussed. Additionally, the mechanisms of inheritance of many important agronomical traits are described. Recent advances in stone fruit transcriptomics and genomic resources are providing an understanding of the molecular basis of phenotypic variability as well as the identification of allelic variants and molecular markers. These have potential applications for understanding the genetic diversity of the Prunus species, molecular marker-assisted selection and transgenesis. Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNPs) molecular markers are described as useful tools to describe genetic diversity in peach, sweet cherry and Japanese plum. Additionally, the recently sequenced peach genome and the public release of the sweet cherry genome are discussed in terms of their applicability to breeding programs.

  13. The use of marker-assisted selection in animal breeding and biotechnology.

    PubMed

    Williams, J L

    2005-04-01

    Improvement of livestock has focused on the selective breeding of individuals with superior phenotypes. With the development of increasingly advanced statistical methods that maximise selection for genetic gain, this simple approach has been extremely successful in increasing the quantity of agricultural output. However, information now available on the organisation and functioning of the genome could be used in breeding programmes to improve a range of traits. Many traits are under the control of several genetic loci, each of which contribute to the variation in the trait and hence are called quantitative trait loci (QTL). While genetic markers for QTL that are linked to the trait gene could be used to choose animals for selective breeding programmes, the most effective markers are the functional mutations within the trait genes. Strategies to identify markers for traits and the application of these markers are described by reference to examples of loci that control a range of different traits.

  14. Human reproductive cloning: a conflict of liberties.

    PubMed

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  15. Probabilistic cloning of three symmetric states

    SciTech Connect

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-12-15

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  16. Phase-covariant quantum cloning of qudits

    SciTech Connect

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-02-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation.

  17. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-12-08

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats.

  18. Cognitive consequences of cooperative breeding in primates?

    PubMed

    Burkart, Judith Maria; van Schaik, Carel P

    2010-01-01

    Several hypotheses propose that cooperative breeding leads to increased cognitive performance, in both nonhuman and human primates, but systematic evidence for such a relationship is missing. A causal link might exist because motivational and cognitive processes necessary for the execution and coordination of helping behaviors could also favor cognitive performance in contexts not directly related to caregiving. In callitrichids, which among primates rely most strongly on cooperative breeding, these motivational and cognitive processes include attentional biases toward monitoring others, the ability to coordinate actions spatially and temporally, increased social tolerance, increased responsiveness to others' signals, and spontaneous prosociality. These processes are likely to enhance performance particularly in socio-cognitive contexts. Therefore, cooperatively breeding primates are expected to outperform their independently breeding sister taxa in socio-cognitive tasks. We evaluate this prediction by reviewing the literature and comparing cognitive performance in callitrichids with that of their sister taxa, i.e. squirrel monkeys, which are independent breeders, and capuchin monkeys, which show an intermediate breeding system. Consistent with our prediction, this review reveals that callitrichids systematically and significantly outperform their sister taxa in the socio-cognitive, but not in the non-social domain. This comparison is complemented with more qualitative evaluations of prosociality and cognitive performance in non-primate cooperative breeders, which suggest that among mammals, cooperative breeding generally produces conditions conducive to socio-cognitive performance. In the hominid lineage, however, the adoption of extensive allomaternal care presumably resulted in more pervasive cognitive consequences, because the motivational consequences of cooperative breeding was added to an ape-level cognitive system already capable of understanding simple

  19. Across-breed EPD tables for the year 2016 adjusted to breed differences for birth year of 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of progeny of 18 breeds were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects of weaning weight, among 15 of the 18 breeds for carcass marbling and ribeye area and among 14 of the 18 breeds for fat depth and carcass weight. The r...

  20. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.

    PubMed

    McDermott, Molly E; DeGroote, Lucas W

    2016-10-01

    Climate change is influencing bird phenology worldwide, but we still lack information on how many species are responding over long temporal periods. We assessed how climate affected passerine reproductive timing and productivity at a constant effort mist-netting station in western Pennsylvania using a model comparison approach. Several lines of evidence point to the sensitivity of 21 breeding passerines to climate change over five decades. The trends for temperature and precipitation over 53 years were slightly positive due to intraseasonal variation, with the greatest temperature increases and precipitation declines in early spring. Regardless of broodedness, migration distance, or breeding season, 13 species hatched young earlier over time with most advancing >3 days per decade. Warm springs were associated with earlier captures of juveniles for 14 species, ranging from 1- to 3-day advancement for every 1 °C increase. This timing was less likely to be influenced by spring precipitation; nevertheless, higher rainfall was usually associated with later appearance of juveniles and breeding condition in females. Temperature and precipitation were positively related to productivity for seven and eleven species, respectively, with negative relations evident for six and eight species. We found that birds fledged young earlier with increasing spring temperatures, potentially benefiting some multibrooded species. Indeed, some extended the duration of breeding in these warm years. Yet, a few species fledged fewer juveniles in warmer and wetter seasons, indicating that expected future increases could be detrimental to locally breeding populations. Although there were no clear relationships between life history traits and breeding phenology, species-specific responses to climate found in our study provide novel insights into phenological flexibility in songbirds. Our research underscores the value of long-term monitoring studies and the importance of continuing constant

  1. Economical phase-covariant cloning of qudits

    SciTech Connect

    Buscemi, Francesco; D'Ariano, Giacomo Mauro; Macchiavello, Chiara

    2005-04-01

    We derive the optimal N{yields}M phase-covariant quantum cloning for equatorial states in dimension d with M=kd+N, k integer. The cloning maps are optimal for both global and single-qudit fidelity. The map is achieved by an 'economical' cloning machine, which works without ancilla.

  2. Local cloning of arbitrarily entangled multipartite states

    SciTech Connect

    Kay, Alastair; Ericsson, Marie

    2006-01-15

    We examine the perfect cloning of nonlocal, orthogonal states using only local operations and classical communication. We provide a complete characterisation of the states that can be cloned under these restrictions, and their relation to distinguishability. We also consider the case of catalytic cloning, which we show provides no enhancement to the set of clonable states.

  3. Ecological constraints, life history traits and the evolution of cooperative breeding.

    PubMed

    Hatchwell; Komdeur

    2000-06-01

    The ecological constraints hypothesis is widely accepted as an explanation for the evolution of delayed dispersal in cooperatively breeding birds. Intraspecific studies offer the strongest support. Observational studies have demonstrated a positive association between the severity of ecological constraints and the prevalence of cooperation, and experimental studies in which constraints on independent breeding were relaxed resulted in helpers moving to adopt the vacant breeding opportunities. However, this hypothesis has proved less successful in explaining why cooperative breeding has evolved in some species or lineages but not in others. Comparative studies have failed to identify ecological factors that differ consistently between cooperative and noncooperative species. The life history hypothesis, which emphasizes the role of life history traits in the evolution of cooperative breeding, offers a solution to this difficulty. A recent analysis showed that low adult mortality and low dispersal predisposed certain lineages to show cooperative behaviour, given the right ecological conditions. This represents an important advance, not least by offering an explanation for the patchy phylogenetic distribution of cooperative breeding. We discuss the complementary nature of these two hypotheses and suggest that rather than regarding life history traits as predisposing and ecological factors as facilitating cooperation, they are more likely to act in concert. While acknowledging that different cooperative systems may be a consequence of different selective pressures, we suggest that to identify the key differences between cooperative and noncooperative species, a broad constraints hypothesis that incorporates ecological and life history traits in a single measure of 'turnover of breeding opportunities' may provide the most promising avenue for future comparative studies. Copyright 2000 The Association for the Study of Animal Behaviour.

  4. Breeding programmes for smallholder sheep farming systems: II. Optimization of cooperative village breeding schemes.

    PubMed

    Gizaw, S; van Arendonk, J A M; Valle-Zárate, A; Haile, A; Rischkowsky, B; Dessie, T; Mwai, A O

    2014-10-01

    A simulation study was conducted to optimize a cooperative village-based sheep breeding scheme for Menz sheep of Ethiopia. Genetic gains and profits were estimated under nine levels of farmers' participation and three scenarios of controlled breeding achieved in the breeding programme, as well as under three cooperative flock sizes, ewe to ram mating ratios and durations of ram use for breeding. Under fully controlled breeding, that is, when there is no gene flow between participating (P) and non-participating (NP) flocks, profits ranged from Birr 36.9 at 90% of participation to Birr 21.3 at 10% of participation. However, genetic progress was not affected adversely. When there was gene flow from the NP to P flocks, profits declined from Birr 28.6 to Birr -3.7 as participation declined from 90 to 10%. Under the two-way gene flow model (i.e. when P and NP flocks are herded mixed in communal grazing areas), NP flocks benefited from the genetic gain achieved in the P flocks, but the benefits declined sharply when participation declined beyond 60%. Our results indicate that a cooperative breeding group can be established with as low as 600 breeding ewes mated at a ratio of 45 ewes to one ram, and the rams being used for breeding for a period of two years. This study showed that farmer cooperation is crucial to effect genetic improvement under smallholder low-input sheep farming systems.

  5. The Sub-Annual Breeding Cycle of a Tropical Seabird

    PubMed Central

    Reynolds, S. James; Martin, Graham R.; Dawson, Alistair; Wearn, Colin P.; Hughes, B. John

    2014-01-01

    Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts. PMID:24714514

  6. The sub-annual breeding cycle of a tropical seabird.

    PubMed

    Reynolds, S James; Martin, Graham R; Dawson, Alistair; Wearn, Colin P; Hughes, B John

    2014-01-01

    Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17,000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.

  7. Walking or Waiting? Topologies of the Breeding Ground in Malaria Control

    PubMed Central

    Lezaun, Javier

    2013-01-01

    Few places bear as much historical and scientific significance as the breeding ground, the accumulation of stagnant water where disease-carrying insects lay their eggs. Since the turn of the twentieth century, when mosquitoes of the Anopheles genus were identified as the vector of malaria transmission, these aquatic habitats have been a key object of epidemiological research and public health intervention against the disease. Yet the breeding ground can be incorporated into a number of different topologies, each implying a different spatialization of malaria and a distinct imagination of what kind of mosquito control is ‘doable'. A contemporary example of malaria control in Dar es Salaam, Tanzania, illuminates an essential tension between what we characterize as territorial and bionomic approaches to the breeding ground—that is, between control strategies premised on treating all mosquito habitats within a given region, and those that prioritize certain sites on the basis of their position within ecological networks. Each topology localizes the breeding ground by reference to a distinct set of relations, and thus advances an idiosyncratic understanding of what sort of research is worthwhile conducting and what kinds of intervention are sustainable. The multiple ways in which the breeding ground can become an object of research and action clarifies the role of topology as an infra-logic of public health, and makes explicit the politics implicit in efforts to bring different orders of the local to scale. PMID:25937707

  8. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product.

    PubMed

    Cooper, Mark; Gho, Carla; Leafgren, Roger; Tang, Tom; Messina, Carlos

    2014-11-01

    Germplasm, genetics, phenotyping, and selection, combined with a clear definition of product targets, are the foundation of successful hybrid maize breeding. Breeding maize hybrids with superior yield for the drought-prone regions of the US corn-belt involves integration of multiple drought-specific technologies together with all of the other technology components that comprise a successful maize hybrid breeding programme. Managed-environment technologies are used to enable scaling of precision phenotyping in appropriate drought environmental conditions to breeding programme level. Genomics and other molecular technologies are used to study trait genetic architecture. Genetic prediction methodology was used to breed for improved yield performance for drought-prone environments. This was enabled by combining precision phenotyping for drought performance with genetic understanding of the traits contributing to successful hybrids in the target drought-prone environments and the availability of molecular markers distributed across the maize genome. Advances in crop growth modelling methodology are being used to evaluate the integrated effects of multiple traits for their combined effects and evaluate drought hybrid product concepts and guide their development and evaluation. Results to date, lessons learned, and future opportunities for further improving the drought tolerance of maize for the US corn-belt are discussed.

  9. Cassava Breeding II: Phenotypic Correlations through the Different Stages of Selection

    PubMed Central

    Joaqui Barandica, Orlando; Pérez, Juan C.; Lenis, Jorge I.; Calle, Fernando; Morante, Nelson; Pino, Lizbeth; Hershey, Clair H.; Ceballos, Hernán

    2016-01-01

    Breeding cassava relies on a phenotypic recurrent selection that takes advantage of the vegetative propagation of this crop. Successive stages of selection (single row trial–SRT; preliminary yield trial–PYT; advanced yield trial–AYT; and uniform yield trials UYT), gradually reduce the number of genotypes as the plot size, number of replications and locations increase. An important feature of this scheme is that, because of the clonal, reproduction of cassava, the same identical genotypes are evaluated throughout these four successive stages of selection. For this study data, from 14 years (more than 30,000 data points) of evaluation in a sub-humid tropical environment was consolidated for a meta-analysis. Correlation coefficients for fresh root yield (FRY), dry matter content (DMC), harvest index (HIN), and plant type score (PTS) along the different stages of selection were estimated. DMC and PTS measured in different trials showed the highest correlation coefficients, indicating a relatively good repeatability. HIN had an intermediate repeatability, whereas FRY had the lowest value. The association between HIN and FRY was lower than expected, suggesting that HIN in early stages was not reliable as indirect selection for FRY in later stages. There was a consistent decrease in the average performance of clones grown in PYTs compared with the earlier evaluation of the same genotypes at SRTs. A feasible explanation for this trend is the impact of the environment on the physiological and nutritional status of the planting material and/or epigenetic effects. The usefulness of HIN is questioned. Measuring this variable takes considerable efforts at harvest time. DMC and FRY showed a weak positive association in SRT (r = 0.21) but a clearly negative one at UYT (r = −0.42). The change in the relationship between these variables is the result of selection. In later stages of selection, the plant is forced to maximize productivity on a dry weight basis either by

  10. SNP Markers and Their Impact on Plant Breeding

    PubMed Central

    Mammadov, Jafar; Aggarwal, Rajat; Buyyarapu, Ramesh; Kumpatla, Siva

    2012-01-01

    The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-increasing sequence information in public databases; however, complex genomes pose special challenges in the identification of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key experimental strategies and cases exemplifying their impact. PMID:23316221

  11. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.

    PubMed

    Ismail, Abdelbagi M; Horie, Tomoaki

    2017-02-22

    Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are fairly well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  12. Predators induce cloning in echinoderm larvae.

    PubMed

    Vaughn, Dawn; Strathmann, Richard R

    2008-03-14

    Asexual propagation (cloning) is a widespread reproductive strategy of plants and animals. Although larval cloning is well documented in echinoderms, identified stimuli for cloning are limited to those associated with conditions favorable for growth and reproduction. Our research shows that larvae of the sand dollar Dendraster excentricus also clone in response to cues from predators. Predator-induced clones were smaller than uncloned larvae, suggesting an advantage against visual predators. Our results offer another ecological context for asexual reproduction: rapid size reduction as a defense.

  13. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  14. No-cloning theorem on quantum logics

    SciTech Connect

    Miyadera, Takayuki; Imai, Hideki

    2009-10-15

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.

  15. Therapeutic and reproductive cloning: a critique.

    PubMed

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  16. Clone DB: an integrated NCBI resource for clone-associated data.

    PubMed

    Schneider, Valerie A; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R; Church, Deanna M

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.

  17. Breeding and genetics--historical perspective.

    PubMed

    Rishell, W A

    1997-08-01

    This paper is a review of selection methods that have been used in commercial breeding of table egg stocks, broilers, and turkeys, based on the author's experience. In addition, a number of historic developments that have shaped or influenced the selection process are listed and the significance of each is discussed. The merits of mass selection are noted and compared with the multiple forms of family selection, e.g., full or half sibs, progeny testing, and recurrent methods. Each of these methods is believed to have nearly universal application in applied breeding programs being practiced today. This review concludes that a combination of individual and family selection practices aimed at improving multiple traits simultaneously is required to remain a successful supplier of breeding stock to the current commercial industry.

  18. Genetic stability in the Icelandic horse breed.

    PubMed

    Campana, M G; Stock, F; Barrett, E; Benecke, N; Barker, G W W; Seetah, K; Bower, M A

    2012-08-01

    Despite the Icelandic horse enjoying great popularity worldwide, the breed's gene pool is small. This is because of a millennium of isolation on Iceland, population crashes caused by natural disasters and selective breeding. Populations with small effective population sizes are considered to be more at risk of selection pressures such as disease and environmental change. By analysing historic and modern mitochondrial DNA sequences and nuclear coat colour genes, we examined real-time population dynamics in the Icelandic horse over the last 150 years. Despite the small gene pool of this breed, we found that the effective population size and genetic profile of the Icelandic horse have remained stable over the studied time period.

  19. Method for cloning lymphoblastoid cells

    SciTech Connect

    Hammerling, U.; Kosinski, S.

    1989-02-14

    A method is described for increasing cloning frequency of human lymphocyte or lumphoblastoid cells which have been transformed with Epstein Barr virus comprising growing the transformed cells in a semi-solid agarose medium. A lower and an upper layer of agarose are used, the lower layer comprising fibroblasts suspended in the agarose layer and the upper layer comprising irradiated fibroblasts and the transformed cells suspended in the agarose layer wherein the upper agarose layer is added after the lower layer has gelled.

  20. Cloning expeditions: risky but rewarding.

    PubMed

    Lodish, Harvey

    2013-12-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine.

  1. Haploids: Constraints and opportunities in plant breeding.

    PubMed

    Dwivedi, Sangam L; Britt, Anne B; Tripathi, Leena; Sharma, Shivali; Upadhyaya, Hari D; Ortiz, Rodomiro

    2015-11-01

    The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to

  2. Targeted modification of plant genomes for precision crop breeding.

    PubMed

    Hilscher, Julia; Bürstmayr, Hermann; Stoger, Eva

    2017-01-01

    The development of gene targeting and gene editing techniques based on programmable site-directed nucleases (SDNs) has increased the precision of genome modification and made the outcomes more predictable and controllable. These approaches have achieved rapid advances in plant biotechnology, particularly the development of improved crop varieties. Here, we review the range of alterations which have already been implemented in plant genomes, and summarize the reported efficiencies of precise genome modification. Many crop varieties are being developed using SDN technologies and although their regulatory status in the USA is clear there is still a decision pending in the EU. DNA-free genome editing strategies are briefly discussed because they also present a unique regulatory challenge. The potential applications of genome editing in plant breeding and crop improvement are highlighted by drawing examples from the recent literature.

  3. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience.

  4. Breeding Astyanax mexicanus through Natural Spawning.

    PubMed

    Borowsky, Richard

    2008-11-01

    INTRODUCTIONMale and female Astyanax mexicanus can be bred successfully in tanks under appropriate conditions. Females should be maintained on a diet high in fats for 10-14 d before breeding. The transfer of a male and female into clean water in a fresh tank and a change (increase) in water temperature are cues for breeding. Newly fertilized eggs may also be obtained through in vitro fertilization. Note that blind fish should never be paired with eyed fish in illuminated aquaria, because the eyed fish are aggressive and will kill even much larger blind fish. Such matings must be carried out in the dark or by using in vitro fertilization.

  5. Age-specific breeding in Emperor Geese

    USGS Publications Warehouse

    Schmutz, J.A.

    2000-01-01

    I studied the frequency with which Emperor Geese (Chen canagica) of known age were observed breeding on the Yukon-Kuskokwim Delta, Alaska. No one- or two-year old geese were observed on nests. Three-year old geese bred at a lower rate than four-year old geese. These data suggest that patterns of age-specific breeding in Emperor Geese are similar to other sympatrically nesting, large bodied geese [Greater White-fronted Geese (Anser albifrons)] but delayed relative to smaller bodied geese [Cackling Canada Geese (Branta canadensis minima) and Pacific Black Brant (B. bernicla nigricans)].

  6. Polymorphisms of KAP6, KAP7, and KAP8 genes in four Chinese sheep breeds.

    PubMed

    Liu, Y X; Shi, G Q; Wang, H X; Wan, P C; Tang, H; Yang, H; Guan, F

    2014-04-30

    High glycine-tyrosine proteins (HGTPs), also known as keratin-associated proteins (KAPs), play a key role in the major structures and mechanical properties of wool fiber. Sheep HGTPs consist of three multigene families: KAP6, KAP7, and KAP8 genes. Polymorphisms of these three genes have been proposed to have important effects on wool fiber traits. The aim of the present study was to identify polymorphisms of the KAP6, KAP7, and KAP8 genes in four sheep breeds, including Chinese Merino superfine wool sheep, Hu sheep, a Merino x Hu crossed breed, and Romney sheep. Polymerase chain reaction (PCR) product direct sequencing, PCR-single-strand conformation polymorphism, and cloned sequencing methods were used to find genetic variation and identify polymorphisms in these genes. The Mutation Surveyor v3.97 software was used to analyze the sequences. These methods revealed six different sequences of the KAP6 gene, two different sequences of the KAP7 gene, and five different sequences of the KAP8 gene. Accordingly, three (with frequencies>1%) single nucleotide polymorphisms (SNPs) of the KAP6 gene, one SNP of the KAP7 gene, and five SNPs of the KAP8 gene were detected. Interestingly, some of these sequences were present in only certain sheep breeds, thereby suggesting that these special allele sequences could be used as candidate genes of wool characteristics in further studies.

  7. Introduction of quinolone resistant Escherichia coli to Swedish broiler population by imported breeding animals.

    PubMed

    Börjesson, Stefan; Guillard, Thomas; Landén, Annica; Bengtsson, Björn; Nilsson, Oskar

    2016-10-15

    During recent years a rapid increase of quinolone resistant Escherichia coli have been noted in the Swedish broiler population, despite the lack of a known selective pressure. The current study wanted to investigate if imported breeding birds could be a source for the quinolone resistant E. coli. The occurrence of quinolone resistant E. coli was investigated, using selective cultivation with nalidixic acid, in grand-parent birds on arrival to Sweden and their progeny. In addition, sampling in hatcheries and empty cleaned poultry houses was performed. Clonality of isolates was investigated using a 10-loci multiple-locus variable number tandem repeat analysis (MLVA). To identify the genetic basis for the resistance isolates were also analysed for occurrence of plasmid-mediated quinolone resistance (PMQR) determinants and characterization of chromosomal mutations. E. coli resistant to nalidixic acid occurred in grandparent birds imported to Sweden for breeding purposes. Four predominant MLVA types were identified in isolates from grandparent birds, parent birds and broilers. However, resistant E. coli with identical MLVA patterns were also present in hatcheries and poultry houses suggesting that the environment plays a role in the occurrence. Nalidixic acid resistance was due to a mutation in the gyrA gene and no PMQR could be identified. The occurrence of identical clones in all levels of the production pyramid points to that quinolone resistant E. coli can be introduced through imported breeding birds and spread by vertical transmission to all levels of the broiler production pyramid.

  8. New accuracy estimators for genomic selection with application in a cassava (Manihot esculenta) breeding program.

    PubMed

    Azevedo, C F; Resende, M D V; Silva, F F; Viana, J M S; Valente, M S F; Resende, M F R; Oliveira, E J

    2016-10-05

    Genomic selection is the main force driving applied breeding programs and accuracy is the main measure for evaluating its efficiency. The traditional estimator (TE) of experimental accuracy is not fully adequate. This study proposes and evaluates the performance and efficiency of two new accuracy estimators, called regularized estimator (RE) and hybrid estimator (HE), which were applied to a practical cassava breeding program and also to simulated data. The simulation study considered two individual narrow sense heritability levels and two genetic architectures for traits. TE, RE, and HE were compared under four validation procedures: without validation (WV), independent validation, ten-fold validation through jacknife allowing different markers, and with the same markers selected in each cycle. RE presented accuracies closer to the parametric ones and less biased and more precise ones than TE. HE proved to be very effective in the WV procedure. The estimators were applied to five traits evaluated in a cassava experiment, including 358 clones genotyped for 390 SNPs. Accuracies ranged from 0.67 to 1.12 with TE and from 0.22 to 0.51 with RE. These results indicated that TE overestimated the accuracy and led to one accuracy estimate (1.12) higher than one, which is outside of the parameter space. Use of RE turned the accuracy into the parameter space. Cassava breeding programs can be more realistically implemented using the new estimators proposed in this study, providing less risky practical inferences.

  9. Estimating superpopulation size and annual probability of breeding for pond-breeding salamanders

    USGS Publications Warehouse

    Kinkead, K.E.; Otis, D.L.

    2007-01-01

    It has long been accepted that amphibians can skip breeding in any given year, and environmental conditions act as a cue for breeding. In this paper, we quantify temporary emigration or nonbreeding probability for mole and spotted salamanders (Ambystoma talpoideum and A. maculatum). We estimated that 70% of mole salamanders may skip breeding during an average rainfall year and 90% may skip during a drought year. Spotted salamanders may be more likely to breed, with only 17% avoiding the breeding pond during an average rainfall year. We illustrate how superpopulations can be estimated using temporary emigration probability estimates. The superpopulation is the total number of salamanders associated with a given breeding pond. Although most salamanders stay within a certain distance of a breeding pond for the majority of their life spans, it is difficult to determine true overall population sizes for a given site if animals are only captured during a brief time frame each year with some animals unavailable for capture at any time during a given year. ?? 2007 by The Herpetologists' League, Inc.

  10. Immunogenomics of gastrointestinal nematode infection in ruminants - breeding for resistance to produce food sustainably and safely.

    PubMed

    Sweeney, T; Hanrahan, J P; Ryan, M T; Good, B

    2016-09-01

    Gastrointestinal nematode (GIN) infection of ruminants represents a major health and welfare challenge for livestock producers worldwide. The emergence of anthelmintic resistance in important GIN species and the associated animal welfare concerns have stimulated interest in the development of alternative and more sustainable strategies aimed at the effective management of the impact of GINs. These integrative strategies include selective breeding using genetic/genomic tools, grazing management, biological control, nutritional supplementation, vaccination and targeted selective treatment. In this review, the logic of selecting for "resistance" to GIN infection as opposed to "resilience" or "tolerance" is discussed. This is followed by a review of the potential application of immunogenomics to genetic selection for animals that have the capacity to withstand the impact of GIN infection. Advances in relevant genomic technologies are highlighted together with how these tools can be advanced to support the integration of immunogenomic information into ruminant breeding programmes.

  11. Costs Associated with Equine Breeding in Kentucky

    NASA Astrophysics Data System (ADS)

    Walker, Cassandra L.

    There were approximately 9 million horses in the United States having a 102 billion impact on the U.S. economy (AHC, 2005). Over 1 million of those horses were involved in the breeding sector. In Kentucky, nearly 18% of the horse population have been involved in breeding. Managing an equine enterprise can be difficult, particularly given that many who undertake such endeavors do not have a background or education in business management. Kentucky Cooperative Extension has produced interactive spreadsheets to help horse owners better understand the costs associated with owning horses or managing certain equine businesses, including boarding and training operations. However, there has been little support for breeders. Therefore, the objectives of this study were to provide owners with a list of services offered for breeding and the costs associated with those services. Survey questions were created from a list of topics pertinent to equine breeding and from that list of questions, an electronic survey was created. The survey was sent via Qualtrics Survey Software to collect information on stallion and mare management costs as well as expenses related to owning and breeding. Question topics included veterinary and housing costs, management and advertising expenses, and membership fees. A total of 78 farms were selected from the 2013 breeder's listings for the Kentucky Quarter Horse Association (n = 39) and the Kentucky Thoroughbred Farm Managers' Club (n = 26), and other breed association contacts (n = 13). These farms were selected from the lists by outside individuals who were not related to the project. Participants were asked to answer all questions relevant to the farm. After the initial survey distribution, follow-up e-mails and phone calls were conducted in order to answer any questions participants might have had about the survey. Survey response rate was 32.1% (25 of 78 surveys returned). Farms in Kentucky had an average of two farm-owned and two outside

  12. Accuracy of genotype imputation in sheep breeds.

    PubMed

    Hayes, B J; Bowman, P J; Daetwyler, H D; Kijas, J W; van der Werf, J H J

    2012-02-01

    Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re-sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re-sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of

  13. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students.

    PubMed

    Campbell, A Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change.

  14. Science and technology of farm animal cloning: state of the art.

    PubMed

    Vajta, Gábor; Gjerris, Mickey

    2006-05-01

    tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.

  15. From deep sequencing to actual clones.

    PubMed

    D'Angelo, Sara; Kumar, Sandeep; Naranjo, Leslie; Ferrara, Fortunato; Kiss, Csaba; Bradbury, Andrew R M

    2014-10-01

    The application of deep sequencing to in vitro display technologies has been invaluable for the straightforward analysis of enriched clones. After sequencing in vitro selected populations, clones are binned into identical or similar groups and ordered by abundance, allowing identification of those that are most enriched. However, the greatest strength of deep sequencing is also its greatest weakness: clones are easily identified by their DNA sequences, but are not physically available for testing without a laborious multistep process involving several rounds of polymerization chain reaction (PCR), assembly and cloning. Here, using the isolation of antibody genes from a phage and yeast display selection as an example, we show the power of a rapid and simple inverse PCR-based method to easily isolate clones identified by deep sequencing. Once primers have been received, clone isolation can be carried out in a single day, rather than two days. Furthermore the reduced number of PCRs required will reduce PCR mutations correspondingly. We have observed a 100% success rate in amplifying clones with an abundance as low as 0.5% in a polyclonal population. This approach allows us to obtain full-length clones even when an incomplete sequence is available, and greatly simplifies the subcloning process. Moreover, rarer, but functional clones missed by traditional screening can be easily isolated using this method, and the approach can be extended to any selected library (scFv, cDNA, libraries based on scaffold proteins) where a unique sequence signature for the desired clones of interest is available.

  16. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  17. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  18. Rapid cyling plant breeding in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance or tolerance to huanglongbing (HLB) and other important traits have been identified in several citrus types and relatives and associated markers should be identified soon. What is urgently needed in addition is an accelerated strategy for citrus variety breeding. Identification and use of...

  19. A New Breed of Environmental Film

    ERIC Educational Resources Information Center

    Malamud, Randy

    2008-01-01

    In this article, the author reports how today's environmental film festivals feature a new breed of documentary that offer nuanced narratives about intricate technologies. The author relates that the environmental films he grew up with sedately depicted the quiet sublimity of the wilderness. Today's films, the author observes, aim far beyond a…

  20. Combination solar hothouse and silkworm breeding house

    SciTech Connect

    Vardiashvili, A.B.; Muradov, M.; Kim, V.D.

    1980-01-01

    The basic arrangement is shown for a combination silkworm breeding house and solar hothouse with subsoil irrigation and accumulation of heat; it employs a semicylindrical film covering. The process of accumulation of solar heat in the subsoil pebble stores, in water-heater banks, and in the soil is described.

  1. Breeding System of Ruellia succulenta Small (Acanthaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examines the breeding system of Ruellia succulenta (Acanthaceae), an herbaceous perennial found in the pine rockland habitat of southern Florida. Hand pollination treatments were performed on 75 plants, 25 from each of three sites. Treatments applied to test plants included: 1) control ...

  2. Impacts of the USDA basic breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDAs basic sugarcane breeding program began in the mid 1950s with the objective of moving genes from wild sugarcane germplasm into commercial cane. Several releases have been made from this program, but it is a very long process. To date, the pedigree of seven commercial Louisiana varieties can...

  3. Impacts of the basic breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDAs basic sugarcane breeding program began in the mid 1950s with the objective of moving genes from wild sugarcane germplasm into commercial cane. Several releases have been made from this program, but it is a very long process. To date, the pedigree of seven commercial Louisiana varieties ca...

  4. Linkage Drag: Implication for Plant Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Linkage drag is commonly observed in plant breeding, yet the molecular mechanisms controlling this is unclear. The Pi-ta gene, a single copy gene near the centromere region of chromosome 12, confers resistance to races of Magnaporthe oryzae that contain AVR-Pita. The Pi-ta gene in Tetep has been su...

  5. Breeding for phytonutrient content; examples from watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for high phytonutrient fruits and vegetables can be a fairly straightforward endeavor when the compounds of interest produce a visible effect or the methods for quantifying the compounds simple and inexpensive. Lycopene in tomatoes and watermelon is one such compound, since the amount of r...

  6. Biotechnology and apple breeding in Japan

    PubMed Central

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  7. Breed differences in behavioural development in kittens.

    PubMed

    Marchei, P; Diverio, S; Falocci, N; Fatjó, J; Ruiz-de-la-Torre, J L; Manteca, X

    2009-03-23

    Differences in behaviour of pure breed cats have been suggested but not wholly investigated. Oriental/Siamese/Abyssinian (OSA) kittens (n=43) were weekly compared with Norwegian Forest (NFO) kittens (n=39) from the 4th to the 10th week of age in a repeated Open Field Test (OFT) paradigm. Heart rate (HR) and rectal temperature (RT) before and after the test, and behavioural responses during the OFT were recorded. Behaviours registered were analysed by focal animal sampling. Significant breed differences were found; cats of the northern zones (NFO) seem to develop earlier thermoregulatory abilities. Precocious opening of eyes, higher locomotion scores and longer time spent standing, observed in OSA kittens may indicate an earlier neurological development. Inter breed differences recorded for exploration and locomotion seem to indicate coping style divergences: in the OFT challenging situation OSA kittens presented higher emotional tachycardia and performed more passively, with a faster decline in exploration and locomotion scores. NFO kittens exerted a more active behaviour as they spent more time exploring the arena and in escape attempts. Notwithstanding OSA and NFO cat selection was mainly aimed to improve divergent morphological traits, some different behavioural and physiological traits seem to have been maintained or co-selected within each breed.

  8. Breeding lettuce for fresh-cut processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is increasingly consumed in fresh-cut packaged salads. New cultivars specifically bred for this use can enhance production and processing efficiency and extend shelf life. Cultivars with novel head architectures and leaf traits are being released by private and public breeding programs with ...

  9. Mary Bidwell Breed: The Educator as Dean.

    ERIC Educational Resources Information Center

    Fley, Jo Ann; Jaramillo, George R.

    1979-01-01

    Mary Bidwell Breed predicted that midwestern universities would probably "pass through a stage of educational development in which the liberal arts are entirely feminized, the men are entirely commercialized." We can appreciate how close she came to pinpointing trends which did not begin to be reversed until sixty years later.…

  10. Guayule: Culture, breeding and rubber production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pressure on worldwide Hevea rubber supplies and other factors are renewing interest in guayule rubber. The objective of this chapter is to review recent and past research dealing with guayule production, breeding, and product development. Production research continues to show that although guayule i...

  11. New Brahman breed improvement program at STARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the USDA, ARS, Subtropical Agricultural Research Station (STARS) in Brooksville, Florida we have initiated a new ambitious research project that many believe will have a positive influence on the Brahman breed. This research was developed from a meeting held at STARS that included past and prese...

  12. Traditional breeding and cultivar development (potato)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional breeding allows for the genetic ‘reshuffling’ of genes and their recombination into new genotypes that may carry the desired assemblage of resistance and agronomic traits necessary for release as a new cultivar. While molecular biology techniques can be useful for improving upon a weakne...

  13. Genomics to feed a switchgrass breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of improved cultivars is one of three pillars, along with sustainable production and efficient conversion, required for dedicated cellulosic bioenergy crops to succeed. Breeding new cultivars is a long, slow process requiring patience, dedication, and motivation to realize gains and adva...

  14. A brief genomic history of tomato breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report a brief genomic history of tomato breeding by analyzing the genomes of 360 diverse accessions collected all over the world. These included 333 accessions from the red fruited clade (S. pimpinellifolium, S. l. var. cerasiforme, and S. lycopersicum) that represent various geographical o...

  15. Breeding productivity of Smith Island black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Jorde, D.G.; Olsen, G.H.; Stotts, D.B.; Harrison, M.K.; Perry, M.C.

    2002-01-01

    We investigated the breeding performance of American black ducks (Anas rubripes) on Smith Island, Chesapeake Bay, to improve our understanding of island black duck breeding ecology and to make management recommendations to enhance productivity. During 1995-96, we implanted 56 female black ducks with 20-g radio transmitters and tracked 35 of the individuals through the breeding season to locate nests, determine nest fate, and identify brood habitat. We also increased preseason banding efforts and compared capture characteristics over 12 years with those from the Deal Island Wildlife Management Area, a banding site on the mainland of Tangier Sound. A low rate of nesting (37%), lack of renesting, and poor hatching success (31%) indicated that island salt marsh habitats present a harsh environment for breeding black ducks. Black ducks located 11 of 13 nests (85%) in black needlerush (Juncus roemerianus) marsh where they were vulnerable to flooding from extreme tides and to egg predators. No nests were found on forested tree hammocks, a feature that distinguishes Smith Island from nearby South Marsh and Bloodsworth Islands. Nest predators included red foxes (Vulpes vulpes), herring gulls (Larus argentams), fish crows (Corvus ossifragus), and, potentially, Norway rats (Rattus norvegicus). Unlike mainland red foxes, foxes radio tracked on Smith Island were found to be capable swimmers and effective low marsh predators. We found shoreline meadows of widgeon grass (Ruppia maritima) to be important foraging sites for black ducks and suspected that the virtual absence of fresh water in this high salinity environment (1217+ ppt) to incur some cost in terms of growth and survival of ducklings. Preseason bandings revealed a high proportion of banded adults and a strong positive correlation in age ratios with the Deal Island banding site. This latter finding strongly suggests a negative universal effect of storm tides on nest success for Tangier Sound black ducks. Management to

  16. Cloning, chromosomal localization, SNP detection and association analysis of the porcine IRS-1 gene.

    PubMed

    Niu, P-X; Huang, Z; Li, C-C; Fan, B; Li, K; Liu, B; Yu, M; Zhao, S-H

    2009-11-01

    Insulin receptor substrate-1(IRS-1) gene is one member of the Insulin receptor substrate (IRS) gene family, which plays an important role in mediating the growth of skeletal muscle and the molecular metabolism of type 2 diabetes. Here, we cloned a 3,573 bp fragment of the partial CDS sequence of porcine IRS-1 gene by in silicon cloning strategy and RT-PCR method. The porcine IRS-1 gene was assigned to SSC15q25 by using IMpRH. Sequencing of PCR products from Duroc and Tibetan pig breeds identified one SNP in exon 1 of porcine IRS-1 gene (C3257A polymorphisms). Association analysis of genotypes with the growth traits, anatomy traits, meat quality traits and physiological biochemical indexes traits showed that different genotypes at locus 3,257 of IRS-1 have significant differences in carcass straight length in pigs (P = 0.0102 \\ 0.05).

  17. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  18. The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species.

    PubMed

    Lehikoinen, Aleksi; Ranta, Esa; Pietiäinen, Hannu; Byholm, Patrik; Saurola, Pertti; Valkama, Jari; Huitu, Otso; Henttonen, Heikki; Korpimäki, Erkki

    2011-02-01

    The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm's owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973-2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species.

  19. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    SciTech Connect

    Zhao, L.; Cluggish, B.; Kim, J. S.; Pardo, R.; Vondrasek, R.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recent charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.

  20. Not All Mosquitoes Need Standing Water to Breed

    MedlinePlus

    ... fullstory_164604.html Not All Mosquitoes Need Standing Water to Breed: Study Many of the critters lay ... curbing mosquitoes is to eliminate pools of standing water where they might breed. But new research on ...

  1. Genetic trends and breed overlap derived from multiple-breed genetic evaluations of beef cattle for growth traits.

    PubMed

    Sullivan, P G; Wilton, J W; Miller, S P; Banks, L R

    1999-08-01

    Genetic evaluations for a multiple-breed population of beef cattle were used to estimate genetic trends for five breeds, and genetic differences and overlap among 14 breeds. Genetic evaluations studied were for direct contributions to birth weight, gain from birth to 200 and 365 d, and maternal contribution to gain from birth to 200 d. Almost all genetic trends were positive, but the magnitude of the trends varied among breeds. Trends were nonlinear between 1985 and 1995 for most breed and trait combinations. The rates of increase in genetic trends were generally higher for the lighter weight breeds, and lighter weight breeds had faster growth rate genetic trends at 1995 than the heavier breeds. Genetic trend estimates for yearling gain at 1995 were 2.46, 2.23, 1.73, 1.70, and 1.46 kg/yr for Angus, Hereford, Limousin, Charolais, and Simmental, respectively. Corresponding birth weight genetic trends were .130, .226, .049, .130, and .048 kg/yr. Mean genetic differences between breeds have been decreasing in magnitude due to these differences in genetic trends between heavier and lighter breeds. Genetic variation for the traits studied seemed to be greater within than between breeds for calves born and cows calving between 1993 and 1995. Genetic trends at 1995 suggest that ratios of within:between breed variation will increase and that across-breed genetic improvement initiatives for growth traits will become more important in the future.

  2. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  3. Unified universal quantum cloning machine and fidelities

    SciTech Connect

    Wang Yinan; Shi Handuo; Xiong Zhaoxi; Jing Li; Mu Liangzhu; Ren Xijun; Fan Heng

    2011-09-15

    We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.

  4. Postmortem findings in cloned and transgenic piglets dead before weaning.

    PubMed

    Schmidt, M; Winther, K D; Secher, J O; Callesen, H

    2015-10-01

    Important factors contributing to the well-known high mortality of piglets produced by SCNT are gross malformations of vital organs. The aim of the present retrospective study was to describe malformations found in cloned piglets, transgenic or not, dying or culled before weaning on Day 28. Large White (LW) embryos were transferred to 78 LW recipients, while 72 recipients received Göttingen embryos (67 transgenic and five not transgenic) and 56 received Yucatan embryos (43 transgenic and 13 not transgenic). Overall pregnancy rate was 76%, and there were more abortions in recipients with minipig embryos than in those with LW embryos (26% and 24% vs. 6%). Piglets (n = 815) were born from 128 sows with 6.5 ± 0.4 full-born piglets per litter. The overall rate of stillborn piglets was 21% of all born with the number of stillborn piglets ranging from one to nine in a litter. The mortality of the surviving piglets during the first month was 48%. Thus, altogether 58% of the full-born piglets died before weaning. In 87 of the 128 litters (68%), one to 12 of the piglets showed major or minor malformations. Malformations were found in 232 piglets (29.5% of all born). A single malformation was registered in 152 piglets, but several piglets showed two (n = 58) or more (n = 23) malformations (7.4% and 2.8% of all born, respectively). A significantly higher malformation rate was found in transgenic Göttingen and Yucatan piglets (32% and 46% of all born, respectively) than in nontransgenic LW (17%). There was a gender difference in the transgenic minipigs because male piglets had a higher rate of malformations (49.1%) than females (29.7%). The most common defects in the cloned piglets were in the digestive (12.2%), circulatory (9.4%), reproductive (11.3%), and musculoskeletal (9.1%) systems. Malformations of the musculoskeletal system were most frequent in Göttingen (16.3% vs. approximately 5.5% in the two other breeds), whereas abnormal cardiopulmonary systems were most

  5. Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds.

    PubMed

    Burren, A; Neuditschko, M; Signer-Hasler, H; Frischknecht, M; Reber, I; Menzi, F; Drögemüller, C; Flury, C

    2016-12-01

    We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH ) with pedigree-based inbreeding coefficients (FPED ). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.

  6. Variation in the prion protein sequence in Dutch goat breeds.

    PubMed

    Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M

    2016-10-01

    Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds.

  7. Evaluation and identification of Marek’s disease virus BAC clones as standardized reagents for research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease (MD), a lymphoproliferative disease in chickens. Understanding of MDV gene function advanced significantly following the cloning of the MDV genome as either a series of overlapping cosmids or as a bacterial artificial chr...

  8. No end in sight to cloning debate.

    PubMed

    Graumann, Sigrid; Poltermann, Andreas

    2005-01-01

    Since last August, Great Britain has allowed the cloning for research purposes. This fact has re-generated an existing debate, taking into account the prohibition of cloning of the UN, the States are debating whether cloning should be prohibited or in the contrary, it should also be admitted for reproductive purposes. This situation has generated an international uneasiness due to the lack of a universal consensus. This article analyses this situation, bringing the reader closer to the very controversial texts, such as the European Constitution and the UN Convention on Cloning.

  9. Quantum cloning disturbed by thermal Davies environment

    NASA Astrophysics Data System (ADS)

    Dajka, Jerzy; Łuczka, Jerzy

    2016-06-01

    A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.

  10. Species-specific challenges in dog cloning.

    PubMed

    Kim, G A; Oh, H J; Park, J E; Kim, M J; Park, E J; Jo, Y K; Jang, G; Kim, M K; Kim, H J; Lee, B C

    2012-12-01

    Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.

  11. Maternal genealogical patterns of chicken breeds sampled in Europe.

    PubMed

    Lyimo, C M; Weigend, A; Msoffe, P L; Hocking, P M; Simianer, H; Weigend, S

    2015-08-01

    The aim of this study was to investigate the maternal genealogical pattern of chicken breeds sampled in Europe. Sequence polymorphisms of 1256 chickens of the hypervariable region (D-loop) of mitochondrial DNA (mtDNA) were used. Median-joining networks were constructed to establish evolutionary relationships among mtDNA haplotypes of chickens, which included a wide range of breeds with different origin and history. Chicken breeds which have had their roots in Europe for more than 3000 years were categorized by their founding regions, encompassing Mediterranean type, East European type and Northwest European type. Breeds which were introduced to Europe from Asia since the mid-19th century were classified as Asian type, and breeds based on crossbreeding between Asian breeds and European breeds were classified as Intermediate type. The last group, Game birds, included fighting birds from Asia. The classification of mtDNA haplotypes was based on Liu et al.'s (2006) nomenclature. Haplogroup E was the predominant clade among the European chicken breeds. The results showed, on average, the highest number of haplotypes, highest haplotype diversity, and highest nucleotide diversity for Asian type breeds, followed by Intermediate type chickens. East European and Northwest European breeds had lower haplotype and nucleotide diversity compared to Mediterranean, Intermediate, Game and Asian type breeds. Results of our study support earlier findings that chicken breeds sampled in Europe have their roots in the Indian subcontinent and East Asia. This is consistent with historical and archaeological evidence of chicken migration routes to Europe.

  12. Genomic predictions for crossbreds from all-breed data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic predictions of transmitting ability (GPTAs) for crossbred animals were computed from marker effects of 5 dairy breeds weighted by each breed’s genomic contribution to the crossbreds. Estimates of genomic breed composition are labeled breed base representation (BBR) and are reported since May...

  13. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  14. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  15. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  16. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  17. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

    PubMed

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

  18. Protection of genetic heritage in the era of cloning

    PubMed Central

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep. This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  19. Expansion of the gateway multisite recombination cloning toolkit.

    PubMed

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  20. Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops.

    PubMed

    Pupilli, Fulvio; Barcaccia, Gianni

    2012-06-30

    Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of

  1. Nutritional quality of prebreeding diet influences breeding performance of the Florida scrub-jay.

    PubMed

    Reynolds, S James; Schoech, Stephan J; Bowman, Reed

    2003-02-01

    Food supplementation studies of breeding birds have traditionally concentrated on energetic constraints on breeding performance. It is only recently that the nutritional quality of the prebreeding diet has also been considered influential. We examined the importance of specific nutrients in the prebreeding diet of the Florida scrub-jay ( Aphelocoma coerulescens). Birds were provided with one of two supplements (rich in protein and fat or rich in fat only) prior to breeding in 2000 and 2001 and their breeding performance, in relation to unsupplemented (control) birds, was examined. Birds receiving both supplements significantly advanced laying in both years, and increased clutch size in 2000 but not in 2001. Laying date explained variation in clutch size in birds on dietary supplements. Egg mass and volume declined with laying order, irrespective of dietary treatment, but birds on the high fat, high protein diet laid heavier third eggs than controls and this was independent of laying date. Laboratory analysis of 14 abandoned and unhatched eggs revealed that as egg mass increased so did the absolute amount of protein and water while fat content remained relatively fixed. Using these relationships between the masses of egg components and fresh egg mass, we calculated that heavier third eggs laid by birds on high fat and high protein, compared with those laid by controls, contained more water that may be fundamental to chick growth and survival. This is the first demonstration for an avian species that nutritional quality of prebreeding diet can simultaneously influence laying date, clutch size, and egg size and composition.

  2. The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain.

    PubMed

    Winney, B J; Litton, C D; Parkin, D T; Feare, C J

    2001-01-01

    The establishment of cormorant breeding colonies inland within south-east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence variation of the control (D-loop) region of the mitochondrial genome. Samples of tissue were obtained from 334 individuals from across the species range in western Europe from both subspecies (Phalacrocorax carbo carbo and P. c. sinensis) and 84 birds from two inland breeding colonies in Britain. Single-strand conformation polymorphism (SSCP) was used to assess mitochondrial variation among samples, revealing four haplotypes. The samples from the traditional breeding colonies clustered into three distinct phylogeographic groupings: Norway-Scotland, Wales-England-Iles des Chausey and the rest of Continental Europe. These results only partly agree with the traditional subspecific taxonomic groupings and are slightly at variance with results using microsatellite DNA frequencies, and a hypothesis using results from both studies is advanced. The subspecific origin of the inland colonies was investigated using maximum likelihood and Bayesian models.

  3. The Effects of Supplementary Food on the Breeding Performance of Eurasian Reed Warblers Acrocephalus scirpaceus; Implications for Climate Change Impacts

    PubMed Central

    Vaughan, Ian P.; Jones, T. Hefin; Facey, Richard J.; Parry, Rob; Thomas, Robert J.

    2016-01-01

    Understanding the mechanisms by which climate variation can drive population changes requires information linking climate, local conditions, trophic resources, behaviour and demography. Climate change alters the seasonal pattern of emergence and abundance of invertebrate populations, which may have important consequences for the breeding performance and population change of insectivorous birds. In this study, we examine the role of food availability in driving behavioural changes in an insectivorous migratory songbird; the Eurasian reed warbler Acrocephalus scirpaceus. We use a feeding experiment to examine the effect of increased food supply on different components of breeding behaviour and first-brood productivity, over three breeding seasons (2012–2014). Reed warblers respond to food-supplementation by advancing their laying date by up to 5.6 days. Incubation periods are shorter in supplemented groups during the warmest mean spring temperatures. Nestling growth rates are increased in nests provisioned by supplemented parents. In addition, nest predation is reduced, possibly because supplemented adults spend more time at the nest and faster nestling growth reduces the period of vulnerability of eggs and nestlings to predators (and brood parasites). The net effect of these changes is to advance the fledging completion date and to increase the overall productivity of the first brood for supplemented birds. European populations of reed warblers are currently increasing; our results suggest that advancing spring phenology, leading to increased food availability early in the breeding season, could account for this change by facilitating higher productivity. Furthermore, the earlier brood completion potentially allows multiple breeding attempts. This study identifies the likely trophic and behavioural mechanisms by which climate-driven changes in invertebrate phenology and abundance may lead to changes in breeding phenology, nest survival and net reproductive

  4. A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system.

    PubMed

    Suzuki, Yasuhiro; Kagawa, Naoko; Fujino, Toru; Sumiya, Tsuyoshi; Andoh, Taichi; Ishikawa, Kumiko; Kimura, Rie; Kemmochi, Kiyokazu; Ohta, Tsutomu; Tanaka, Shigeo

    2005-07-11

    There is an increasing demand for easy, high-throughput (HTP) methods for protein engineering to support advances in the development of structural biology, bioinformatics and drug design. Here, we describe an N- and C-terminal cloning method utilizing Gateway cloning technology that we have adopted for chimeric and mutant genes production as well as domain shuffling. This method involves only three steps: PCR, in vitro recombination and transformation. All three processes consist of simple handling, mixing and incubation steps. We have characterized this novel HTP method on 96 targets with >90% success. Here, we also discuss an N- and C-terminal cloning method for domain shuffling and a combination of mutation and chimeragenesis with two types of plasmid vectors.

  5. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers

    PubMed Central

    2013-01-01

    Background Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Methods Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). Results All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The

  6. Generation of influenza A virus from cloned cDNAs--historical perspective and outlook for the new millenium.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2002-01-01

    Influenza virus reverse genetics has reached a level of sophistication where one can confidently generate virus entirely from cloned DNAs. The new systems makes it feasible to study the molecular mechanisms of virus replication and pathogenicity, as well as to generate attenuated live virus vaccines, gene delivery vehicles, and possibly other RNA viruses from cloned cDNAs. During the next decade, one can anticipate the translation of influenza virus reverse genetics into biomedically relevant advances.

  7. Breeding bird response to juniper woodland expansion

    USGS Publications Warehouse

    Rosenstock, Steven S.; van Riper, Charles

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997a??1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  8. Breeding population inventories and measures of recruitment

    USGS Publications Warehouse

    Cowardin, L.M.; Blohm, R.J.; Batt, D.J.; Afton, A.D.; Anderson, M.G.; Ankney, C.D.; Johnson, D.H.; Kadlec, J.A.; Krapu, G.L.

    1992-01-01

    In this chapter we review the techniques used to measure two important parameters of waterfowl populations, size of breeding population and recruitment. If waterfowl are to be managed toward goals defined in terms of population sizes such as those in the recently signed North American Waterfowl Management Plan (U.S. Fish and Wildlife Service [USFWS] and Canadian Wildlife Service [CWS] 1986), there must be some measure of population size for the various species. Waterfowl managers usually measure population size during the breeding season, although for some species and in some areas winter inventories may be used. Population size is a function of natality and mortality. Other chapters in this volume deal in detail with the biology of those processes. This chapter discusses procedural aspects of measurement and reviews some of the operational systems that have been used to estimate population size and recruitment, especially in North America.

  9. Determinants of breeding distributions of ducks

    USGS Publications Warehouse

    Johnson, D.H.; Grier, J.W.

    1988-01-01

    The settling of breeding habitat by migratory waterfowl is a topic of both theoretical and practical interest. We use the results of surveys conducted annually during 1955-81 in major breeding areas to examine the factors that affect the distributions of 10 common North American duck species. Three patterns of settling are described: homing, opportunistic, and flexible. Homing is generally more pronounced among species that use more stable (more predictable) wetlands, such as the redhead (Aythya americana), canvasback (A. valisineria), lesser scaup (A. affinis), mallard (Anas platyrhynchos), gadwall (Anas strepera), and northern shoveler (Anas clypeata). Opportunistic settling is more prevalent among species that use less stable (less predictable) wetlands, such as northern pintail (Anas acuta) and blue-winged teal (Anas discors). Flexible settling is exhibited to various degrees by most species.The 10 species are shown to fall along a natural ordination reflecting different life history characteristics. Average values of indices of r- and K-selection indicated that pintail, mallard, blue-winged teal, and shoveler have the most features associated with unstable or unpredictable environments. Gadwall, American wigeon (Anas americana), and green-winged teal (Anas crecca) were intermediate, and attributes of the diving ducks were associated with the use of stable or predictable environments.Some species--notably mallard, gadwall, blue-winged teal, redhead, and canvasback--tend to fill available breeding habitat first in the central portions of their range, and secondly in peripheral areas. Other species--American wigeon, green-winged teal, northern shoveler, northern pintail, and lesser scaup--fill their habitat in the order it is encountered during spring migration.Age and sex classes within species vary in their settling pattern. Some of this variation can be predicted from the mating systems of ducks in which breeding females, especially successful ones, have a

  10. Positional cloning by linkage disequilibrium.

    PubMed

    Maniatis, Nikolas; Collins, Andrew; Gibson, Jane; Zhang, Weihua; Tapper, William; Morton, Newton E

    2004-05-01

    Recently, metric linkage disequilibrium (LD) maps that assign an LD unit (LDU) location for each marker have been developed (Maniatis et al. 2002). Here we present a multiple pairwise method for positional cloning by LD within a composite likelihood framework and investigate the operating characteristics of maps in physical units (kb) and LDU for two bodies of data (Daly et al. 2001; Jeffreys et al. 2001) on which current ideas of blocks are based. False-negative indications of a disease locus (type II error) were examined by selecting one single-nucleotide polymorphism (SNP) at a time as causal and taking its allelic count (0, 1, or 2, for the three genotypes) as a pseudophenotype, Y. By use of regression and correlation, association between every pseudophenotype and the allelic count of each SNP locus (X) was based on an adaptation of the Malecot model, which includes a parameter for location of the putative gene. By expressing locations in kb or LDU, greater power for localization was observed when the LDU map was fitted. The efficiency of the kb map, relative to the LDU map, to describe LD varied from a maximum of 0.87 to a minimum of 0.36, with a mean of 0.62. False-positive indications of a disease locus (type I error) were examined by simulating an unlinked causal SNP and the allele count was used as a pseudophenotype. The type I error was in good agreement with Wald's likelihood theorem for both metrics and all models that were tested. Unlike tests that select only the most significant marker, haplotype, or haploset, these methods are robust to large numbers of markers in a candidate region. Contrary to predictions from tagging SNPs that retain haplotype diversity, the sample with smaller size but greater SNP density gave less error. The locations of causal SNPs were estimated with the same precision in blocks and steps, suggesting that block definition may be less useful than anticipated for mapping a causal SNP. These results provide a guide to efficient

  11. Breeding ecology of the Puaiohi (Myadestes palmeri)

    USGS Publications Warehouse

    Snetsinger, T.J.; Herrmann, C.M.; Holmes, D.E.; Hayward, C.D.; Fancy, S.G.

    2005-01-01

    We studied the breeding ecology of the critically endangered Puaiohi (Myadestes palmeri), a poorly known Hawaiian thrush endemic to the island of Kauai. From 1996 through 1998, we monitored 96 active nests over the course of three breeding seasons. Mean clutch size was 2.0, and pairs produced an average of 1.5 fledglings/successful nest. Pairs renested after failure and some raised multiple broods. The mean annual reproductive effort was 2.1 nesting attempts/territory, and pairs produced a mean 1.1 fledglings/attempt. Large differences in nesting effort and productivity occurred among years, with mean number of fledglings/territory ranging from 0.4 to 4.9. Predation by owls (probably Short-eared Owls, Asia flammeus) and introduced rats (probably black rats, Rattus rattus) accounted for most nest failures. The presence of non-breeding floaters in the population and their largely unsuccessful attempts to gain territories in the study area suggest that the population is near carrying capacity. The high reproductive potential of the Puaiohi may help explain its persistence despite the species' historical rarity.

  12. Reproductive senescence in a cooperatively breeding mammal.

    PubMed

    Sharp, Stuart P; Clutton-Brock, Tim H

    2010-01-01

    1. Senescence (or 'ageing') is a widespread and important process in wild animal populations, but variation in ageing patterns within and between species is poorly understood. 2. In cooperatively breeding species, the costs of reproduction are shared between breeders and one or more helpers. The effects of ageing in breeders may therefore be moderated by the presence of helpers, but there have been very few studies of senescence patterns in natural populations of cooperative breeders. 3. Here, we use 13 years of data from a long-term study population of wild meerkats (Suricata suricatta) to investigate age-related changes in several traits known to be key components of reproductive success in females of this species. 4. Four of the six traits studied exhibited significant declines with age, indicating senescence. Litter size, the number of litters produced per year and the number of pups that survived to emergence from the natal burrow per year all increased with female age up to a peak at c. 4 years, and declined steeply thereafter; the mean pup weight at emergence in a given litter declined steadily from age zero. 5. These results provide the first evidence of reproductive senescence in a wild population of a cooperatively breeding vertebrate. Breeding success declined with age despite the sharing of reproductive costs in this species, but further study is needed to investigate whether helping affects other aspects of senescence, including survival.

  13. The development of beef breeding bulls.

    PubMed

    Engelken, T J

    2008-08-01

    Management of the bull battery will have a dramatic impact on profitability of the cow/calf enterprise. It is critical that young bulls be selected and developed to maximize longevity and productivity for the eventual buyer. Bulls must be structurally sound, healthy, and have adequate libido in order to service the required number of females. Once bulls complete their first breeding season, special care must be taken in order to ensure that they recover and regain needed body condition and pass a bull breeding soundness examination (BBSE). Mature bulls that have reached their genetic potential for growth require less intensive management, but the health program and annual BBSE cannot be overlooked. Mature bulls are also more likely to carry venereal disease and should be screened according to local disease incidence and state regulations. All bulls, regardless of age, should be observed early during the breeding season to ensure that they are physically capable of mounting and servicing females. The establishment of a complete management program, especially for young bulls, is essential to ensure that ranch resources are used efficiently, including maintenance of a high level of reproductive performance of the cow herd.

  14. Bull breeding soundness evaluation in Southern Africa.

    PubMed

    Irons, P C; Nöthling, J O; Bertschinger, H J

    2007-10-01

    The motivation for and process leading up to the publication of a new bull breeding soundness certification standard endorsed by the South African Veterinary Association is described. The veterinary certificate of bull breeding soundness and explanatory notes and minimum standards are shown. The first component of the certificate is a declaration by the veterinarian that the bull complies with the minimum standards set for examinations for the selected purpose, these being for use as a natural service sire, as a donor of semen for distribution, and for insurance purposes. This is followed by the details of the bull and owner, and a list of the recommended examinations and tests for the bull with provision for which were performed. Certificates are available in book form with the explanatory notes and minimum standards on the reverse, and a carbon copy which remains in the book. The clarity and ease of completion of the document are regarded as being positive features. Bulls are either classified as breeding sound or not, with no actual parameters indicated on the document and no certificate issued for those which do not meet the set criteria. Contact details of the parties involved are shown on the certificate to allow for communication as a means of avoiding disputes.

  15. The northeastern states' waterfowl breeding population survey

    USGS Publications Warehouse

    Heusmann, H.W.; Sauer, J.R.

    2000-01-01

    Efforts to tailor waterfowl hunting regulations to conditions in the Atlantic Flyway have been hampered by lack of information on local breeding populations. The Atlantic Flyway Council's technical section voted at its 1987 winter meeting (Atlantic Flyway Council Technical Section, Toronto, Canada) to establish a regional waterfowl breeding survey. Consequently, an annual survey was started in 1989 and further refined in 1993 using results from 1989 to 1992. During 1993-1997, annual spring surveys of more than 1,450 randomly selected 1-km2 plots, stratified by physiographic strata, were conducted in the Atlantic Flyway from New Hampshire to Virginia to estimate breeding populations of mallards (Arias platyrhynchos), American black ducks (A. rubripes), wood ducks (Aix sponsa), and Canada geese (Branta canadensis). Ground crews systematically surveyed all potential waterfowl habitat for these species in each plot. The adjusted mean mallard pair estimate over the 5-year period was 375,962 (range 310,299-415,182, mean SE 25,761) for the region surveyed. The estimate for black duck pairs was 31,1 54 (range 27,164'37,521, mean SE 4,978), and for wood duck pairs it was 240,473 (range 218,959-281,916, mean SE 25,408). Total number of Canada geese increased from 526,663 in 1993 to 892,278 in 1997. Population estimates for other species had unacceptably large standard errors.

  16. Detection of Breeding Blankets Using Antineutrinos

    NASA Astrophysics Data System (ADS)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  17. The North American Breeding Bird Survey

    USGS Publications Warehouse

    Bystrak, D.; Ralph, C. John; Scott, J. Michael

    1981-01-01

    A brief history of the North American Breeding Bird Survey (BBS) and a discussion of the technique are presented. The approximately 2000 random roadside routes conducted yearly during the breeding season throughout North America produce an enormous bank of data on distribution and abundance of breeding birds with great potential use. Data on about one million total birds of 500 species per year are on computer tape to facilitate accessibility and are available to any serious investigator. The BBS includes the advantages of wide geographic coverage, sampling of most habitat types, standardization of data collection, and a relatively simple format. The Survey is limited by placement of roads (e.g., marshes and rugged mountainous areas are not well sampled), traffic noise interference in some cases and preference of some bird species for roadside habitats. These and other problems and biases of the BBS are discussed. The uniformity of the technique allows for detecting changes in populations and for creation of maps of relative abundance. Examples of each are presented.

  18. Breeding quantum error-correcting codes

    SciTech Connect

    Dong Ying; Hu Dan; Yu Sixia

    2010-02-15

    The stabilizer code, one major family of quantum error-correcting codes (QECC), is specified by the joint eigenspace of a commuting set of Pauli observables. It turns out that noncommuting sets of Pauli observables can be used to construct more efficient QECCs, such as the entanglement-assisted QECCs, which are built directly from any linear classical codes whose detailed properties are needed to determine the parameters of the resulting quantum codes. Here we propose another family of QECCs, namely, the breeding QECCs, that also employ noncommuting sets of Pauli observables and can be built from any classical additive codes, either linear or nonlinear, with the advantage that their parameters can be read off directly from the corresponding classical codes. Besides, since nonlinear codes are generally more efficient than linear codes, our breeding codes have better parameters than those codes built from linear codes. The terminology is justified by the fact that our QECCs are related to the ordinary QECCs in exactly the same way that the breeding protocols are related to the hashing protocols in the entanglement purification.

  19. Molecular cloning and functional analysis of the goose FSHβ gene.

    PubMed

    Huang, Z; Li, X; Li, Y; Liu, R; Chen, Y; Wu, N; Wang, M; Song, Y; Yuan, X; Lan, L; Xu, Q; Chen, G; Zhao, W

    2015-01-01

    The objective of this investigation was to clone goose FSHβ-subunit cDNA and to construct a FSH fusion gene to identify the function of FSHβ mRNA during stages of the breeding cycle. The FSHβ gene was obtained by reverse transcription-PCR, and the full-length FSHβ mRNA sequence was amplified by rapid-amplification of cDNA ends. FSHβ mRNA expression was detected in reproductive tissues at different stages (pre-laying, laying period, and broody period). Additionally, the expression of 4 genes known to be involved in reproduction (FSHβ, GnRH, GH, and BMP) were evaluated in COS-7 cells expressing the fusion gene (pVITRO2-FSHαβ-CTP). The results show that the FSHβ gene consists of a 16 base pair (bp) 5'-untranslated region (UTR), 396 bp open reading frame, and alternative 3'-UTRs at 518 bp and 780 bp, respectively. qPCR analyses revealed that FSHβ mRNA is highly transcribed in reproductive tissues, including the pituitary, hypothalamus, ovaries, and oviduct. FSHβ mRNA expression increased and subsequently decreased in the pituitary, ovaries, and oviduct during the reproductive stages. Stable FSH expression was confirmed using enzyme-linked immunosorbent assays after transfection with the pVITRO2-FSHαβ-CTP plasmid. FSHβ, GnRH, and BMP expression increased significantly 36 h and 48 h after transfection with the fusion gene in COS-7 cells. The results demonstrate that the FSHβ subunit functions in the goose reproductive cycle and provides a theoretical basis for future breeding work.

  20. Why breed every other year? The case of albatrosses.

    PubMed

    Jouventin, Pierre; Dobson, F Stephen

    2002-09-22

    Albatrosses exhibit extremely low reproductive rates, each pair brooding only one egg and subsequent chick at a time. Furthermore, in several of the species, the majority of successful pairs breed only once every second year (termed 'biennial' breeding). Thus, on average, these latter species have an annual fecundity of about half an offspring per year, while other albatrosses produce an egg and chick every year. Using our 40-year bank of demographic data, we compared 12 species of albatrosses according to these two breeding strategies to examine potential causes of biennial breeding. Biennial breeding could be due to physiological constraints, larger animals breeding more slowly, or ecological constraints, more distant pelagic feeding trips being energetically costly, or both. We tested these hypotheses by looking for predicted associations between the duration of the rearing period, the distance to the oceanic feeding zone and breeding frequency. We also looked for associations of these variables with other life-history traits. Body size had a strong influence on the duration of the rearing period, but not on the distance that birds travelled to the feeding zone. Both the duration of the rearing period and distance to the feeding zone appeared to have direct influences on breeding frequency, as revealed by a path analysis, and thus both hypotheses to explain biennial breeding were supported. Finally, breeding frequency exhibited a strong trade-off with adult survival and age at maturity, indicating that slower breeders live through more breeding seasons, perhaps mitigating their lower annual reproductive output.

  1. Why breed every other year? The case of albatrosses.

    PubMed Central

    Jouventin, Pierre; Dobson, F Stephen

    2002-01-01

    Albatrosses exhibit extremely low reproductive rates, each pair brooding only one egg and subsequent chick at a time. Furthermore, in several of the species, the majority of successful pairs breed only once every second year (termed 'biennial' breeding). Thus, on average, these latter species have an annual fecundity of about half an offspring per year, while other albatrosses produce an egg and chick every year. Using our 40-year bank of demographic data, we compared 12 species of albatrosses according to these two breeding strategies to examine potential causes of biennial breeding. Biennial breeding could be due to physiological constraints, larger animals breeding more slowly, or ecological constraints, more distant pelagic feeding trips being energetically costly, or both. We tested these hypotheses by looking for predicted associations between the duration of the rearing period, the distance to the oceanic feeding zone and breeding frequency. We also looked for associations of these variables with other life-history traits. Body size had a strong influence on the duration of the rearing period, but not on the distance that birds travelled to the feeding zone. Both the duration of the rearing period and distance to the feeding zone appeared to have direct influences on breeding frequency, as revealed by a path analysis, and thus both hypotheses to explain biennial breeding were supported. Finally, breeding frequency exhibited a strong trade-off with adult survival and age at maturity, indicating that slower breeders live through more breeding seasons, perhaps mitigating their lower annual reproductive output. PMID:12350259

  2. What's so bad about human cloning?

    PubMed

    Breitowitz, Yitzchok

    2002-12-01

    There appears to be a consensus in the general community that reproductive cloning is an immoral technology that should be banned. It may, however, be argued, at least from the perspective of the Jewish tradition, that reproductive cloning has many positive benefits. It is thus essential that one carefully weigh the costs and the benefits before deciding on a definitive course of action.

  3. Cloning of endangered mammalian species: any progress?

    PubMed

    Loi, Pasqualino; Galli, Cesare; Ptak, Grazyna

    2007-05-01

    Attempts through somatic cell nuclear transfer to expand wild populations that have shrunk to critical numbers is a logical extension of the successful cloning of mammals. However, although the first mammal was cloned 10 years ago, nuclear reprogramming remains phenomenological, with abnormal gene expression and epigenetic deregulation being associated with the cloning process. In addition, although cloning of wild animals using host oocytes from different species has been successful, little is known about the implication of partial or total mitochondrial DNA heteroplasmy in cloned embryos, fetuses and offspring. Finally, there is a need for suitable foster mothers for inter-intra specific cloned embryos. Considering these issues, the limited success achieved in cloning endangered animals is not surprising. However, optimism comes from the rapid gain in the understanding of the molecular clues underlying nuclear reprogramming. If it is possible to achieve a controlled reversal of the differentiated state of a cell then it is probable that other issues that impair the cloning of endangered animals, such as the inter-intra species oocyte or womb donor, will be overcome in the medium term.

  4. The ethics of human reproductive cloning.

    PubMed

    Strong, Carson

    2005-03-01

    This article addresses the question of whether human reproductive cloning could be ethically justifiable in at least some cases involving infertile couples who would choose cloning as a way to have a genetically related child. At present, the risk of congenital anomalies constitutes a compelling argument against human reproductive cloning. The article explores whether reproductive cloning could be ethically justifiable if, at some future time, cloning becomes possible without an elevated risk of anomalies. It is argued that freedom to use cloning is a form of procreative freedom and, as such, deserves respect. All of the objections that have been raised against human reproductive cloning fall under three main categories: those that appeal to the interests of the child, those based on consequences for society, and those arising from teleological views. Objections that appeal to the child's interests are, in turn, of two main kinds: consequentialist and deontological. All of these types of objections are examined, and it is found that each involves serious problems that prevent it from being a reasonable objection in the context of the infertility cases considered. It is concluded that human reproductive cloning would be ethically justifiable in at least some cases involving infertile couples, provided that it could be performed without an elevated risk of anomalies.

  5. The different breeding strategies of penguins: a review.

    PubMed

    Ancel, André; Beaulieu, Michaël; Gilbert, Caroline

    2013-01-01

    The 18 penguin species are exclusively and widely distributed in the Southern hemisphere, from the Equator to the Antarctic continent, and are thus submitted to various ecological constraints in their reproductive strategy. This results in a high variability in all aspects of the breeding biology of the different species. Although penguins appear primarily adapted for a marine existence, they remain dependent on land for breeding, rearing young, and moulting. Here we describe and compare the breeding cycle of all the penguin species, highlighting the characteristics of each species in terms of breeding range, population status, threats induced by environmental changes, duration of the different phases of the breeding cycle, mate fidelity, body mass, body height, egg mass and duration of egg formation. We also focus on the breeding cycle of the genus Aptenodytes, since it largely differs from the breeding cycle of most of the other penguin species.

  6. Life histories and the evolution of cooperative breeding in mammals.

    PubMed

    Lukas, Dieter; Clutton-Brock, Tim

    2012-10-07

    While the evolution of cooperative breeding systems (where non-breeding helpers participate in rearing young produced by dominant females) has been restricted to lineages with socially monogamous mating systems where coefficients of relatedness between group members are usually high, not all monogamous lineages have produced species with cooperative breeding systems, suggesting that other factors constrain the evolution of cooperative breeding. Previous studies have suggested that life-history parameters, including longevity, may constrain the evolution of cooperative breeding. Here, we show that transitions to cooperative breeding across the mammalian phylogeny have been restricted to lineages where females produce multiple offspring per birth. We find no support for effects of longevity or of other life-history parameters. We suggest that the evolution of cooperative breeding has been restricted to monogamous lineages where helpers have the potential to increase the reproductive output of breeders.

  7. Colombian Creole horse breeds: Same origin but different diversity

    PubMed Central

    Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar

    2012-01-01

    In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940

  8. Spatial scale of local breeding habitat quality and adjustment of breeding decisions.

    PubMed

    Doligez, Blandine; Berthouly, Anne; Doligez, Damien; Tanner, Marion; Saladin, Verena; Bonfils, Danielle; Richner, Heinz

    2008-05-01

    Experimental studies provide evidence that, in spatially and temporally heterogeneous environments, individuals track variation in breeding habitat quality to adjust breeding decisions to local conditions. However, most experiments consider environmental variation at one spatial scale only, while the ability to detect the influence of a factor depends on the scale of analysis. We show that different breeding decisions by adults are based on information about habitat quality at different spatial scales. We manipulated (increased or decreased) local breeding habitat quality through food availability and parasite prevalence at a small (territory) and a large (patch) scale simultaneously in a wild population of Great Tits (Parus major). Females laid earlier in high-quality large-scale patches, but laying date did not depend on small-scale territory quality. Conversely, offspring sex ratio was higher (i.e., biased toward males) in high-quality, small-scale territories but did not depend on large-scale patch quality. Clutch size and territory occupancy probability did not depend on our experimental manipulation of habitat quality, but territories located at the edge of patches were more likely to be occupied than central territories. These results suggest that integrating different decisions taken by breeders according to environmental variation at different spatial scales is required to understand patterns of breeding strategy adjustment.

  9. Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an Arctic-breeding songbird.

    PubMed

    Romero, L M; Soma, K K; O'Reilly, K M; Suydam, R; Wingfield, J C

    1998-02-01

    We examined hormonal profiles and behavior associated with maintaining a single-purpose territory in an Arctic-breeding songbird-the snow bunting (Plectrophenax nivalis). Snow buntings differ from many other Arctic-breeding passerines by using nest cavities, an uncommon and defended resource, but not relying upon the surrounding territory for forage. Circulating levels of testosterone in males were high when territories were established and then decreased over the breeding season. LH secretion was enhanced in females while laying eggs, followed by detectable levels of estradiol during incubation. Both sexes showed equivalent corticosterone responses to the stress of being captured and held. Male snow buntings vigorously defended territories in response to a simulated territorial intrusion both when initiating breeding and when feeding young. Exogenous testosterone implants surprisingly inhibited physical aggression but enhanced singing when birds were feeding young, thus suggesting that song and physical aggression are mediated by different hormonal mechanisms at this time of year. Together, these results contrast with hormonal profiles and behavior in other Arctic-breeding passerines.

  10. Chorioallantoic placenta defects in cloned mice

    SciTech Connect

    Wakisaka-Saito, Noriko; Kohda, Takashi . E-mail: tkhoda.epgn@tmd.ac.jp; Inoue, Kimiko; Ogonuki, Narumi; Miki, Hiromi; Hikichi, Takafusa; Mizutani, Eiji; Wakayama, Teruhiko; Kaneko-Ishino, Tomoko; Ogura, Atsuo; Ishino, Fumitoshi

    2006-10-13

    Somatic cell nuclear transfer technology has been applied to produce live clones successfully in several mammalian species, but the success rates are very low. In mice, about half of the nuclear transfer embryos undergo implantation, but very few survive to term. We undertook detailed histological analyses of placentas from cloned mouse embryos generated from cumulus cells at 10.5 dpc of pregnancy, by which stage most clones have terminated their development. At 10.5 dpc, the extraembryonic tissues displayed several defined histological patterns, each reflecting their stage of developmental arrest. The most notable abnormality was the poor development of the spongiotrophoblast layer of diploid cells. This is in contrast to the placental hyperplasia frequently observed in somatic clones at 12.5 dpc or later stages. A variety of structural abnormalities were also observed in the embryos. Both placental and embryonic defects likely contribute to the low success rate of the mouse clones.

  11. "Goodbye Dolly?" The ethics of human cloning.

    PubMed Central

    Harris, J

    1997-01-01

    The ethical implications of human clones have been much alluded to, but have seldom been examined with any rigour. This paper examines the possible uses and abuses of human cloning and draws out the principal ethical dimensions, both of what might be done and its meaning. The paper examines some of the major public and official responses to cloning by authorities such as President Clinton, the World Health Organisation, the European parliament, UNESCO, and others and reveals their inadequacies as foundations for a coherent public policy on human cloning. The paper ends by defending a conception of reproductive rights of "procreative autonomy" which shows human cloning to be not inconsistent with human rights and dignity. PMID:9451604

  12. [Human cloning in Muslim and Arab law].

    PubMed

    Aldeeb Abu-Sahlieh, Sami A

    2009-01-01

    Cloning is a modern medical procedure that Muslim religious authorities treat en resorting to the general principles established by classical Muslim law based on the Koran and the Sunnah of Muhhamad as the messenger of God. In this regard, human beings are not capable of deciding what is or what is not lawful without resorting to divine norms. Cloning clashes with several principles. Firstly, the principle of the respect for life in relation to surpernumeraries, but Muslim authors are not in unanimous agreement on the determination of the moment at which life begins. Secondly, is the respect of progeny: cloning could only take place between a married couple. But even if these two principles are respected, cloning poses two major problems: the diversity of species expounded by the Koran and the Sunnah and a lack of interest. Which explains the quasi-unanimous opposition of Muslim writings regarding cloning.

  13. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.

  14. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    PubMed Central

    2011-01-01

    Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse) in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass) of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages) varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment

  15. Molecular Genetics of Sex Identification, Breed Ancestry and Polydactyly in the Norwegian Lundehund Breed.

    PubMed

    Kropatsch, Regina; Melis, Claudia; Stronen, Astrid V; Jensen, Henrik; Epplen, Joerg T

    2015-01-01

    The Norwegian Lundehund breed of dog has undergone a severe loss of genetic diversity as a result of inbreeding and epizootics of canine distemper. As a consequence, the breed is extremely homogeneous and accurate sex identification is not always possible by standard screening of X-chromosomal loci. To improve our genetic understanding of the breed we genotyped 17 individuals using a genome-wide array of 170 000 single nucleotide polymorphisms (SNPs). Standard analyses based on expected homozygosity of X-chromosomal loci failed in assigning individuals to the correct sex, as determined initially by physical examination and confirmed with the Y-chromosomal marker, amelogenin. This demonstrates that identification of sex using standard SNP assays can be erroneous in highly inbred individuals.

  16. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  17. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  18. Post-mortem re-cloning of a transgenic red fluorescent protein dog.

    PubMed

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun

    2011-12-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.

  19. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    PubMed Central

    2011-01-01

    Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome

  20. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system.

    PubMed

    Gaynor, P; Wells, D N; Oback, B

    2005-01-01

    Mammalian cloning by somatic nuclear transfer has great potential for developing medical applications such as biopharmaceuticals and generation of tissues for transplantation. For agricultural applications, it allows the rapid dissemination of genetic gain in livestock breeding. The maximisation of that potential requires improvements to overall cloning technology, especially with respect to increasing cloning efficiency and throughput rates in cloned embryo production. A zona-free embryo reconstruction system was developed to increase cloning throughput and ease of operation. Central to this system is a modified electrofusion procedure for nuclear transfer. Cytoplast-donor cell couplets were placed in a custom-designed 'parallel plate' electrode chamber. A 1 MHz sinusoidal AC dielectrophoresis alignment electric field of 6-10 kV m(-1) was applied for 5-10s. The couplets were then fused using 2 x 10 micros rectangular DC-field pulses (150-200 kV m(-1)), followed by application of the AC field (6-10 kV m(-1)) for another 5-10 s. Fusion was performed in hypoosmolar buffer (210 mOsm). Automated alignment of up to 20 couplets at a time has been achieved, resulting in greatly improved fusion throughput rates (2.5-fold increase) and improved fusion yields (1.3-fold increase), compared with commonly followed zona-intact protocols.

  1. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding.

    PubMed

    Hinsley, Shelley A; Bellamy, Paul E; Hill, Ross A; Ferns, Peter N

    2016-01-01

    Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies. Here we use 23 years of data for a temperate woodland bird species, the great tit (Parus major), breeding in deciduous woodland in eastern England to demonstrate a time-lagged linear relationship between the on-set of egg laying and the winter index of the North Atlantic Oscillation such that timing can be predicted from the winter index for the previous year. Thus the timing of bird breeding (and, by inference, the timing of spring events in general) can be predicted one year in advance. We also show that the relationship with the winter index appears to arise through an abiotic time-lag with local spring warmth in our study area. Examining this link between local conditions and larger-scale processes in the longer-term showed that, in the past, significant relationships with the immediately preceding winter index were more common than those with the time-lagged index, and especially so from the late 1930s to the early 1970s. However, from the mid 1970s onwards, the time-lagged relationship has become the most significant, suggesting a recent change in climate patterns. The strength of the current time-lagged relationship suggests that it might have relevance for other temperature-dependent ecological relationships.

  2. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding

    PubMed Central

    Bellamy, Paul E.; Hill, Ross A.; Ferns, Peter N.

    2016-01-01

    Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies. Here we use 23 years of data for a temperate woodland bird species, the great tit (Parus major), breeding in deciduous woodland in eastern England to demonstrate a time-lagged linear relationship between the on-set of egg laying and the winter index of the North Atlantic Oscillation such that timing can be predicted from the winter index for the previous year. Thus the timing of bird breeding (and, by inference, the timing of spring events in general) can be predicted one year in advance. We also show that the relationship with the winter index appears to arise through an abiotic time-lag with local spring warmth in our study area. Examining this link between local conditions and larger-scale processes in the longer-term showed that, in the past, significant relationships with the immediately preceding winter index were more common than those with the time-lagged index, and especially so from the late 1930s to the early 1970s. However, from the mid 1970s onwards, the time-lagged relationship has become the most significant, suggesting a recent change in climate patterns. The strength of the current time-lagged relationship suggests that it might have relevance for other temperature-dependent ecological relationships. PMID:27182711

  3. A novel holistic framework for genetic-based captive-breeding and reintroduction programs.

    PubMed

    Attard, C R M; Möller, L M; Sasaki, M; Hammer, M P; Bice, C M; Brauer, C J; Carvalho, D C; Harris, J O; Beheregaray, L B

    2016-10-01

    Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction

  4. Natural Breeding Places for Phlebotomine Sand Flies (Diptera: Psychodidae) in a Semiarid Region of Bahia State, Brazil

    PubMed Central

    Sangiorgi, Bruno; Miranda, Daniel Neves; Oliveira, Diego Ferreira; Santos, Edivaldo Passos; Gomes, Fernanda Regis; Santos, Edna Oliveira; Barral, Aldina; Miranda, José Carlos

    2012-01-01

    Few microhabitats have been previously identified as natural breeding places for phlebotomine sand flies so far, and little is known about the influence of climate variables in their density. The present study was conducted in a dry region with a semiarid climate, where visceral leishmaniasis occurs in humans and dogs. The occurrence of breeding places in specific microhabitats was investigated in soil samples collected from five houses, which were also the location used for sampling of adults. All the microhabitats sampled by our study were identified as natural breeding places due to the occurrence of immature forms of sand flies. On a weekly basis, the number of adult sand flies captured was positively correlated with the mean temperature from preceding weeks. These results, in addition to promoting an advance in the knowledge of sand flies biology, may furnish a tool for optimizing the control of the sand flies, by indicating the most suitable periods and microhabitats for the application of insecticides. PMID:22529861

  5. Natural breeding places for phlebotomine sand flies (Diptera: psychodidae) in a semiarid region of bahia state, Brazil.

    PubMed

    Sangiorgi, Bruno; Miranda, Daniel Neves; Oliveira, Diego Ferreira; Santos, Edivaldo Passos; Gomes, Fernanda Regis; Santos, Edna Oliveira; Barral, Aldina; Miranda, José Carlos

    2012-01-01

    Few microhabitats have been previously identified as natural breeding places for phlebotomine sand flies so far, and little is known about the influence of climate variables in their density. The present study was conducted in a dry region with a semiarid climate, where visceral leishmaniasis occurs in humans and dogs. The occurrence of breeding places in specific microhabitats was investigated in soil samples collected from five houses, which were also the location used for sampling of adults. All the microhabitats sampled by our study were identified as natural breeding places due to the occurrence of immature forms of sand flies. On a weekly basis, the number of adult sand flies captured was positively correlated with the mean temperature from preceding weeks. These results, in addition to promoting an advance in the knowledge of sand flies biology, may furnish a tool for optimizing the control of the sand flies, by indicating the most suitable periods and microhabitats for the application of insecticides.

  6. Controlled secret sharing protocol using a quantum cloning circuit

    NASA Astrophysics Data System (ADS)

    Adhikari, Satyabrata; Roy, Sovik; Chakraborty, Shantanav; Jagadish, Vinayak; Haris, M. K.; Kumar, Atul

    2014-09-01

    We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and en route to the intended recipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine.

  7. Challenges and opportunities in genetic improvement of local livestock breeds

    PubMed Central

    Biscarini, Filippo; Nicolazzi, Ezequiel L.; Stella, Alessandra; Boettcher, Paul J.; Gandini, Gustavo

    2015-01-01

    Sufficient genetic variation in livestock populations is necessary both for adaptation to future changes in climate and consumer demand, and for continual genetic improvement of economically important traits. Unfortunately, the current trend is for reduced genetic variation, both within and across breeds. The latter occurs primarily through the loss of small, local breeds. Inferior production is a key driver for loss of small breeds, as they are replaced by high-output international transboundary breeds. Selection to improve productivity of small local breeds is therefore critical for their long term survival. The objective of this paper is to review the technology options available for the genetic improvement of small local breeds and discuss their feasibility. Most technologies have been developed for the high-input breeds and consequently are more favorably applied in that context. Nevertheless, their application in local breeds is not precluded and can yield significant benefits, especially when multiple technologies are applied in close collaboration with farmers and breeders. Breeding strategies that require cooperation and centralized decision-making, such as optimal contribution selection, may in fact be more easily implemented in small breeds. PMID:25763010

  8. Breeding implications resulting from classification of patellae luxation in dogs.

    PubMed

    van Grevenhof, E M; Hazewinkel, H A W; Heuven, H C M

    2016-08-01

    Patellar luxation (PL) is one of the major hereditary orthopaedic abnormalities observed in a variety of dog breeds. When the patellae move sideways out of the trochlear groove, this is called PL. The PL score varies between dogs from normal to very severe. Reducing the prevalence of PL by breeding could prevent surgery, thereby improve welfare. Orthopaedic specialists differentiate between normal and loose patellae, where the patellae can be moved to the edge of the trochlear groove, considering scoring loose patellae as normal in the future. Loose patellae are considered acceptable for breeding so far by the breeding organization. The aim of this study was to analyse the genetic background of PL to decide on the importance of loose patellae when breeding for healthy dogs. Data are available from two dog breeds, that is Flat-coated Retrievers (n = 3808) and Kooiker dogs (n = 794), with a total of 4602 dogs. Results show that loose patellae indicate that dogs are genetically more susceptible to develop PL because family members of the dogs with loose patellae showed more severe PL. In addition, the estimated breeding values for dogs with loose patellae indicate that breeding values of dogs with loose patellae were worse than breeding values obtained for dogs with a normal score. Given these results, it is advised to orthopaedic specialists to continue to score loose patellae as a separate class and to dog breeders to minimize the use of dogs in breeding with a genetically higher susceptibility for PL.

  9. Use of microsatellite markers to assign goats to their breeds.

    PubMed

    Aljumaah, R S; Alobre, M M; Al-Atiyat, R M

    2015-08-07

    We investigated the potential of 17 microsatellite markers for assigning Saudi goat individuals to their breeds. Three local breeds, Bishi, Jabali, and Tohami were genotyped using these markers, and Somali goats were used as a reference breed. The majority of alleles were shared between the breeds, except for some that were specific to each breed. The Garza-Williamson index was lowest in the Bishi breed, indicating that a recent bottleneck event occurred. The overall results assigned the goat individuals (based on their genotypes) to the same breeds from which they were sampled, except in a few cases. The individuals' genotypes were sufficient to provide a clear distinction between the Somali goat breed and the others. In three factorial dimensions, the results of a correspondence analysis indicated that the total variation for the first and second factors was 48.85 and 31.43%, respectively. Consequently, Jabali, Bishi, and Tohami goats were in separate groups. The Jabali goat was closely related to the Bishi goat. Somali goats were distinguished from each other and from individuals of the other three goat breeds. The markers were successful in assigning individual goats to their breeds, based on the likelihood of a given individual's genotype.

  10. Admixture and local breed marginalization threaten Algerian sheep diversity.

    PubMed

    Gaouar, Samir Bachir Souheil; Da Silva, Anne; Ciani, Elena; Kdidi, Samia; Aouissat, Miloud; Dhimi, Laziz; Lafri, Mohamed; Maftah, Abderrahman; Mehtar, Nadhira

    2015-01-01

    Due to its geo-climatic conditions, Algeria represents a biodiversity hotspot, with sheep breeds well adapted to a patchwork of extremely heterogeneous harsh habitats. The importance of this peculiar genetic reservoir increases as climate change drives the demand for new adaptations. However, the expansion of a single breed (Ouled-Djellal) which occurred in the last decades has generated a critical situation for the other breeds; some of them are being subjected to uncontrolled cross-breeding with the favored breed and/or to marginalization (effective size contraction). This study investigated genetic diversity within and among six of the nine Algerian breeds, by use of 30 microsatellite markers. Our results showed that, in spite of the census contraction experienced by most of the considered breeds, genetic diversity is still substantial (average gene diversity ranging 0.68 to 0.76) and inbreeding was not identified as a problem. However, two breeds (Rembi and Taâdmit) appeared to have lost most of their genetic originality because of intensive cross-breeding with Ouled-Djellal. Based on the above evidence, we suggest Hamra, Sidaoun, and D'man as breeds deserving the highest priority for conservation in Algeria.

  11. Admixture and Local Breed Marginalization Threaten Algerian Sheep Diversity

    PubMed Central

    Ciani, Elena; Kdidi, Samia; Aouissat, Miloud; Dhimi, Laziz; Lafri, Mohamed; Maftah, Abderrahman; Mehtar, Nadhira

    2015-01-01

    Due to its geo-climatic conditions, Algeria represents a biodiversity hotspot, with sheep breeds well adapted to a patchwork of extremely heterogeneous harsh habitats. The importance of this peculiar genetic reservoir increases as climate change drives the demand for new adaptations. However, the expansion of a single breed (Ouled-Djellal) which occurred in the last decades has generated a critical situation for the other breeds; some of them are being subjected to uncontrolled cross-breeding with the favored breed and/or to marginalization (effective size contraction). This study investigated genetic diversity within and among six of the nine Algerian breeds, by use of 30 microsatellite markers. Our results showed that, in spite of the census contraction experienced by most of the considered breeds, genetic diversity is still substantial (average gene diversity ranging 0.68 to 0.76) and inbreeding was not identified as a problem. However, two breeds (Rembi and Taâdmit) appeared to have lost most of their genetic originality because of intensive cross-breeding with Ouled-Djellal. Based on the above evidence, we suggest Hamra, Sidaoun, and D’man as breeds deserving the highest priority for conservation in Algeria. PMID:25875832

  12. Comparison of BLUE and BLUP/REML in the selection of clones and families of potato (Solanum tuberosum).

    PubMed

    Ticona-Benavente, C A; da Silva Filho, D F

    2015-12-28

    The use of best linear unbiased prediction/restricted maximum likelihood (BLUP/REML) in perennial crops and animal breeding enhances selection gain. However, its advantage with respect to annual crops is not clear. We compared the BLUP and best linear unbiased estimator selection efficiency in the breeding of various potato generations. This was done by simulating various selection intensities on clonal families (full sibs), and clones. The characters evaluated were tuber yield and tuber specific gravity. Two criteria were adopted for comparison: a) incidence of families or clones and b) selection gain. For tuber yield, BLUP/REML method was slightly more efficient for selecting families in the first clonal generation, if it were above 50%. Below this value, both methods were equivalent. However, they both presented equal behavior for family selection of tuber specific gravity. For clonal selection, BLUP/REML showed robust superiority from 10 to 90% selection intensities in both characters. Therefore, the adequate use of BLUP/REML in potato breeding can enhance the selection gain on the yield and specific gravity of tubers.

  13. [Worldviews and philosophical basis of human cloning].

    PubMed

    Lukowska, A T

    2001-01-01

    The article presents three standpoints on the question of moral permissibility of human cloning and shows the philosophical principles of it. 1. The moral consent to human cloning with the purposes of reproduction and therapy. The followers of human cloning refer to materialistic anthropology also to subjectivistic, relativistic and utilitarian ethics. 2. Those, who are adverse to human cloning with the purpose of reproduction, but they acquiesce to the so-called therapeutic cloning. They reject that human embryos and foetuses are individuals who come under protection of law. 3. Those, who reject human cloning for the purposes of reproduction and therapy alike. They assent to a personalistic anthropology and Christian ethics. A human being was created by God and human life begins at the moment of insemination. All three groups use various argumentation. The arguments for and against cloning are extracted from biology as well as psychology, philosophy, law and religion. The author of the article takes the last standpoint, but she does not see such arguments, that might convince the opposite parties to a suit.

  14. Human embryo cloning prohibited in Hong Kong.

    PubMed

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  15. Economical quantum cloning in any dimension

    SciTech Connect

    Durt, Thomas; Fiurasek, Jaromir; Cerf, Nicolas J.

    2005-11-15

    The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine for qubits found in Phys. Rev. A 60, 2764 (1999). We prove the impossibility of constructing an economical version of the optimal universal 1{yields}2 cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional 1{yields}2 phase-covariant cloner, which optimally clones all balanced superpositions with arbitrary phases, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a slightly lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the 1{yields}2 Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2.

  16. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle.

    PubMed

    Schiermiester, L N; Thallman, R M; Kuehn, L A; Kachman, S D; Spangler, M L

    2015-01-01

    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in these data included: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Simmental, Limousin and Composite MARC III. Heterosis was further estimated by proportions of British × British (B × B), British × Continental (B × C) and Continental × Continental (C × C) crosses and by breed-specific combinations. Model 1 fitted fixed covariates for heterosis within biological types while Model 2 fitted random breed-specific combinations nested within the fixed biological type covariates. Direct heritability estimates (SE) for birth, weaning ,and yearling weight for Model 1 were 0.42 (0.04), 0.22 (0.03), and 0.39 (0.05), respectively. The direct heritability estimates (SE) of birth, weaning, and yearling weight for Model 2 were the same as Model 1, except yearling weight heritability was 0.38 (0.05). The B × B, B × C, and C × C heterosis estimates for birth weight were 0.47 (0.37), 0.75 (0.32), and 0.73 (0.54) kg, respectively. The B × B, B × C, and C × C heterosis estimates for weaning weight were 6.43 (1.80), 8.65 (1.54), and 5.86 (2.57) kg, respectively. Yearling weight estimates for B × B, B × C, and C × C heterosis were 17.59(3.06), 13.88 (2.63), and 9.12 (4.34) kg, respectively. Differences did exist among estimates of breed-specific heterosis for weaning and yearling weight, although the variance component associated with breed-specific heterosis was not significant. These results illustrate that there are differences in breed-specific heterosis and exploiting these differences can lead to varying levels of heterosis among mating plans.

  17. Management and breeding of Aotus trivirgatus.

    PubMed

    Elliott, M W; Sehgal, P K; Chalifoux, L V

    1976-12-01

    Attempts to establish successful breeding colonies of Aotus trivirgatus at this and other laboratories have largely been unsuccessful, resulting in only occasional pregnancies and a rare live birth. After the recognition of seven different karyotypes of owl monkeys, animals were paired on this basis and resulted in a marked increase in conceptions. From 1971 to 1975 only 10 pregnancies occurred but during 1975, there were 19 pregnancies. In addition to proper karyotyping, a period of acclimation and conditioning was required. Mean body measurements and weights of infants were established.

  18. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies.

    PubMed

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could

  19. Molecular cloning, tissue expression and SNP analysis in the goat nerve growth factor gene.

    PubMed

    An, Xiaopeng; Bai, Long; Hou, Jinxing; Zhao, Haibo; Peng, Jiayin; Song, Yunxuan; Wang, Jiangang; Cao, Binyun

    2013-02-01

    In this study, we cloned the full coding region of NGF gene from the caprine ovary. Result showed the caprine NGF cDNA (GenBank Accession No. JQ308184) contained a 726 bp open reading frame encoding a protein with 241 amino acid residues. Bioinformatic analysis indicated that caprine NGF amino acid sequence was 83-99 % identical to that of mouse, pig, dog, human and bovine. It was predicted that caprine NGF contained nine serine phosphorylation loci, four threonine phosphorylation loci and nine specific PKC phosphorylation loci. The NGF mRNA expression pattern showed that NGF gene was expressed highly in ovary. This work provided an important experimental basis for further research on the function of NGF in goat. A single nucleotide polymorphism (A705G) in the coding region of NGF gene was detected by PCR-RFLP and DNA sequencing in 630 goats of three breeds. The frequencies of G allele were 0.52-0.61, and frequencies of A allele were 0.48-0.39 for SN, GZ and BG breeds, respectively. The does with GG genotype had higher litter size than those with GA and AA genotypes (P < 0.05). Hence, the biochemical and physiological functions, together with the results obtained in our investigation, suggest that the NGF gene could serve as a genetic marker for litter size in goat breeding.

  20. Non-Breeding Eusocial Mole-Rats Produce Viable Sperm—Spermiogram and Functional Testicular Morphology of Fukomys anselli

    PubMed Central

    Garcia Montero, Angelica; Vole, Christiane; Burda, Hynek; Malkemper, Erich Pascal; Holtze, Susanne; Morhart, Michaela; Saragusty, Joseph; Hildebrandt, Thomas B.; Begall, Sabine

    2016-01-01

    Ansell’s mole-rats (Fukomys anselli) are subterranean rodents living in families composed of about 20 members with a single breeding pair and their non-breeding offspring. Most of them remain with their parents for their lifetime and help to maintain and defend the natal burrow system, forage, and care for younger siblings. Since incest avoidance is based on individual recognition (and not on social suppression) we expect that non-breeders produce viable sperm spontaneously. We compared the sperm of breeding and non-breeding males, obtained by electroejaculation and found no significant differences in sperm parameters between both groups. Here, we used electroejaculation to obtain semen for the first time in a subterranean mammal. Spermiogram analysis revealed no significant differences in sperm parameters between breeders and non-breeders. We found significantly larger testes (measured on autopsies and on living animals per ultrasonography) of breeders compared to non-breeders (with body mass having a significant effect). There were no marked histological differences between breeding and non-breeding males, and the relative area occupied by Leydig cells and seminiferous tubules on histological sections, respectively, was not significantly different between both groups. The seminiferous epithelium and to a lesser degree the interstitial testicular tissue are characterized by lesions (vacuolar degenerations), however, this feature does not hinder fertilization even in advanced stages of life. The continuous production of viable sperm also in sexually abstinent non-breeders might be best understood in light of the mating and social system of Fukomys anselli, and the potential to found a new family following an unpredictable and rare encounter with an unfamiliar female (“provoked or induced dispersal”). Apparently, the non-breeders do not reproduce because they do not copulate but not because they would be physiologically infertile. The significantly increased

  1. Non-Breeding Eusocial Mole-Rats Produce Viable Sperm--Spermiogram and Functional Testicular Morphology of Fukomys anselli.

    PubMed

    Garcia Montero, Angelica; Vole, Christiane; Burda, Hynek; Malkemper, Erich Pascal; Holtze, Susanne; Morhart, Michaela; Saragusty, Joseph; Hildebrandt, Thomas B; Begall, Sabine

    2016-01-01

    Ansell's mole-rats (Fukomys anselli) are subterranean rodents living in families composed of about 20 members with a single breeding pair and their non-breeding offspring. Most of them remain with their parents for their lifetime and help to maintain and defend the natal burrow system, forage, and care for younger siblings. Since incest avoidance is based on individual recognition (and not on social suppression) we expect that non-breeders produce viable sperm spontaneously. We compared the sperm of breeding and non-breeding males, obtained by electroejaculation and found no significant differences in sperm parameters between both groups. Here, we used electroejaculation to obtain semen for the first time in a subterranean mammal. Spermiogram analysis revealed no significant differences in sperm parameters between breeders and non-breeders. We found significantly larger testes (measured on autopsies and on living animals per ultrasonography) of breeders compared to non-breeders (with body mass having a significant effect). There were no marked histological differences between breeding and non-breeding males, and the relative area occupied by Leydig cells and seminiferous tubules on histological sections, respectively, was not significantly different between both groups. The seminiferous epithelium and to a lesser degree the interstitial testicular tissue are characterized by lesions (vacuolar degenerations), however, this feature does not hinder fertilization even in advanced stages of life. The continuous production of viable sperm also in sexually abstinent non-breeders might be best understood in light of the mating and social system of Fukomys anselli, and the potential to found a new family following an unpredictable and rare encounter with an unfamiliar female ("provoked or induced dispersal"). Apparently, the non-breeders do not reproduce because they do not copulate but not because they would be physiologically infertile. The significantly increased testes

  2. Cloning of rat homeobox genes

    SciTech Connect

    Sakoyama, Yasuhiko; Mizuta, Ikuko; Ogasawara, Naotake

    1994-10-01

    We report the isolation of nine rat cognates of mouse homeoboxes within the four Hox gene clusters and a rat homologue of mouse IPF1 homeobox, RHbox No. 13A. The sequences of nine cloned homeoboxes are highly similar to those of the mouse and human homeoboxes in the Hox clusters. The restriction enzyme sites and map distances between each of the homeoboxes on the rat genome are nearly identical to those of mouse and human. Thus, we conclude that the isolated homeoboxes are the rat homologues of mouse homeoboxes within the four Hox clusters. A novel homeobox RHbox No. 13A is different from the Drosophila Antennapedia (Antp) sequence but is highly similar to the XlHbox8 (Xenopus laevis) and HtrA2 (Helobdella triserialis) homeoboxes. Forty-two amino acids of the last two-thirds of the RHbox No. 13A, XlHbox8, and mouse IPF1 homeodomains completely matched. In addition, these four homeodomains contain a unique His residue in the recognition helix of a helix-turn-helix DNA-binding motif. This His residue is not found in any of the previously published mammalian homeodomain sequences except mouse IPF1. 24 refs., 4 figs.

  3. Local breeds, livelihoods and livestock keepers' rights in South Asia.

    PubMed

    Köhler-Rollefson, Ilse; Rathore, H S; Mathias, E

    2009-10-01

    In South Asia, and throughout the developing world, the predominant official approach to livestock development has been improvement of production by means of upgrading local breeds via cross-breeding with exotic animals. This strategy has led to the replacement and dilution of locally adapted breeds with non-native ones. This has resulted in an alarming loss that has been estimated by the Food and Agriculture Organization of the United Nations to amount to one breed every two weeks. Based on selected case studies this paper argues that development strategies using locally adapted breeds and species are much more likely to benefit livestock keepers whilst also maintaining domestic animal diversity and bearing a smaller ecological footprint. It also analyses the rationale for "Livestock Keepers' Rights", a principle that grew out of the struggle of traditional livestock keepers to retain control over their production resources, such as grazing areas and breeding stock, in the face of unfavourable policy environments.

  4. [Molecular genetic diversity of Fujian domestic duck breeds].

    PubMed

    Li, Hui-fang; Li, Bi-chun; Ma, Yue-hui; Tang, Qing-ping; Chen, Kuan-wei; Tu, Yun-jie

    2007-02-01

    By using 28 micro-satellite markers with better polymorphism, this paper studied the genetic diversity of four Fujian provincial domestic duck breeds Jinding, Putian black, Liancheng white, and Shanma. According to the alleles frequencies, the polymorphic information content, average heterozygosity, anaqular genetic distance (DA) and Nei' s standard genetic distance (DS) for each breed were calculated. Based on DA and DS, four dendrograms were obtained by neighbor-joining (NJ) and UPGMA methods. The results showed that the average heterozygosity of the four duck breeds was 0. 5353, indicating that the protection of the genetic diversity of these breeds should be strengthened. The orders of the two types of genetic distances among the breeds were accordant, and the dendrograms were the same, reflecting that much more micro-satellite loci should be adopted to obtain more universal conclusions when the genetic diversity was analyzed. The phylogenetic relationships among the four duck breeds were in accordance with their economic types and ecological localities.

  5. Modulation of heart rate response to acute stressors throughout the breeding season in the king penguin Aptenodytes patagonicus.

    PubMed

    Viblanc, Vincent A; Smith, Andrew D; Gineste, Benoit; Kauffmann, Marion; Groscolas, René

    2015-06-01

    'Fight-or-flight' stress responses allow animals to cope adaptively to sudden threats by mobilizing energy resources and priming the body for action. Because such responses can be costly and redirect behavior and energy from reproduction to survival, they are likely to be shaped by specific life-history stages, depending on the available energy resources and the commitment to reproduction. Here, we consider how heart rate (HR) responses to acute stressors are affected by the advancing breeding season in a colonial seabird, the king penguin (Aptenodytes patagonicus). We subjected 77 birds (44 males, 33 females) at various stages of incubation and chick-rearing to three experimental stressors (metal sound, distant approach and capture) known to vary both in their intensity and associated risk, and monitored their HR responses. Our results show that HR increase in response to acute stressors was progressively attenuated with the stage of breeding from incubation to chick-rearing. Stress responses did not vary according to nutritional status or seasonal timing (whether breeding was initiated early or late in the season), but were markedly lower during chick-rearing than during incubation. This pattern was obvious for all three stressors. We discuss how 'fight-or-flight' responses may be modulated by considering the energy commitment to breeding, nutritional status and reproductive value of the brood in breeding seabirds.

  6. Reproductive characteristics of stallions during the breeding and non-breeding season in a tropical region.

    PubMed

    Leme, Denise Pereira; Papa, Frederico Ozanam; Roser, Janet F

    2012-10-01

    The objective of this study was to investigate reproductive characteristics of stallions at a tropical zone in the breeding and non-breeding seasons. The following parameters were assessed: testicular volume; semen quality; and serum concentrations of LH, FSH, and testosterone; in addition to the percentages of germ cells and proportions of germ cells/Sertoli cells by testicular cytology in stallions. Semen was collected from eight adult stallions twice a week during a 12-week period in both seasons (6 weeks before and 6 weeks after the summer and winter solstices). Jugular blood samples were collected periodically for hormone analysis by radioimmunoassay during the same periods. Testicular measures and cytological samples were taken at the end of each period. Mean concentration of testosterone was significantly higher (P = 0.04) during the breeding season and the proportion of Sertoli cells/100 germ cells in cytological smears was significantly lower during the breeding season (P = 0.0001). Effects of season were not significant either for testicular volume or for any semen parameter (P > 0.05). Seasonal changes in the mean concentrations of LH and FSH were not observed (P > 0.05). There were also no significant differences in the mean percentages of germ cell types between both seasons (P > 0.05). Lack of seasonal differences in the testicular volume and semen parameters of tropical stallions are probably due to the small variation in duration of natural light between the observed periods, slightly under 3 h.

  7. The biotron breeding system: a rapid and reliable procedure for genetic studies and breeding in rice.

    PubMed

    Ohnishi, Takayuki; Yoshino, Mihoko; Yamakawa, Hiromoto; Kinoshita, Tetsu

    2011-07-01

    Oryza sativa is widely used as a model organism for many aspects of research in monocots and cereals. However, it has certain disadvantages as a model species compared with Arabidopsis thaliana, the eudicot species most widely used in plant sciences: first, it has a long cultivation time; and second, it requires considerably more space for growth. Here, we introduce a biotron breeding system, which allows rapid and reliable rice cultivation using a well-equipped artificial environmental chamber. This system involves use of regulation of CO₂ levels, removal of tillers and embryo rescue to overcome the disadvantages of rice cultivation. The rice cultivars Nipponbare, Koshihikari, Taichung 65 and Kasalath all showed vigorous growth and sufficient seed production in the biotron breeding system with accelerated flowering time. Nipponbare, which was the earliest among these cultivars, flowered at about 50 d after sowing. The life cycle of these plants could be further shortened using an embryo rescue technique on immature seeds at 7 d after pollination, thereby avoiding the lengthy process of seed maturation. Overall, it was possible to shorten the life cycle of Nipponbare to about 2 months under the controlled conditions. Furthermore, controlled crosses, which can be difficult with conventional cultivation methods, were easy to perform as we could control the exact timing of anther dehiscence. Thus, our biotron breeding system offers a valuable new approach to genetic and breeding studies in rice.

  8. Extent of linkage disequilibrium in large breed dogs: chromosomal and breed variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Understanding extent of linkage disequilibrium (LD) is a crucial component for successful utilization of genome-wide association studies (GWAS). The extent of LD in the dog has been described based upon small marker sets in multiple breeds and studies. Understanding variation in LD on a per...

  9. Combining Breeding Bird Survey and distance sampling to estimate density of migrant and breeding birds

    USGS Publications Warehouse

    Somershoe, S.G.; Twedt, D.J.; Reid, B.

    2006-01-01

    We combined Breeding Bird Survey point count protocol and distance sampling to survey spring migrant and breeding birds in Vicksburg National Military Park on 33 days between March and June of 2003 and 2004. For 26 of 106 detected species, we used program DISTANCE to estimate detection probabilities and densities from 660 3-min point counts in which detections were recorded within four distance annuli. For most species, estimates of detection probability, and thereby density estimates, were improved through incorporation of the proportion of forest cover at point count locations as a covariate. Our results suggest Breeding Bird Surveys would benefit from the use of distance sampling and a quantitative characterization of habitat at point count locations. During spring migration, we estimated that the most common migrant species accounted for a population of 5000-9000 birds in Vicksburg National Military Park (636 ha). Species with average populations of 300 individuals during migration were: Blue-gray Gnatcatcher (Polioptila caerulea), Cedar Waxwing (Bombycilla cedrorum), White-eyed Vireo (Vireo griseus), Indigo Bunting (Passerina cyanea), and Ruby-crowned Kinglet (Regulus calendula). Of 56 species that bred in Vicksburg National Military Park, we estimated that the most common 18 species accounted for 8150 individuals. The six most abundant breeding species, Blue-gray Gnatcatcher, White-eyed Vireo, Summer Tanager (Piranga rubra), Northern Cardinal (Cardinalis cardinalis), Carolina Wren (Thryothorus ludovicianus), and Brown-headed Cowbird (Molothrus ater), accounted for 5800 individuals.

  10. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird.

    PubMed

    Shoji, A; Aris-Brosou, S; Culina, A; Fayet, A; Kirk, H; Padget, O; Juarez-Martinez, I; Boyle, D; Nakata, T; Perrins, C M; Guilford, T

    2015-10-01

    Inter-seasonal events are believed to connect and affect reproductive performance (RP) in animals. However, much remains unknown about such carry-over effects (COEs), in particular how behaviour patterns during highly mobile life-history stages, such as migration, affect RP. To address this question, we measured at-sea behaviour in a long-lived migratory seabird, the Manx shearwater (Puffinus puffinus) and obtained data for individual migration cycles over 5 years, by tracking with geolocator/immersion loggers, along with 6 years of RP data. We found that individual breeding and non-breeding phenology correlated with subsequent RP, with birds hyperactive during winter more likely to fail to reproduce. Furthermore, parental investment during one year influenced breeding success during the next, a COE reflecting the trade-off between current and future RP. Our results suggest that different life-history stages interact to influence RP in the next breeding season, so that behaviour patterns during winter may be important determinants of variation in subsequent fitness among individuals.

  11. To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird.

    PubMed

    Tartu, Sabrina; Goutte, Aurélie; Bustamante, Paco; Angelier, Frédéric; Moe, Børge; Clément-Chastel, Céline; Bech, Claus; Gabrielsen, Geir Wing; Bustnes, Jan Ove; Chastel, Olivier

    2013-08-23

    Mercury, a ubiquitous toxic element, is known to alter expression of sex steroids and to impair reproduction across vertebrates but the mechanisms underlying these effects are not clearly identified. We examined whether contamination by mercury predicts the probability to skip reproduction in black-legged kittiwakes (Rissa tridactyla) from Svalbard. We also manipulated the endocrine system to investigate the mechanism underlying this relationship. During the pre-laying period, we injected exogenous GnRH (gonadotropin-releasing hormone) to test the ability of the pituitary to release luteinizing hormone (LH, a key hormone for the release of sex steroids and hence breeding) in relation to mercury burden. Birds that skipped reproduction had significantly higher mercury concentration in blood than breeders. Endocrine profiles of these birds also varied based on breeding status (breeders versus non-breeders), mercury contamination and sex. Specifically, in skippers (birds that did not breed), baseline LH decreased with increasing mercury concentration in males, whereas it increased in females. GnRH-induced LH levels increased with increasing mercury concentration in both sexes. These results suggest that mercury contamination may disrupt GnRH input to the pituitary. Thus, high mercury concentration could affect the ability of long-lived birds to modulate their reproductive effort (skipping or breeding) according to ongoing environmental changes in the Arctic, thereby impacting population dynamics.

  12. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2.

    PubMed

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael; Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2002-12-13

    The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.

  13. The Breeding Bird Survey, 1967 and 1968

    USGS Publications Warehouse

    Robbins, C.S.; Van Velzen, W.T.

    1969-01-01

    In the Breeding Bird Survey of North America, cooperators ran 982 survey routes in 1967 and 1,174 in 1968. All States except Hawaii and all Canadian Provinces except Newfoundland were included. Roadside routes are selected at random within 1-degree blocks of latitude and longitude. Each 24 1/2-mile route, with 3-minute stops spaced half a mile apart, is driven by automobile. All birds heard or seen at the stops are recorded on special forms, and the data are transferred to magnetic tape for analysis. The average number of birds of each species per route is tabulated by State and Province, presenting for the first time a record of the comparative abundance of each species across the continent. The sample size is given for each species recorded. A sophisticated analysis program, here employed for the first time, is used to compute weighted mean values of the survey results for selected species at the State, stratum, regional, and continental level. The statistical significance of year-to-year changes at the 80, 90, 95, and 99 percent levels of probability are part of the computer output. An index for comparing populations of each species from year to year is established, with 1968 as the base year. Maps show the breeding range and comparative abundance of selected species.

  14. Dynamics of ovarian follicles in breeding ducks

    USGS Publications Warehouse

    Esler, Daniel N.

    1994-01-01

    I quantified ovarian rapid follicle growth (RFG) and regression of postovulatory follicles of Northern Pintails (Anas acuta), American Wigeon (A. americana), and Lesser Scaup (Aythya affinis) by a method that accounted for within-day variation in follicle size. Objective methods for identifying onset of RFG also are presented; this is crucial for accurate classification of breeding status. Duration of RFG was estimated as 4.2, 5.1, and 5.0 days for pintails, wigeon, and scaup, respectively; these are shorter than previously reported. Diameters of follicles at the beginning of RFG were estimated to be 8.2, 6.9, and 7.9 mm for pintails, wigeon, and scaup, respectively. For all species, RFG was linear, using follicle diameters, and exponential, using dry masses. Models of RFG and postovulatory follicle regression have practical value for calculating nest initiation dates, number of developing follicles, clutch size, renesting intervals, and daily energy and nutrient commitment to reproduction of collected breeding females.

  15. Tornadic storm avoidance behavior in breeding songbirds.

    PubMed

    Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Lehman, Justin A; Buehler, David A; Andersen, David E

    2015-01-05

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

  16. Breeding programs for smallholder sheep farming systems: I. Evaluation of alternative designs of breeding schemes.

    PubMed

    Gizaw, S; Rischkowsky, B; Valle-Zárate, A; Haile, A; van Arendonk, J A M; Mwai, A O; Dessie, T

    2014-10-01

    Village- and central nucleus-based schemes were simulated and evaluated for their relative bio-economic efficiencies, using Ethiopia's Menz sheep as example. The schemes were: village-based 2-tier (Scheme-1) and 1-tier (Scheme-2) cooperative village breeding schemes, dispersed village-based nuclei scheme (Scheme-3), conventional 2-tier central nucleus-based scheme (Scheme-4), and schemes linking a central nucleus and village multiplier nuclei with selection in central nucleus (Scheme-5) or in both central and village nuclei (Scheme-6). Among village-based schemes, Scheme-1 gave the highest genetic progress, while Scheme-2 was economically the most efficient with genetic gain in the breeding objective of Birr 5.6 and a profit of Birr 37.2/ewe/year. The central nucleus schemes were more efficient than the village schemes. Scheme-4 was the most efficient with genetic gain in the breeding objective of Birr 13.5 and a profit of Birr 71.2, but is operationally more difficult as it requires a very large central nucleus. The choice between village and central nucleus-based schemes would depend on local conditions (availability of infrastructure, logistics and technical knowhow and support). Linking central nucleus with village-based nuclei (Scheme-6) would be a feasible option to overcome the operational difficulties of the conventional central nucleus scheme. If a village-based breeding program is envisaged as should be the 1st step in most low-input systems, then Scheme-2 is the most efficient. To scale out to an entire Menz breed level, Scheme-3 would be recommended.

  17. [Therapeutic cloning. Biology, perspectives and alternatives].

    PubMed

    Maddox-Hyttel, Poul

    2003-02-24

    Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.

  18. Optimal cloning of mixed Gaussian states

    SciTech Connect

    Guta, Madalin; Matsumoto, Keiji

    2006-09-15

    We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.

  19. Breeding productivity and adult survival in nongame birds

    USGS Publications Warehouse

    Martin, Thomas E.; DeSante, David F.; Paine, Charles R.; Donovan, Therese M.; Dettmers, Randy; Manolis, J.C.; Burton, K.

    1995-01-01

    Demographic data (breeding productivity and adult survival) provide the kind of early warning signal that allows detection of unhealthy populations in terms of productivity or survival problems (Martin and Guepel 1993). In addition, demographic data can help determine whether population declines are the result of low breeding productivity or low survival in migration or winter. Breeding productivity data also can help identify habitat conditions associated with successful and failed breeding attempts. Such information is critical for developing habitat- and land-management practices (Martin 1992). Here, we provide examples of the kinds of information that can be obtained by broad-scale demographic studies.

  20. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer.

    PubMed

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-06-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches.