Science.gov

Sample records for advanced breeding clones

  1. Marketing Potential of Advanced Breeding Clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  2. Marketing potential of advanced breeding clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  3. Advanced potato breeding clones: storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  4. Evaluation of Advanced Potato Breeding Clones for Storage and Processing Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  5. Screening of advanced potato breeding clones for resistance to cold-induced-sweetening (CIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advantages of processing potatoes from low temperature storage are well known. It had previously been reported that clones with A-II isozymes of UDP-glucose pyrophosphorylase (UGPase) and low vacuolar acid invertase (VAcInv) activity demonstrate increased resistance to CIS. This study reports o...

  6. Impact of cloning on cattle breeding systems.

    PubMed

    McClintock, A E

    1998-01-01

    The concept of clone-family testing is compared with existing progeny testing systems. The critical factors that will decide how cloning is utilized are the potential size of cloned families, and the cost per embryo (or per calf born). If family sizes of 100,000 become routinely achievable (cheaply), then clone testing becomes viable. In rough figures, cloned embryos costing $30 with a 50% calving rate would be attractive to farmers and would be cheap enough that farmers would buy more (crossbred) embryos in order to breed further replacement cows. At $300 per embryo, farmers would be more inclined to buy a number of cloned pure-bred female embryos and then to use conventional artificial insemination to breed further replacements from these superior cows. At $3000 per embryo, farmers would probably only be interested in very small numbers of cloned animals, most of which would be males. The relative importance of adult versus fetal cloning is discussed. The need for gene banks to preserve genetic variation is emphasized; both gametes and somatic tissue cultures should be considered.

  7. [Cloning: reproductive medicine or breeding program?].

    PubMed

    Zülicke, F

    1998-01-01

    The presentation of clone-sheep Dolly in February 1997 which was the result of a long and costly research process by Ian Wilmut's team at Roslin Institute near Edinburgh brought world-wide headlines and a continuous debate. But neither cloning and cloning experiments nor the debates about it and the possible application on humans are as new as it is shown in the media. The following article gives some facts and arguments to the field of cloning.

  8. Potential uses of cloning in breeding schemes: dairy cattle.

    PubMed

    Bousquet, D; Blondin, P

    2004-01-01

    Cloning by nuclear transfer has many potential applications in a dairy cattle breeding program. It can be used to increase the accuracy of selection and therefore the rate of genetic progress, to speed up the dissemination of the genes from animals of exceptionally high genetic merit to the commercial population, and to reproduce transgenic animals. Today, however, the main limitation of the use of cloning besides governmental regulations is its low success rate and consequently the high cost to produce an animal ready for reproduction. As a result cloning is mostly limited to the reproduction of animals of very high genetic merit or that carry genes of specific interest. Examples of this are top-ranked bulls which do not produce enough semen for the demand due to various reasons. A strategy that could be used by artificial insemination (AI) centers would be to create a bank of somatic cells for every bull entering AI facilities long before they are placed on the young sire proving program. The other use of cloning is to assist in the selection and reproduction of bull dams. Marker assisted selection (MAS) can substantially enhance the accuracy of selection for embryos or young animals without comprehensive performance records, and therefore can greatly increase the value of cloning such embryos or young animals.

  9. Potential uses of cloning in breeding schemes: dairy cattle.

    PubMed

    Bousquet, D; Blondin, P

    2004-01-01

    Cloning by nuclear transfer has many potential applications in a dairy cattle breeding program. It can be used to increase the accuracy of selection and therefore the rate of genetic progress, to speed up the dissemination of the genes from animals of exceptionally high genetic merit to the commercial population, and to reproduce transgenic animals. Today, however, the main limitation of the use of cloning besides governmental regulations is its low success rate and consequently the high cost to produce an animal ready for reproduction. As a result cloning is mostly limited to the reproduction of animals of very high genetic merit or that carry genes of specific interest. Examples of this are top-ranked bulls which do not produce enough semen for the demand due to various reasons. A strategy that could be used by artificial insemination (AI) centers would be to create a bank of somatic cells for every bull entering AI facilities long before they are placed on the young sire proving program. The other use of cloning is to assist in the selection and reproduction of bull dams. Marker assisted selection (MAS) can substantially enhance the accuracy of selection for embryos or young animals without comprehensive performance records, and therefore can greatly increase the value of cloning such embryos or young animals. PMID:15268795

  10. Recent advances in peanut breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most previous advances in peanut cultivar development have been made using conventional breeding methods for self-pollinated crops. Peanut has lagged behind many other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low le...

  11. Cloning pigs: advances and applications.

    PubMed

    Polejaeva, I A

    2001-01-01

    Although mouse embryonic stem cells have been used widely for over a decade as an important tool for introducing precise genetic modification into the genome, demonstrating the great value of this technology in a range of biomedical applications, similar technology does not exist for domestic animals. However, the development of somatic cell nuclear transfer has bypassed the need for embryonic stem cells from livestock. The production of offspring from differentiated cell nuclei provides information and opportunities in a number of areas including cellular differentiation, early development and ageing. However, the primary significance of cloning is probably in the opportunities that this technology brings to genetic manipulation. Potential applications of gene targeting in livestock species are described with particular emphasis on the generation of pigs that can be used for xenotransplantation, and the production of improved models for human physiology and disease. The development of techniques for somatic cell nuclear transfer in pigs and the challenges associated with this technology are also reviewed.

  12. Advances in Japanese pear breeding in Japan.

    PubMed

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan's history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars 'Chojuro' and 'Nijisseiki' around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars 'Niitaka' and 'Shinko' were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including 'Kosui', 'Hosui', and 'Akizuki', which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, 'Gold Nijisseiki' has become a leading cultivar. Moreover, 'Nansui' from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  13. Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines.

    PubMed

    Jeong, Yeon Woo; Kim, Joung Joo; Hossein, Mohammad Shamim; Hwang, Kyu Chan; Hwang, In-sung; Hyun, Sang Hwan; Kim, Nam-Hyung; Han, Ho Jae; Hwang, Woo Suk

    2014-06-01

    Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P < 0.01). Perinatal mortality until weaning was significantly higher in small breeds (33.3%) compared with medium, large, or ultra-large breeds where no mortality was observed. The mean birth weight of cloned pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype.

  14. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  15. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    PubMed

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  16. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    PubMed

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu. PMID:21106134

  17. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  18. Clonal forestry, heterosis and advanced-generation breeding

    SciTech Connect

    Tuskan, G.A.

    1997-08-01

    This report discusses the clonal planting stock offers many advantages to the forest products industry. Advanced-generation breeding strategies should be designed to maximize within-family variance and at the same time allow the capture of heterosis. Certainly there may be a conflict in the choice of breeding strategy based on the trait of interest. It may be that the majority of the traits express heterosis due to overdominance. Alternatively, disease resistance is expressed as the lack of a specific metabolite or infection court then the homozygous recessive genotype may be the most desirable. Nonetheless, as the forest products industry begins to utilize the economic advantages of clonal forestry, breeding strategies will have to be optimized for these commercial plant materials. Here, molecular markers can be used to characterize the nature of heterosis and therefore define the appropriate breeding strategy.

  19. Advances in table grape breeding in Japan

    PubMed Central

    Yamada, Masahiko; Sato, Akihiko

    2016-01-01

    In Japan, few grape cultivars related to Vitis vinifera existed 200 years ago, on account of Japan’s high rainfall. Many V. labruscana and vinifera cultivars were introduced to Japan in the 19th century. Labruscana was grown instead of vinifera, mainly because of severe disease problems and a high incidence of berry cracking. Grape breeding for table use started in the 20th century, with the goal of combining the berry quality of vinifera with the ease of cultivation of labruscana. By 1945, three strategies were used: 1) crossing among introduced diploid vinifera and vinifera-related cultivars of Japanese origin, 2) interspecific crossing in tetraploid cultivars, and 3) interspecific crossing in diploid cultivars, resulting in ‘Neo Muscat’, ‘Kyoho’, and ‘Muscat Bailey A’. Later, tetraploid interspecific crossing over generations developed many ‘Kyoho’-related cultivars, including ‘Pione’, many of which have large berries, intermediate flesh texture between the two species, a labruscan or neutral flavor, and moderate disease resistance. Interspecific diploid crossing over generations developed ‘Shine Muscat’ in 2006, with large berries, crispy flesh, a muscat flavor, no cracking, seedless fruit by gibberellin application, and moderate resistance to downy mildew and ripe rot. PMID:27069389

  20. Advances in table grape breeding in Japan.

    PubMed

    Yamada, Masahiko; Sato, Akihiko

    2016-01-01

    In Japan, few grape cultivars related to Vitis vinifera existed 200 years ago, on account of Japan's high rainfall. Many V. labruscana and vinifera cultivars were introduced to Japan in the 19th century. Labruscana was grown instead of vinifera, mainly because of severe disease problems and a high incidence of berry cracking. Grape breeding for table use started in the 20th century, with the goal of combining the berry quality of vinifera with the ease of cultivation of labruscana. By 1945, three strategies were used: 1) crossing among introduced diploid vinifera and vinifera-related cultivars of Japanese origin, 2) interspecific crossing in tetraploid cultivars, and 3) interspecific crossing in diploid cultivars, resulting in 'Neo Muscat', 'Kyoho', and 'Muscat Bailey A'. Later, tetraploid interspecific crossing over generations developed many 'Kyoho'-related cultivars, including 'Pione', many of which have large berries, intermediate flesh texture between the two species, a labruscan or neutral flavor, and moderate disease resistance. Interspecific diploid crossing over generations developed 'Shine Muscat' in 2006, with large berries, crispy flesh, a muscat flavor, no cracking, seedless fruit by gibberellin application, and moderate resistance to downy mildew and ripe rot. PMID:27069389

  1. Advances in molecular breeding of flowering dogwood (Cornus florida L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the production and sales of ornamental crops represent significant contributions to the global economy, breeding and selection of ornamental plants using molecular markers lags far behind that used for agronomic crops. However, with the recent advances in molecular technologies including r...

  2. Technical advances and pitfalls on the way to human cloning.

    PubMed

    Mollard, Richard; Denham, Mark; Trounson, Alan

    2002-03-01

    There exists a widespread consensus that the cloning of human beings to term would be detrimental to both the mother and child and of little value to society. However, the ambition of a few organisations and the recent advances in cellular and molecular technologies that led to the cloning of Dolly the sheep, for example, have meant that such a procedure will be possible if not illegal in the near future. The science associated with the cloning technologies practiced in other mammalian species reported to date provide important advances in our understanding of how cells function during early developmental processes and commit themselves to specific developmental pathways. However, many technological insufficiencies remain. Both technological advances and several of the associated insufficiencies are outlined in this review.

  3. Technical advances and pitfalls on the way to human cloning.

    PubMed

    Mollard, Richard; Denham, Mark; Trounson, Alan

    2002-03-01

    There exists a widespread consensus that the cloning of human beings to term would be detrimental to both the mother and child and of little value to society. However, the ambition of a few organisations and the recent advances in cellular and molecular technologies that led to the cloning of Dolly the sheep, for example, have meant that such a procedure will be possible if not illegal in the near future. The science associated with the cloning technologies practiced in other mammalian species reported to date provide important advances in our understanding of how cells function during early developmental processes and commit themselves to specific developmental pathways. However, many technological insufficiencies remain. Both technological advances and several of the associated insufficiencies are outlined in this review. PMID:11963651

  4. Cost and accuracy of advanced breeding trial designs in apple

    PubMed Central

    Harshman, Julia M; Evans, Kate M; Hardner, Craig M

    2016-01-01

    Trialing advanced candidates in tree fruit crops is expensive due to the long-term nature of the planting and labor-intensive evaluations required to make selection decisions. How closely the trait evaluations approximate the true trait value needs balancing with the cost of the program. Designs of field trials of advanced apple candidates in which reduced number of locations, the number of years and the number of harvests per year were modeled to investigate the effect on the cost and accuracy in an operational breeding program. The aim was to find designs that would allow evaluation of the most additional candidates while sacrificing the least accuracy. Critical percentage difference, response to selection, and correlated response were used to examine changes in accuracy of trait evaluations. For the quality traits evaluated, accuracy and response to selection were not substantially reduced for most trial designs. Risk management influences the decision to change trial design, and some designs had greater risk associated with them. Balancing cost and accuracy with risk yields valuable insight into advanced breeding trial design. The methods outlined in this analysis would be well suited to other horticultural crop breeding programs. PMID:27019717

  5. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  6. The breeding systems of diploid and neoautotetraploid clones of Acacia mangium Willd. in a synthetic sympatric population in Vietnam.

    PubMed

    Griffin, A R; Vuong, T D; Vaillancourt, R E; Harbard, J L; Harwood, C E; Nghiem, C Q; Thinh, H H

    2012-12-01

    Colchicine-induced neoautotetraploid genotypes of Acacia mangium were cloned and planted in mixture with a set of diploid clones in an orchard in southern Vietnam. Following good general flowering, open-pollinated seed was collected from trees of both cytotypes and microsatellite markers were used to determine the breeding system as characterised by the proportion of outcrosses in young seedling progeny. As predicted from the literature, the progeny of diploid clones were predominantly outcrossed (t(m) = 0.97). In contrast, the progeny of the tetraploid clones were almost entirely selfs (t(m) = 0.02; 3 of 161 seedlings assayed were tetraploid outcrosses and there were no triploids). Segregation at loci heterozygous in the tetraploid mothers followed expected ratios, indicating sexual reproduction rather than apomixis. Post-zygotic factors are primarily responsible for divergence of the breeding systems. Commonly, less than 1 % of Acacia flowers mature as a pod, and after mixed pollination, diploid outcrossed seed normally develops at the expense of selfs. Selfs of the tetraploid trees appear to express less genetic load and have a higher probability of maturing. However, this does not fully explain the observed deficiency of outcross tetraploid progeny. Presumably, there are cytogenetic reasons which remain to be investigated. In nature, selfing would increase the probability of establishment of neotetraploids irrespective of cytotype frequency in the population. Breeders need to review their open-pollinated breeding and seed production strategies. It remains to be seen whether this is an ephemeral problem, with strong fertility selection restoring potential for outcrossing over generations. PMID:22865285

  7. The breeding systems of diploid and neoautotetraploid clones of Acacia mangium Willd. in a synthetic sympatric population in Vietnam.

    PubMed

    Griffin, A R; Vuong, T D; Vaillancourt, R E; Harbard, J L; Harwood, C E; Nghiem, C Q; Thinh, H H

    2012-12-01

    Colchicine-induced neoautotetraploid genotypes of Acacia mangium were cloned and planted in mixture with a set of diploid clones in an orchard in southern Vietnam. Following good general flowering, open-pollinated seed was collected from trees of both cytotypes and microsatellite markers were used to determine the breeding system as characterised by the proportion of outcrosses in young seedling progeny. As predicted from the literature, the progeny of diploid clones were predominantly outcrossed (t(m) = 0.97). In contrast, the progeny of the tetraploid clones were almost entirely selfs (t(m) = 0.02; 3 of 161 seedlings assayed were tetraploid outcrosses and there were no triploids). Segregation at loci heterozygous in the tetraploid mothers followed expected ratios, indicating sexual reproduction rather than apomixis. Post-zygotic factors are primarily responsible for divergence of the breeding systems. Commonly, less than 1 % of Acacia flowers mature as a pod, and after mixed pollination, diploid outcrossed seed normally develops at the expense of selfs. Selfs of the tetraploid trees appear to express less genetic load and have a higher probability of maturing. However, this does not fully explain the observed deficiency of outcross tetraploid progeny. Presumably, there are cytogenetic reasons which remain to be investigated. In nature, selfing would increase the probability of establishment of neotetraploids irrespective of cytotype frequency in the population. Breeders need to review their open-pollinated breeding and seed production strategies. It remains to be seen whether this is an ephemeral problem, with strong fertility selection restoring potential for outcrossing over generations.

  8. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 38 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2012 for yield, seed grade and size, and resistance to Sclerotinia minor and Sclerotium rolfsii. Among the 14 Spanish entries, the cultivar Tamnut 06 (3258 lbs/acre) and breeding line 140-1O...

  9. Multisensory non-photoperiodic cue advances the onset of seasonal breeding in Island canaries (Serinus canaria).

    PubMed

    Voigt, Cornelia; Meiners, Torsten; Ter Maat, Andries; Leitner, Stefan

    2011-10-01

    In most temperate zone vertebrates, photoperiodic change plays the major role in the timing of seasonal breeding. However, direct environmental stimuli such as temperature, rainfall, or availability of food are thought to be important for fine-tuning breeding activities. Building on evidence from wild Island canaries (Serinus canaria), the authors had shown advancing effects of green vegetation on breeding under captive, short-day conditions. So far, the precise, sensory modalities of this stimulatory cue are unknown. Here the authors present new data that confirm advanced breeding activities in the presence of green vegetation and narrow its stimulatory components. They found that direct exposure of the birds to fresh green vegetation represented the strongest stimulus and advanced breeding by up to 2 months compared to controls. In contrast, access to artificial green vegetation, extracts from green vegetation, or olfactory components alone had no such effects. This is, to the best of the authors' knowledge, the first experiment that examines sensory components of an effective, supplementary, non-photoperiodic cue in a temperate zone species. The data suggest that in order to use non-photoperiodic information to time breeding, birds must be able to integrate and process multisensory stimuli. Single non-photoperiodic sensory cues are insufficient to affect the timing of seasonal breeding. PMID:21921297

  10. Advances in breeding for high grain Zinc in Rice.

    PubMed

    Swamy, B P Mallikarjuna; Rahman, Mohammad Akhlasur; Inabangan-Asilo, Mary Ann; Amparado, Amery; Manito, Christine; Chadha-Mohanty, Prabhjit; Reinke, Russell; Slamet-Loedin, Inez H

    2016-12-01

    Zinc (Zn) is one of the most essential micronutrients required for the growth and development of human beings. More than one billion people, particularly children and pregnant women suffer from Zn deficiency related health problems in Asia. Rice is the major staple food for Asians, but the presently grown popular high yielding rice varieties are poor supplier of Zn in their polished form. Breeding rice varieties with high grain Zn has been suggested to be a sustainable, targeted, food-based and cost effective approach in alleviating Zn deficiency. The physiological, genetic and molecular mechanisms of Zn homeostasis have been well studied, but these mechanisms need to be characterized from a biofortification perspective and should be well integrated with the breeding processes. There is a significant variation for grain Zn in rice germplasm and efforts are being directed at exploiting this variation through breeding to develop high Zn rice varieties. Several QTLs and gene specific markers have been identified for grain Zn and there is a great potential to use them in Marker-Assisted Breeding. A thorough characterization of genotype and environmental interactions is essential to identify key environmental factors influencing grain Zn. Agronomic biofortification has shown inconsistent results, but a combination of genetic and agronomic biofortification strategies may be more effective. Significant progress has been made in developing high Zn rice lines for release in target countries. A holistic breeding approach involving high Zn trait development, high Zn product development, product testing and release, including bioefficacy and bioavailability studies is essential for successful Zn biofortification. PMID:27671163

  11. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  12. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  13. Advances to improve the eating and cooking qualities of rice by marker-assisted breeding.

    PubMed

    Phing Lau, Wendy Chui; Latif, Mohammad Abdul; Y Rafii, Mohd; Ismail, Mohd Razi; Puteh, Adam

    2016-01-01

    The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.

  14. Advanced phenotyping offers opportunities for improved breeding of forage and turf species

    PubMed Central

    Walter, Achim; Studer, Bruno; Kölliker, Roland

    2012-01-01

    Background and Aims Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining resources. Scope This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour, spectral reflection, chlorophyll-fluorescence, temperature and other properties, from which traits such as biomass, architecture, photosynthetic efficiency, stomatal aperture or stress resistance can be derived. Applications of these methods in the context of forage and turf breeding are discussed. Conclusions Progress in cutting-edge molecular breeding tools is beginning to be matched by progress in automated non-destructive imaging methods. Joint application of precise phenotyping machinery and molecular tools in optimized breeding schemes will improve forage and turf breeding in the near future and will thereby contribute to amended performance of managed grassland agroecosystems. PMID:22362662

  15. Advances towards a Marker-Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop

    PubMed Central

    Gedye, K. R.; Gonzalez-Hernandez, J. L.; Owens, V.; Boe, A.

    2012-01-01

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is an indigenous, perennial grass of North America that is being developed into a cellulosic biomass crop suitable for biofuel production. Limited research has been performed into the breeding of prairie cordgrass; this research details an initial investigation into the development of a breeding program for this species. Genomic libraries enriched for four simple sequence repeat (SSR) motifs were developed, 25 clones from each library were sequenced, identifying 70 SSR regions, and primers were developed for these regions, 35 of which were amplified under standard PCR conditions. These SSR markers were used to validate the crossing methodology of prairie cordgrass and it was found that crosses between two plants occurred without the need for emasculation. The successful cross between two clones of prairie cordgrass indicates that this species is not self-incompatible. The results from this research will be used to instigate the production of a molecular map of prairie cordgrass which can be used to incorporate marker-assisted selection (MAS) protocols into a breeding program to improve this species for cellulosic biomass production. PMID:23227036

  16. Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep.

    PubMed

    García-Sancho, Miguel

    2015-09-01

    This paper addresses the 1996 cloning of Dolly the sheep, locating it within a long-standing tradition of animal breeding research in Edinburgh. Far from being an end in itself, the cell-nuclear transfer experiment from which Dolly was born should be seen as a step in an investigative pathway that sought the production of medically relevant transgenic animals. By historicising Dolly, I illustrate how the birth of this sheep captures a dramatic redefinition of the life sciences, when in the 1970s and 1980s the rise of neo-liberal governments and the emergence of the biotechnology market pushed research institutions to show tangible applications of their work. Through this broader interpretative framework, the Dolly story emerges as a case study of the deep transformations of agricultural experimentation during the last third of the twentieth century. The reorganisation of laboratory practice, human resources and institutional settings required by the production of transgenic animals had unanticipated consequences. One of these unanticipated effects was that the boundaries between animal and human health became blurred. As a result of this, new professional spaces emerged and the identity of Dolly the sheep was reconfigured, from an instrument for livestock improvement in the farm to a more universal symbol of the new cloning age.

  17. Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep.

    PubMed

    García-Sancho, Miguel

    2015-09-01

    This paper addresses the 1996 cloning of Dolly the sheep, locating it within a long-standing tradition of animal breeding research in Edinburgh. Far from being an end in itself, the cell-nuclear transfer experiment from which Dolly was born should be seen as a step in an investigative pathway that sought the production of medically relevant transgenic animals. By historicising Dolly, I illustrate how the birth of this sheep captures a dramatic redefinition of the life sciences, when in the 1970s and 1980s the rise of neo-liberal governments and the emergence of the biotechnology market pushed research institutions to show tangible applications of their work. Through this broader interpretative framework, the Dolly story emerges as a case study of the deep transformations of agricultural experimentation during the last third of the twentieth century. The reorganisation of laboratory practice, human resources and institutional settings required by the production of transgenic animals had unanticipated consequences. One of these unanticipated effects was that the boundaries between animal and human health became blurred. As a result of this, new professional spaces emerged and the identity of Dolly the sheep was reconfigured, from an instrument for livestock improvement in the farm to a more universal symbol of the new cloning age. PMID:26205201

  18. Cloning

    MedlinePlus

    ... copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  19. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 20 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2015 for agronomic traits (crop value, yield, seed grade, and characteristics). Environmental conditions in 2015 were not favorable for Sclerotinia blight, southern bl...

  20. Development of advanced tritium breeding material with added lithium for ITER-TBM

    NASA Astrophysics Data System (ADS)

    Hoshino, Tsuyoshi; Kato, Kenichi; Natori, Yuri; Oikawa, Fumiaki; Nakano, Natsuko; Nakamura, Mutsumi; Sasaki, Kazuya; Suzuki, Akihiro; Terai, Takayuki; Tatenuma, Katsuyoshi

    2011-10-01

    Lithium titanate (Li 2TiO 3) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li 2TiO 3 decreased with time in a hydrogen atmosphere by the reduction of Ti and Li evaporation. In order to prevent the mass decrease at high temperatures, advanced tritium breeding material with added Li (Li 2+xTiO 3+y) should be developed. For this purpose, an advanced Li 2TiO 3 with added Li was synthesized from proportionally mixed LiOH·H 2O and H 2TiO 3 with a Li/Ti ratio of 2.2. The results of X-ray diffraction measurement showed that this advanced tritium breeding material existed as the non-stoichiometric compound Li 2+xTiO 3+y. The desired molar ratio of Li/Ti was achieved by appropriate mixing of LiOH·H 2O and H 2TiO 3. Therefore, synthesis by mixing LiOH·H 2O and H 2TiO 3 is a promising mass production method for the advanced tritium breeding material with added Li for the test blanket module of ITER.

  1. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 23 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2014 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to soilborne diseases. Among the 16 runner entries evaluated, Tamrun OL11...

  2. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  3. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    ). However, technologies that enable the elimination of extraneous DNA sequences from the genome of sake yeast have been developed. Sake yeasts genetically modified with these technologies are called self-cloning yeasts and do not contain extraneous DNA sequences. These yeasts were exempted from the Japanese government's guidelines for genetically modified food. Protoplast fusion has also been utilized to breed favorable sake yeasts. Future directions for the breeding of sake yeasts are also proposed in this review. The reviewed research provides perspectives for the breeding of brewery yeasts in other fermentation industries. PMID:23464572

  4. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    ). However, technologies that enable the elimination of extraneous DNA sequences from the genome of sake yeast have been developed. Sake yeasts genetically modified with these technologies are called self-cloning yeasts and do not contain extraneous DNA sequences. These yeasts were exempted from the Japanese government's guidelines for genetically modified food. Protoplast fusion has also been utilized to breed favorable sake yeasts. Future directions for the breeding of sake yeasts are also proposed in this review. The reviewed research provides perspectives for the breeding of brewery yeasts in other fermentation industries.

  5. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae).

    PubMed

    Pearce-Higgins, J W; Yalden, D W; Whittingham, M J

    2005-04-01

    Most studies of climate-driven changes in avian breeding phenology have focused on temperate passerines, yet the consequences of such environmental change may be more deleterious for other avian taxa, such as arctic and sub-arctic waders (Charadrii). We therefore examine large-scale climatic correlates of the breeding phenology of one such species (golden plover Pluvialis apricaria), and the timing of emergence of their adult tipulid prey, to assess the potential for climate change to disrupt breeding performance. Golden plover first-laying dates were negatively correlated with both March and April temperature, the mean laying date of first clutches was additionally negatively correlated with March rainfall. The timing of final laying dates were negatively correlated with April temperature only. The timing of tipulid emergence was negatively correlated with May temperature. In combination with historical climatic data, these models suggest a 9-day advancement of golden plover first-laying dates occurred during the 1990s, although this remains within the range of natural variation for the twentieth century. The magnitudes of predicted changes in mean and final laying dates, and the timing of tipulid emergence, were smaller. Climate predictions for 2070-2099 suggest potential advances in first-laying dates by 25 days, whilst the timings of mean and final laying dates are predicted to change by 18 days and 13 days, and tipulid emergence by 12 days. Given the importance of adult tipulids to young golden plover chicks, these changes may result in a mismatch between the timing of first-laying dates and tipulid emergence, so reducing the success of early breeding attempts. Modelling suggests that these changes could reduce breeding success in a South Pennines population by about 11%.

  6. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae).

    PubMed

    Pearce-Higgins, J W; Yalden, D W; Whittingham, M J

    2005-04-01

    Most studies of climate-driven changes in avian breeding phenology have focused on temperate passerines, yet the consequences of such environmental change may be more deleterious for other avian taxa, such as arctic and sub-arctic waders (Charadrii). We therefore examine large-scale climatic correlates of the breeding phenology of one such species (golden plover Pluvialis apricaria), and the timing of emergence of their adult tipulid prey, to assess the potential for climate change to disrupt breeding performance. Golden plover first-laying dates were negatively correlated with both March and April temperature, the mean laying date of first clutches was additionally negatively correlated with March rainfall. The timing of final laying dates were negatively correlated with April temperature only. The timing of tipulid emergence was negatively correlated with May temperature. In combination with historical climatic data, these models suggest a 9-day advancement of golden plover first-laying dates occurred during the 1990s, although this remains within the range of natural variation for the twentieth century. The magnitudes of predicted changes in mean and final laying dates, and the timing of tipulid emergence, were smaller. Climate predictions for 2070-2099 suggest potential advances in first-laying dates by 25 days, whilst the timings of mean and final laying dates are predicted to change by 18 days and 13 days, and tipulid emergence by 12 days. Given the importance of adult tipulids to young golden plover chicks, these changes may result in a mismatch between the timing of first-laying dates and tipulid emergence, so reducing the success of early breeding attempts. Modelling suggests that these changes could reduce breeding success in a South Pennines population by about 11%. PMID:15685442

  7. Advances in Breeding Management and Use of Ovulation Induction for Fixed-time AI.

    PubMed

    Kirkwood, R N; Kauffold, J

    2015-07-01

    The objective of the breeding herd is the predictable and consistent production of high quality pigs. To achieve this objective, an appropriate number of females need to be mated in each breeding week and they should maintain their pregnancy and deliver large litters. Many factors can impact achievement of optimal sow productivity, particularly breeding management. Most matings will involve artificial insemination (AI), and successful AI requires deposition into the cervix (or beyond) of sufficient viable high quality sperm at an appropriate time relative to ovulation. This is facilitated by improved knowledge of the sow's ovarian function prior to and during her oestrous period. Realization of the importance of establishing an adequate sperm reservoir in the oviduct at an appropriate time relative to ovulation has led to advances in the management of AI. The future of AI will likely involve insemination of single doses of high genetic merit semen, potentially having a reduced sperm concentration which is made possible by knowledge of the effect of site of sperm deposition on sow fertility. In particular, knowledge of when a sow is likely to ovulate during a natural or induced oestrous period will prove invaluable in the maintenance of herd productivity. This review will examine options for breeding management, including the control of oestrus and ovulation, on sow herd reproductive performance.

  8. Using microsatellite DNA markers to determine the genetic identity of parental clones used in the Louisiana sugarcane breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane propagates asexually through vegetative cuttings. To validate the genetic identity of sugarcane clones during shipping and handling, we produced molecular fingerprints based on 21 microsatellite (SSR) DNA markers for 116 Louisiana parental clones that were included in the crossing program...

  9. Reproductive cloning in humans and therapeutic cloning in primates: is the ethical debate catching up with the recent scientific advances?

    PubMed

    Camporesi, S; Bortolotti, L

    2008-09-01

    After years of failure, in November 2007 primate embryonic stem cells were derived by somatic cellular nuclear transfer, also known as therapeutic cloning. The first embryo transfer for human reproductive cloning purposes was also attempted in 2006, albeit with negative results. These two events force us to think carefully about the possibility of human cloning which is now much closer to becoming a reality. In this paper we tackle this issue from two sides, first summarising what scientists have achieved so far, then discussing some of the ethical arguments in favour and against human cloning which are debated in the context of policy making and public consultation. Therapeutic cloning as a means to improve and save lives has uncontroversial moral value. As to human reproductive cloning, we consider and assess some common objections and failing to see them as conclusive. We do recognise, though, that there will be problems at the level of policy and regulation that might either impair the implementation of human reproductive cloning or make its accessibility restricted in a way that could become difficult to justify on moral grounds. We suggest using the time still available before human reproductive cloning is attempted successfully to create policies and institutions that can offer clear directives on its legitimate applications on the basis of solid arguments, coherent moral principles, and extensive public consultation.

  10. Comparative assessment of Th1 and Th2 cytokines of swamp type buffalo and other bubaline breeds by molecular cloning, sequencing and phylogenetics.

    PubMed

    Mingala, Claro N; Odbileg, Raadan; Konnai, Satoru; Ohashi, Kazuhiko; Onuma, Misao

    2006-10-15

    Comparative assessment of Th1 and Th2 cytokines of three bubaline breeds namely swamp buffalo, its crossbreed with riverine buffalo (CB), and the improved breed of Bulgarian Murrah buffalo (BMB), was done by molecular cloning, sequencing and phylogenetic analysis. The Th1 cytokines analyzed included IL-2, IL-12p35, IL-12p40, and IFN-gamma while Th2 cytokines included IL-4 and IL-10. Both groups showed strict conservation in the putative secondary structures and amino acid residues within the tribe Bovini, which indicated functional cross-reactivity. Nucleotide sequence homology ranged from 98.6 to 100.0% and was lowest for IL-12p35. With regard to amino acid sequence, the lowest homology was observed in IL-4 with 97.8%. This substitution was mainly due to differences in mRNA splicing. The phylogenetic relationship of the buffalo breeds was analyzed and showed them as a cluster comprised mainly of species belonging to the order Artiodactyla, including cattle and pigs. A deeper knowledge of these cytokine structures will favor understanding of water buffalo immunology and how much it differs from its closest subspecies and other animals.

  11. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  12. Using general and specific combining ability to further advance strawberry (Fragaria sp.) breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberry is one of the five fruit crops included in the USDA-funded multi-institutionaland trans-disciplinary project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae”. A Crop Reference Set (CRS) was developed of 900 genotypes and seedlings from 40 crosses representing the breadth of rele...

  13. Breed effects and heterosis in advanced generations of composite populations for preweaning traits of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1991-03-01

    The effects of heterosis for gestation length, dystocia, calf survival, birth weight, 200-d weight, and ADG from birth to weaning were evaluated in F1, F2, and combined F3 and F4 generations in three composite populations. Breed effects were evaluated for the nine parental breeds (Red Poll, Hereford, Angus, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais) that contributed to the three composite populations. Breed effects were significant for all traits evaluated except survival at birth. The large differences among breeds in additive direct and additive maternal genetic effects offer a great opportunity to use the genetic differences among breeds to achieve and maintain optimum additive genetic (breed) composition to match genetic resources to a wide range of production-marketing ecosystems. There was no heterosis for gestation length. Mean heterosis for dystocia was significant estimated in F1 but not in F2 or in the combined F3 and F4 generations. Mean heterosis was not significant in any generation for survival at birth, to 72 h, and to weaning for the F1 generation; mean heterosis was significant for survival to weaning for the F2 generation and approached significance (P = .06) for the combined F3 and F4 generations. Mean heterosis over all composite populations and heterosis for each composite population were significant in all generations for weight at birth and at 200 d and for ADG from birth to weaning. Retained heterosis was not less than expected from retained heterozygosity in composite populations for the traits evaluated. These results suggest that heterosis for these traits likely is due to dominance effects and, thus, can be attributed to the recovery of accumulated inbreeding depression in the parental breeds.

  14. Evaluation of verticillium wilt resistance in commercial cultivars and advanced breeding lines of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW), caused by Verticillium dahliae Kleb, is one of the most destructive diseases in cotton (Gossypium spp.). The most efficient and cost-effective method of controlling the disease is the use of resistant cotton cultivars. Most commercial cultivars and elite breeding lines are de...

  15. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival

    PubMed Central

    Wierucka, Kaja; Halupka, Lucyna; Klimczuk, Ewelina; Sztwiertnia, Hanna

    2016-01-01

    Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality. PMID:26934086

  16. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.

  17. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research. PMID:26195770

  18. Artificial cloning of domestic animals

    PubMed Central

    Keefer, Carol L.

    2015-01-01

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research. PMID:26195770

  19. Sequence-based marker development in wheat: advances and applications to breeding.

    PubMed

    Paux, Etienne; Sourdille, Pierre; Mackay, Ian; Feuillet, Catherine

    2012-01-01

    In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.

  20. Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.).

    PubMed

    Legay, Sylvain; Lefèvre, Isabelle; Lamoureux, Didier; Barreda, Carolina; Luz, Rosalina Tincopa; Gutierrez, Raymundo; Quiroz, Roberto; Hoffmann, Lucien; Hausman, Jean-François; Bonierbale, Merideth; Evers, Danièle; Schafleitner, Roland

    2011-06-01

    In potatoes and many other crops, drought is one of the most important environmental constraints leading to yield loss. Development of drought-tolerant cultivars is therefore required for maintaining yields under climate change conditions and for the extension of agriculture to sub-optimal cropping areas. Drought tolerance mechanisms have been well described for many crop plants including Native Andean potato. However, knowledge on tolerance traits suitable for commercial potato varieties is scarce. In order to describe drought tolerance mechanisms that sustain potato yield under water stress, we have designed a growth-chamber experiment with two Solanum tuberosum L. cultivars, the more drought tolerant accession 397077.16, and the sensitive variety Canchan. After 21 days of drought exposure, gene expression was studied in leaves using cDNA microarrays. The results showed that the tolerant clone presented more differentially expressed genes than the sensitive one, suggesting greater stress response and adaptation. Moreover, it exhibited a large pool of upregulated genes belonging to cell rescue and detoxication such as LEAs, dehydrins, HSPs, and metallothioneins. Transcription factors related to abiotic stresses and genes belonging to raffinose family oligosaccharide synthesis, involved in desiccation tolerance, were upregulated to a greater extent in the tolerant clone. This latter result was corroborated by biochemical analyses performed at 32 and 49 days after drought that showed an increase in galactinol and raffinose especially in clone 397077.16. The results depict key components for the drought tolerance of this advanced potato clone.

  1. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  2. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  3. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  4. CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea.

    PubMed

    Doddamani, Dadakhalandar; Khan, Aamir W; Katta, Mohan A V S K; Agarwal, Gaurav; Thudi, Mahendar; Ruperao, Pradeep; Edwards, David; Varshney, Rajeev K

    2015-01-01

    Molecular markers are valuable tools for breeders to help accelerate crop improvement. High throughput sequencing technologies facilitate the discovery of large-scale variations such as single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). Sequencing of chickpea genome along with re-sequencing of several chickpea lines has enabled the discovery of 4.4 million variations including SNPs and InDels. Here we report a repository of 1.9 million variations (SNPs and InDels) anchored on eight pseudomolecules in a custom database, referred as CicArVarDB that can be accessed at http://cicarvardb.icrisat.org/. It includes an easy interface for users to select variations around specific regions associated with quantitative trait loci, with embedded webBLAST search and JBrowse visualisation. We hope that this database will be immensely useful for the chickpea research community for both advancing genetics research as well as breeding applications for crop improvement. Database URL: http://cicarvardb.icrisat.org. PMID:26289427

  5. CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea

    PubMed Central

    Doddamani, Dadakhalandar; Khan, Aamir W.; Katta, Mohan A. V. S. K; Agarwal, Gaurav; Thudi, Mahendar; Ruperao, Pradeep; Edwards, David; Varshney, Rajeev K.

    2015-01-01

    Molecular markers are valuable tools for breeders to help accelerate crop improvement. High throughput sequencing technologies facilitate the discovery of large-scale variations such as single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). Sequencing of chickpea genome along with re-sequencing of several chickpea lines has enabled the discovery of 4.4 million variations including SNPs and InDels. Here we report a repository of 1.9 million variations (SNPs and InDels) anchored on eight pseudomolecules in a custom database, referred as CicArVarDB that can be accessed at http://cicarvardb.icrisat.org/. It includes an easy interface for users to select variations around specific regions associated with quantitative trait loci, with embedded webBLAST search and JBrowse visualisation. We hope that this database will be immensely useful for the chickpea research community for both advancing genetics research as well as breeding applications for crop improvement. Database URL: http://cicarvardb.icrisat.org. PMID:26289427

  6. Statement on Human Cloning

    MedlinePlus

    ... form Search American Association for the Advancement of Science Statement on Human Cloning Print Email Tweet The American Association for the Advancement of Science (AAAS) recognizes the intense debates within our society ...

  7. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    PubMed

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  8. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning. PMID:16180113

  9. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning.

  10. Fine mapping of quantitative trait loci using advanced intercross lines of mice and positional cloning of the corresponding genes.

    PubMed

    Iraqi, F

    2000-12-01

    High-resolution mapping of quantitative trait loci (QTLs) is an essential step towards positional cloning and identification of the corresponding genes. Most QTL detection and mapping studies in mice have been carried out using F2 intercross and backcross populations. As a consequence of the limited number of recombination events in small chromosomal regions, this has generally permitted mapping to only relatively large confidence intervals of 20 to 40 cM. A number of population designs have been proposed to increase recombination level in crosses. This includes advanced intercross lines (AIL) described by Darvasi and Soller [Genomics. 1995; 141: 1199-1207]. In this report demonstration of the utility of the AIL approach for fine mapping of QTL, which previously had been mapped with 95% confidence interval to 20 to 40 cM in a F2 intercross, will be presented. The methodological approaches to go from the fine-mapped QTL to the identification of the actual genes and mutations are discussed.

  11. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  12. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. PMID:27393468

  13. Breed effects and heterosis in advanced generations of composite populations for growth traits in both sexes of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1991-08-01

    Heterosis effects for birth weight, ADG from birth to weaning, 200-d weight, ADG from weaning to 368 d, 368-d weight, 368-d height, 368-d condition score, and 368-d muscling score (males only) were evaluated separately for each sex in F1, F2, and combined F3 and F4 generations in three composite beef cattle populations. Breed effects were evaluated for the nine parental breeds (i.e., Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated. The large differences among breeds for growth and size traits in combined additive direct and additive maternal genetic effects (Gi + Gm) provide an opportunity to use genetic differences among breeds to achieve and maintain optimum additive genetic (breed) composition for growth and size traits to match cattle genetic resources to a wide range of production and marketing situations. Combined individual and maternal heterosis was significant in the F1, F2, and combined F3 and F4 generations for each composite population and for the mean of the three composite populations in both sexes for most of the traits evaluated. In both sexes, heterosis retained in combined F3 and F4 generations was greater (P less than .05) than expected based on retained heterozygosity for birth weight, ADG from weaning to 368 d, and for 368-d weight and did not differ (P greater than .05) from expectation for other traits. These results support the hypothesis that heterosis in cattle for traits related to growth and size is due to dominance effects of genes.

  14. Breed effects and retained heterosis for growth, carcass, and meat traits in advanced generations of composite populations of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M; Dikeman, M E; Koohmaraie, M

    1994-04-01

    Retained heterosis for growth, carcass, and meat traits was estimated in F3 generation castrate male progeny in three composite populations finished on two levels of dietary energy density (2.82 Mcal of ME and 3.07 Mcal of ME and 11.50% CP) and serially slaughtered at four end points at intervals of 20 to 22 d. Breed effects were evaluated in nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C] that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, and 1/4 A). Breed effects were important (P < .01) for carcass weight, dressing percentage, fat thickness, and marbling score; for retail product, fat trim and bone percentages and weights at two levels of fat trim (8 and 0 mm); and for carcass lean, fat, and bone percentages and weights. Mean slaughter weight was 54.7 kg greater for the Simmental, Gelbvieh, and Charolais breeds than for the Limousin but did not differ (P > .05) from Limousin in retail product weight or carcass lean weight because of higher dressing percentage, lower fat trim percentage, and lower bone percentage of Limousin. The effects of dietary energy density were important (P < .01) for most traits. The interaction of breed group x dietary energy density generally was not important. Retained heterosis generally was significant for each composite population for weight of retail product, fat trim, bone, and carcass lean, fat, and bone. For percentage of retail product, fat trim, carcass lean, carcass fat, and chemical fat in the 9-10-11th rib cut, generally, heterosis was significant for composites MARC II and MARC III but not for composite MARC I (i.e., composites MARC II and MARC III had a lower percentage of retail product and carcass lean and a higher percentage of fat trim, carcass fat, and chemical fat in the 9-10-11th rib cut than

  15. Breed effects and heterosis in advanced generations of composite populations for puberty and scrotal traits of beef cattle.

    PubMed

    Gregory, K E; Lunstra, D D; Cundiff, L V; Koch, R M

    1991-07-01

    Heterosis effects were evaluated in F1, F2, and F3 generations of females and in the F1, F2, and combined F3 and F4 generations of males in three composite populations of beef cattle. Traits included weight, height, and condition scores at different ages, percentage of females reaching puberty at 368, 410, and 452 d, adjusted age, and adjusted weight of females at puberty and scrotal circumference and paired testicular volume of males. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated. Heterosis was significant for weight, height, and condition score at all ages and for most measures of puberty in each generation of each composite and for the mean of the three composite populations. Heterosis for age at puberty was largely independent of heterosis effects on 368-d weight. Heterosis was significant for scrotal circumference and paired testicular volume in each generation of each composite and for the mean of the three composite populations. Heterosis effects on scrotal measurements are mediated both through heterosis effects on growth rate and through factors that are independent of growth rate. Correlation coefficients among breed group means and correlations of breed rank for scrotal measurements with puberty traits of females were greater than or equal to .88 (P less than .01) for all puberty traits except weight at puberty, which was not associated with scrotal measurements. There was close agreement in heterosis observed for most traits and expectation based on retained heterozygosity. These results support the hypothesis that heterosis in cattle for size, puberty, and scrotal measurement

  16. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  17. Breed effects and heterosis in advanced generations of composite populations for reproduction and maternal traits of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1992-03-01

    Heterosis effects in F1 dams producing F2 progeny and retained heterosis in combined F2 and F3 dams producing F3 and F4 progeny were evaluated in dams 2 yr old, in dams greater than or equal to 5 yr old, and in dams of all ages. Traits included pregnant percentage, calf crop born percentage, calf crop weaned percentage, 200-d calf weight per heifer or cow exposed, and 200-d calf weight. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated in the three age groupings and generally were greatest in 2-yr-old dams and smallest in dams greater than or equal to 5 yr old. Heterosis effects for 200-d calf weight were relatively uniform among age groupings and among the three composite populations and heterosis retained was equal to, or greater than, expectation based on retained heterozygosity. Heterosis effects in animals of all ages for reproductive traits in F1 dams producing F2 progeny differed among the three composite populations, as did heterosis retained in combined F2 and F3 dams producing F3 and F4 progeny. In dams of all ages, heterosis retained for reproductive traits in F2 and F3 dams producing F3 and F4 progeny did not differ (P greater than .05) from expectation based on retained heterozygosity in two of the three composite populations, but loss of heterosis was greater (P less than .05) than expectation based on retained heterozygosity in one of the three composite populations for calf crop born percentage, calf crop weaned percentage, and 200-d calf weight per heifer or cow exposed. This reduction was the result of increased fetal loss between pregnancy diagnosis and parturition

  18. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  19. Cloning cattle.

    PubMed

    Oback, B; Wells, D N

    2003-01-01

    Over the past six years, hundreds of apparently normal calves have been cloned worldwide from bovine somatic donor cells. However, these surviving animals represent less than 5% of all cloned embryos transferred into recipient cows. Most of the remaining 95% die at various stages of development from a predictable pattern of placental and fetal abnormalities, collectively referred to as the "cloning-syndrome." The low efficiency seriously limits commercial applicability and ethical acceptance of somatic cloning and enforces the development of improved cloning methods. In this paper, we describe our current standard operating procedure (SOP) for cattle cloning using zona-free nuclear transfer. Following this SOP, the output of viable and healthy calves at weaning is about 9% of embryos transferred. Better standardization of cloning protocols across and within research groups is needed to separate technical from biological factors underlying low cloning efficiency.

  20. Why Clone?

    MedlinePlus

    ... How might cloning be used in medicine? Cloning animal models of disease Much of what researchers learn about human disease comes from studying animal models such as mice. Often, animal models are ...

  1. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: opportunities they offer for sustainable productivity

    PubMed Central

    Bowles, Dianna

    2015-01-01

    Locally adapted breeds of livestock are of considerable interest since they represent potential reservoirs of adaptive fitness traits that may contribute to the future of sustainable productivity in a changing climate. Recent research, involving three hill sheep breeds geographically concentrated in the northern uplands of the UK has revealed the extent of their genetic diversity from one another and from other breeds. Results from the use of SNPs, microsatellites, and retrovirus insertions are reviewed in the context of related studies on sheep breeds world-wide to highlight opportunities offered by the genetic resources of locally adapted hill breeds. One opportunity concerns reduced susceptibility to Maedi Visna, a lentivirus with massive impacts on sheep health and productivity globally. In contrast to many mainstream breeds used in farming, each of the hill breeds analyzed are likely to be far less susceptible to the disease threat. A different opportunity, relating specifically to the Herdwick breed, is the extent to which the genome of the breed has retained primitive features, no longer present in other mainland breeds of sheep in the UK and offering a new route for discovering unique genetic traits of use to agriculture. PMID:25729388

  2. [Cloning - controversies].

    PubMed

    Twardowski, T; Michalska, A

    2001-01-01

    Cloning of the human being is not only highly controversial; in the opinion of the authors it is impossible - we are not able to reproduce human behaviour and character traits. Reproduction through cloning is limited to personal genome resources. The more important is protection of genomic characteristics as private property and taking advantage of cloning for production of the human organs directly or through xenotransplants. In this paper we present the legislation related to cloning in Poland, in the European Union and other countries. We also indicate who and why is interested in cloning.

  3. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. PMID:27161822

  4. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

    PubMed

    Varshney, Rajeev K; Kudapa, Himabindu; Roorkiwal, Manish; Thudi, Mahendar; Pandey, Manish K; Saxena, Rachit K; Chamarthi, Siva K; Mohan, S Murali; Mallikarjuna, Nalini; Upadhyaya, Hari; Gaur, Pooran M; Krishnamurthy, L; Saxena, K B; Nigam, Shyam N; Pande, Suresh

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance

  5. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  6. The development and application of the modern reproductive technologies to horse breeding.

    PubMed

    Allen, W R

    2005-08-01

    Although the horse was probably the first animal to experience and benefit from artificial insemination, it trailed the field somewhat with regard to the application of embryo transfer and other oocyte and embryo-related modern breeding technologies. But with a late run it is now back in mid-field and gaining fast on the other large domestic species in the application of the many technological advances of the past 20 years to sound breeding practice. Improvements in extenders and cryoprotectants have resulted in a veritable upsurge in the transport and insemination of cooled and frozen stallion semen, and parallel improvements in ovulation induction and synchrony, exogenous gonadotrophic stimulation of multiple fertile ovulations and simplified, more efficient methods for non-surgical transfer of embryos to recipient mares, coupled with relaxation of breed society registration restrictions, have together contributed to a similar upsurge in the application of embryo transfer to all breeds and athletic types of horses worldwide, with the continuing and notable exception of the Thoroughbred. Although conventional in vitro fertilization remains something of an unjumped fence in equids, other modern breeding technologies like hysteroscopic low-dose insemination, fluorescence-activated sex sorting of stallion spermatozoa, between-species embryo transfer, embryo freezing and bisection, transvaginal ultrasound-guided oocyte collection, intracytoplasmic sperm injection for fertilization (ICSI), gamete intrafallopian transfer (GIFT) and now nuclear transfer (cloning), have all been applied to equids with encouraging success. Cloning, especially, holds enormous promise for the Sporthorse industry to re-create champion geldings in stallion form for breeding purposes. PMID:16008761

  7. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  8. Production of cloned NIBS (Nippon Institute for Biological Science) and α-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates

    PubMed Central

    Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H.; Nunoya, Tetsuo

    2013-01-01

    Background Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. Method and Results In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). Conclusions These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. PMID:23581451

  9. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally negative practice.…

  10. Therapeutic cloning: promises and issues

    PubMed Central

    Kfoury, Charlotte

    2007-01-01

    Advances in biotechnology necessitate both an understanding of scientific principles and ethical implications to be clinically applicable in medicine. In this regard, therapeutic cloning offers significant potential in regenerative medicine by circumventing immunorejection, and in the cure of genetic disorders when used in conjunction with gene therapy. Therapeutic cloning in the context of cell replacement therapy holds a huge potential for de novo organogenesis and the permanent treatment of Parkinson’s disease, Duchenne muscular dystrophy, and diabetes mellitus as shown by in vivo studies. Scientific roadblocks impeding advancement in therapeutic cloning are tumorigenicity, epigenetic reprogramming, mitochondrial heteroplasmy, interspecies pathogen transfer, low oocyte availability. Therapeutic cloning is also often tied to ethical considerations concerning the source, destruction and moral status of IVF embryos based on the argument of potential. Legislative and funding issues are also addressed. Future considerations would include a distinction between therapeutic and reproductive cloning in legislative formulations. PMID:18523539

  11. Wildlife conservation and reproductive cloning.

    PubMed

    Holt, William V; Pickard, Amanda R; Prather, Randall S

    2004-03-01

    Reproductive cloning, or the production of offspring by nuclear transfer, is often regarded as having potential for conserving endangered species of wildlife. Currently, however, low success rates for reproductive cloning limit the practical application of this technique to experimental use and proof of principle investigations. In this review, we consider how cloning may contribute to wildlife conservation strategies. The cloning of endangered mammals presents practical problems, many of which stem from the paucity of knowledge about their basic reproductive biology. However, situations may arise where resources could be targeted at recovering lost or under-represented genetic lines; these could then contribute to the future fitness of the population. Approaches of this type would be preferable to the indiscriminate generation of large numbers of identical individuals. Applying cloning technology to non-mammalian vertebrates may be more practical than attempting to use conventional reproductive technologies. As the scientific background to cloning technology was pioneered using amphibians, it may be possible to breed imminently threatened amphibians, or even restore extinct amphibian species, by the use of cloning. In this respect species with external embryonic development may have an advantage over mammals as developmental abnormalities associated with inappropriate embryonic reprogramming would not be relevant.

  12. Effects of breed and retained heterosis on milk yield and 200-day weight in advanced generations of composite populations of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1992-08-01

    Retained heterosis in F2 cows nursing F3 progeny was evaluated in 3-, 4-, and greater than or equal to 5-yr-old cows. Traits evaluated included milk yield at three stages of lactation and 200-d weight of progeny. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for 12-h milk yield, estimated 200-d milk yield, and 200-d weight of progeny. Herefords were lowest (P less than .05) for 12-h milk yield and estimated 200-d milk yield, and Braunvieh produced significantly more milk than all breed groups except Pinzgauer and Simmental, for which the difference approached significance. The correlation among breed group means (nine parental breeds and three composites) for 12-h milk yield with 200-d weight of progeny was .91. When 200-d weight was adjusted to a common estimated 200-d milk yield, Hereford, Angus, Red Poll, and Limousin did not differ (P greater than .05); all were significantly lighter than Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais, which did not differ (P greater than .05) from each other.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Mapping quantitative trait loci in selected breeding populations: A segregation distortion approach.

    PubMed

    Cui, Y; Zhang, F; Xu, J; Li, Z; Xu, S

    2015-12-01

    Quantitative trait locus (QTL) mapping is often conducted in line-crossing experiments where a sample of individuals is randomly selected from a pool of all potential progeny. QTLs detected from such an experiment are important for us to understand the genetic mechanisms governing a complex trait, but may not be directly relevant to plant breeding if they are not detected from the breeding population where selection is targeting for. QTLs segregating in one population may not necessarily segregate in another population. To facilitate marker-assisted selection, QTLs must be detected from the very population which the selection is targeting. However, selected breeding populations often have depleted genetic variation with small population sizes, resulting in low power in detecting useful QTLs. On the other hand, if selection is effective, loci controlling the selected trait will deviate from the expected Mendelian segregation ratio. In this study, we proposed to detect QTLs in selected breeding populations via the detection of marker segregation distortion in either a single population or multiple populations using the same selection scheme. Simulation studies showed that QTL can be detected in strong selected populations with selected population sizes as small as 25 plants. We applied the new method to detect QTLs in two breeding populations of rice selected for high grain yield. Seven QTLs were identified, four of which have been validated in advanced generations in a follow-up study. Cloned genes in the vicinity of the four QTLs were also reported in the literatures. This mapping-by-selection approach provides a new avenue for breeders to improve breeding progress. The new method can be applied to breeding programs not only in rice but also in other agricultural species including crops, trees and animals.

  14. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  15. Advances in linking wintering migrant birds to their breeding-ground origins using combined analyses of genetic and stable isotope markers.

    PubMed

    Chabot, Amy A; Hobson, Keith A; Van Wilgenburg, Steven L; McQuat, Gregory J; Lougheed, Stephen C

    2012-01-01

    An enduring problem in avian ecology and conservation is linking breeding and wintering grounds of migratory species. As migratory species and populations vary in the degree to which individuals from distinct breeding locales mix on stop-over sites and wintering grounds, establishing migratory connectivity informs our understanding of population demography and species management. We present a new Bayesian approach for inferring breeding grounds of wintering birds of unknown origins in North America. We incorporate prior information from analysis of genetic markers into geographic origin assignment based upon stable-hydrogen isotope analysis of feathers (δ(2)H(f)), using the Loggerhead Shrike (Lanius ludovicianus). Likely geographic origins derived from analyses of DNA microsatellites were used as priors for Bayesian analyses in which birds were assigned to a breeding-ground origin using their δ(2)H(f) values. As with most applications of Bayesian methods, our approach greatly improved the results (i.e. decreased the size of the potential area of origin). Area of origin decreased by 3 to 5-fold on average, but ranged up to a 10-fold improvement. We recommend this approach in future studies of migratory connectivity and suggest that our methodology could be applied more broadly to the study of dispersal, sources of productivity of migratory populations, and a range of evolutionary phenomena.

  16. Advances in Linking Wintering Migrant Birds to Their Breeding-Ground Origins Using Combined Analyses of Genetic and Stable Isotope Markers

    PubMed Central

    Chabot, Amy A.; Hobson, Keith A.; Van Wilgenburg, Steven L.; McQuat, Gregory J.; Lougheed, Stephen C.

    2012-01-01

    An enduring problem in avian ecology and conservation is linking breeding and wintering grounds of migratory species. As migratory species and populations vary in the degree to which individuals from distinct breeding locales mix on stop-over sites and wintering grounds, establishing migratory connectivity informs our understanding of population demography and species management. We present a new Bayesian approach for inferring breeding grounds of wintering birds of unknown origins in North America. We incorporate prior information from analysis of genetic markers into geographic origin assignment based upon stable-hydrogen isotope analysis of feathers (δ2Hf), using the Loggerhead Shrike (Lanius ludovicianus). Likely geographic origins derived from analyses of DNA microsatellites were used as priors for Bayesian analyses in which birds were assigned to a breeding-ground origin using their δ2Hf values. As with most applications of Bayesian methods, our approach greatly improved the results (i.e. decreased the size of the potential area of origin). Area of origin decreased by 3 to 5-fold on average, but ranged up to a 10-fold improvement. We recommend this approach in future studies of migratory connectivity and suggest that our methodology could be applied more broadly to the study of dispersal, sources of productivity of migratory populations, and a range of evolutionary phenomena. PMID:22916285

  17. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  18. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  19. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  20. Comparison of milk produced by cows cloned by nuclear transfer with milk from non-cloned cows.

    PubMed

    Walsh, Marie K; Lucey, John A; Govindasamy-Lucey, Selvarani; Pace, Marvin M; Bishop, Michael D

    2003-01-01

    Cloning technologies, including embryo splitting and nuclear transfer, were introduced into dairy cattle breeding in the early 1980s. With the recent worldwide attention on the cloning of sheep ("Dolly") and cows ("Gene"), the potential food safety concerns for food products derived from cloned animals needs to be addressed. There has been no study of the composition of milk produced by cloned cows. In this preliminary study, we evaluated the composition of milk from 15 lactating non-embryonic cell cloned cows and six non-cloned lactating cows over a single season. The cloned cows came from five unique genetic lines and three distinct breeds. Milk samples were analyzed for total solids, fat, fatty acid profile, lactose, protein and compared to non-cloned and literature values. Gross chemical composition of milk from cloned cows was similar to that of the non-cloned cows and literature values. Our results lead us to conclude that there are no obvious differences in milk composition produced from cloned cows compared to non-cloned cows. PMID:14588139

  1. Meat and milk compositions of bovine clones.

    PubMed

    Tian, X Cindy; Kubota, Chikara; Sakashita, Kunihito; Izaike, Yoshiaki; Okano, Ryoichi; Tabara, Norio; Curchoe, Carol; Jacob, Lavina; Zhang, Yuqin; Smith, Sadie; Bormann, Charles; Xu, Jie; Sato, Masumi; Andrew, Sheila; Yang, Xiangzhong

    2005-05-01

    The technology is now available for commercial cloning of farm animals for food production, but is the food safe for consumers? Here, we provide data on >100 parameters that compare the composition of meat and milk from beef and dairy cattle derived from cloning to those of genetic- and breed-matched control animals from conventional reproduction. The cloned animals and the comparators were managed under the same conditions and received the same diet. The composition of the meat and milk from the clones were largely not statistically different from those of matched comparators, and all parameters examined were within the normal industry standards or previously reported values. The data generated from our match-controlled experiments provide science-based information desired by regulatory agencies to address public concerns about the safety of meat and milk from somatic animal clones.

  2. Breed effects and heterosis in advanced generations of composite populations for birth weight, birth date, dystocia, and survival as traits of dam in beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1991-09-01

    Heterosis effects were evaluated as traits of the dam in F2 progeny of F1 dams and F3 and 4 progeny of F2 and 3 dams in three composite populations of beef cattle. Traits included birth weight, birth date, calving difficulty percentage, and survival percentage at birth, 72 h, and weaning for calves with dams of different age classes. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/4 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Among calves with 2-yr-old dams, breed effects were significant for birth weight, birth date, calving difficulty percentage, and survival percentage at birth but not at 72 h and weaning. Calf survival at weaning was lowest for smallest (less than mu - 1.5 sigma) and largest (greater than mu + 1.5 sigma) birth weight classes and did not differ among intermediate birth weight classes. Calves with difficult births with 2-yr-old dams were significantly heavier at birth (39.6 vs 35.4 kg) and had significantly lower survival at 72 h (87.1 vs 92.2%) and at weaning (77.4 vs 85.1%) than calves with 2-yr-old dams that did not experience difficult births. Among calves with dams greater than or equal to 3 yr old and from dams of all ages, breed group effects generally were significant for the traits analyzed. Important breed group effects on dystocia and survival traits were observed independent of breed group effects on birth weight. Effects of heterosis were significant for birth weight for each generation of each composite population and for the mean of the three composite populations. Generally, heterosis effects for calving difficulty percentage were not significant. Effects of heterosis generally were significant for date of birth (earlier) for each composite population and for

  3. Breed effects and heterosis in advanced generations of composite populations on actual weight, adjusted weight, hip height, and condition score of beef cows.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M

    1992-06-01

    Heterosis effects were evaluated in three composite populations in F1, F2, and F3 generations separately and combined in 1-yr-old and from 2- through greater than or equal to 7-yr-old beef cows. Traits included actual weight, weight adjusted to a common condition score, hip height, and condition score. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed group (parental breed and composite) effects were significant for all traits analyzed. The effects of heterosis were generally important (P less than .05) for all traits in F1, F2, and F3 generations separately and combined in the three composite populations. Generally, the magnitude of heterosis observed at 1 yr of age did not differ from that observed in cows from 2 through greater than or equal to 7 yr old. Adjusting weight to a common condition score resulted in an average reduction of heterosis effects on actual weight by approximately one-fourth. Thus, approximately one-fourth of the effects of heterosis on weight result from heterosis effects on condition score. Generally, retained heterosis in the F3 generation of either 1-yr-old or from 2-through greater than or equal to 7-yr-old cows of the three composite populations did not differ (P greater than .05) from expectation based on retained heterozygosity for the traits analyzed. These results support the hypothesis that heterosis for weight, hip height, and condition score of cows of these age classes is the result of dominance effects of genes.

  4. The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia.

    PubMed

    Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor

    2014-08-01

    Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate.

  5. A genome-wide association study of malting quality across eight U.S. barley breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study leverages the breeding data of 1,862 breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The breeding lines were six-row and two-row barley advanced breeding lines from eight barley breeding populations established at six pub...

  6. Telomeres and the ethics of human cloning.

    PubMed

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  7. Cassava Breeding I: The Value of Breeding Value

    PubMed Central

    Ceballos, Hernán; Pérez, Juan C.; Joaqui Barandica, Orlando; Lenis, Jorge I.; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H.

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials—UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  8. Cassava Breeding I: The Value of Breeding Value.

    PubMed

    Ceballos, Hernán; Pérez, Juan C; Joaqui Barandica, Orlando; Lenis, Jorge I; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials-UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r (2) = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  9. Cassava Breeding I: The Value of Breeding Value

    PubMed Central

    Ceballos, Hernán; Pérez, Juan C.; Joaqui Barandica, Orlando; Lenis, Jorge I.; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H.

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials—UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  10. Cassava Breeding I: The Value of Breeding Value.

    PubMed

    Ceballos, Hernán; Pérez, Juan C; Joaqui Barandica, Orlando; Lenis, Jorge I; Morante, Nelson; Calle, Fernando; Pino, Lizbeth; Hershey, Clair H

    2016-01-01

    Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials-UYT). This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN) used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g., high number of their progenies reaching the UYT), suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r (2) = 0.05). Breeding value (e.g., average SIN) at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g., S1 or S2 genotypes) would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0) parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease (CMD) could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele and

  11. Human cloning: Eastern Mediterranean Region perspective.

    PubMed

    Abdur Rab, M; Khayat, M H

    2006-01-01

    Recent advances in genomics and biotechnology have ushered in a new era in health development. Therapeutic cloning possesses enormous potential for revolutionizing medical and therapeutic techniques. Cloning technology, however, is perceived as having the potential for reproductive cloning, which raises serious ethical and moral concerns. It is important that the Islamic countries come to a consensus on this vital issue. Developing science and technology for better health is a religious and moral obligation. There is an urgent need for Muslim scholars to discuss the issue of stem cell research and cloning rationally; such dialogue will not only consider the scientific merits but also the moral, ethical and legal implications.

  12. Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials.

    PubMed

    Wang, Gui-xiang; Tang, Yu; Yan, Hong; Sheng, Xiao-guang; Hao, Wei-Wei; Zhang, Li; Lu, Kun; Liu, Fan

    2011-10-01

    Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC(3)) and selfed (S(3)) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC(3) plants (originated from somatic hybrids 3, 4, 10) with 2-8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.

  13. Technological Literacy and Human Cloning. Resources in Technology.

    ERIC Educational Resources Information Center

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  14. AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach

    PubMed Central

    Beyer, Hannes M.; Gonschorek, Patrick; Samodelov, Sophia L.; Meier, Matthias; Weber, Wilfried; Zurbriggen, Matias D.

    2015-01-01

    Assembly cloning is increasingly replacing conventional restriction enzyme and DNA-ligase-dependent cloning methods for reasons of efficiency and performance. Here, we describe AQUA (advanced quick assembly), a simple and versatile seamless assembly cloning approach. We demonstrate the applicability and versatility of AQUA Cloning in selected proof-of-principle applications including targeted insertion-, deletion- and site-directed point-mutagenesis, and combinatorial cloning. Furthermore, we show the one pot de novo assembly of multiple DNA fragments into a single circular plasmid encoding a complex light- and chemically-regulated Boolean A NIMPLY B logic operation. AQUA Cloning harnesses intrinsic in vivo processing of linear DNA fragments with short regions of homology of 16 to 32 bp mediated by Escherichia coli. It does not require any kits, enzymes or preparations of reagents and is the simplest assembly cloning protocol to date. PMID:26360249

  15. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring

    PubMed Central

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo

    2016-01-01

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs. PMID:26435541

  16. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring.

    PubMed

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo; Lee, Byeong Chun

    2016-09-30

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.

  17. On classical cloning and no-cloning

    NASA Astrophysics Data System (ADS)

    Teh, Nicholas J.

    2012-02-01

    It is part of information theory folklore that, while quantum theory prohibits the generic (or universal) cloning of states, such cloning is allowed by classical information theory. Indeed, many take the phenomenon of no-cloning to be one of the features that distinguishes quantum mechanics from classical mechanics. In this paper, we argue that pace conventional wisdom, in the case where one does not include a machine system, there is an analog of the no-cloning theorem for classical systems. However, upon adjoining a non-trivial machine system (or ancilla) one finds that, pace the quantum case, the obstruction to cloning disappears for pure states. We begin by discussing some conceptual points and category-theoretic generalities having to do with cloning, and proceed to discuss no-cloning in both the case of (non-statistical) classical mechanics and classical statistical mechanics.

  18. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  19. Human cloning 2001.

    PubMed

    Healy, David L; Weston, Gareth; Pera, Martin F; Rombauts, Luk; Trounson, Alan O

    2002-05-01

    This review summaries human cloning from a clinical perspective. Natural human clones, that is, monozygotic twins, are increasing in the general community. Iatrogenic human clones have been produced for decades in infertile couples given fertility treatment such as ovulation induction. A clear distinction must be made between therapeutic cloning using embryonic stem cells and reproductive cloning attempts. Unlike the early clinical years of in vitro fertilization, with cloning there is no animal model that is safe and dependable. Until there is such a model, 'Dolly'-style human cloning is medically unacceptable.

  20. [Mystery and problems of cloning].

    PubMed

    Nikitin, V A

    2010-01-01

    The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.

  1. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    PubMed

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  2. Sexual Reproduction and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  3. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  4. Reproductive and growth performance in Jin Hua pigs cloned from somatic cell nuclei and the meat quality of their offspring.

    PubMed

    Shibata, Masatoshi; Otake, Masayoshi; Tsuchiya, Seiko; Chikyu, Mikio; Horiuchi, Atsushi; Kawarasaki, Tatsuo

    2006-10-01

    Somatic cell cloning is expected to be a valuable method for conserving genetic resources in pigs. In this study, we compared the reproductive and growth performance of Jin Hua cloned pigs with that of naturally bred Jin Hua pigs. In addition, we generated offspring from the cloned sows and examined the productivity and quality of meat in the progeny. The birth weights and growth rates of somatic cell-cloned pigs were similar to those of Jin Hua pigs. The cloned pigs reached puberty very early, and this is typical of the Jin Hua breed. Furthermore, reproductive performance, in terms of traits such as gestation period, litter size, and raising rate in the cloned pigs were similar to Jin Hua pigs. Although the offspring of the cloned (OC) pigs had lower birth weights than the Jin Hua breed, the daily weight gain of the OC pigs was significantly higher, especially at the finishing stage. The carcass quality of the OC pigs had similar characteristics to the Jin Hua breed, namely thick back fat and a small loin area. Furthermore, the meat qualities of the OC pigs were similar to those of Jin Hua pigs in terms of intramuscular fat content and tenderness. These results demonstrate that cloned pigs and their offspring were similar to the Jin Hua breed in most of the growth, reproductive, and meat productive performances. This strongly suggests that pigs cloned from somatic cell nuclei have the potential to be a valuable genetic resource for breeding.

  5. Keeping up with the cloneses--issues in human cloning.

    PubMed

    Rollin, B E

    1999-01-01

    The advent of cloning animals has created a maelstrom of social concern about the "ethical issues" associated with the possibility of cloning humans. When the "ethical concerns" are clearly examined, however, many of them turn out to be less matters of rational ethics than knee-jerk emotion, religious bias, or fear of that which is not understood. Three categories of real and spurious ethical concerns are presented and discussed: 1) that cloning is intrinsically wrong, 2) that cloning must lead to bad consequences, and 3) that cloning harms the organism generated. The need for a rational ethical framework for discussing biotechnological advances is presented and defended.

  6. Statistical inference for classification of RRIM clone series using near IR reflectance properties

    NASA Astrophysics Data System (ADS)

    Ismail, Faridatul Aima; Madzhi, Nina Korlina; Hashim, Hadzli; Abdullah, Noor Ezan; Khairuzzaman, Noor Aishah; Azmi, Azrie Faris Mohd; Sampian, Ahmad Faiz Mohd; Harun, Muhammad Hafiz

    2015-08-01

    RRIM clone is a rubber breeding series produced by RRIM (Rubber Research Institute of Malaysia) through "rubber breeding program" to improve latex yield and producing clones attractive to farmers. The objective of this work is to analyse measurement of optical sensing device on latex of selected clone series. The device using transmitting NIR properties and its reflectance is converted in terms of voltage. The obtained reflectance index value via voltage was analyzed using statistical technique in order to find out the discrimination among the clones. From the statistical results using error plots and one-way ANOVA test, there is an overwhelming evidence showing discrimination of RRIM 2002, RRIM 2007 and RRIM 3001 clone series with p value = 0.000. RRIM 2008 cannot be discriminated with RRIM 2014; however both of these groups are distinct from the other clones.

  7. Future and applications of cloning.

    PubMed

    Trounson, Alan O

    2006-01-01

    The birth of viable offspring from somatic cell nuclear transfer (SCNT) in mammals caused a major re-examination of the understanding of the commitment of cells to specific tissue lineages during differentiation. The questions of whether cells undergo dedifferentiation or transdifferentiation during the development of offspring and how these changes are controlled is a source of ongoing debate that is yet to be resolved. Irrespective of the outcome of this debate, it is clear that cloning using SCNT has a place and purpose in the future of research and animal breeding. The future uses of SCNT could include the production of transgenic mice, the production of transgenic livestock and assisting with the re-establishment of endangered species. Human medicine also would benefit from future use of SCNT because it would allow the production of patient-specific embryonic stem cells.

  8. Multipartite asymmetric quantum cloning

    SciTech Connect

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-10-15

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

  9. Ethical issues in cloning.

    PubMed

    Satris, S

    2000-01-01

    There is great public concern with the ethics of human cloning. This paper briefly examines some of what I identify as pseudo-problems or myths associated with cloning, and some of the more substantial ethical concerns.

  10. The identity of clones.

    PubMed

    Evers, K

    1999-02-01

    A common concern with respect to cloning is based on the belief that cloning produces identical individuals. This is a fundamental misunderstanding of what type of identity-relation cloning involves. The concept "identity" is ambiguous, and the statement that cloning produces "identical" individuals is not meaningful unless the notion of identity is clarified. This paper distinguishes between numerical and qualitative; relational and intrinsic: logical and empirical identity, and discusses the empirical individuation of clones in terms of genetics, physiology, perception, cognition and personality. I argue that the only relation of identity cloning involves is qualitative, intrinsic and empirical: genetic indiscernibility, unlikely to include identity under other aspects mentioned. A popular argument against cloning claims our "right" to a "unique identity". This objection either implies (absurdly) the right not to be an identical twin, or assumes (incorrectly) that cloning involves identity other than genetic. Either way, the argument is untenable.

  11. Healthy ageing of cloned sheep

    PubMed Central

    Sinclair, K. D.; Corr, S. A.; Gutierrez, C. G.; Fisher, P. A.; Lee, J.-H.; Rathbone, A. J.; Choi, I.; Campbell, K. H. S.; Gardner, D. S.

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7–9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals. PMID:27459299

  12. Healthy ageing of cloned sheep.

    PubMed

    Sinclair, K D; Corr, S A; Gutierrez, C G; Fisher, P A; Lee, J-H; Rathbone, A J; Choi, I; Campbell, K H S; Gardner, D S

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7-9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals.

  13. Healthy ageing of cloned sheep.

    PubMed

    Sinclair, K D; Corr, S A; Gutierrez, C G; Fisher, P A; Lee, J-H; Rathbone, A J; Choi, I; Campbell, K H S; Gardner, D S

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7-9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals. PMID:27459299

  14. Benefits and problems with cloning animals.

    PubMed

    Smith, L C; Bordignon, V; Babkine, M; Fecteau, G; Keefer, C

    2000-12-01

    Animal cloning is becoming a useful technique for producing transgenic farm animals and is likely to be used to produce clones from valuable adults. Other applications will also undoubtedly be discovered in the near future, such as for preserving endangered breeds and species. Although cloning promises great advantages for commerce and research alike, its outcome is not always certain due to high pregnancy losses and high morbidity and mortality during the neonatal period. Research into the mechanisms involved in the reprogramming of the nucleus is being conducted throughout the world in an attempt to better understand the molecular and cellular mechanisms involved in correcting these problems. Although the cause of these anomalies remains mostly unknown, similar phenotypes have been observed in calves derived through in vitro fertilization, suggesting that culture conditions are involved in these phenomena. In the meantime, veterinarians and theriogenologists have an important role to play in improving the efficiency of cloning by finding treatments to assure normal gestation to term and to develop preventative and curative care for cloned neonates.

  15. Welfare in horse breeding

    PubMed Central

    Campbell, M. L. H.; Sandøe, P.

    2015-01-01

    Welfare problems related to the way horses are bred, whether by coitus or by the application of artificial reproduction techniques (ARTs), have been given no discrete consideration within the academic literature. This paper reviews the existing knowledge base about welfare issues in horse breeding and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations. PMID:25908746

  16. Welfare in horse breeding.

    PubMed

    Campbell, M L H; Sandøe, P

    2015-04-25

    Welfare problems related to the way horses are bred, whether by coitus or by the application of artificial reproduction techniques (ARTs), have been given no discrete consideration within the academic literature. This paper reviews the existing knowledge base about welfare issues in horse breeding and identifies areas in which data is lacking. We suggest that all methods of horse breeding are associated with potential welfare problems, but also that the judicious use of ARTs can sometimes help to address those problems. We discuss how negative welfare effects could be identified and limited and how positive welfare effects associated with breeding might be maximised. Further studies are needed to establish an evidence base about how stressful or painful various breeding procedures are for the animals involved, and what the lifetime welfare implications of ARTs are for future animal generations.

  17. Cloning. Pigs is pigs.

    PubMed

    Prather, R S

    2000-09-15

    Since the first report of a cloned animal (Dolly the sheep) 3 years ago, cloning mammals has become something of a cottage industry. As Prather discusses in his Perspective, pigs can now be added to the august list of cloned animals, which includes cows, goats, and mice. This is a particularly spectacular achievement because pig cloning has turned out to be notoriously difficult. The pig is also a valuable domestic animal to have cloned because, being physiologically close to humans, its organs can be used in xenotransplantation.

  18. Cloning. Pigs is pigs.

    PubMed

    Prather, R S

    2000-09-15

    Since the first report of a cloned animal (Dolly the sheep) 3 years ago, cloning mammals has become something of a cottage industry. As Prather discusses in his Perspective, pigs can now be added to the august list of cloned animals, which includes cows, goats, and mice. This is a particularly spectacular achievement because pig cloning has turned out to be notoriously difficult. The pig is also a valuable domestic animal to have cloned because, being physiologically close to humans, its organs can be used in xenotransplantation. PMID:11012362

  19. Ethical issues regarding human cloning: a nursing perspective.

    PubMed

    Dinç, Leyla

    2003-05-01

    Advances in cloning technology and successful cloning experiments in animals raised concerns about the possibility of human cloning in recent years. Despite many objections, this is not only a possibility but also a reality. Human cloning is a scientific revolution. However, it also introduces the potential for physical and psychosocial harm to human beings. From this point of view, it raises profound ethical, social and health related concerns. Human cloning would have an impact on the practice of nursing because it could result in the creation of new physiological and psychosocial conditions that would require nursing care. The nursing profession must therefore evaluate the ethics of human cloning, in particular the potential role of nurses. This article reviews the ethical considerations of reproductive human cloning, discusses the main reasons for concern, and reflects a nursing perspective regarding this issue.

  20. Who is the parent in cloning?

    PubMed

    Elster, N

    1999-01-01

    In July 1996, a sheep named Dolly was born in Scotland. What makes Dolly's birth noteworthy is that she is the result of the first successful cloning attempt using the nucleus of an adult cell. The technique that led to Dolly's birth involved transferring the nucleus of a mammary cell from an adult sheep to the enucleated egg cell of an unrelated sheep with gestation occurring in a third sheep. The possibility of applying this technique to human reproduction raised concerns worldwide with several countries moving for an immediate bans on human cloning. In the United States, President Clinton requested that the National Bioethics Advisory Commission ("NBAC"), a multidisciplinary group composed of scientists, lawyers, educators, theologians, and ethicists study the implications of cloning and issue recommendations. The Commission consulted other scientists, ethicists, theologians, lawyers, and citizens with interests in this advancing technology and concluded that, "at this time it is morally unacceptable for anyone in the public or private sector, whether in a research or clinical setting, to attempt to create a child using somatic cell nuclear transfer cloning." This Article was included in a larger work prepared at the request of, and submitted to the Commission by, law professor Lori B. Andrews. Cloning through nuclear transfer will change the way we create and define families. This Article explores how existing law relating to parentage, surrogacy, egg donation, and artificial insemination may apply in the cloning context to clarify the parent-child relationship established through cloning.

  1. Who is the parent in cloning?

    PubMed

    Elster, N

    1999-01-01

    In July 1996, a sheep named Dolly was born in Scotland. What makes Dolly's birth noteworthy is that she is the result of the first successful cloning attempt using the nucleus of an adult cell. The technique that led to Dolly's birth involved transferring the nucleus of a mammary cell from an adult sheep to the enucleated egg cell of an unrelated sheep with gestation occurring in a third sheep. The possibility of applying this technique to human reproduction raised concerns worldwide with several countries moving for an immediate bans on human cloning. In the United States, President Clinton requested that the National Bioethics Advisory Commission ("NBAC"), a multidisciplinary group composed of scientists, lawyers, educators, theologians, and ethicists study the implications of cloning and issue recommendations. The Commission consulted other scientists, ethicists, theologians, lawyers, and citizens with interests in this advancing technology and concluded that, "at this time it is morally unacceptable for anyone in the public or private sector, whether in a research or clinical setting, to attempt to create a child using somatic cell nuclear transfer cloning." This Article was included in a larger work prepared at the request of, and submitted to the Commission by, law professor Lori B. Andrews. Cloning through nuclear transfer will change the way we create and define families. This Article explores how existing law relating to parentage, surrogacy, egg donation, and artificial insemination may apply in the cloning context to clarify the parent-child relationship established through cloning. PMID:12650149

  2. Allele mining and enhanced genetic recombination for rice breeding.

    PubMed

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources.

  3. Uncertain breeding: a short history of reproduction in monotremes.

    PubMed

    Temple-Smith, P; Grant, T

    2001-01-01

    Although much is known about the biology of monotremes, many important aspects of their reproduction remain unclear. Studies over the last century have provided valuable information on various aspects of monotreme reproduction including the structure and function of their reproductive system, breeding behaviour, sex determination and seasonality. All three living genera of monotremes have been successfully maintained in captivity, often for long periods, yet breeding has been rare and unpredictable. When breeding has occurred, however, significant gains in knowledge have ensued; for example a more accurate estimate of the gestation period of the platypus and the incubation period for the Tachyglossus egg. One of the great challenges for zoos has been to understand why breeding of monotremes is difficult to achieve. Analysis of breeding successes of platypuses and short-beaked echidnas provides some insights. The evidence suggests that although annual breeding seasons are regionally predictable, individual adult females breed unpredictably, with some showing breeding intervals of many years. The reason for this variation in individual breeding intervals may be resource-dependant, influenced by social factors or may even be genetically induced. Better knowledge of factors that influence breeding intervals may improve the success of monotreme captive breeding programmes. More certainty in captive breeding is also an important issue for enterprises wishing to trade in Australian wildlife since current legislation limits export of Australian fauna for display to at least second-generation captive-bred individuals. Given their unique evolutionary position, knowledge of reproduction in monotremes needs to be gained in advance of any future population declines so that appropriate strategies can be developed to ensure their survival.

  4. Uncertain breeding: a short history of reproduction in monotremes.

    PubMed

    Temple-Smith, P; Grant, T

    2001-01-01

    Although much is known about the biology of monotremes, many important aspects of their reproduction remain unclear. Studies over the last century have provided valuable information on various aspects of monotreme reproduction including the structure and function of their reproductive system, breeding behaviour, sex determination and seasonality. All three living genera of monotremes have been successfully maintained in captivity, often for long periods, yet breeding has been rare and unpredictable. When breeding has occurred, however, significant gains in knowledge have ensued; for example a more accurate estimate of the gestation period of the platypus and the incubation period for the Tachyglossus egg. One of the great challenges for zoos has been to understand why breeding of monotremes is difficult to achieve. Analysis of breeding successes of platypuses and short-beaked echidnas provides some insights. The evidence suggests that although annual breeding seasons are regionally predictable, individual adult females breed unpredictably, with some showing breeding intervals of many years. The reason for this variation in individual breeding intervals may be resource-dependant, influenced by social factors or may even be genetically induced. Better knowledge of factors that influence breeding intervals may improve the success of monotreme captive breeding programmes. More certainty in captive breeding is also an important issue for enterprises wishing to trade in Australian wildlife since current legislation limits export of Australian fauna for display to at least second-generation captive-bred individuals. Given their unique evolutionary position, knowledge of reproduction in monotremes needs to be gained in advance of any future population declines so that appropriate strategies can be developed to ensure their survival. PMID:11999298

  5. Genomics and plant breeding.

    PubMed

    Aljanabi, S

    2001-01-01

    Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.

  6. 1980 breeding bird censuses

    SciTech Connect

    Raynor, G.S.

    1980-09-01

    As part of a program to characterize the plant and animal life of the Laboratory site and the surrounding region, the two breeding bird censuses originated in 1977 were continued in 1980. Coverage was below that of previous years due to illness and travel of some participants, but 11 trips were made to the BNL plot and 8 to the Westhampton plot. Each was censused by separate teams of three volunteer observers. The number of breeding species and number of territorial males on the BNL plot have progressively declined since 1977 but little change has taken place in either number of territories or species composition on the Westhampton plot.

  7. [Human cloning, as ideological construction of technology].

    PubMed

    Swolkien, O

    2001-01-01

    The article treats the issue of cloning as a part of the dominant ideology of the so-called technical progress. The author shows that the notion of "technical progress" is an ideological construction full of hidden valuation. The whole class of technicians is simply materially interested in disseminating this ideology. According to the author the so-called technical progress doesn't improve the quality of life as far as psychological satisfaction is concerned. The cult of technology is rooted in the crisis of humanistic values and civilization. It implies avoiding serious existential questions and civilization challenges. Technology itself appears in this statement only as a result of concrete conditions in concrete historical moment, but not as an independent process. Cloning can be only the contemporary answer to the collapse of the art of breeding and educating consecutive generations. It can be only the next step of the fall of western civilization or the so-called revolt of the masses.

  8. Hop Cultivars and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in hops varies among cultivars. Historically, the primary objective of hop breeding programs has been to increase the yield or characteristics associated with either bittering (high alpha-acids) or aroma (unique volatile oil profiles) cultivars. Other factors consid...

  9. Lettuce and spinach breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges. This report to the California Leafy Greens Research Program annual meeting provides an update by the ‘Genetic Enhancement of Lettuce, Spinach, Melon, and Related Species’ project at Salinas on the genetics and breeding...

  10. The inadequacies of absolute prohibition of reproductive cloning.

    PubMed

    Lee, Martin Lishexian

    2004-02-01

    This study reviews debates on human cloning and its benefits, considers international and domestic laws, and argues that the choice of reproductive means is a human right. In exercise of this right, a balanced approach should be adopted, in order to benefit human society while protecting human dignity adequately. The immaturity of cloning techniques indicates that at the present time human reproductive cloning is too risky. Thus a temporary ban on such cloning is appropriate, but the ban on relevant scientific research and animal experimentation is inappropriate as it denies the spirit of freedom of scientific inquiry, and hinders making the benefits of scientific advancement available to human society as a whole.

  11. Method for cloning genes

    SciTech Connect

    Weissman, S.M.; Pereira, D.; Sood, A.

    1988-04-19

    This patent describes a recombinant cloning vehicle comprising an inserted human gene, the improvement wherein the cloning vehicle is isolated from a recombinant clone which is isolated and identified by a process comprising the steps of: (a) effecting cDNA synthesis on a mixture of mRNAs containing a target mRNA coding for a major hisitocompatibility antigen, and isolating the resultant cDNA mixture; (b) inserting the resultant cDNA into recombinant cloning vehicles, and transforming hosts with the vehicles; and (c) separating the transformants and isolating and identifying a recombinant clone containing a DNA segment which is homologous over at least a portion thereof to at least one oligonucleotide probe specific for the DNA segment.

  12. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  13. Prunus transcription factors: breeding perspectives.

    PubMed

    Bianchi, Valmor J; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  14. Cloning in cattle: from embryo splitting to somatic nuclear transfer.

    PubMed

    Heyman, Y; Vignon, X; Chesné, P; Le Bourhis, D; Marchal, J; Renard, J P

    1998-01-01

    The ability to obtain genetically identical offspring in cattle (clones) is useful for research and for potential applications to breeding schemes. Experimental possibilities for generating such animals have evolved considerably in the last two decades. Embryo splitting has become a relatively simple technique but is limited to twinning. Embryonic nuclear transfer has improved and is associated with sexing to generate sets of clones despite a great variability of results between parent embryos. The factors of progress are reviewed here. Recently, somatic cells used as a source of nuclei in bovine nuclear transfer has been demonstrated. Here we present the results of the developmental potential of nuclei from skin and muscle cells.

  15. Procreative liberty, enhancement and commodification in the human cloning debate.

    PubMed

    Shapshay, Sandra

    2012-12-01

    The aim of this paper is to scrutinize a contemporary standoff in the American debate over the moral permissibility of human reproductive cloning in its prospective use as a eugenic enhancement technology. I shall argue that there is some significant and under-appreciated common ground between the defenders and opponents of human cloning. Champions of the moral and legal permissibility of cloning support the technology based on the right to procreative liberty provided it were to become as safe as in vitro fertilization and that it be used only by adults who seek to rear their clone children. However, even champions of procreative liberty oppose the commodification of cloned embryos, and, by extension, the resulting commodification of the cloned children who would be produced via such embryos. I suggest that a Kantian moral argument against the use of cloning as an enhancement technology can be shown to be already implicitly accepted to some extent by champions of procreative liberty on the matter of commodification of cloned embryos. It is in this argument against commodification that the most vocal critics of cloning such as Leon Kass and defenders of cloning such as John Robertson can find greater common ground. Thus, I endeavor to advance the debate by revealing a greater degree of moral agreement on some fundamental premises than hitherto recognized.

  16. Procreative liberty, enhancement and commodification in the human cloning debate.

    PubMed

    Shapshay, Sandra

    2012-12-01

    The aim of this paper is to scrutinize a contemporary standoff in the American debate over the moral permissibility of human reproductive cloning in its prospective use as a eugenic enhancement technology. I shall argue that there is some significant and under-appreciated common ground between the defenders and opponents of human cloning. Champions of the moral and legal permissibility of cloning support the technology based on the right to procreative liberty provided it were to become as safe as in vitro fertilization and that it be used only by adults who seek to rear their clone children. However, even champions of procreative liberty oppose the commodification of cloned embryos, and, by extension, the resulting commodification of the cloned children who would be produced via such embryos. I suggest that a Kantian moral argument against the use of cloning as an enhancement technology can be shown to be already implicitly accepted to some extent by champions of procreative liberty on the matter of commodification of cloned embryos. It is in this argument against commodification that the most vocal critics of cloning such as Leon Kass and defenders of cloning such as John Robertson can find greater common ground. Thus, I endeavor to advance the debate by revealing a greater degree of moral agreement on some fundamental premises than hitherto recognized. PMID:22983766

  17. Photonic Programmable Tele-Cloning Network.

    PubMed

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838

  18. Photonic Programmable Tele-Cloning Network

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Ming-Cheng

    2016-06-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  19. Photonic Programmable Tele-Cloning Network.

    PubMed

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  20. Photonic Programmable Tele-Cloning Network

    PubMed Central

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838

  1. On cloning human beings.

    PubMed

    de Melo-Martin, Inmaculada

    2002-06-01

    The purpose of this paper is to show that arguments for and against cloning fail to make their case because of one or both of the following reasons: 1) they take for granted customary beliefs and assumptions that are far from being unquestionable; 2) they tend to ignore the context in which human cloning is developed. I will analyze some of the assumptions underlying the main arguments that have been offered for and against cloning. Once these assumptions are critically analyzed, arguments both rejecting and supporting human cloning seem to lose weight. I will first briefly present the main arguments that have been proposed against cloning and I will argue that they fail to establish their case. In the next section I will evaluate some of the positive arguments that have been offered supporting such technology. This analysis will show that the case for cloning also fails. Finally, I will maintain that because critics and especially supporters of this technology neglect the context in which human cloning is developed and might be implemented, their arguments are far from compelling.

  2. The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44.

    PubMed

    Massa, Alicia N; Childs, Kevin L; Lin, Haining; Bryan, Glenn J; Giuliano, Giovanni; Buell, C Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family.

  3. Therapeutic cloning: from consequences to contradiction.

    PubMed

    Coors, Marilyn

    2002-06-01

    The British Parliament legalized therapeutic cloning in December 2000 despite opposition from the European Union. The watershed event in Parliament's move was the active and unprecedented government support for the generation and destruction of human embryonic life merely as a means of medical advancement. This article contends that the utilitarian analysis of this procedure is necessary to identify the real world risks of therapeutic cloning but insufficient to identify the breach of defensible ethical limits that this procedure represents. A value-oriented approach to Kantian ethics demonstrates that the utilitarian endorsement of therapeutic cloning entails a contradiction of the necessity of human vulnerability and a faulty valuation of the human embryo. The concern is that a narrow utilitarian focus ultimately commodifies human embryonic life and preferences outcomes as the sole determinant of moral value.

  4. Do Managers Clone Themselves?

    ERIC Educational Resources Information Center

    Baron, Alma S.

    1981-01-01

    A recent questionnaire survey provides statistics on male managers' views of female managers. The author recommends that male managers break out of their cloning behavior and that the goal ought to be a plurality in management. (Author/WD)

  5. Reverse breeding: a novel breeding approach based on engineered meiosis

    PubMed Central

    Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik

    2009-01-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome. PMID:19811618

  6. Twins: A cloning experience.

    PubMed

    Prainsack, Barbara; Spector, Tim D

    2006-11-01

    Drawing upon qualitative interviews with monozygotic (identical) twins sharing 100% of their genes, and with dizygotic (fraternal) twins and singletons as control groups, this paper explores what it means to be genetically identical. (The twins interviewed were from the TwinsUK register in London.) In the context of the ongoing debate on human reproductive cloning, it examines questions such as: To what extent do identical twins perceive their emotional and physical bond to be a result of their genetic makeup? What would they think if they had been deliberately created genetically identical? How would they feel about being genetically identical to a person who was born a few years earlier or later? First, our respondents ascribed no great significance to the role of genes in their understanding of what it means to be identical twins. Second, the opinion that human reproductive cloning would "interfere with nature", or "contradict God's will", was expressed by our respondents exclusively on the abstract level. The more our respondents were able to relate a particular invented cloning scenario to their own life-worlds, the lower the prevalence of the argument. Third, for all three groups of respondents, the scenario of having been born in one of the other groups was perceived as strange. Fourth, the aspect that our respondents disliked about cloning scenarios was the potential motives of the cloners. Without equating monozygotic twins directly with "clones", these results from "naturally" genetically identical individuals add a new dimension to what a future cloning situation could entail: The cloned person might possibly (a) perceive a close physical and emotional connection to the progenitor as a blessing; (b) suffer from preconceptions of people who regard physical likeness as a sign of incomplete individuality; and (c) perceive the idea of not having been born a clone of a particular person as unpleasant.

  7. The evolution of intermittent breeding.

    PubMed

    Shaw, Allison K; Levin, Simon A

    2013-03-01

    A central issue in life history theory is how organisms trade off current and future reproduction. A variety of organisms exhibit intermittent breeding, meaning sexually mature adults will skip breeding opportunities between reproduction attempts. It's thought that intermittent breeding occurs when reproduction incurs an extra cost in terms of survival, energy, or recovery time. We have developed a matrix population model for intermittent breeding, and use adaptive dynamics to determine under what conditions individuals should breed at every opportunity, and under what conditions they should skip some breeding opportunities (and if so, how many). We also examine the effect of environmental stochasticity on breeding behavior. We find that the evolutionarily stable strategy (ESS) for breeding behavior depends on an individual's expected growth and mortality, and that the conditions for skipped breeding depend on the type of reproductive cost incurred (survival, energy, recovery time). In constant environments there is always a pure ESS, however environmental stochasticity and deterministic population fluctuations can both select for a mixed ESS. Finally, we compare our model results to patterns of intermittent breeding in species from a range of taxonomic groups.

  8. Targeted Proteomics Approach for Precision Plant Breeding.

    PubMed

    Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik

    2016-02-01

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.

  9. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  10. Genome Mapping and Molecular Breeding of Tomato

    PubMed Central

    Foolad, Majid R.

    2007-01-01

    The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989

  11. Brain size-related breeding strategies in a seabird.

    PubMed

    Jaatinen, Kim; Öst, Markus

    2016-01-01

    The optimal compromise between decision speed and accuracy may depend on cognitive ability, associated with the degree of encephalization: larger brain size may select for accurate but slow decision-making, beneficial under challenging conditions but costly under benign ones. How this brain size-dependent selection pressure shapes avian breeding phenology and reproductive performance remains largely unexplored. We predicted that (1) large-brained individuals have a delayed breeding schedule due to thorough nest-site selection and/or prolonged resource acquisition, (2) good condition facilitates early breeding independent of relative brain size, and (3) large brain size accrues benefits mainly to individuals challenged by environmental or intrinsic constraints. To test these predictions, we examined how the relative head volume of female eiders (Somateria mollissima) of variable body condition correlated with their breeding schedule, hatching success and offspring quality. The results were consistent with our predictions. First, large head size was associated with a progressively later onset of breeding with increasing breeding dispersal distance. Second, increasing body condition advanced the timing of breeding, but this effect was significantly weaker in large-brained females. Third, larger head volume was associated with increased hatching success mainly among late breeders and those in poor body condition, and duckling body condition was positively related to maternal head volume, but only in poor-condition mothers. Our study is, to our knowledge, the first to demonstrate the presence of brain size-related differences in reproductive strategies within a single natural population.

  12. Materials for breeding blankets

    SciTech Connect

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  13. Assessing the quality of products from cloned cattle: an integrative approach.

    PubMed

    Heyman, Y; Chavatte-Palmer, P; Berthelot, V; Fromentin, G; Hocquette, J F; Martignat, L; Renard, J P

    2007-01-01

    Scientific expertise was developed during a 3-year study to evaluate a large number of bovine female clones (n=37; from 4 to 36 months of age) and their products through a multidisciplinary approach and compare them to non-cloned breed, age and sex-matched contemporary control animals (n=38) maintained under the same conditions at the same experimental farm of INRA. In clone and control groups, most parameters measured for health and development of the animals as well as evaluation of milk and meat products were within the normal range for the breed. The strict comparison between cloned animals and controls allowed us to detect slight significant differences between the two groups. Cloned heifers reached puberty significantly later (+62 days) and at higher body weight (+56kg) than controls. There were slight differences in antigen-specific induced proliferation of lymphocytes after vaccination with ovalbumin before 10 months of age, but responses were normal responses in older animals. There were differences in the fatty acid (FA) composition of milk and muscle arising from two families of clones, suggesting a possible deviation in lipid metabolism as assessed by higher Delta-9 desaturase activity indices in both milk and muscle from clones compared to controls. Nutritional evaluation of milk and meat using the rat model did not reveal any difference between products derived from clones versus controls.

  14. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.

    PubMed

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.

  15. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning

    PubMed Central

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    , not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717

  16. Breed-Predispositions to Cancer in Pedigree Dogs

    PubMed Central

    Dobson, Jane M.

    2013-01-01

    Cancer is a common problem in dogs and although all breeds of dog and crossbred dogs may be affected, it is notable that some breeds of pedigree dogs appear to be at increased risk of certain types of cancer suggesting underlying genetic predisposition to cancer susceptibility. Although the aetiology of most cancers is likely to be multifactorial, the limited genetic diversity seen in purebred dogs facilitates genetic linkage or association studies on relatively small populations as compared to humans, and by using newly developed resources, genome-wide association studies in dog breeds are proving to be a powerful tool for unravelling complex disorders. This paper will review the literature on canine breed susceptibility to histiocytic sarcoma, osteosarcoma, haemangiosarcoma, mast cell tumours, lymphoma, melanoma, and mammary tumours including the recent advances in knowledge through molecular genetic, cytogenetic, and genome wide association studies. PMID:23738139

  17. M6: A diploid potato inbred line for use in breeding and genetics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    M6 is a vigorous, homozygous breeding line derived by self-pollinating the diploid wild potato relative Solanum chacoense for seven generations. While most wild Solanum species are self-incompatible, this clone is homozygous for the dominant self-incompatibility inhibitor gene Sli. It is homozygous ...

  18. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  19. Therapeutic cloning and the constitution--a Canadian perspective.

    PubMed

    Muscati, S A

    2001-08-01

    Recent developments in the field of therapeutic cloning have been welcomed by many in the medical community as important breakthroughs that may help provide a better understanding of a variety of human diseases. Nevertheless, research in this field appears to have struck a sensitive nerve in society. A large amount of social debate has been generated regarding the validity of therapeutic cloning, and there are many seeking legislation to have the practice restricted. It is unclear, however, whether such restrictions can be legally justified. Analysing cloning in such a social and legal context raises a number of questions. What scientific procedures are behind therapeutic cloning? What is the legal status of the cultured or unimplanted embryo? Can cloning be considered an aspect of reproductive liberty as protected by the constitution? What medical advances might therapeutic cloning further? What social benefits and harms might arise from its promotion or restriction? Such questions, and the broader debate surrounding human therapeutic cloning, are addressed in this paper in three parts. Part 1 presents an overview of the basic biological principles behind cloning and the science behind the therapeutic cloning of specific cells and tissues. Part 2 analyses ss. 7, 2, 15(1) and 1 of the Canadian Charter of Rights and Freedoms and how they may be implicated by legal incursions into the field of human cloning. Several Charter-based arguments, both for and against the practice, are presented. Finally, Part 3 assesses some recent scientific developments in cloning technology, and how they affect the debate over the constitutionality of human therapeutic cloning.

  20. RosBREED: Enabling Marker-Assisted Breeding In Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RosBREED will create a national, dynamic, sustained effort in research, infrastructure establishment, training, and extension for applying marker-assisted breeding (MAB) to deliver improved plant materials more efficiently and rapidly. The Rosaceae family (including apple, peach, sweet and tart cher...

  1. To breed, or not to breed? Predation risk induces breeding suppression in common voles.

    PubMed

    Jochym, Mateusz; Halle, Stefan

    2012-12-01

    Breeding suppression hypothesis (BSH) predicts that, in several vole species, females will suppress breeding in response to high risk of mustelid predation; compared to breeding females, suppressing females would gain higher chances of survival. Seminal evidence for BSH was obtained in the laboratory, but attempts to replicate breeding suppression under field conditions were less conclusive. We tested whether breeding suppression occurs in common voles (Microtus arvalis), and how population density and predation risk combined affect voles' reproductive activity. We found that, in contrast to males, female common voles suppress reproductive activity when faced with high predation risk. Population size was not reduced despite breeding suppression. A model of the interaction between predation risk and population density revealed that predator-induced breeding suppression depends on the density of conspecifics. We concluded that breeding suppression is a viable adaptation only at low vole densities, when per capita predation risk is high. Finally, we identified the key issues of experimental design required for the consistency of future studies on breeding suppression. PMID:22700062

  2. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6,834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in t...

  3. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  4. Cloning the laboratory mouse.

    PubMed

    Wakayama, T; Yanagimachi, R

    1999-06-01

    A brief account is given of early attempts to clone mammals (mice) by transferring cells (nuclei) of preimplantation embryos into enucleated oocytes, zygotes or blastomeres of two-cell embryos. This is followed by a brief review of recent successes using adult somatic cells: mammary gland cells for sheep, muscle cells for cattle and cumulus cells for mice. We have developed a technique for cloning the laboratory mouse by transferring cumulus cell nuclei into enucleated oocytes. With this technique, we have produced a population of over 80 cloned animals, and have carried the process over four generations. Development and fertility of these appear normal. However, the yield is very low; only approximately 1% of injected oocytes are carried to term. The challenge is now to understand the reason for this high loss. Is it a problem of technique, genomic reprogramming, somatic mutation, imprinting or incompatible cell cycle phases?

  5. Quality and safety of bovine clones and their products.

    PubMed

    Heyman, Y; Chavatte-Palmer, P; Fromentin, G; Berthelot, V; Jurie, C; Bas, P; Dubarry, M; Mialot, J P; Remy, D; Richard, C; Martignat, L; Vignon, X; Renard, J P

    2007-08-01

    A multidisciplinary research programme was developed to get a scientific expertise for the quality assessment of products obtained from cloned livestock. Thirty-seven bovine Holstein female clones of five different genotypes and their products were analysed in comparison with 38 control animals obtained by conventional artificial insemination and raised under the same conditions at the same experimental farm. Animal evaluation included over 150 criteria and more than 10 000 measurements to check the physiological status and health over a 3-year period. All the parameters studied were in the normal range for age and breed, but some significant differences were detected between clone and control groups in terms of delayed onset of puberty in clones, higher neutrophil counts in haematology or lower biochemical plasma concentrations of gamma glutamyl transferase. Milk and meat analyses were conformable to expected values. We, however, found some differences in fatty acid (FA) composition of milk and muscle suggesting a possible deviation in lipid metabolism as assessed by higher delta-9 desaturase activity indexes in both milk and muscles from clones compared with controls. Repeated muscle biopsies in the semitendinosus muscle of the same animals demonstrated a higher oxidative activity in muscle of young clones (8 months of age) compared with controls, suggesting a delayed muscle maturation in clones. Nutritional evaluation of milk and meat using the rat feeding trials did not show any difference between clone and control products for food intake, growth rate, body composition of the rats, nor for possible allergenicity. Possible reactivation of bovine endogenous retroviruses (BERVs) was analysed and compared between normal and cloned cattle. As expected, these BERV sequences are not transcribed and no RNA was detected in the blood of clones, donor animals or controls; therefore, it may be assumed that the sanitary risk associated with BERV sequences is not higher in

  6. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  7. Breed- and age-related differences in canine mammary tumors.

    PubMed

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-04-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  8. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  9. Applications of quantum cloning

    NASA Astrophysics Data System (ADS)

    Pomarico, E.; Sanguinetti, B.; Sekatski, P.; Zbinden, H.; Gisin, N.

    2011-10-01

    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detectors.

  10. The Cloning of America.

    ERIC Educational Resources Information Center

    Dobson, Judith E.; Dobson, Russell L.

    1981-01-01

    Proposes that the U.S. school system purports to prize human variability, but many educators are engaged in activities that seek to homogenize students. Describes these activities, including diagnosis, labeling, ability grouping, and positive reinforcement. Presents suggestions for counselors to combat sources of cloning and self-validation. (RC)

  11. Human therapeutic cloning.

    PubMed

    Lanza, R P; Cibelli, J B; West, M D

    1999-09-01

    Somatic cell nuclear 'reprogramming' in livestock species is now routine in many laboratories. Here, Robert Lanza, Jose Cibelli and Michael West discuss how these techniques may soon be used to clone genetically matched cells and tissues for transplantation into patients suffering from a wide range of disorders that result from tissue loss or dysfunction.

  12. [Nuclear transfer and therapeutic cloning].

    PubMed

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  13. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  14. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  15. Cloning, Expression and Biological Analysis of Recombinant Chicken IFN-gamma Expressed in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interferon-gamma (CHIFN-') derived from the spleen cells of White Leghorns chicken, a local Chinese breeding species was amplified by RT-PCR. The gene encoding CHIFN-' with the deletion of the N-terminal signal peptide was cloned into prokaryotic expression vector pET30a, resulting in a recombin...

  16. Probabilistic Cloning and Quantum Computation

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi

    2004-06-01

    We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.

  17. Sugars in peach fruit: a breeding perspective.

    PubMed

    Cirilli, Marco; Bassi, Daniele; Ciacciulli, Angelo

    2016-01-01

    The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in 'omics' sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders. PMID:26816618

  18. Sugars in peach fruit: a breeding perspective

    PubMed Central

    Cirilli, Marco; Bassi, Daniele; Ciacciulli, Angelo

    2016-01-01

    The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in ‘omics’ sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders. PMID:26816618

  19. Implications of cloning technique for reproductive medicine.

    PubMed

    Takeuchi, Takumi; Palermo, Gianpiero D

    2004-05-01

    The birth of Dolly following the transfer of mammary gland nuclei into enucleated eggs established cloning as a feasible technique in mammals, but the moral implications and high incidence of developmental abnormalities associated with cloning have induced the majority of countries to legislate against its use with human gametes. Because of such negative connotations, restrictive political reactions could jeopardize the therapeutic and scientific promise that certain types of cloning may present. For example, in addition to its proposed use as a way of generating stem cells, the basic technique of nuclear transplantation has proven useful in other ways, including its application to immature eggs as a new approach to the prevention of the aneuploidy common in older women, and for some recent advances in preimplantation genetic diagnosis. Thus, while attempts at reproductive cloning in man would seem premature and even dangerous at present, this field will require rational rather than emotional reactions as a basis for legislation if the therapeutic promise of stem cell research and the experimental potential of nuclear transplantation techniques are to be fully realized.

  20. Comparison of Gene Expression and Genome-Wide DNA Methylation Profiling between Phenotypically Normal Cloned Pigs and Conventionally Bred Controls

    PubMed Central

    Li, Shengting; Li, Jian; Lin, Lin; Nielsen, Anders Lade; Sørensen, Charlotte Brandt; Vajta, Gábor; Wang, Jun; Zhang, Xiuqing; Du, Yutao; Yang, Huanming; Bolund, Lars

    2011-01-01

    Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions. PMID:22022462

  1. [Exaggerated breed characteristics in dogs].

    PubMed

    Wilting, M M; Endenburg, N

    2012-01-01

    Dutch dog owners seem to be aware of bad dog breeding practices with regard to exaggerated breed characteristics that are detrimental to the dog's welfare. Yet they do not always look for these features when buying a dog. Most dog owners think that veterinarians could have an important role in preventing these exaggerated physical traits, by providing information about these traits and taking action in their capacity as veterinarian. Articles 36 and 55 of the Dutch GWWD (animal health and welfare law) provide opportunities to act against the breeding of dogs with exaggerated genetic traits.

  2. Best of Breed

    NASA Technical Reports Server (NTRS)

    Lohn, Jason

    2004-01-01

    No team of engineers, no matter how much time they took or how many bottles of cabernet they consumed, would dream up an antenna that looked like a deer antler on steroids. Yet that's what a group at NASA Ames Research Center came up with-thanks to a little help from Darwin. NASA's Space Technology 5 nanosatellites, which are scheduled to start measuring Earth's magnetosphere in late 2004, requires an antenna that can receive a wide range of frequencies regardless of the spacecraft's orientation. Rather than leave such exacting requirements in the hands of a human, the engineers decided to breed a design using genetic algorithms and 32 Linux PCs. The computers generated small antenna-constructing programs (the genotypes) and executed them to produce designs (the phenotypes). Then the designs were evaluated using an antenna simulator. The team settled on the form pictured here. You won't find this kind of antenna in any textbook, design guide, or research paper. But its innovative structure meets a challenging set of specifications. If successfully deployed, it will be the first evolved antenna to make it out of the lab and the first piece of evolved hardware ever to fly in space.

  3. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  4. Cloning of Homo sapiens? No!

    PubMed

    McKinnell, Robert G

    2002-01-01

    Animal cloning by nuclear transplantation was first developed in the northern leopard frog, Rana pipiens. It was soon extended to other amphibian species and within time, to various mammalian species. The production of a cloned sheep (Dolly) from an adult nuclear donor reawakened interest in human cloning. Nuclear transfer for the production of animal clones has served experimental biology well. Nonetheless, the potential burden of developmental hazards, scientists and funds diverted from more needy causes, as well as the potential assault on the concept of family has led the author to oppose human cloning.

  5. Cloning of Homo sapiens? No!

    PubMed

    McKinnell, Robert G

    2002-01-01

    Animal cloning by nuclear transplantation was first developed in the northern leopard frog, Rana pipiens. It was soon extended to other amphibian species and within time, to various mammalian species. The production of a cloned sheep (Dolly) from an adult nuclear donor reawakened interest in human cloning. Nuclear transfer for the production of animal clones has served experimental biology well. Nonetheless, the potential burden of developmental hazards, scientists and funds diverted from more needy causes, as well as the potential assault on the concept of family has led the author to oppose human cloning. PMID:11841468

  6. [Media, cloning, and bioethics].

    PubMed

    Costa, S I; Diniz, D

    2000-01-01

    This article was based on an analysis of three hundred articles from mainstream Brazilian periodicals over a period of eighteen months, beginning with the announcement of the Dolly case in February 1997. There were two main objectives: to outline the moral constants in the press associated with the possibility of cloning human beings and to identify some of the moral assumptions concerning scientific research with non-human animals that were published carelessly by the media. The authors conclude that there was a haphazard spread of fear concerning the cloning of human beings rather than an ethical debate on the issue, and that there is a serious gap between bioethical reflections and the Brazilian media.

  7. Overlap extension PCR cloning.

    PubMed

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  8. Probabilistic cloning of equidistant states

    SciTech Connect

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-08-15

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  9. Ethical issues in livestock cloning.

    PubMed

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity.

  10. Ethical issues in livestock cloning.

    PubMed

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity. PMID:15719505

  11. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    PubMed

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes.

  12. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  13. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  14. Cloning-free CRISPR

    PubMed Central

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385

  15. Recent progress and problems in animal cloning.

    PubMed

    Tsunoda, Y; Kato, Y

    2002-01-01

    It is remarkable that mammalian somatic cell nuclei can form whole individuals if they are transferred to enucleated oocytes. Advancements in nuclear transfer technology can now be applied for genetic improvement and increase of farm animals, rescue of endangered species, and assisted reproduction and tissue engineering in humans. Since July 1998, more than 200 calves have been produced by nuclear transfer of somatic cell nuclei in Japan, but half of them were stillborn or died within several months of parturition. Morphologic abnormalities have also been observed in cloned calves and embryonic stem cell-derived mice. In this review, we discuss the present situation and problems with animal cloning and the possibility for its application to human medicine.

  16. Therapeutic cloning applications for organ transplantation.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-04-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15157913

  17. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop.

    PubMed

    Ordonio, Reynante; Ito, Yusuke; Morinaka, Yoichi; Sazuka, Takashi; Matsuoka, Makoto

    2016-01-01

    Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.

  18. Age of First Breeding Interacts with Pre- and Post-Recruitment Experience in Shaping Breeding Phenology in a Long-Lived Gull

    PubMed Central

    Bosman, Davy S.; Vercruijsse, Harry J. P.; Stienen, Eric W. M.; Vincx, Magda; Lens, Luc

    2013-01-01

    Individual variation in timing of breeding is a key factor affecting adaptation to environmental change, yet our basic understanding of the causes of such individual variation is incomplete. This study tests several hypotheses for age-related variation in the breeding timing of Lesser Black-backed Gulls, based on a 13 year longitudinal data set that allows to decouple effects of age, previous prospecting behavior, and years of breeding experience on arrival timing at the colony. At the population level, age of first breeding was significantly associated with timing of arrival and survival, i.e. individuals tended to arrive later if they postponed their recruitment, and individuals recruiting at the age of 4 years survived best. However, up to 81% of the temporal variation in arrival dates was explained by within-individual effects. When excluding the pre-recruitment period, the effect of increasing age on advanced arrival was estimated at 11 days, with prior breeding experience accounting for a 7 days advance and postponed breeding for a 4 days delay. Overall, results of this study show that delayed age of first breeding can serve to advance arrival date (days after December 1st) in successive breeding seasons throughout an individual’s lifetime, in large part due to the benefits of learning or experience gained during prospecting. However, prospecting and the associated delay in breeding also bear a survival cost, possibly because prospectors have been forced to delay through competition with breeders. More generally, results of this study set the stage for exploring integrated temporal shifts in phenology, resource allocation and reproductive strategies during individual lifecycles of long-lived migratory species. PMID:24324750

  19. Age of first breeding interacts with pre- and post-recruitment experience in shaping breeding phenology in a long-lived gull.

    PubMed

    Bosman, Davy S; Vercruijsse, Harry J P; Stienen, Eric W M; Vincx, Magda; Lens, Luc

    2013-01-01

    Individual variation in timing of breeding is a key factor affecting adaptation to environmental change, yet our basic understanding of the causes of such individual variation is incomplete. This study tests several hypotheses for age-related variation in the breeding timing of Lesser Black-backed Gulls, based on a 13 year longitudinal data set that allows to decouple effects of age, previous prospecting behavior, and years of breeding experience on arrival timing at the colony. At the population level, age of first breeding was significantly associated with timing of arrival and survival, i.e. individuals tended to arrive later if they postponed their recruitment, and individuals recruiting at the age of 4 years survived best. However, up to 81% of the temporal variation in arrival dates was explained by within-individual effects. When excluding the pre-recruitment period, the effect of increasing age on advanced arrival was estimated at 11 days, with prior breeding experience accounting for a 7 days advance and postponed breeding for a 4 days delay. Overall, results of this study show that delayed age of first breeding can serve to advance arrival date (days after December 1(st)) in successive breeding seasons throughout an individual's lifetime, in large part due to the benefits of learning or experience gained during prospecting. However, prospecting and the associated delay in breeding also bear a survival cost, possibly because prospectors have been forced to delay through competition with breeders. More generally, results of this study set the stage for exploring integrated temporal shifts in phenology, resource allocation and reproductive strategies during individual lifecycles of long-lived migratory species.

  20. Ethical issues in animal cloning.

    PubMed

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  1. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives.

    PubMed

    Boukar, Ousmane; Fatokun, Christian A; Huynh, Bao-Lam; Roberts, Philip A; Close, Timothy J

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  2. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    PubMed Central

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  3. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives.

    PubMed

    Boukar, Ousmane; Fatokun, Christian A; Huynh, Bao-Lam; Roberts, Philip A; Close, Timothy J

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  4. Experience-dependent natal philopatry of breeding greater flamingos.

    PubMed

    Balkiz, Ozge; Béchet, Arnaud; Rouan, Lauriane; Choquet, Rémi; Germain, Christophe; Amat, Juan A; Rendón-Martos, Manuel; Baccetti, Nicola; Nissardi, Sergio; Ozesmi, Uygar; Pradel, Roger

    2010-09-01

    1. Contrary to the generally high level of natal philopatry (i.e. likelihood that individuals breed at their natal colony) found in first-breeding colonial birds, little is known of natal philopatry later in life. Most hypotheses advanced to explain natal philopatry are valid at all ages. However, for young and inexperienced birds, the benefits of natal philopatry may be counterbalanced by the costs of intraspecific competition at the natal colony making dispersal temporarily advantageous. In turn, experience may increase competitive ability and make natal philopatry advantageous again. 2. We evaluated this hypothesis on the large-scale dispersal of greater flamingos Phoenicopterus roseus breeding among three colonies comprising >85% of the Western Mediterranean metapopulation. The Camargue (France) and Fuente de Piedra (Spain) are large and saturated colonies while Molentargius (Sardinia) is a recent and growing colony. 3. We used a 20-year capture-mark-resighting dataset of 4900 flamingos ringed as chicks in Camargue and Fuente de Piedra and breeding at the three colonies. We assessed the effects of natal colony and breeding experience (first-time observed breeders versus confirmed experienced breeders) on dispersal using multistate capture-recapture models. Dispersal to an unobservable state accounted for temporary emigration. 4. Fidelity was higher at the natal colony (>84%) than elsewhere. Fidelity increased with experience in the two large colonies (Camargue and Fuente de Piedra) suggesting a large-scale experience-related despotic distribution. Breeding dispersal was significant (up to 61% and 52% for first-time breeders and experienced breeders, respectively) so that colony dynamics is affected by exchanges with other colonies. Except for Fuente-born breeders leaving Molentargius, dispersal to the natal colony was higher than to any other colonies. 5. Survival was not higher at the natal colony. Inexperienced birds likely had lower breeding success at the

  5. To clone or not to clone--whither the law?

    PubMed

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind. PMID:10436743

  6. To clone or not to clone--whither the law?

    PubMed

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind.

  7. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology. PMID:19999640

  8. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  9. Lessons learned from cloning dogs.

    PubMed

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals.

  10. Therapeutic cloning and reproductive liberty.

    PubMed

    Sparrow, Robert

    2009-04-01

    Concern for "reproductive liberty" suggests that decisions about embryos should normally be made by the persons who would be the genetic parents of the child that would be brought into existence if the embryo were brought to term. Therapeutic cloning would involve creating and destroying an embryo, which, if brought to term, would be the offspring of the genetic parents of the person undergoing therapy. I argue that central arguments in debates about parenthood and genetics therefore suggest that therapeutic cloning would be prima facie unethical unless it occurred with the consent of the parents of the person being cloned. Alternatively, if therapeutic cloning is thought to be legitimate, this undermines the case for some uses of reproductive cloning by implying that the genetic relation it establishes between clones and DNA donors does not carry the same moral weight as it does in cases of normal reproduction.

  11. Nutrient reserve dynamics of breeding canvasbacks

    USGS Publications Warehouse

    Barzen, J.A.; Serie, J.R.

    1990-01-01

    We compared nutrients in reproductive and nonreproductive tissues of breeding Canvasbacks (Aythya valisineria) to assess the relative importance of endogenous reserves and exogenous foods. Fat reserves of females increased during rapid follicle growth and varied more widely in size during the early phase of this period. Females began laying with ca. 205 g of fat in reserve and lost 1.8 g of carcass fat for every 1 g of fat contained in their ovary and eggs. Females lost body mass (primarily fat) at a declining rate as incubation advanced. Protein reserves increased directly with dry oviduct mass during rapid follicle growth. This direct relationship was highly dependent upon data from 2 birds and likely biased by structural size. During laying, protein reserves did not vary with the combined mass of dry oviduct and dry egg protein. Between laying and incubation, mean protein reserves decreased by an amount equal to the protein found in 2.1 Canvasback eggs. Calcium reserves did not vary with the cumulative total of calcium deposited in eggs. Mean calcium reserve declined by the equivalent content of 1.2 eggs between laying and incubation. We believe that protein and calcium were stored in small amounts during laying, and that they were supplemented continually by exogenous sources. In contrast, fat was stored in large amounts and contributed significantly to egg production and body maintenance. Male Canvasbacks lost fat steadily--but not protein or calcium--as the breeding season progressed.

  12. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    PubMed

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  13. Cloning to reproduce desired genotypes.

    PubMed

    Westhusin, M E; Long, C R; Shin, T; Hill, J R; Looney, C R; Pryor, J H; Piedrahita, J A

    2001-01-01

    Cloned sheep, cattle, goats, pigs and mice have now been produced using somatic cells for nuclear transplantation. Animal cloning is still very inefficient with on average less than 10% of the cloned embryos transferred resulting in a live offspring. However successful cloning of a variety of different species and by a number of different laboratory groups has generated tremendous interest in reproducing desired genotypes. Some of these specific genotypes represent animal cell lines that have been genetically modified. In other cases there is a significant demand for cloning animals characterized by their inherent genetic value, for example prize livestock, household pets and rare or endangered species. A number of different variables may influence the ability to reproduce a specific genotype by cloning. These include species, source of recipient ova, cell type of nuclei donor, treatment of donor cells prior to nuclear transfer, and the techniques employed for nuclear transfer. At present, there is no solid evidence that suggests cloning will be limited to only a few specific animals, and in fact, most data collected to date suggests cloning will be applicable to a wide variety of different animals. The ability to reproduce any desired genotype by cloning will ultimately depend on the amount of time and resources invested in research.

  14. Human cloning and child welfare.

    PubMed Central

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  15. Therapeutic cloning: The ethical limits

    SciTech Connect

    Whittaker, Peter A. . E-mail: p.whittaker@lancaster.ac.uk

    2005-09-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated.

  16. Diet of canvasbacks during breeding

    USGS Publications Warehouse

    Austin, J.E.; Serie, J.R.; Noyes, J.H.

    1990-01-01

    We examined diets of canvasbacks (Aythya valisineria) breeding in southwestern Manitoba during 1977-81. Percent volume of animal foods consumed did not differ between males and females nor among prenesting, rapid follicle growth, laying, incubation, and renesting periods in females (mean = 50.1%). Tubers and shoots of fennelleaf pondweed (Potamogeton pectinatus) and midge larvae (Chironomidae) were the predominant foods, comprising on average 45% and 23% of the diet volume, respectively. Continued importance of plant foods to canvasbacks throughout reproduction contrasts with the mostly invertebrate diets of other prairie-breeding ducks, and does not fit current theories of nutritional ecology of breeding anatids (i.e., females meet the protein requirements of reproduction by consuming a high proportion of animal foods).

  17. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-01-01

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc. PMID:27532819

  18. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-01-01

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc.

  19. Emperor penguins breeding on iceshelves.

    PubMed

    Fretwell, Peter T; Trathan, Phil N; Wienecke, Barbara; Kooyman, Gerald L

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin's reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as "near threatened" in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species.

  20. Emperor penguins breeding on iceshelves.

    PubMed

    Fretwell, Peter T; Trathan, Phil N; Wienecke, Barbara; Kooyman, Gerald L

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin's reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as "near threatened" in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species. PMID:24416381

  1. Tumor clone dynamics in lethal prostate cancer.

    PubMed

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.

  2. Breeding monkeys for biomedical research

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  3. Breed base representation in dairy animals of 5 breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of DNA from different dairy breeds can be determined by genotyping, just as individual ancestors such as parents, grandparents, or even great grandparents can be identified correctly in a high percentage of the cases by genotyping even if not reported or reported incorrectly in pedigrees...

  4. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    PubMed Central

    2013-01-01

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Methods Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. Results With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Conclusions Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training

  5. Transcriptome analysis of a breeding program pedigree examines gene expression diversity and reveals target genes for malting quality improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced cycle breeding utilizes crosses among elite lines and is a successful method to develop new inbreds. However, it results in a reduction in genetic diversity within the breeding population. The development of malting barley varieties requires the adherence to a narrow malting quality profile...

  6. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.

  7. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  8. Animal Cloning and Food Safety

    MedlinePlus

    ... from clones and their offspring out of the food chain until CVM could further evaluate the issue. back to top FDA Studies Cloning For more than five years, CVM ... evaluate the safety of food from these animals. The resulting report, called a ...

  9. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  10. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  11. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it. PMID:19860340

  12. Generating West Nile Virus from an Infectious Clone.

    PubMed

    Vandergaast, Rianna; Fredericksen, Brenda L

    2016-01-01

    WNV infectious clones are valuable tools for elucidating WNV biology. Nevertheless, relatively few infectious WNV clones have been generated because their construction is hampered by the instability of flaviviral genomes. More recently, advances in cloning techniques as well as the development of several two-plasmid WNV infectious clone systems have facilitated the generation of WNV infectious clones. Here we described a protocol for recovering WNV from a two-plasmid system. In this approach, large quantities of these constructs are digested with restriction enzymes to produce complementary restriction sites at the 3' end of the upstream fragment and the 5' end of the downstream fragment. These fragments are then annealed to produce linear template for in vitro transcription to synthesize infectious RNA. The resulting RNA is transfected into cells and after several days WNV is recovered in the culture supernatant. This method can be used to generate virus from infectious clones encoding high- and low-pathogenicity strains of WNV, as well as chimeric virues.

  13. The evolution of potato breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cultivars in most regions of the world are tetraploid and clonally propagated. For over a century, the breeding strategy has been phenotypic recurrent selection. However, the polyploid nature of the crop prevents breeders from eliminating deleterious alleles and assembling positive alleles fo...

  14. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  15. Breeding and propagating oakleaf hydrangeas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An oakleaf hydrangea breeding program at the U.S. National Arboretum’s worksite in McMinnville, Tenn. was started in 1996 for the purpose of developing attractive, compact oakleaf hydrangea cultivars suitable for use in small residential gardens. ‘Ruby Slippers’ and ‘Munchkin’ oakleaf hydrangeas we...

  16. USDA lettuce breeding and genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lettuce industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The USDA lettuce breeding and genetics project aims to incorporate valuable traits into crisphead, mixed...

  17. High genetic diversity in gametophyte clones of Undaria pinnatifida from Vladivostok, Dalian and Qingdao revealed using microsatellite analysis

    NASA Astrophysics Data System (ADS)

    Shan, Tifeng; Pang, Shaojun; Liu, Feng; Xu, Na; Zhao, Xiaobo; Gao, Suqin

    2012-03-01

    Breeding practice for Undaria pinnatifida (Harvey) Suringar requires the screening of a large number of offspring from gametophyte crossings to obtain an elite variety for large-scale cultivation. To better understand the genetic relationships of different gametophyte cultures isolated from different sources, 20 microsatellite loci were screened and 53 gametophyte clone cultures analyzed for U. pinnatifida isolated from wild sporophytes in Vladivostok, Russia and from cultivated sporophytes from Dalian and Qingdao, China. One locus was abandoned because of poor amplification. At the sex-linked locus of Up-AC-2A8, 3 alleles were detected in 25 female gametophyte clones, with sizes ranging from 307 to 316 bp. At other loci, 3 to 7 alleles were detected with an average of 4.5 alleles per locus. The average number of alleles at each locus was 1.3 and 3.7 for Russian and Chinese gametophyte clones, respectively. The average gene diversity for Russian, Chinese, and for the combined total of gametophyte clones was 0.1, 0.4, and 0.5, respectively. Russian gametophyte clones had unique alleles at 7 out of the 19 loci. In cluster analysis, Russian and Chinese gametophyte clones were separated into two different groups according to genetic distance. Overall, high genetic diversity was detected in gametophyte clones isolated from the two countries. These gametophyte cultures were believed to be appropriate parental materials for conducting breeding programs in the future.

  18. [Scientific ethics of human cloning].

    PubMed

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  19. Animal cloning: problems and prospects.

    PubMed

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  20. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  1. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  2. In planta cloning of geminiviral DNA: the true Sida micrantha mosaic virus.

    PubMed

    Jeske, Holger; Gotthardt, Diether; Kober, Sigrid

    2010-02-01

    The circular single-stranded DNAs of geminiviruses are multiplied efficiently and preferentially by rolling circle amplification (RCA), and can be diagnosed readily by restriction fragment length polymorphism (RFLP) and direct sequencing of the RCA product. Two strategies are described for cloning geminiviruses from plants harboring mixed infections by using RCA and RFLP with plant-derived nucleic acids without the need for bacterial amplification. By combining both these approaches, the true Sida micrantha mosaic virus was identified. The advantages of maintaining the quasispecies nature of a virus during in planta cloning is discussed with respect to reliable virus identification and resistance breeding.

  3. Cloning the mammoth: a complicated task or just a dream?

    PubMed

    Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna

    2014-01-01

    Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved.

  4. Cloning the mammoth: a complicated task or just a dream?

    PubMed

    Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna

    2014-01-01

    Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved. PMID:25091921

  5. Genetic Diversity of US Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic relationships between US sheep breeds is useful in developing conservation strategies and actions. A broad sampling of individual sheep from 28 breeds was performed. Breed types included: fine wool, meat types, long wool, hair, prolific, and fat tailed. Blood and semen samp...

  6. Population structure of ice-breeding seals.

    PubMed

    Davis, Corey S; Stirling, Ian; Strobeck, Curtis; Coltman, David W

    2008-07-01

    The development of population genetic structure in ice-breeding seal species is likely to be shaped by a combination of breeding habitat and life-history characteristics. Species that return to breed on predictable fast-ice locations are more likely to exhibit natal fidelity than pack-ice-breeding species, which in turn facilitates the development of genetic differentiation between subpopulations. Other aspects of life history such as geographically distinct vocalizations, female gregariousness, and the potential for polygynous breeding may also facilitate population structure. Based on these factors, we predicted that fast-ice-breeding seal species (the Weddell and ringed seal) would show elevated genetic differentiation compared to pack-ice-breeding species (the leopard, Ross, crabeater and bearded seals). We tested this prediction using microsatellite analysis to examine population structure of these six ice-breeding species. Our results did not support this prediction. While none of the Antarctic pack-ice species showed statistically significant population structure, the bearded seal of the Arctic pack ice showed strong differentiation between subpopulations. Again in contrast, the fast-ice-breeding Weddell seal of the Antarctic showed clear evidence for genetic differentiation while the ringed seal, breeding in similar habitat in the Arctic, did not. These results suggest that the development of population structure in ice-breeding phocid seals is a more complex outcome of the interplay of phylogenetic and ecological factors than can be predicted on the basis of breeding substrate and life-history characteristics.

  7. Grooming relationships between breeding females and adult group members in cooperatively breeding moustached tamarins (Saguinus mystax).

    PubMed

    Löttker, Petra; Huck, Maren; Zinner, Dietmar P; Heymann, Eckhard W

    2007-10-01

    Grooming is the most common form of affiliative behavior in primates that apart from hygienic and hedonistic benefits offers important social benefits for the performing individuals. This study examined grooming behavior in a cooperatively breeding primate species, characterized by single female breeding per group, polyandrous matings, dizygotic twinning, delayed offspring dispersal, and intensive helping behavior. In this system, breeding females profit from the presence of helpers but also helpers profit from staying in a group and assisting in infant care due to the accumulation of direct and indirect fitness benefits. We examined grooming relationships of breeding females with three classes of partners (breeding males, potentially breeding males, (sub)adult non-breeding offspring) during three reproductive phases (post-partum ovarian inactivity, ovarian activity, pregnancy) in two groups of wild moustached tamarins (Saguinus mystax). We investigated whether grooming can be used to regulate group size by either "pay-for-help" or "pay-to-stay" mechanisms. Grooming of breeding females with breeding males and non-breeding offspring was more intense and more balanced than with potentially breeding males, and most grooming occurred during the breeding females' pregnancies. Grooming was skewed toward more investment by the breeding females with breeding males during the phases of ovarian activity, and with potentially breeding males during pregnancies. Our results suggest that grooming might be a mechanism used by female moustached tamarins to induce mate association with the breeding male, and to induce certain individuals to stay in the group and help with infant care.

  8. [The evaluation of breed-specific defects in dog breeds from an animal welfare viewpoint].

    PubMed

    Peyer, N; Steiger, A

    1998-01-01

    Issues of breed defects such as morphology, physiology or behaviour in pure-breed dogs, are briefly discussed. Suggestions for various kinds of improvements are made, particularly concerning legislation, analysis of pedigree to avoid undesirable breed characteristics and what breeding clubs, individual breeders, judges, future dog owners and veterinarians could and should do about these problems; these are followed by summary conclusions.

  9. Emperor Penguins Breeding on Iceshelves

    PubMed Central

    Fretwell, Peter T.; Trathan, Phil N.; Wienecke, Barbara; Kooyman, Gerald L.

    2014-01-01

    We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species. PMID:24416381

  10. Assortative mating and fragmentation within dog breeds

    PubMed Central

    2008-01-01

    Background There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Results Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. Conclusion The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same

  11. Therapeutic cloning in the mouse.

    PubMed

    Mombaerts, Peter

    2003-09-30

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice.

  12. Cloning: revisiting an old debate.

    PubMed

    Verhey, Allen D

    1994-09-01

    The debate about cloning that took place 25 years ago, although directed toward a different sort of cloning, elucidates fundamental issues currently at stake in reproductive technologies and research. Paul Ramsey and Joseph Fletcher were participants in this early debate. The differences between Ramsey and Fletcher about the meaning and sufficiency of freedom, the understanding and weighing of good and evil, the connection between embodiment and personhood, the relationship of humans with nature, and the meaning of parenthood suggest both a broader agenda for the debate about cloning and a cautious move forward in the development of embryo-splitting.

  13. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    PubMed

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  14. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  15. Impermanence of bacterial clones

    PubMed Central

    Bobay, Louis-Marie; Traverse, Charles C.; Ochman, Howard

    2015-01-01

    Bacteria reproduce asexually and pass on a single genome copied from the parent, a reproductive mode that assures the clonal descent of progeny; however, a truly clonal bacterial species is extremely rare. The signal of clonality can be interrupted by gene uptake and exchange, initiating homologous recombination that results in the unique sequence of one clone being incorporated into another. Because recombination occurs sporadically and on local scales, these events are often difficult to recognize, even when considering large samples of completely sequenced genomes. Moreover, several processes can produce the appearance of clonality in populations that undergo frequent recombination. The rates and consequences of recombination have been studied in Escherichia coli for over 40 y, and, during this time, there have been several shifting views of its clonal status, population structure, and rates of gene exchange. We reexamine the studies and retrace the evolution of the methods that have assessed the extent of DNA flux, largely focusing on its impact on the E. coli genome. PMID:26195749

  16. Breeding experience might be a major determinant of breeding probability in long-lived species: the case of the greater flamingo.

    PubMed

    Pradel, Roger; Choquet, Rémi; Béchet, Arnaud

    2012-01-01

    The probability of breeding is known to increase with age early in life in many long-lived species. This increase may be due to experience accumulated through past breeding attempts. Recent methodological advances allowing accounting for unobserved breeding episodes, we analyzed the encounter histories of 14716 greater flamingos over 25 years to get a detailed picture of the interactions of age and experience. Survival did not improve with experience, seemingly ruling out the selection hypothesis. Breeding probability varied within three levels of experience : no breeding experience, 1 experience, 2+ experiences. We fitted models with and without among-individual differences in breeding probabilities by including or not an additive individual random effect. Including the individual random effect improved the model fit less than including experience but the best model retained both. However, because modeling individual heterogeneity by means of an additive static individual random effect is currently criticized and may not be appropriate, we discuss the results with and without random effect. Without random effect, breeding probability of inexperienced birds was always [Formula: see text] times lower than that of same age experienced birds, and breeding probability increased more with one additional experience than with one additional year of age. With random effects, the advantage of experience was unequivocal only after age 9 while in young having [Formula: see text] experience was penalizing. Another pattern, that breeding probability of birds with [Formula: see text] experiences dropped after some age (8 without random effect; up to 11 with it), may point to differences in the timing of reproductive senescence or to the existence of a sensitive period for acquiring behavioral skills. Overall, the role of experience appears strong in this long-lived species. We argue that overlooking the role of experience may hamper detection of trade-offs and assessment of

  17. Migratory double breeding in Neotropical migrant birds

    PubMed Central

    Rohwer, Sievert; Hobson, Keith A.; Rohwer, Vanya G.

    2009-01-01

    Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants. PMID:19858484

  18. Human cloning, stem cell research. An Islamic perspective.

    PubMed

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  19. A Clone of Your Own.

    ERIC Educational Resources Information Center

    Bilodeau, Kirsten

    1997-01-01

    Describes an activity used at the Washington Park Arboretum that helps students understand cloning through plant propagation. Students also learn how to make a pot from recycled newspapers and how to make soil that is appropriate for the plants. (DDR)

  20. Cloning of a quantum measurement

    SciTech Connect

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal

    2011-10-15

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.

  1. Human Cloning: Let's Discuss It.

    ERIC Educational Resources Information Center

    Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.

    1999-01-01

    Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)

  2. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.

  3. Are cloned quantum states macroscopic?

    PubMed

    Fröwis, F; Dür, W

    2012-10-26

    We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger's cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.

  4. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning. PMID:16007753

  5. Beyond promiscuity: mate-choice commitments in social breeding

    PubMed Central

    Boomsma, Jacobus J.

    2013-01-01

    Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241

  6. Local cloning of entangled qubits

    SciTech Connect

    Choudhary, Sujit K.; Kunkri, Samir; Rahaman, Ramij; Roy, Anirban

    2007-11-15

    We discuss the exact cloning of orthogonal but entangled qubits under local operations and classical communication. The amount of entanglement necessary in a blank copy is obtained for various cases. Surprisingly, this amount is more than 1 ebit for certain sets of two nonmaximal but equally entangled states of two qubits. To clone any three Bell states, at least log{sub 2} 3 ebit is necessary.

  7. Cloning: questions answered and unsolved.

    PubMed

    Latham, Keith E

    2004-02-01

    Cloning by the transfer of adult somatic cell nuclei to oocytes has produced viable offspring in a variety of mammalian species. The technology is still in its initial stages of development. Studies to date have answered several basic questions related to such issues as genome potency, life expectancy of clones, mitochondrial fates, and feasibility of inter-species nuclear transfer. They have also raised new questions related to the control of nuclear reprogramming and function. These questions are reviewed here.

  8. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations.

  9. Islamic perspectives on human cloning.

    PubMed

    Sadeghi, Mahmoud

    2007-01-01

    The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.

  10. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations. PMID:17214211

  11. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  12. Endocrine and testicular changes in a short-day seasonally breeding bird, the emu (Dromaius novaehollandiae), in southwestern Australia.

    PubMed

    Malecki, I A; Martin, G B; O'Malley, P J; Meyer, G T; Talbot, R T; Sharp, P J

    1998-10-01

    Seasonal changes in testicular morphology and blood plasma concentrations of LH, testosterone, and prolactin are described for captive male emus in southwestern Australia. Testicular mass and testicular testosterone did not differ between the non-breeding (spring-summer) and the breeding (autumn-winter) seasons. Nevertheless, the testes obtained in the breeding season (May and August) were nearly two fold greater in mass than those collected in the non-breeding season (October and February). The highest testicular concentrations of testosterone were observed in February and lowest in October, while the values during the breeding season were intermediate. The patterns of histological changes in the testes also indicate that emus breed over the autumn-winter months. Tubule diameter was larger in the breeding season than in the non-breeding season, whereas the relative volume of the interstitium was larger in the non-breeding and smaller in the breeding season. Moreover, during the autumn and winter months, plasma LH and testosterone concentrations were high. Outside this period, in spring and summer, the concentrations of these hormones were low. Prolactin concentrations rose around the winter solstice, after the initial increases in plasma LH and testosterone. The end of the breeding season, in early spring, was marked by a gradual decrease in plasma LH concentrations but a rapid fall in testosterone concentrations. Prolactin concentrations continued to increase and peaked near the spring equinox, several weeks after the breeding season ended, and then decreased to reach baseline values by mid-summer. These testicular and endocrine changes are consistent with observations that the emu is a short-day breeder in southwestern Australia. Reproductive activity in the male begins soon after the summer solstice, well in advance of the development of suitable breeding conditions, and is then terminated in spring before food resources become limited by the onset of the dry

  13. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  14. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    PubMed

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  15. Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations

    PubMed Central

    Grinberg, Nastasiya F.; Lovatt, Alan; Hegarty, Matt; Lovatt, Andi; Skøt, Kirsten P.; Kelly, Rhys; Blackmore, Tina; Thorogood, Danny; King, Ross D.; Armstead, Ian; Powell, Wayne; Skøt, Leif

    2016-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield. Genetic gain for traits such as biomass yield has been relatively modest. This has been attributed to its long breeding cycle, and the necessity to use population based breeding methods. Thanks to recent advances in genotyping techniques there is increasing interest in genomic selection from which genomically estimated breeding values are derived. In this paper we compare the classical RRBLUP model with state-of-the-art machine learning techniques that should yield themselves easily to use in GS and demonstrate their application to predicting quantitative traits in a breeding population of L. perenne. Prediction accuracies varied from 0 to 0.59 depending on trait, prediction model and composition of the training population. The BLUP model produced the highest prediction accuracies for most traits and training populations. Forage quality traits had the highest accuracies compared to yield related traits. There appeared to be no clear pattern to the effect of the training population composition on the prediction accuracies. The heritability of the forage quality traits was generally higher than for the yield related traits, and could partly explain the difference in accuracy. Some population structure was evident in the breeding populations, and probably contributed to the varying effects of training population on the predictions. The average linkage disequilibrium between adjacent markers ranged from 0.121 to 0.215. Higher marker density and larger training population closely related with the test population are likely to improve the prediction accuracy. PMID:26904088

  16. Towards social acceptance of plant breeding by genome editing.

    PubMed

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients. PMID:25726138

  17. Towards social acceptance of plant breeding by genome editing.

    PubMed

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients.

  18. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  19. Local cloning of two product states

    SciTech Connect

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-09-15

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  20. The past, present and future of breeding rust resistant wheat

    PubMed Central

    Ellis, Jeffrey G.; Lagudah, Evans S.; Spielmeyer, Wolfgang; Dodds, Peter N.

    2014-01-01

    Two classes of genes are used for breeding rust resistant wheat. The first class, called R (for resistance) genes, are pathogen race specific in their action, effective at all plant growth stages and probably mostly encode immune receptors of the nucleotide binding leucine rich repeat (NB-LRR) class. The second class is called adult plant resistance genes (APR) because resistance is usually functional only in adult plants, and, in contrast to most R genes, the levels of resistance conferred by single APR genes are only partial and allow considerable disease development. Some but not all APR genes provide resistance to all isolates of a rust pathogen species and a subclass of these provides resistance to several fungal pathogen species. Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins. Two APR genes, Lr34 and Yr36, have been cloned from wheat and their products are an ABC transporter and a protein kinase, respectively. Lr34 and Sr2 have provided long lasting and widely used (durable) partial resistance and are mainly used in conjunction with other R and APR genes to obtain adequate rust resistance. We caution that some APR genes indeed include race specific, weak R genes which may be of the NB-LRR class. A research priority to better inform rust resistance breeding is to characterize further APR genes in wheat and to understand how they function and how they interact when multiple APR and R genes are stacked in a single genotype by conventional and GM breeding. An important message is do not be complacent about the general durability of all APR genes. PMID:25505474

  1. The past, present and future of breeding rust resistant wheat.

    PubMed

    Ellis, Jeffrey G; Lagudah, Evans S; Spielmeyer, Wolfgang; Dodds, Peter N

    2014-01-01

    Two classes of genes are used for breeding rust resistant wheat. The first class, called R (for resistance) genes, are pathogen race specific in their action, effective at all plant growth stages and probably mostly encode immune receptors of the nucleotide binding leucine rich repeat (NB-LRR) class. The second class is called adult plant resistance genes (APR) because resistance is usually functional only in adult plants, and, in contrast to most R genes, the levels of resistance conferred by single APR genes are only partial and allow considerable disease development. Some but not all APR genes provide resistance to all isolates of a rust pathogen species and a subclass of these provides resistance to several fungal pathogen species. Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins. Two APR genes, Lr34 and Yr36, have been cloned from wheat and their products are an ABC transporter and a protein kinase, respectively. Lr34 and Sr2 have provided long lasting and widely used (durable) partial resistance and are mainly used in conjunction with other R and APR genes to obtain adequate rust resistance. We caution that some APR genes indeed include race specific, weak R genes which may be of the NB-LRR class. A research priority to better inform rust resistance breeding is to characterize further APR genes in wheat and to understand how they function and how they interact when multiple APR and R genes are stacked in a single genotype by conventional and GM breeding. An important message is do not be complacent about the general durability of all APR genes.

  2. Food consumption risks associated with animal clones: what should be investigated?

    PubMed

    Rudenko, Larisa; Matheson, John C; Adams, Amey L; Dubbin, Eric S; Greenlees, Kevin J

    2004-01-01

    Somatic Cell Nuclear Transfer (SCNT), or cloning, is likely to be used for the expansion of elite breeding stock of agronomically important livestock used for food. The Center for Veterinary Medicine at the US Food and Drug Administration has been developing a risk assessment to identify hazards and characterize food consumption risks that may result from cloning. The risk assessment is comprised of two prongs. The first evaluates the health of animal clones, and is referred to as the Critical Biological Systems Approach. The second considers the composition of meat and milk from animal clones. Assessing the safety of food products from animal clones and their progeny, at least during these early stages of the development of the technology, is best accomplished by using both approaches: prospectively drawing on our knowledge of biological systems in development and maturation, and in retrograde, from an analysis of food products. Subtle hazards and potential risks that may be posed by animal clones must, however, be considered in the context of other mutations and epigenetic changes that occur in all food animal populations.

  3. Local cloning of entangled states

    SciTech Connect

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-08-15

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  4. Food supplements modulate changes in leucocyte numbers in breeding male ground squirrels.

    PubMed

    Bachman, Gwendolyn C

    2003-07-01

    Immunosuppression may be an important cost of reproduction in breeding males. It can result from elevated levels of testosterone or stress hormones and may serve to lower the energetic cost of maintaining immune function at a time of high demand. This suggests that greater access to energy resources could reduce immunosuppression as a cost of reproduction, minimizing the trade-off between energetic investment in current reproductive effort and survival. I examined the impact of food availability on immune function by provisioning male Belding's ground squirrels in the field from the time they emerged from hibernation to the start of breeding. Temporal changes in immune status, measured by leucocyte counts, differed between provisioned males and un-provisioned controls. Provisioning advanced the increase in lymphocytes and neutrophils from after breeding to before. At the start of breeding, the leucocyte count was three times greater in provisioned males than in controls and was still nearly twice as great at the end of breeding. Control males increased all leucocyte numbers after breeding. This experiment demonstrates that variation in food intake can lead to individual variation in the extent of immunosuppression during breeding and therefore that reduced immune function may not be an obligatory cost of reproduction.

  5. [Progress and countermeasures of Dendrobium officinale breeding].

    PubMed

    Si, Jin-Ping; He, Bo-wei; Yu, Qiao-xian

    2013-02-01

    The standandized cultivation of Chinese medicinal materials is based on variety. With the rapid development of Dendrobium officinale industry and increasing demand of improved varieties, many studies have concentrated on the variety breeding of D. officinale and subsequently achieved remarkable success. This paper systematically expounds the research progress of D. officinale breeding, e. g. the collection and differentiated evaluation for germplasm, theory and practice for variety breeding, tissue culture and efficient production with low-carbon for germchit, and DNA molecular marker-assisted breeding, and then indicates the main problems of the current breeding of D. officinale. Furthermore, the priorities and keys for the further breeding of D. officinale have been pointed out. PMID:23713267

  6. Advances in proteomics research for peanut genetics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop trait improvement aimed at increased yield and quality relies on an understanding of the biology of the plant, particular protein-protein interactions. In this regard, the application of “-omics” techniques combined with field-level agronomy is poised to deliver novel insight into previously u...

  7. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    PubMed Central

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. PMID:21318120

  8. Molecular breeding of advanced microorganisms for biofuel production.

    PubMed

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  9. Advances in metabolomic applications in plant genetics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolomics is a systems biology discipline wherein abundances of endogenous metabolites from biological samples are identified and quantitatively measured across a large range of metabolites and/or a large number of samples. Since all developmental, physiological and response to the environment ph...

  10. [Cloning and law in Hungary].

    PubMed

    Julesz, Máté

    2015-03-01

    Reproductive human cloning is prohibited in Hungary, as in many other countries. Therapeutic human cloning is not prohibited, just like in many other countries. Stem cell therapy is also allowed. Article III, paragraph (3) of the Hungarian basic law (constitution) strictly forbids total human cloning. Article 1 of the Additional Protocol to the Oviedo Convention, on the Prohibition of Cloning Human Beings (1998) stipulates that any intervention seeking to create a human being genetically identical to another human being, whether living or dead, is prohibited. In Hungary, according to Article 174 of the Criminal Code, total human cloning constitutes a crime. Article 180, paragraph (3) of the Hungarian Act on Health declares that embryos shall not be brought about for research purposes; research shall be conducted only on embryos brought about for reproductive purposes when this is authorized by the persons entitled to decide upon its disposal, or when the embryo is damaged. Article 180, paragraph (5) of the Hungarian Act on Health stipulates that multiple individuals who genetically conform to one another shall not be brought about. According to Article 181, paragraph (1) of the Hungarian Act on Health, an embryo used for research shall be kept alive for not longer than 14 days, not counting the time it was frozen for storage and the time period of research.

  11. Piglets born from handmade cloning, an innovative cloning method without micromanipulation.

    PubMed

    Du, Y; Kragh, P M; Zhang, Y; Li, J; Schmidt, M; Bøgh, I B; Zhang, X; Purup, S; Jørgensen, A L; Pedersen, A M; Villemoes, K; Yang, H; Bolund, L; Vajta, G

    2007-11-01

    Porcine handmade cloning (HMC), a simplified alternative of micromanipulation based traditional cloning (TC) has been developed in multiple phases during the past years, but the final evidence of its biological value, births of piglets was missing. Here we report the first births of healthy piglets after transfer of blastocysts produced by HMC. As a cumulative effect of technical optimization, 64.3+/-2.3 (mean+/-S.E.M.) reconstructed embryos from 151.3+/-4.8 oocytes could be obtained after 3-4h manual work, including 1h pause between fusion and activation. About half (50.1+/-2.8%, n=16) of HMC reconstructed embryos developed to blastocysts with an average cell number of 77+/-3 (n=26) after 7 days in vitro culture (IVC). According to our knowledge, this is the highest in vitro developmental rate after porcine somatic cell nuclear transfer (SCNT). A total of 416 blastocysts from HMC, mixed with 150 blastocysts from TC using a cell line from a different breed were transferred surgically to nine synchronized recipients. Out of the four pregnancies (44.4%) two were lost, while two pregnancies went to term and litters of 3 and 10 piglets were delivered by Caesarean section, with live birth/transferred embryo efficiency of 17.2% (10/58) for HMC. Although more in vivo experiments are still needed to further stabilize the system, our data proves that porcine HMC may result in birth of healthy offspring. Future comparative examinations are required to prove the value of the new technique for large-scale application.

  12. The Breeding Bird Survey, 1966

    USGS Publications Warehouse

    Robbins, C.S.; Van Velzen, W.T.

    1967-01-01

    A Breeding Bird Survey of a large section on North America was conducted during June 1966. Cooperators ran a total of 585 Survey routes in 26 eastern States and 4 Canadian Provinces. Future coverage of established routes will enable changes in the abundance of North American breeding birds to be measured. Routes are selected at random on the basis of one-degree blocks of latitude and longitude. Each 241/2-mile route, with 3-minute stops spaced one-half mile apart, is driven by automobile. All birds heard or seen at the stops are recorded on special forms and the data are then transferred to machine punch cards. The average number of birds per route is tabulated by State, along with the total number of each species and the percent of routes and stops upon which they were recorded. Maps are presented showing the range and abundance of selected species. Also, a year-to-year comparison is made of populations of selected species on Maryland routes in 1965 and 1966.

  13. Breed structure of Senepol cattle.

    PubMed

    Williams, A R; Hupp, H D; Thompson, C E; Grimes, L W

    1988-01-01

    Data were collected by the Virgin Islands Beef Cattle Improvement Program and the Virgin Islands Agricultural Experiment Station staff to establish the breed structure of the Senepol cattle. Data for the analysis were limited to the two Virgin Islands Senepol breeders with the most complete and largest set of records, representing approximately 65% of the entire Senepol population. Inbreeding (F) and coancestry relationship coefficients (rAB) and the theoretical inbreeding (FT) were determined from each data set and for the combined data from both farms, for each year, ranging from 1947 to 1984 for Annaly Farms, and from 1967 to 1984 for Castle Nugent Farm. The data sets for both farms were examined for the possibility of separation into families. Actual F within the Senepol population was relatively low, averaging less than 1.00%. Some separation into families occurred within Annaly Farms' cattle. The F and FT decreased (1.6 to 0.7% and 1.0 to 0.2%, respectively) as population numbers increased. The low F was accomplished through the breeding programs and exchanges of animals between farms on the island. PMID:3367044

  14. Chemical classification of cattle. 1. Breed groups.

    PubMed

    Baker, C M; Manwell, C

    1980-01-01

    From approximately 1000 papers with data on protein polymorphism in some 216 breeds of cattle, 10 polymorphic proteins were compared in means and variances of gene frequencies (arcsin p 1/2) for ten well-recognized breed groups for 196 of the breeds. The polymorphic proteins were alpha-lactalbumin, beta-lactoglobulin, caseins (alpha s1, beta and chi), serum albumin, transferrin, haemoglobin, amylase I and carbonic anhydrase II. The breed groups were North European, Pied Lowland, European Red brachyceros, Channel Island brachyceros, Upland brachyceros, primigenius-brachyceros mixed, primigenius, Indian Zebu, African Humped (with Zebu admixture), and African Humped (Sanga). The coherence within groups and the differences between groups are often impressive. Only carbonic anhydrase II fails to differentiate at least some of the major breed groups. In some cases paradoxical distributions of rare genetic variants can be explained by a more detailed inspection of breed history. The chemical data support the morphological and geographical divisions of cattle into major breed groups. There are three distinct but related brachyceros groups; for some polymorphisms the two Channel Island breeds, the Jersey and the Guernsey, are quite divergent. Although some authorities have considered the Pied Lowland as primigenius, it is a very distinct breed group.

  15. The topsy-turvy cloning law.

    PubMed

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  16. Breeding without Breeding: Is a Complete Pedigree Necessary for Efficient Breeding?

    PubMed Central

    El-Kassaby, Yousry A.; Cappa, Eduardo P.; Liewlaksaneeyanawin, Cherdsak; Klápště, Jaroslav; Lstibůrek, Milan

    2011-01-01

    Complete pedigree information is a prerequisite for modern breeding and the ranking of parents and offspring for selection and deployment decisions. DNA fingerprinting and pedigree reconstruction can substitute for artificial matings, by allowing parentage delineation of naturally produced offspring. Here, we report on the efficacy of a breeding concept called “Breeding without Breeding” (BwB) that circumvents artificial matings, focusing instead on a subset of randomly sampled, maternally known but paternally unknown offspring to delineate their paternal parentage. We then generate the information needed to rank those offspring and their paternal parents, using a combination of complete (full-sib: FS) and incomplete (half-sib: HS) analyses of the constructed pedigrees. Using a random sample of wind-pollinated offspring from 15 females (seed donors), growing in a 41-parent western larch population, BwB is evaluated and compared to two commonly used testing methods that rely on either incomplete (maternal half-sib, open-pollinated: OP) or complete (FS) pedigree designs. BwB produced results superior to those from the incomplete design and virtually identical to those from the complete pedigree methods. The combined use of complete and incomplete pedigree information permitted evaluating all parents, both maternal and paternal, as well as all offspring, a result that could not have been accomplished with either the OP or FS methods alone. We also discuss the optimum experimental setting, in terms of the proportion of fingerprinted offspring, the size of the assembled maternal and paternal half-sib families, the role of external gene flow, and selfing, as well as the number of parents that could be realistically tested with BwB. PMID:21991342

  17. Use of animal breeds and breeding to overcome the incidence of grass tetany: a review.

    PubMed

    Greene, L W; Baker, J F; Hardt, P F

    1989-12-01

    British breeds of cattle are not so effective as Zebu in extracting nutrients from low-quality roughages, and these breeds differ in their nutrient metabolism and animal physiology. Breeds of cattle may differ in their requirements for Mg. Brahman cows are less susceptible to death from disease and metabolic disorders than are British breeds of cattle, whereas cows with 50% or greater dairy breeding (Holstein and Jersey) are more susceptible than British or Brahman breeds when maintained in beef production herds. Brahman or Brahman crossbred cows are less susceptible than other breeds to metabolic disorders such as grass tetany. Magnesium absorption has been shown to be greater in Brahman than in Jersey, Holstein and Hereford cows. These differences in the efficiency of Mg absorption between different breeds of cows may be due to genetic variation in the absorptive mechanisms of Mg, in feeding behavior, in gastrointestinal tract motility, in gastrointestinal tract fill or to some combination. PMID:2693421

  18. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs.

    PubMed

    Adachi, Noritaka; Yamaguchi, Daisuke; Watanabe, Akiyuki; Miura, Narumi; Sunaga, Seiji; Oishi, Hitoshi; Hashimoto, Michiko; Oishi, Takatsugu; Iwamoto, Masaki; Hanada, Hirofumi; Kubo, Masanori; Onishi, Akira

    2014-04-24

    The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.

  19. SABRE2: a database connecting plant EST/full-length cDNA clones with Arabidopsis information.

    PubMed

    Fukami-Kobayashi, Kaoru; Nakamura, Yasukazu; Tamura, Takuro; Kobayashi, Masatomo

    2014-01-01

    The SABRE (Systematic consolidation of Arabidopsis and other Botanical REsources) database cross-searches plant genetic resources through publicly available Arabidopsis information. In SABRE, plant expressed sequence tag (EST)/cDNA clones are related to TAIR (The Arabidoposis Information Resource) gene models and their annotations through sequence similarity. By entering a keyword, SABRE searches and retrieves TAIR gene models and annotations, together with homologous gene clones from various plant species. SABRE thus facilitates using TAIR annotations of Arabidopsis genes for research on homologous genes from other model plants. To expand the application range of SABRE to crop breeding, we have recently upgraded SABRE to SABRE2 (http://sabre.epd.brc.riken.jp/SABRE2.html), by newly adding six model plants (including the major crops barley, soybean, tomato and wheat), and by improving the retrieval interface. The present version has integrated information on >1.5 million plant EST/cDNA clones from the National BioResource Project (NBRP) of Japan. All clones are actual experimental resources from 14 plant species (Arabidoposis, barley, cassava, Chinese cabbage, lotus, morning glory, poplar, Physcomitrella patens, Striga hermonthica, soybean, Thellungiella halophila, tobacco, tomato and wheat), and are available from the core facilities of the NBRP. SABRE2 is thus a useful tool that can contribute towards the improvement of important crop breeds by connecting basic research and crop breeding.

  20. Assessments of tritium-breeding requirements and breeding potential for the STARFIRE/DEMO design

    SciTech Connect

    Jung, J.; Abdou, M.

    1983-03-01

    This paper presents assessments of tritium-breeding requirements and breeding potential for the STARFIRE/DEMO design. The assessment of breeding requirement is described based on two design considerations; i.e.: (1) tritium inventory and doubling requirement; and (2) computational uncertainties associated with the breeding calculation. The lithium-containing materials considered include: solid Li/sub 2/O and LiAlO/sub 2/ and liquid lithium and 17 Li-83Pb.

  1. Blast resistance in rice: a review of conventional breeding to molecular approaches.

    PubMed

    Miah, G; Rafii, M Y; Ismail, M R; Puteh, A B; Rahim, H A; Asfaliza, R; Latif, M A

    2013-03-01

    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast

  2. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized ...

  3. The U.S. Food and Drug Administration should solidify the legal basis for its authority over reproductive cloning.

    PubMed

    Siegel, Bernard; Friede, Arnold I

    2013-12-01

    The promise and potential of stem cell research is apparent. However, ethical questions still linger. There is as yet no consensus in the U.S. Congress on how to address the issue of reproductive cloning and media confusion of this and the quite separate issue of therapeutic cloning inhibits therapeutic advance. This paper outlines the need for the FDA to undertake a deliberate process, with input from all stakeholders, to authoritatively establish its jurisdiction over human reproductive cloning so as to foster the life-saving potential of therapeutic cloning.

  4. 78 FR 45494 - Plant Breeding Listening Session meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...; ] DEPARTMENT OF AGRICULTURE Plant Breeding Listening Session meeting ACTION: Notice of a Plant Breeding... Agriculture (USDA) announces a Plant Breeding Listening Session stakeholder meeting for all interested plant breeding and cultivar development stakeholders. DATES: The Plant Breeding Listening Session will be...

  5. Charge state breeding experiences and plans at TRIUMF.

    PubMed

    Ames, F; Marchetto, M; Mjøs, A; Morton, A C

    2016-02-01

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary. PMID:26932054

  6. Atlantic salmon brood stock management and breeding handbook

    USGS Publications Warehouse

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  7. Charge state breeding experiences and plans at TRIUMF

    NASA Astrophysics Data System (ADS)

    Ames, F.; Marchetto, M.; Mjøs, A.; Morton, A. C.

    2016-02-01

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.

  8. Plant Breeding: Surprisingly, Less Sex Is Better.

    PubMed

    van Dijk, Peter J; Rigola, Diana; Schauer, Stephen E

    2016-02-01

    Introduction of apomixis, asexual reproduction through seeds, into crop species has the potential to dramatically transform plant breeding. A new study demonstrates that traits can be stably transferred between generations in newly produced apomictic lines, and heralds a breeding revolution needed to increase food production for the growing planet. PMID:26859270

  9. Mean EPDs reported by different breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle genetic evaluations result in expected progeny differences (EPDs), which can be used to select animals for growth, productivity, carcass composition, and, most recently, economic value. Breed averages allow producers to compare the genetic value of potential breeding stock against their ...

  10. Plant Breeding: Surprisingly, Less Sex Is Better.

    PubMed

    van Dijk, Peter J; Rigola, Diana; Schauer, Stephen E

    2016-02-01

    Introduction of apomixis, asexual reproduction through seeds, into crop species has the potential to dramatically transform plant breeding. A new study demonstrates that traits can be stably transferred between generations in newly produced apomictic lines, and heralds a breeding revolution needed to increase food production for the growing planet.

  11. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  12. Mammalian cloning: possibilities and threats.

    PubMed

    Mitalipov, S M; Wolf, D P

    2000-10-01

    The cloning of mammals originated with the production of limited numbers of genetically identical offspring by blastomere separation or embryo splitting. In the past few years, remarkable progress has been reported in cloning by nuclear transfer (NT) with donor nuclei recovered from embryonic, fetal or adult cells. Factors that contribute to the successful reprogramming of the transferred nucleus and the normal term development of the newly reconstructed embryo include the cell cycle stage of both the donor nucleus and recipient cytoplast, the timing of fusion and cytoplast activation, and the source of donor nuclei. The possibility of producing live offspring by somatic cell NT carries potential applications in animal husbandry, biotechnology, transgenic and pharmaceutical production, biomedical research, and the preservation of endangered species. However, the low efficiencies of cloning by NT coupled with high embryonic, fetal and neonatal losses may restrict immediate commercial applications in agriculture. These limitations notwithstanding, the greatest benefits and practical implications of this new technology could be in transplantation medicine and therapeutic cloning.

  13. Clone Poems and the Microcomputer.

    ERIC Educational Resources Information Center

    Irizarry, Estelle

    1989-01-01

    Describes how students can use the computer to study and create clone poems (altering original Spanish-language poems by substituting words and expressions), and how students can gain a deeper appreciation of the original poem's poetic structure and semantics. (CB)

  14. Breeding habitat associations and predicted distribution of an obligate tundra-breeding bird, Smith's Longspur

    USGS Publications Warehouse

    Wild, Teri C.; Kendall, Steven J.; Guldager, Nikki; Powell, Abby N.

    2015-01-01

    Smith's Longspur (Calcarius pictus) is a species of conservation concern which breeds in Arctic habitats that are expected to be especially vulnerable to climate change. We used bird presence and habitat data from point-transect surveys conducted at 12 sites across the Brooks Range, Alaska, 2003–2009, to identify breeding areas, describe local habitat associations, and identify suitable habitat using a predictive model of Smith's Longspur distribution. Smith's Longspurs were observed at seven sites, where they were associated with a variety of sedge–shrub habitats composed primarily of mosses, sedges, tussocks, and dwarf shrubs; erect shrubs were common but sparse. Nonmetric multidimensional scaling ordination of ground cover revealed positive associations of Smith's Longspur presence with sedges and mosses and a negative association with high cover of shrubs. To model predicted distribution, we used boosted regression trees to relate landscape variables to occurrence. Our model predicted that Smith's Longspurs may occur in valleys and foothills of the northeastern and southeastern mountains and in upland plateaus of the western mountains, and farther west than currently documented, over a predicted area no larger than 15% of the Brooks Range. With climate change, shrubs are expected to grow larger and denser, while soil moisture and moss cover are predicted to decrease. These changes may reduce Smith's Longspur habitat quality and limit distribution in the Brooks Range to poorly drained lowlands and alpine plateaus where sedge–shrub tundra is likely to persist. Conversely, northward advance of shrubs into sedge tundra may create suitable habitat, thus supporting a northward longspur distribution shift.

  15. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.

  16. Human reproductive cloning: a conflict of liberties.

    PubMed

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  17. Energy values of nine Populus clones

    SciTech Connect

    Strong, T.F.

    1980-01-01

    This paper compares calorific values for components of nine Populus clones. The components include stem wood, stem bark, and branches. Also compared are calorific values for clones of balsam poplar and black cottonwood parentages.

  18. Race quickens for the first human clone.

    PubMed

    Gross, M

    2001-04-01

    The dazzling creation of Dolly, the cloned sheep, led many states to legislate against the possibility of using similar technology to create human clones. But for some, this prize is proving too tempting to ignore. Michael Gross reports. PMID:11413008

  19. Genomic selection: Status in different species and challenges for breeding.

    PubMed

    Stock, K F; Reents, R

    2013-09-01

    Technical advances and development in the market for genomic tools have facilitated access to whole-genome data across species. Building-up on the acquired knowledge of the genome sequences, large-scale genotyping has been optimized for broad use, so genotype information can be routinely used to predict genetic merit. Genomic selection (GS) refers to the use of aggregates of estimated marker effects as predictors which allow improved individual differentiation at young age. Realizable benefits of GS are influenced by several factors and vary in quantity and quality between species. General characteristics and challenges of GS in implementation and routine application are described, followed by an overview over the current status of its use, prospects and challenges in important animal species. Genetic gain for a particular trait can be enhanced by shortening of the generation interval, increased selection accuracy and increased selection intensity, with species- and breed-specific relevance of the determinants. Reliable predictions based on genetic marker effects require assembly of a reference for linking of phenotype and genotype data to allow estimation and regular re-estimation. Experiences from dairy breeding have shown that international collaboration can set the course for fast and successful implementation of innovative selection tools, so genomics may significantly impact the structures of future breeding and breeding programmes. Traits of great and increasing importance, which were difficult to improve in the conventional systems, could be emphasized, if continuous availability of high-quality phenotype data can be assured. Equally elaborate strategies for genotyping and phenotyping will allow tailored approaches to balance efficient animal production, sustainability, animal health and welfare in future. PMID:23962210

  20. Genomic selection: Status in different species and challenges for breeding.

    PubMed

    Stock, K F; Reents, R

    2013-09-01

    Technical advances and development in the market for genomic tools have facilitated access to whole-genome data across species. Building-up on the acquired knowledge of the genome sequences, large-scale genotyping has been optimized for broad use, so genotype information can be routinely used to predict genetic merit. Genomic selection (GS) refers to the use of aggregates of estimated marker effects as predictors which allow improved individual differentiation at young age. Realizable benefits of GS are influenced by several factors and vary in quantity and quality between species. General characteristics and challenges of GS in implementation and routine application are described, followed by an overview over the current status of its use, prospects and challenges in important animal species. Genetic gain for a particular trait can be enhanced by shortening of the generation interval, increased selection accuracy and increased selection intensity, with species- and breed-specific relevance of the determinants. Reliable predictions based on genetic marker effects require assembly of a reference for linking of phenotype and genotype data to allow estimation and regular re-estimation. Experiences from dairy breeding have shown that international collaboration can set the course for fast and successful implementation of innovative selection tools, so genomics may significantly impact the structures of future breeding and breeding programmes. Traits of great and increasing importance, which were difficult to improve in the conventional systems, could be emphasized, if continuous availability of high-quality phenotype data can be assured. Equally elaborate strategies for genotyping and phenotyping will allow tailored approaches to balance efficient animal production, sustainability, animal health and welfare in future.

  1. Patterns of molecular genetic variation among cat breeds.

    PubMed

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  2. Probabilistic cloning of three symmetric states

    SciTech Connect

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-12-15

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  3. Phase-covariant quantum cloning of qudits

    SciTech Connect

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-02-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation.

  4. Economical phase-covariant cloning of qudits

    SciTech Connect

    Buscemi, Francesco; D'Ariano, Giacomo Mauro; Macchiavello, Chiara

    2005-04-01

    We derive the optimal N{yields}M phase-covariant quantum cloning for equatorial states in dimension d with M=kd+N, k integer. The cloning maps are optimal for both global and single-qudit fidelity. The map is achieved by an 'economical' cloning machine, which works without ancilla.

  5. Local cloning of arbitrarily entangled multipartite states

    SciTech Connect

    Kay, Alastair; Ericsson, Marie

    2006-01-15

    We examine the perfect cloning of nonlocal, orthogonal states using only local operations and classical communication. We provide a complete characterisation of the states that can be cloned under these restrictions, and their relation to distinguishability. We also consider the case of catalytic cloning, which we show provides no enhancement to the set of clonable states.

  6. Rice breeding in the post-genomics era: from concept to practice.

    PubMed

    Li, Zhi-Kang; Zhang, Fan

    2013-05-01

    Future world food security requires continued and sustainable increase in rice production. Much of this increase has to come from new high yielding cultivars with resistances to multiple stresses. While future rice breeding in the post-genomics era has to build upon the progress in rice functional genomics research, great challenges remain in understanding the genetic/molecular systems underlying complex traits and linking the tremendous genome sequence diversity in the rice germplasm collections to the phenotypic variation of important traits. To meet the challenges in future rice improvement, a molecular breeding (MB) strategy has been practiced in China with significant progress in establishing the MB material and information platforms in the process of breeding, and in developing new varieties through two novel MB schemes. However, full implementation of this strategy requires tremendous investment to build capacities in high-throughput genotyping, reliable/precision phenotyping and in developing and adopting new genomics/genetic information-based analytic/application breeding tools, which are not in place in most of the public rice breeding institutions. Nevertheless, future advances and developments in these areas are expected to generate enormous knowledge of rice traits and application tools that enable breeders to deploy more efficient and effective breeding strategies to maximize rice productivity and resource use efficiencies in various ecosystems. PMID:23571011

  7. Domestic dogs and cancer research: a breed-based genomics approach.

    PubMed

    Davis, Brian W; Ostrander, Elaine A

    2014-01-01

    Domestic dogs are unique from other animal models of cancer in that they generally experience spontaneous disease. In addition, most types of cancer observed in humans are found in dogs, suggesting that canines may be an informative system for the study of cancer genetics. Domestic dogs are divided into over 175 breeds, with members of each breed sharing significant phenotypes. The breed barrier enhances the utility of the model, especially for genetic studies where small numbers of genes are hypothesized to account for the breed cancer susceptibility. These facts, combined with recent advances in high-throughput sequencing technologies allows for an unrivaled ability to use pet dog populations to find often subtle mutations that promote cancer susceptibility and progression in dogs as a whole. The meticulous record keeping associated with dog breeding makes the model still more powerful, as it facilitates both association analysis and family-based linkage studies. Key to the success of these studies is their cooperative nature, with owners, scientists, veterinarians and breed clubs working together to avoid the cost and unpopularity of developing captive populations. In this article we explore these principals and advocate for colony-free, genetic studies that will enhance our ability to diagnose and treat cancer in dogs and humans alike.

  8. Domestic Dogs and Cancer Research: A Breed-Based Genomics Approach

    PubMed Central

    Davis, Brian W.; Ostrander, Elaine A.

    2014-01-01

    Domestic dogs are unique from other animal models of cancer in that they generally experience spontaneous disease. In addition, most types of cancer observed in humans are found in dogs, suggesting that canines may be an informative system for the study of cancer genetics. Domestic dogs are divided into over 175 breeds, with members of each breed sharing significant phenotypes. The breed barrier enhances the utility of the model, especially for genetic studies where small numbers of genes are hypothesized to account for the breed cancer susceptibility. These facts, combined with recent advances in high-throughput sequencing technologies allows for an unrivaled ability to use pet dog populations to find often subtle mutations that promote cancer susceptibility and progression in dogs as a whole. The meticulous record keeping associated with dog breeding makes the model still more powerful, as it facilitates both association analysis and family-based linkage studies. Key to the success of these studies is their cooperative nature, with owners, scientists, veterinarians and breed clubs working together to avoid the cost and unpopularity of developing captive populations. In this article we explore these principals and advocate for colony-free, genetic studies that will enhance our ability to diagnose and treat cancer in dogs and humans alike. PMID:24936030

  9. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-12-08

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats.

  10. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-01-01

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats. PMID:26662412

  11. Cloning humans, cloning literature: genetics and the imagination deficit.

    PubMed

    Van Dijck, J

    1999-01-01

    After the birth of Dolly, media stories on cloning were replete with references to well-known science fiction plots. This essay criticizes the 'imagination deficit' of scientists and journalists, first by problematizing the uncritical adoption of attentuated science fiction plots in the media coverage of Dolly, and second, by proposing to look at more expansive science fiction novels that carefully examine issues such as uniqueness and identity in relation to the new genetics.

  12. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future. PMID:26541073

  13. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.

  14. ANALYSIS OF GENOMIC DNA METHYLATION AND GENE EXPRESSION IN CHINESE CABBAGE (Brassica rapa L. ssp. pekinensis) AFTER CONTINUOUS SEEDLING BREEDING.

    PubMed

    Tao, L; Wang, X L; Guo, M H; Zhang, Y W

    2015-08-01

    Vernalization plays a key role in the bolting and flowering of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plants can switch from vegetative to reproductive growth and then bolt and flower under low temperature induction. The economic benefits of Chinese cabbage will decline significantly when the bolting happens before the vegetative body fully grows due to a lack of the edible value. It was found that continuous seedling breeding reduced the heading of Chinese cabbage and led to bolt and flower more easily. In the present study, two inbred lines, termed A161 and A105, were used as experiment materials. These two lines were subjected to vernalization and formed four types: seeds-seedling breeding once, seedling breeding twice, seedling breeding thrice and normal type. Differences in plant phenotype were compared. DNA methylation analysis was performed based on MSAP method. The differential fragments were cloned and analyzed by qPCR. Results showed that plants after seedling breeding thrice had a loosen heading leaves, elongated center axis and were easier to bolt and flower. It is suggested that continuous seedling breeding had a weaker winterness. It was observed that genome methylation level decreased with increasing generation. Four differential genes were identified, short for BraAPC1, BraEMP3, BraUBC26, and BraAL5. Fluorescent qPCR analysis showed that expression of four genes varied at different reproduction modes and different vernalization time. It is indicated that these genes might be involve in the development and regulation of bolting and flowering of plants. Herein, the molecular mechanism that continuous seedling breeding caused weaker winterness was analyzed preliminarily. It plays an important guiding significance for Chinese cabbage breeding.

  15. Predators induce cloning in echinoderm larvae.

    PubMed

    Vaughn, Dawn; Strathmann, Richard R

    2008-03-14

    Asexual propagation (cloning) is a widespread reproductive strategy of plants and animals. Although larval cloning is well documented in echinoderms, identified stimuli for cloning are limited to those associated with conditions favorable for growth and reproduction. Our research shows that larvae of the sand dollar Dendraster excentricus also clone in response to cues from predators. Predator-induced clones were smaller than uncloned larvae, suggesting an advantage against visual predators. Our results offer another ecological context for asexual reproduction: rapid size reduction as a defense.

  16. Probabilistic cloning of three nonorthogonal states

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Rui, Pinshu; Yang, Qun; Zhao, Yan; Zhang, Ziyun

    2015-04-01

    We study the probabilistic cloning of three nonorthogonal states with equal success probabilities. For simplicity, we assume that the three states belong to a special set. Analytical form of the maximal success probability for probabilistic cloning is calculated. With the maximal success probability, we deduce the explicit form of probabilistic quantum cloning machine. In the case of cloning, we get the unambiguous form of the unitary operation. It is demonstrated that the upper bound for probabilistic quantum cloning machine in (Qiu in J Phys A 35:6931, 2002) can be reached only if the three states are equidistant.

  17. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  18. No-cloning theorem on quantum logics

    SciTech Connect

    Miyadera, Takayuki; Imai, Hideki

    2009-10-15

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.

  19. Therapeutic and reproductive cloning: a critique.

    PubMed

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  20. Breeding season survival and breeding incidence of female Mottled Ducks on the upper Texas gulf coast

    USGS Publications Warehouse

    Rigby, Elizabeth A.; Haukos, David A.

    2012-01-01

    Previous Mottled Duck (Anas fulvigula) studies suggested that high female breeding season survival may be caused by low nesting effort, but few breeding season estimates of survival associated with nesting effort exist on the western Gulf Coast. Here, breeding season survival (N = 40) and breeding incidence (N = 39) were estimated for female Mottled Ducks on the upper Texas coast, 2006–2008. Females were fitted with backpack radio transmitters and visually relocated every 3–4 days. Weekly survival was estimated using the Known Fate procedure of program MARK with breeding incidence estimated as the annual proportion of females observed nesting or with broods. The top-ranked survival model included a body mass covariate and held weekly female survival constant across weeks and years (SW = 0.986, SE = 0.006). When compared to survival across the entire year estimated from previous band recovery and age ratio analysis, survival rate during the breeding season did not differ. Breeding incidence was well below 100% in all years and highly variable among years (15%–63%). Breeding season survival and breeding incidence were similar to estimates obtained with implant transmitters from the mid-coast of Texas. The greatest breeding incidence for both studies occurred when drought indices indicated average environmental moisture during the breeding season. The observed combination of low breeding incidence and high breeding season survival support the hypothesis of a trade-off between the ecological cost of nesting effort and survival for Mottled Duck females. Habitat cues that trigger nesting are unknown and should be investigated.

  1. Management and Breeding Soundness of Mature Bulls.

    PubMed

    Palmer, Colin W

    2016-07-01

    Mature bulls must be fed a balanced ration, vaccinated appropriately, and undergo a breeding soundness evaluation to ensure they meet what is required of a short, but intense breeding season. To be classified as a satisfactory potential breeder, minimum standards for physical soundness, scrotal circumference, sperm motility, and sperm morphology must be achieved using an accepted bull-breeding soundness evaluation format. Sperm production requires approximately 70 days. Heat and stress are the most common insults to spermatogenesis, causing an increase in morphologic abnormalities with obesity-associated scrotal fat accumulation being the most frequent cause of elevated testicular temperature in mature bulls.

  2. First charge breeding results at CARIBU EBIS

    SciTech Connect

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  3. Breeding behavior of immature mourning doves

    USGS Publications Warehouse

    Irby, H.D.; Blankenship, L.H.

    1966-01-01

    Some immature mourning doves (Zenaidura mncroura) are capable of breeding in their first (calendar) year of life. The breeding activities of immatures observed in this study included calling, copulating, and nesting. Development of sexual structures such as cloacal papillae, oviduct openings, and gonads was also regarded as evidence of breeding potential. Immatures were identified principally by white-tipped wing coverts. Sexes were distinguished by behavioral characteristics. Males coo, perform flights, carry nest material, and attend nests during the day and females attend nests at night. Immatures were involved in at least ten nestings on two areas near Tucson, Arizona, in 1963. Five young fledged from these nests.

  4. Book review: Oklahoma Breeding Bird Atlas

    USGS Publications Warehouse

    Peterjohn, Bruce G.

    2004-01-01

    The first North American breeding bird atlases were initiated during the 1970s. With atlases completed or ongoing in more than 40 U.S. states and most Canadian provinces, these projects are now familiar to professional ornithologists and amateur birders. This book provides the results of the Oklahoma Breeding Bird Atlas, the data for which were collected during 1997–2001. Its appearance less than 3 years after completing fieldwork is remarkable and everyone associated with its timely publication should be congratulated for their efforts.Review info: Oklahoma Breeding Bird Atlas. By Dan L. Reinking, 2004. ISBN: 0806136146, 528 pp.

  5. [The use of biotechnology in animal breeding].

    PubMed

    Groeneveld, E; Brade, W

    1996-01-01

    Biotechnological techniques are extensively used in dairy breeding programs. Thus, artificial insemination and embryo transfer (and associated techniques) constitute an integral part of modern breeding programs. In pig breeding, embryo transfer is mostly restricted to special problem areas because of its high costs. Currently this technique is used for the exchange of genetic material on an international level, for the creation of specific pathogene free herds, and in connection with cryoconservation for the setup of embryobanks in the context of the preservation of genetic resources. PMID:9011495

  6. Breeding bald eagles in captivity

    USGS Publications Warehouse

    Maestrelli, J.R.; Wiemeyer, Stanley N.

    1975-01-01

    A 7-year-old female Bald Eagle from Alabama was paired with a 4-year-old Alaskan male in a large flight pen during December 1969. Both birds were free of physical defects when originally placed in the pen but the female was blind in one eye prior to the 1973 breeding season.....Nesting first occurred during 1971 when at least two eggs were laid; all but one, which showed no sign of embryonic development after being incubated for 56 days, were broken by the adult birds. Two of three eggs laid in 1972 hatched. Both young died a few days after hatching following a period of inclement weather. Three eggs were laid and hatched during 1973. Antagonism between the nestlings was observed soon after hatching and may have been responsible for the unobserved death of one nestling, two days after the third young hatched. The two remaining young were raised by the adult birds and eventually left the nest 85 days after the first egg hatched. Incubation periods for the 1972-73 clutches averaged 35 days. No renesting attempts were made by the eagles during the 3.year period.

  7. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  8. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture.

    PubMed

    Steuernagel, Burkhard; Periyannan, Sambasivam K; Hernández-Pinzón, Inmaculada; Witek, Kamil; Rouse, Matthew N; Yu, Guotai; Hatta, Asyraf; Ayliffe, Mick; Bariana, Harbans; Jones, Jonathan D G; Lagudah, Evans S; Wulff, Brande B H

    2016-06-01

    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize. PMID:27111722

  9. Durum wheat and allelopathy: toward wheat breeding for natural weed management

    PubMed Central

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-01-01

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control. PMID:24065979

  10. Cloning Expeditions: Risky but Rewarding

    PubMed Central

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  11. Cloning expeditions: risky but rewarding.

    PubMed

    Lodish, Harvey

    2013-12-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine.

  12. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience.

  13. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. PMID:21618385

  14. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  15. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations.

    PubMed

    Lipinski, Monika J; Froenicke, Lutz; Baysac, Kathleen C; Billings, Nicholas C; Leutenegger, Christian M; Levy, Alon M; Longeri, Maria; Niini, Tirri; Ozpinar, Haydar; Slater, Margaret R; Pedersen, Niels C; Lyons, Leslie A

    2008-01-01

    The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing 17 random-bred populations from five continents and 22 breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese bobtail were more aligned with European/American than with Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity; however, this loss did not correlate with breed popularity or age.

  16. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation

    PubMed Central

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-01-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to ‘Beniazuma’, one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  17. Equine post-breeding endometritis: A review

    PubMed Central

    2008-01-01

    The deposition of semen, bacteria and debris in the uterus of the mare after breeding normally induces a self-limiting endometritis. The resultant fluid and inflammatory products are cleared by 48 hours post cover. Mares that are susceptible to persistent post-breeding endometritis (PPBEM) have impaired uterine defence and clearance mechanisms, making them unable to resolve this inflammation within the normal time. This persists beyond 48 hours post-breeding and causes persistent fluid accumulation within the uterus. Mares with PPBEM have an increased rate of embryonic loss and a lower overall pregnancy rate than those without the condition. To enhance conception rates, mares at high risk need optimal breeding management as well as early diagnosis, followed by the most appropriate treatment. This article reviews the pathogenesis, diagnosis and treatment of PPBEM and the management of affected mares. PMID:21851709

  18. Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli.

    PubMed

    Godiska, Ronald; Mead, David; Dhodda, Vinay; Wu, Chengcang; Hochstein, Rebecca; Karsi, Attila; Usdin, Karen; Entezam, Ali; Ravin, Nikolai

    2010-04-01

    Despite recent advances in sequencing, complete finishing of large genomes and analysis of novel proteins they encode typically require cloning of specific regions. However, many of these fragments are extremely difficult to clone in current vectors. Superhelical stress in circular plasmids can generate secondary structures that are substrates for deletion, particularly in regions that contain numerous tandem or inverted repeats. Common vectors also induce transcription and translation of inserted fragments, which can select against recombinant clones containing open reading frames or repetitive DNA. Conversely, transcription from cloned promoters can interfere with plasmid stability. We have therefore developed a novel Escherichia coli cloning vector (termed 'pJAZZ' vector) that is maintained as a linear plasmid. Further, it contains transcriptional terminators on both sides of the cloning site to minimize transcriptional interference between vector and insert. We show that this vector stably maintains a variety of inserts that were unclonable in conventional plasmids. These targets include short nucleotide repeats, such as those of the expanded Fragile X locus, and large AT-rich inserts, such as 20-kb segments of genomic DNA from Pneumocystis, Plasmodium, Oxytricha or Tetrahymena. The pJAZZ vector shows decreased size bias in cloning, allowing more uniform representation of larger fragments in libraries. PMID:20040575

  19. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students.

    PubMed

    Campbell, A Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change.

  20. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    PubMed

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality.

  1. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    PubMed

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality. PMID:26893165

  2. [Pain caused by breeding: definition, judgment, pathogenesis].

    PubMed

    Herzog, A

    1997-02-01

    Special terms of the "German Animal Protection Law (section 11b)"and the "European Agreement for Protection of Domestic Animals" particularly "torture-breeding, genetic characteristics, well-being, soundness, pains, injuries and specific use" are commented. Examples of torture-breedings are discussed: Dog (Merle-faktor, brachycephalie, atrichosis), cat (Mans-factor, W-gene, folded-ears), birds (tuffs, ear-drops, tailesness, hypertrophy of bill-warts, abnormal position of tarsal-joints, hypertrophy of imposing behavior).

  3. Science and technology of farm animal cloning: state of the art.

    PubMed

    Vajta, Gábor; Gjerris, Mickey

    2006-05-01

    tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.

  4. Science and technology of farm animal cloning: state of the art.

    PubMed

    Vajta, Gábor; Gjerris, Mickey

    2006-05-01

    tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications. PMID:16406426

  5. Citrus breeding, genetics and genomics in Japan.

    PubMed

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering.

  6. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  7. Citrus breeding, genetics and genomics in Japan.

    PubMed

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  8. Application of Genomics Tools to Animal Breeding

    PubMed Central

    Dekkers, Jack C.M.

    2012-01-01

    The main goal in animal breeding is to select individuals that have high breeding values for traits of interest as parents to produce the next generation and to do so as quickly as possible. To date, most programs rely on statistical analysis of large data bases with phenotypes on breeding populations by linear mixed model methodology to estimate breeding values on selection candidates. However, there is a long history of research on the use of genetic markers to identify quantitative trait loci and their use in marker-assisted selection but with limited implementation in practical breeding programs. The advent of high-density SNP genotyping, combined with novel statistical methods for the use of this data to estimate breeding values, has resulted in the recent extensive application of genomic or whole-genome selection in dairy cattle and research to implement genomic selection in other livestock species is underway. The high-density SNP data also provides opportunities to detect QTL and to encover the genetic architecture of quantitative traits, in terms of the distribution of the size of genetic effects that contribute to trait differences in a population. Results show that this genetic architecture differs between traits but that for most traits, over 50% of the genetic variation resides in genomic regions with small effects that are of the order of magnitude that is expected under a highly polygenic model of inheritance. PMID:23115522

  9. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  10. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  11. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  12. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Permits for cooperative breeding. 15.24... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding....

  13. Cloning

    MedlinePlus

    ... mammals. These twins are produced when a fertilized egg splits, creating two or more embryos that carry ... of the donor animal's somatic cell into an egg cell, or oocyte, that has had its own ...

  14. Constitutive and herbivore-induced systemic volatiles differentially attract an omnivorous biocontrol agent to contrasting Salix clones.

    PubMed

    Lehrman, Anna; Boddum, Tina; Stenberg, Johan A; Orians, Colin M; Björkman, Christer

    2013-01-01

    While carnivores are known to be attracted to herbivore-induced plant volatiles, little is known about how such volatiles may affect the behaviour of omnivorous predators that may use both plants and herbivores as food. Here, we examine how systemically produced plant volatiles, in response to local herbivore damage, differentially attract a key omnivorous predator, Anthocoris nemorum (Heteroptera: Anthocoridae), to single clones of three species of Salix: S. viminalis, S. dasyclados and S. cinerea. The profiles of the plant volatiles produced were found to vary among Salix clones and between herbivore-damaged and intact plants. Anthocoris nemorum was attracted to the volatiles released from undamaged plants of all three species, but most strongly to a native S. cinerea clone. Plants damaged by the herbivorous leaf beetle Phratora vulgatissima (Coleoptera: Chrysomelidae) were generally more attractive than undamaged plants, with A. nemorum responding to systemic changes in the damaged plants where the experimental design specifically excluded volatiles released from the actual site of damage. When comparing damaged plants, the S. dasyclados clone was more attractive to A. nemorum than the S. viminalis clone-a somewhat surprising result since this Salix clone is considered relatively resistant to P. vulgatissima, and hence offers a limited amount of prey. Our experiments highlight that both constitutive and induced plant volatiles play a role in omnivore attraction, and this emphasizes the importance of considering odours of released volatiles when cropping and breeding Salix for increased resistance to herbivores.

  15. Detectability of Plasmodium falciparum clones

    PubMed Central

    2010-01-01

    Background In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. Methods A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. Results The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. Conclusions A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week

  16. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.

    PubMed

    McDermott, Molly E; DeGroote, Lucas W

    2016-10-01

    Climate change is influencing bird phenology worldwide, but we still lack information on how many species are responding over long temporal periods. We assessed how climate affected passerine reproductive timing and productivity at a constant effort mist-netting station in western Pennsylvania using a model comparison approach. Several lines of evidence point to the sensitivity of 21 breeding passerines to climate change over five decades. The trends for temperature and precipitation over 53 years were slightly positive due to intraseasonal variation, with the greatest temperature increases and precipitation declines in early spring. Regardless of broodedness, migration distance, or breeding season, 13 species hatched young earlier over time with most advancing >3 days per decade. Warm springs were associated with earlier captures of juveniles for 14 species, ranging from 1- to 3-day advancement for every 1 °C increase. This timing was less likely to be influenced by spring precipitation; nevertheless, higher rainfall was usually associated with later appearance of juveniles and breeding condition in females. Temperature and precipitation were positively related to productivity for seven and eleven species, respectively, with negative relations evident for six and eight species. We found that birds fledged young earlier with increasing spring temperatures, potentially benefiting some multibrooded species. Indeed, some extended the duration of breeding in these warm years. Yet, a few species fledged fewer juveniles in warmer and wetter seasons, indicating that expected future increases could be detrimental to locally breeding populations. Although there were no clear relationships between life history traits and breeding phenology, species-specific responses to climate found in our study provide novel insights into phenological flexibility in songbirds. Our research underscores the value of long-term monitoring studies and the importance of continuing constant

  17. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.

    PubMed

    McDermott, Molly E; DeGroote, Lucas W

    2016-10-01

    Climate change is influencing bird phenology worldwide, but we still lack information on how many species are responding over long temporal periods. We assessed how climate affected passerine reproductive timing and productivity at a constant effort mist-netting station in western Pennsylvania using a model comparison approach. Several lines of evidence point to the sensitivity of 21 breeding passerines to climate change over five decades. The trends for temperature and precipitation over 53 years were slightly positive due to intraseasonal variation, with the greatest temperature increases and precipitation declines in early spring. Regardless of broodedness, migration distance, or breeding season, 13 species hatched young earlier over time with most advancing >3 days per decade. Warm springs were associated with earlier captures of juveniles for 14 species, ranging from 1- to 3-day advancement for every 1 °C increase. This timing was less likely to be influenced by spring precipitation; nevertheless, higher rainfall was usually associated with later appearance of juveniles and breeding condition in females. Temperature and precipitation were positively related to productivity for seven and eleven species, respectively, with negative relations evident for six and eight species. We found that birds fledged young earlier with increasing spring temperatures, potentially benefiting some multibrooded species. Indeed, some extended the duration of breeding in these warm years. Yet, a few species fledged fewer juveniles in warmer and wetter seasons, indicating that expected future increases could be detrimental to locally breeding populations. Although there were no clear relationships between life history traits and breeding phenology, species-specific responses to climate found in our study provide novel insights into phenological flexibility in songbirds. Our research underscores the value of long-term monitoring studies and the importance of continuing constant

  18. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  19. Unified universal quantum cloning machine and fidelities

    SciTech Connect

    Wang Yinan; Shi Handuo; Xiong Zhaoxi; Jing Li; Mu Liangzhu; Ren Xijun; Fan Heng

    2011-09-15

    We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.

  20. Nuclear transfer technology in mammalian cloning.

    PubMed

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  1. Across-Breed EPD Tables for the Year 2009 Adjusted to Breed Differences for Birth Year of 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of F1 and 3-way cross progeny of 18 breeds of sire and maternal grandsire, respectively, were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects (16 breeds) of weaning weight and among 11 of the 18 breeds for carcass marbling, ribey...

  2. Across-breed EPD tables for the year 2011 adjusted to breed differences for birth year of 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of F1 and 3-way cross progeny of 18 breeds of sire and maternal grandsire, respectively, were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects (16 breeds) of weaning weight and among 13 of the 18 breeds for carcass marbling, ribey...

  3. Across-breed EPD tables for the year 2012 adjusted to breed differences for birth year of 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of F1 and 3-way cross progeny of 18 breeds of sire and maternal grandsire, respectively, were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects (16 breeds) of weaning weight and among 13 of the 18 breeds for carcass marbling, ribey...

  4. Across-Breed EPD Tables for the Year 2010 Adjusted to Breed Differences for Birth Year of 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of F1 and 3-way cross progeny of 18 breeds of sire and maternal grandsire, respectively, were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects (16 breeds) of weaning weight and among 13 of the 18 breeds for carcass marbling, ribey...

  5. Across-breed EPD tables for the year 2016 adjusted to breed differences for birth year of 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Records of progeny of 18 breeds were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects of weaning weight, among 15 of the 18 breeds for carcass marbling and ribeye area and among 14 of the 18 breeds for fat depth and carcass weight. The r...

  6. Derived variants at six genes explain nearly half of size reduction in dog breeds.

    PubMed

    Rimbault, Maud; Beale, Holly C; Schoenebeck, Jeffrey J; Hoopes, Barbara C; Allen, Jeremy J; Kilroy-Glynn, Paul; Wayne, Robert K; Sutter, Nathan B; Ostrander, Elaine A

    2013-12-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.

  7. Derived variants at six genes explain nearly half of size reduction in dog breeds

    PubMed Central

    Rimbault, Maud; Beale, Holly C.; Schoenebeck, Jeffrey J.; Hoopes, Barbara C.; Allen, Jeremy J.; Kilroy-Glynn, Paul; Wayne, Robert K.; Sutter, Nathan B.; Ostrander, Elaine A.

    2013-01-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds. PMID:24026177

  8. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  9. No human cloning: a social ethics perspective.

    PubMed

    Cahill, L S

    1999-01-01

    This Essay addresses the negative impact of human cloning on the family, and argues further that market incentives to develop and implement cloning techniques exploit and exacerbate socioeconomic inequities. It suggests that cloning should be prohibited internationally and examines possible routes to that aim. To begin with, it offers some reflections on the nature of moral argument, and on the role of religion in public debate. PMID:12650145

  10. Cloning: pathways to a pluripotent future.

    PubMed

    McLaren, A

    2000-06-01

    In this month's essay, Anne McLaren traces the winding and pitted pathways that connect the early days of the cell theory of biology in the 1830s to the new and unfolding era of cloning science and technology that came to worldwide attention in 1997 with the announcement of the birth of Dolly, the Scottish cloned sheep. The possibilities, including the potential for new medical treatments and perhaps even human cloning, are fantastic ... and ethically charged.

  11. Cloning: pathways to a pluripotent future.

    PubMed

    McLaren, A

    2000-06-01

    In this month's essay, Anne McLaren traces the winding and pitted pathways that connect the early days of the cell theory of biology in the 1830s to the new and unfolding era of cloning science and technology that came to worldwide attention in 1997 with the announcement of the birth of Dolly, the Scottish cloned sheep. The possibilities, including the potential for new medical treatments and perhaps even human cloning, are fantastic ... and ethically charged. PMID:10877698

  12. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product.

    PubMed

    Cooper, Mark; Gho, Carla; Leafgren, Roger; Tang, Tom; Messina, Carlos

    2014-11-01

    Germplasm, genetics, phenotyping, and selection, combined with a clear definition of product targets, are the foundation of successful hybrid maize breeding. Breeding maize hybrids with superior yield for the drought-prone regions of the US corn-belt involves integration of multiple drought-specific technologies together with all of the other technology components that comprise a successful maize hybrid breeding programme. Managed-environment technologies are used to enable scaling of precision phenotyping in appropriate drought environmental conditions to breeding programme level. Genomics and other molecular technologies are used to study trait genetic architecture. Genetic prediction methodology was used to breed for improved yield performance for drought-prone environments. This was enabled by combining precision phenotyping for drought performance with genetic understanding of the traits contributing to successful hybrids in the target drought-prone environments and the availability of molecular markers distributed across the maize genome. Advances in crop growth modelling methodology are being used to evaluate the integrated effects of multiple traits for their combined effects and evaluate drought hybrid product concepts and guide their development and evaluation. Results to date, lessons learned, and future opportunities for further improving the drought tolerance of maize for the US corn-belt are discussed. PMID:24596174

  13. Walking or Waiting? Topologies of the Breeding Ground in Malaria Control

    PubMed Central

    Lezaun, Javier

    2013-01-01

    Few places bear as much historical and scientific significance as the breeding ground, the accumulation of stagnant water where disease-carrying insects lay their eggs. Since the turn of the twentieth century, when mosquitoes of the Anopheles genus were identified as the vector of malaria transmission, these aquatic habitats have been a key object of epidemiological research and public health intervention against the disease. Yet the breeding ground can be incorporated into a number of different topologies, each implying a different spatialization of malaria and a distinct imagination of what kind of mosquito control is ‘doable'. A contemporary example of malaria control in Dar es Salaam, Tanzania, illuminates an essential tension between what we characterize as territorial and bionomic approaches to the breeding ground—that is, between control strategies premised on treating all mosquito habitats within a given region, and those that prioritize certain sites on the basis of their position within ecological networks. Each topology localizes the breeding ground by reference to a distinct set of relations, and thus advances an idiosyncratic understanding of what sort of research is worthwhile conducting and what kinds of intervention are sustainable. The multiple ways in which the breeding ground can become an object of research and action clarifies the role of topology as an infra-logic of public health, and makes explicit the politics implicit in efforts to bring different orders of the local to scale. PMID:25937707

  14. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product.

    PubMed

    Cooper, Mark; Gho, Carla; Leafgren, Roger; Tang, Tom; Messina, Carlos

    2014-11-01

    Germplasm, genetics, phenotyping, and selection, combined with a clear definition of product targets, are the foundation of successful hybrid maize breeding. Breeding maize hybrids with superior yield for the drought-prone regions of the US corn-belt involves integration of multiple drought-specific technologies together with all of the other technology components that comprise a successful maize hybrid breeding programme. Managed-environment technologies are used to enable scaling of precision phenotyping in appropriate drought environmental conditions to breeding programme level. Genomics and other molecular technologies are used to study trait genetic architecture. Genetic prediction methodology was used to breed for improved yield performance for drought-prone environments. This was enabled by combining precision phenotyping for drought performance with genetic understanding of the traits contributing to successful hybrids in the target drought-prone environments and the availability of molecular markers distributed across the maize genome. Advances in crop growth modelling methodology are being used to evaluate the integrated effects of multiple traits for their combined effects and evaluate drought hybrid product concepts and guide their development and evaluation. Results to date, lessons learned, and future opportunities for further improving the drought tolerance of maize for the US corn-belt are discussed.

  15. Postmortem findings in cloned and transgenic piglets dead before weaning.

    PubMed

    Schmidt, M; Winther, K D; Secher, J O; Callesen, H

    2015-10-01

    Important factors contributing to the well-known high mortality of piglets produced by SCNT are gross malformations of vital organs. The aim of the present retrospective study was to describe malformations found in cloned piglets, transgenic or not, dying or culled before weaning on Day 28. Large White (LW) embryos were transferred to 78 LW recipients, while 72 recipients received Göttingen embryos (67 transgenic and five not transgenic) and 56 received Yucatan embryos (43 transgenic and 13 not transgenic). Overall pregnancy rate was 76%, and there were more abortions in recipients with minipig embryos than in those with LW embryos (26% and 24% vs. 6%). Piglets (n = 815) were born from 128 sows with 6.5 ± 0.4 full-born piglets per litter. The overall rate of stillborn piglets was 21% of all born with the number of stillborn piglets ranging from one to nine in a litter. The mortality of the surviving piglets during the first month was 48%. Thus, altogether 58% of the full-born piglets died before weaning. In 87 of the 128 litters (68%), one to 12 of the piglets showed major or minor malformations. Malformations were found in 232 piglets (29.5% of all born). A single malformation was registered in 152 piglets, but several piglets showed two (n = 58) or more (n = 23) malformations (7.4% and 2.8% of all born, respectively). A significantly higher malformation rate was found in transgenic Göttingen and Yucatan piglets (32% and 46% of all born, respectively) than in nontransgenic LW (17%). There was a gender difference in the transgenic minipigs because male piglets had a higher rate of malformations (49.1%) than females (29.7%). The most common defects in the cloned piglets were in the digestive (12.2%), circulatory (9.4%), reproductive (11.3%), and musculoskeletal (9.1%) systems. Malformations of the musculoskeletal system were most frequent in Göttingen (16.3% vs. approximately 5.5% in the two other breeds), whereas abnormal cardiopulmonary systems were most

  16. The Sub-Annual Breeding Cycle of a Tropical Seabird

    PubMed Central

    Reynolds, S. James; Martin, Graham R.; Dawson, Alistair; Wearn, Colin P.; Hughes, B. John

    2014-01-01

    Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts. PMID:24714514

  17. The sub-annual breeding cycle of a tropical seabird.

    PubMed

    Reynolds, S James; Martin, Graham R; Dawson, Alistair; Wearn, Colin P; Hughes, B John

    2014-01-01

    Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17,000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.

  18. Miniaturized GPS Tags Identify Non-breeding Territories of a Small Breeding Migratory Songbird

    PubMed Central

    Hallworth, Michael T.; Marra, Peter P.

    2015-01-01

    For the first time, we use a small archival global positioning system (GPS) tag to identify and characterize non-breeding territories, quantify migratory connectivity, and identify population boundaries of Ovenbirds (Seiurus aurocapilla), a small migratory songbird, captured at two widely separated breeding locations. We recovered 15 (31%) GPS tags with data and located the non-breeding territories of breeding Ovenbirds from Maryland and New Hampshire, USA (0.50 ± 0.15 ha, mean ± SE). All non-breeding territories had similar environmental attributes despite being distributed across parts of Florida, Cuba and Hispaniola. New Hampshire and Maryland breeding populations had non-overlapping non-breeding population boundaries that encompassed 114,803 and 169,233 km2, respectively. Archival GPS tags provided unprecedented pinpoint locations and associated environmental information of tropical non-breeding territories. This technology is an important step forward in understanding seasonal interactions and ultimately population dynamics of populations throughout the annual cycle. PMID:26057892

  19. Breeding programmes for smallholder sheep farming systems: II. Optimization of cooperative village breeding schemes.

    PubMed

    Gizaw, S; van Arendonk, J A M; Valle-Zárate, A; Haile, A; Rischkowsky, B; Dessie, T; Mwai, A O

    2014-10-01

    A simulation study was conducted to optimize a cooperative village-based sheep breeding scheme for Menz sheep of Ethiopia. Genetic gains and profits were estimated under nine levels of farmers' participation and three scenarios of controlled breeding achieved in the breeding programme, as well as under three cooperative flock sizes, ewe to ram mating ratios and durations of ram use for breeding. Under fully controlled breeding, that is, when there is no gene flow between participating (P) and non-participating (NP) flocks, profits ranged from Birr 36.9 at 90% of participation to Birr 21.3 at 10% of participation. However, genetic progress was not affected adversely. When there was gene flow from the NP to P flocks, profits declined from Birr 28.6 to Birr -3.7 as participation declined from 90 to 10%. Under the two-way gene flow model (i.e. when P and NP flocks are herded mixed in communal grazing areas), NP flocks benefited from the genetic gain achieved in the P flocks, but the benefits declined sharply when participation declined beyond 60%. Our results indicate that a cooperative breeding group can be established with as low as 600 breeding ewes mated at a ratio of 45 ewes to one ram, and the rams being used for breeding for a period of two years. This study showed that farmer cooperation is crucial to effect genetic improvement under smallholder low-input sheep farming systems.

  20. Cloning of spin-coherent states

    SciTech Connect

    Demkowicz-Dobrzanski, Rafal; Kus, Marek; Wodkiewicz, Krzysztof

    2004-01-01

    We consider optimal cloning of the spin coherent states in Hilbert spaces of different dimensionality d. We give explicit form of optimal cloning transformation for spin coherent states in the three-dimensional space, analytical results for the fidelity of the optimal cloning in d=3 and d=4 as well as numerical results for higher dimensions. In the low-dimensional case we construct the corresponding completely positive maps and exhibit their structure with the help of Jamiolkowski isomorphism. This allows us to formulate some conjectures about the form of optimal coherent cloning completely positive maps in arbitrary dimension.

  1. Quantum cloning disturbed by thermal Davies environment

    NASA Astrophysics Data System (ADS)

    Dajka, Jerzy; Łuczka, Jerzy

    2016-06-01

    A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.

  2. Species-specific challenges in dog cloning.

    PubMed

    Kim, G A; Oh, H J; Park, J E; Kim, M J; Park, E J; Jo, Y K; Jang, G; Kim, M K; Kim, H J; Lee, B C

    2012-12-01

    Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.

  3. [Human cloning: judicial and legislative framework].

    PubMed

    Shenfield, F

    2000-09-01

    The application, either theoretical or fantastical, of the somatic cloning which resulted in the birth of Dolly the sheep to human reproduction has led to international uproar. A paragraph specifically banning reproductive cloning (defined as "any intervention seeking to produce genetically identical human individuals in the sense of individuals sharing the same nuclear gene set") was added to the Council of Europe Convention on Human Rights and Biomedicine in January 1998. In several responses both at national and international level, reproductive cloning is banned either directly or indirectly. The challenge for the future is the consideration of integrating therapeutic cloning in legislations both nationally and in international declarations.

  4. No end in sight to cloning debate.

    PubMed

    Graumann, Sigrid; Poltermann, Andreas

    2005-01-01

    Since last August, Great Britain has allowed the cloning for research purposes. This fact has re-generated an existing debate, taking into account the prohibition of cloning of the UN, the States are debating whether cloning should be prohibited or in the contrary, it should also be admitted for reproductive purposes. This situation has generated an international uneasiness due to the lack of a universal consensus. This article analyses this situation, bringing the reader closer to the very controversial texts, such as the European Constitution and the UN Convention on Cloning.

  5. Cloning by somatic cell nuclear transfer.

    PubMed

    Fulka, J; First, N L; Loi, P; Moor, R M

    1998-10-01

    The birth of the first cloned mammals, produced by the introduction of somatic cell nuclei into enucleated oocytes, was an impressive and surprising development. Although the ethical debate has been intense, the important scientific questions raised by this work have been inadequately discussed and are still unresolved. In this essay we address three questions about nuclear transplantation in the eggs of mice and domestic animals. First, why were the recent experiments on somatic cell cloning successful, when so many others have failed? Second, were these exceptional cases, or is somatic cloning now open to all? Third, what are the future possibilities for increasing the efficiency and wider applicability of the cloning process?

  6. [Human cloning: judicial and legislative framework].

    PubMed

    Shenfield, F

    2000-09-01

    The application, either theoretical or fantastical, of the somatic cloning which resulted in the birth of Dolly the sheep to human reproduction has led to international uproar. A paragraph specifically banning reproductive cloning (defined as "any intervention seeking to produce genetically identical human individuals in the sense of individuals sharing the same nuclear gene set") was added to the Council of Europe Convention on Human Rights and Biomedicine in January 1998. In several responses both at national and international level, reproductive cloning is banned either directly or indirectly. The challenge for the future is the consideration of integrating therapeutic cloning in legislations both nationally and in international declarations. PMID:11075502

  7. Breeding Plants for Resistance to Nematodes

    PubMed Central

    Boerma, H. Roger; Hussey, Richard S.

    1992-01-01

    Plant breeders and nematologists have developed improved cultivars of important crop species with resistance to plant-parasitic nematodes. The effectiveness of these breeding efforts has depended on the availability of efficient screening procedures, identification of adequate sources of durable resistance, nature of the nematode feeding habit, and knowledge of the inheritance of resistance. These factors determine to a large degree the breeding method and potential success of the research. Systematic searches for nematode resistance have identified resistant germplasm lines within crop species or from related species. When the resistance gene(s) is from related species, incongruity barriers or sterility of the resulting hybrids often must be overcome. In these situations, backcrossing is usually necessary to incorporate the resistance gene(s) and recover the desirable commercial traits of the crop species. If the resistance gene(s) is present within the crop species, the choice of breeding method depends on the inheritance of the resistance, type of screening procedure, and other important breeding objectives for the species. In the future, plant molecular biologists and geneticists will make available novel sources of nematode resistance through incorporation of transgenes from other genera. These efforts will likely require conventional breeding strategies before commercial utilization of an improved resistant cultivar. PMID:19282990

  8. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  9. Behavioral profiles of feline breeds in Japan.

    PubMed

    Takeuchi, Yukari; Mori, Yuji

    2009-08-01

    To clarify the behavioral profiles of 9 feline purebreds, 2 Persian subbreeds and the Japanese domestic cat, a questionnaire survey was distributed to 67 small-animal veterinarians. We found significant differences among breeds in all behavioral traits examined except for "inappropriate elimination". In addition, sexual differences were observed in certain behaviors, including "aggression toward cats", "general activity", "novelty-seeking", and "excitability". These behaviors were more common in males than females, whereas "nervousness" and "inappropriate elimination" were rated higher in females. When all breeds were categorized into four groups on the basis of a cluster analysis using the scores of two behavioral trait factors called "aggressiveness/sensitivity" and "vivaciousness", the group including Abyssinian, Russian Blue, Somali, Siamese, and Chinchilla breeds showed high aggressiveness/sensitivity and low vivaciousness. In contrast, the group including the American Shorthair and Japanese domestic cat displayed low aggressiveness/sensitivity and high vivaciousness, and the Himalayan and Persian group showed mild aggressiveness/sensitivity and very low vivaciousness. Finally, the group containing Maine Coon, Ragdoll, and Scottish Fold breeds displayed very low aggressiveness/sensitivity and low vivaciousness. The present results demonstrate that some feline behavioral traits vary by breed and/or sex. PMID:19721357

  10. Antimicrobial strategies in burying beetles breeding on carrion.

    PubMed

    Rozen, D E; Engelmoer, D J P; Smiseth, P T

    2008-11-18

    Rich and ephemeral resources, such as carrion, are a source of intense interspecific competition among animal scavengers and microbial decomposers. Janzen [Janzen DH (1977) Am Nat 111:691-713] hypothesized that microbes should be selected to defend such resources by rendering them unpalatable or toxic to animals, and that animals should evolve counterstrategies of avoidance or detoxification. Despite the ubiquity of animal-microbe competition, there are few tests of Janzen's hypothesis, in particular with respect to antimicrobial strategies in animals. Here, we use the burying beetle Nicrophorus vespilloides, a species that obligately breeds on carcasses of small vertebrates, to investigate the role of parental care and avoidance as antimicrobial strategies. We manipulated competition between beetle larvae and microbes by providing beetles with either fresh carcasses or old ones that had reached advanced putrefaction. We found evidence for a strong detrimental effect of microbial competition on beetle reproductive success and larval growth. We also found that parental care can largely compensate for these negative effects, and that when given a choice between old and fresh carcasses, parents tended to choose to rear their broods on the latter. We conclude that parental care and carcass avoidance can function as antimicrobial strategies in this species. Our findings extend the range of behavioral counterstrategies used by animals during competition with microbes, and generalize the work of Janzen to include competition between microbes and insects that rely on carrion as an obligate resource for breeding and not just as an opportunistic meal.

  11. Gametic embryogenesis and haploid technology as valuable support to plant breeding.

    PubMed

    Germanà, Maria Antonietta

    2011-05-01

    Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders' search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.

  12. Expansion of the gateway multisite recombination cloning toolkit.

    PubMed

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  13. Protection of genetic heritage in the era of cloning

    PubMed Central

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep. This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  14. Protection of genetic heritage in the era of cloning.

    PubMed

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep.This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity.

  15. Protection of genetic heritage in the era of cloning.

    PubMed

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep.This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  16. Breed-specific reference intervals for assessing thyroid function in seven dog breeds.

    PubMed

    Hegstad-Davies, Rebecca L; Torres, Sheila M F; Sharkey, Leslie C; Gresch, Sarah C; Muñoz-Zanzi, Claudia A; Davies, Peter R

    2015-11-01

    Thyroxine (T4), free T4 (FT4), and thyrotropin (TSH) concentrations were measured in serum from 693 healthy representatives from 7 dog breeds (Alaskan Malamute, Collie, English Setter, Golden Retriever, Keeshond, Samoyed, or Siberian Husky) to determine whether breed-specific reference intervals (RIs) are warranted. Veterinarians reviewed the health history, performed a physical examination, and approved laboratory data for the enrolled dogs. Many purebred dogs had T4 and FT4 concentrations that were at, or below, the lower limits previously determined for non-breed-specific RIs. Mean concentrations of T4, FT4, and TSH varied significantly among breeds. The range of mean concentration of T4 (19.7 nmol/L [1.53 µg/dL] in English Setters to 29.0 nmol/L [2.25 µg/dL] in Keeshonds) and FT4 (12.6 pmol/L [0.98 ng/dL] in English Setters to 20.2 pmol/L [1.57 ng/dL] in Samoyeds) was considerable. Median TSH values ranged from 6.10 mIU/L (0.07 ng/mL; Alaskan Malamute and Golden Retriever) to 17.6 mIU/L (0.26 ng/mL; Collie). Mean T4 and FT4 concentrations were higher in females. Increasing age was associated with decreasing T4 and FT4, and increasing TSH concentration. The substantial ranges across breeds of measures of central tendency (mean, median) for all hormones indicate that breed-specific RIs are warranted. RIs encompassing the central 95% of reference values for all breeds combined, and for individual breeds, were calculated using nonparametric (TSH) and robust (T4, FT4) methods. Use of breed-specific RIs in combination with careful attention to the potential for pre-analytical and analytical variability in test results will improve thyroid function assessment in these breeds.

  17. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.

    PubMed

    Steinborn, R; Schinogl, P; Zakhartchenko, V; Achmann, R; Schernthaner, W; Stojkovic, M; Wolf, E; Müller, M; Brem, G

    2000-07-01

    Mammals have been cloned from adult donor cells. Here we report the first cases of mitochondrial DNA (mtDNA) heteroplasmy in adult mammalian clones generated from fetal and adult donor cells. The heteroplasmic clones included a healthy cattle equivalent of the sheep Dolly, for which a lack of heteroplasmy was reported.

  18. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.

    PubMed

    Steinborn, R; Schinogl, P; Zakhartchenko, V; Achmann, R; Schernthaner, W; Stojkovic, M; Wolf, E; Müller, M; Brem, G

    2000-07-01

    Mammals have been cloned from adult donor cells. Here we report the first cases of mitochondrial DNA (mtDNA) heteroplasmy in adult mammalian clones generated from fetal and adult donor cells. The heteroplasmic clones included a healthy cattle equivalent of the sheep Dolly, for which a lack of heteroplasmy was reported. PMID:10888867

  19. STRU-cloning: a fast, inexpensive and efficient cloning procedure applicable to both small scale and structural genomics size cloning.

    PubMed

    Bellini, Dom; Fordham-Skelton, Anthony P; Papiz, Miroslav Z

    2011-05-01

    We have developed a Single-Tube Restriction-based Ultrafiltration (STRU) cloning procedure that updates traditional ligation-dependent cloning to challenge the newer, faster and more efficient ligation-free techniques and could make it the method of choice. STRU-cloning employs centrifugal filter units with membrane of suitable cut off to remove small unwanted DNA fragments created during restriction of plasmids or PCR products. Heat inactivation, of restriction enzymes, followed by DNA ligation is then performed on the filtrate. By removing the agarose gel electrophoresis DNA purification step from the traditional protocol, which is time consuming and is known to be the cause of ligation problems, STRU-cloning becomes fast, very efficient, inexpensive and offers the highest degree of cloning flexibility by using restriction sites and can be performed in a single tube. This novel agarose gel-free cloning procedure provides benefits for both small and large scale cloning projects. Unlike traditional cloning it can be easily implemented as a fully automated process at very low costs. PMID:21052867

  20. Polymorphisms of KAP6, KAP7, and KAP8 genes in four Chinese sheep breeds.

    PubMed

    Liu, Y X; Shi, G Q; Wang, H X; Wan, P C; Tang, H; Yang, H; Guan, F

    2014-04-30

    High glycine-tyrosine proteins (HGTPs), also known as keratin-associated proteins (KAPs), play a key role in the major structures and mechanical properties of wool fiber. Sheep HGTPs consist of three multigene families: KAP6, KAP7, and KAP8 genes. Polymorphisms of these three genes have been proposed to have important effects on wool fiber traits. The aim of the present study was to identify polymorphisms of the KAP6, KAP7, and KAP8 genes in four sheep breeds, including Chinese Merino superfine wool sheep, Hu sheep, a Merino x Hu crossed breed, and Romney sheep. Polymerase chain reaction (PCR) product direct sequencing, PCR-single-strand conformation polymorphism, and cloned sequencing methods were used to find genetic variation and identify polymorphisms in these genes. The Mutation Surveyor v3.97 software was used to analyze the sequences. These methods revealed six different sequences of the KAP6 gene, two different sequences of the KAP7 gene, and five different sequences of the KAP8 gene. Accordingly, three (with frequencies>1%) single nucleotide polymorphisms (SNPs) of the KAP6 gene, one SNP of the KAP7 gene, and five SNPs of the KAP8 gene were detected. Interestingly, some of these sequences were present in only certain sheep breeds, thereby suggesting that these special allele sequences could be used as candidate genes of wool characteristics in further studies.

  1. Genetic stability in the Icelandic horse breed.

    PubMed

    Campana, M G; Stock, F; Barrett, E; Benecke, N; Barker, G W W; Seetah, K; Bower, M A

    2012-08-01

    Despite the Icelandic horse enjoying great popularity worldwide, the breed's gene pool is small. This is because of a millennium of isolation on Iceland, population crashes caused by natural disasters and selective breeding. Populations with small effective population sizes are considered to be more at risk of selection pressures such as disease and environmental change. By analysing historic and modern mitochondrial DNA sequences and nuclear coat colour genes, we examined real-time population dynamics in the Icelandic horse over the last 150 years. Despite the small gene pool of this breed, we found that the effective population size and genetic profile of the Icelandic horse have remained stable over the studied time period.

  2. Biotechnological approaches to breeding and cultivation of ornamental crop plants.

    PubMed

    Khayat, E

    1990-01-01

    Recent advances in plant biotechnology hold great potential for the ornamental horticulture industry. In addition to conventional methods, breeders can now introduce genetic variation into ornamentals by the application of recombinant DNA technology. This technology is particularly useful for effecting changes in phenotypic expression encoded by single genes such as corolla and foliage color and texture, stem length, scent, temporal regulation of flowering, vase life of cut flowers and resistance to stressful environments. In part, the commercial success of this technology will depend on developing reliable methods of transformation of ornamentals and on the stability of the introduced or altered genes. In addition, new and improved strategies of in vitro culture have been commercially implemented for the propagation and breeding of a wide variety of ornamental crops and will undoubtedly play a major role in the screening and propagation of chimeric plants developed by recombinant DNA technology.

  3. Positional Cloning by Linkage Disequilibrium

    PubMed Central

    Maniatis, Nikolas; Collins, Andrew; Gibson, Jane; Zhang, Weihua; Tapper, William; Morton, Newton E.

    2004-01-01

    Recently, metric linkage disequilibrium (LD) maps that assign an LD unit (LDU) location for each marker have been developed (Maniatis et al. 2002). Here we present a multiple pairwise method for positional cloning by LD within a composite likelihood framework and investigate the operating characteristics of maps in physical units (kb) and LDU for two bodies of data (Daly et al. 2001; Jeffreys et al. 2001) on which current ideas of blocks are based. False-negative indications of a disease locus (type II error) were examined by selecting one single-nucleotide polymorphism (SNP) at a time as causal and taking its allelic count (0, 1, or 2, for the three genotypes) as a pseudophenotype, Y. By use of regression and correlation, association between every pseudophenotype and the allelic count of each SNP locus (X) was based on an adaptation of the Malecot model, which includes a parameter for location of the putative gene. By expressing locations in kb or LDU, greater power for localization was observed when the LDU map was fitted. The efficiency of the kb map, relative to the LDU map, to describe LD varied from a maximum of 0.87 to a minimum of 0.36, with a mean of 0.62. False-positive indications of a disease locus (type I error) were examined by simulating an unlinked causal SNP and the allele count was used as a pseudophenotype. The type I error was in good agreement with Wald’s likelihood theorem for both metrics and all models that were tested. Unlike tests that select only the most significant marker, haplotype, or haploset, these methods are robust to large numbers of markers in a candidate region. Contrary to predictions from tagging SNPs that retain haplotype diversity, the sample with smaller size but greater SNP density gave less error. The locations of causal SNPs were estimated with the same precision in blocks and steps, suggesting that block definition may be less useful than anticipated for mapping a causal SNP. These results provide a guide to

  4. Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops.

    PubMed

    Pupilli, Fulvio; Barcaccia, Gianni

    2012-06-30

    Apomixis is desirable in agriculture as a reproductive strategy for cloning plants by seeds. Because embryos derive from the parthenogenic development of apomeiotic egg cells, apomixis excludes fertilization in addition to meiotic segregation and recombination, resulting in offspring that are exact replicas of the parent. Introgression of apomixis from wild relatives to crop species and transformation of sexual genotypes into apomictically reproducing ones are long-held goals of plant breeding. In fact, it is generally accepted that the introduction of apomixis into agronomically important crops will have revolutionary implications for agriculture. This review deals with the current genetic and molecular findings that have been collected from model species to elucidate the mechanisms of apomeiosis, parthenogenesis and apomixis as a whole. Our goal is to critically determine whether biotechnology can combine key genes known to control the expression of the processes miming the main components of apomixis in plants. Two natural apomicts, as the eudicot Hypericum perforatum L. (St. John's wort) and the monocot Paspalum spp. (crowngrass), and the sexual model species Arabidopsis thaliana are ideally suited for such investigations at the genomic and biotechnological levels. Some novel views and original concepts have been faced on this review, including (i) the parallel between Y-chromosome and apomixis-bearing chromosome (e.g., comparative genomic analyses revealed common features as repression of recombination events, accumulation of transposable elements and degeneration of genes) from the most primitive (Hypericum-type) to the most advanced (Paspalum-type) in evolutionary terms, and (ii) the link between apomixis and gene-specific silencing mechanisms (i.e., likely based on chromatin remodelling factors), with merging lines of evidence regarding the role of auxin in cell fate specification of embryo sac and egg cell development in Arabidopsis. The production of

  5. Age-specific breeding in Emperor Geese

    USGS Publications Warehouse

    Schmutz, J.A.

    2000-01-01

    I studied the frequency with which Emperor Geese (Chen canagica) of known age were observed breeding on the Yukon-Kuskokwim Delta, Alaska. No one- or two-year old geese were observed on nests. Three-year old geese bred at a lower rate than four-year old geese. These data suggest that patterns of age-specific breeding in Emperor Geese are similar to other sympatrically nesting, large bodied geese [Greater White-fronted Geese (Anser albifrons)] but delayed relative to smaller bodied geese [Cackling Canada Geese (Branta canadensis minima) and Pacific Black Brant (B. bernicla nigricans)].

  6. Reversibility of continuous-variable quantum cloning

    SciTech Connect

    Filip, Radim; Marek, Petr; Fiurasek, Jaromir

    2004-01-01

    We analyze a reversibility of optimal Gaussian 1{yields}2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anticlone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial reversal of the cloning using only local operations and classical communication (LOCC) and we show that this procedure converts the symmetric cloner to an asymmetric cloner. Further, we discuss a distributed LOCC reversal in optimal 1{yields}M Gaussian cloning of coherent states which transforms it to optimal 1{yields}M{sup '} cloning for M{sup '}cloning as a possible eavesdropping attack on quantum communication link, the reversibility can be utilized to improve the security of the link even after the attack.

  7. Cloning of endangered mammalian species: any progress?

    PubMed

    Loi, Pasqualino; Galli, Cesare; Ptak, Grazyna

    2007-05-01

    Attempts through somatic cell nuclear transfer to expand wild populations that have shrunk to critical numbers is a logical extension of the successful cloning of mammals. However, although the first mammal was cloned 10 years ago, nuclear reprogramming remains phenomenological, with abnormal gene expression and epigenetic deregulation being associated with the cloning process. In addition, although cloning of wild animals using host oocytes from different species has been successful, little is known about the implication of partial or total mitochondrial DNA heteroplasmy in cloned embryos, fetuses and offspring. Finally, there is a need for suitable foster mothers for inter-intra specific cloned embryos. Considering these issues, the limited success achieved in cloning endangered animals is not surprising. However, optimism comes from the rapid gain in the understanding of the molecular clues underlying nuclear reprogramming. If it is possible to achieve a controlled reversal of the differentiated state of a cell then it is probable that other issues that impair the cloning of endangered animals, such as the inter-intra species oocyte or womb donor, will be overcome in the medium term.

  8. The ethics of human reproductive cloning.

    PubMed

    Strong, Carson

    2005-03-01

    This article addresses the question of whether human reproductive cloning could be ethically justifiable in at least some cases involving infertile couples who would choose cloning as a way to have a genetically related child. At present, the risk of congenital anomalies constitutes a compelling argument against human reproductive cloning. The article explores whether reproductive cloning could be ethically justifiable if, at some future time, cloning becomes possible without an elevated risk of anomalies. It is argued that freedom to use cloning is a form of procreative freedom and, as such, deserves respect. All of the objections that have been raised against human reproductive cloning fall under three main categories: those that appeal to the interests of the child, those based on consequences for society, and those arising from teleological views. Objections that appeal to the child's interests are, in turn, of two main kinds: consequentialist and deontological. All of these types of objections are examined, and it is found that each involves serious problems that prevent it from being a reasonable objection in the context of the infertility cases considered. It is concluded that human reproductive cloning would be ethically justifiable in at least some cases involving infertile couples, provided that it could be performed without an elevated risk of anomalies.

  9. To breed or not to breed: a seabird's response to extreme climatic events.

    PubMed

    Cubaynes, Sarah; Doherty, Paul F; Schreiber, E A; Gimenez, Olivier

    2011-04-23

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark-recapture dataset involving more than 11,000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities.

  10. To breed or not to breed: a seabird's response to extreme climatic events.

    PubMed

    Cubaynes, Sarah; Doherty, Paul F; Schreiber, E A; Gimenez, Olivier

    2011-04-23

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark-recapture dataset involving more than 11,000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities. PMID:20943677

  11. Estimating superpopulation size and annual probability of breeding for pond-breeding salamanders

    USGS Publications Warehouse

    Kinkead, K.E.; Otis, D.L.

    2007-01-01

    It has long been accepted that amphibians can skip breeding in any given year, and environmental conditions act as a cue for breeding. In this paper, we quantify temporary emigration or nonbreeding probability for mole and spotted salamanders (Ambystoma talpoideum and A. maculatum). We estimated that 70% of mole salamanders may skip breeding during an average rainfall year and 90% may skip during a drought year. Spotted salamanders may be more likely to breed, with only 17% avoiding the breeding pond during an average rainfall year. We illustrate how superpopulations can be estimated using temporary emigration probability estimates. The superpopulation is the total number of salamanders associated with a given breeding pond. Although most salamanders stay within a certain distance of a breeding pond for the majority of their life spans, it is difficult to determine true overall population sizes for a given site if animals are only captured during a brief time frame each year with some animals unavailable for capture at any time during a given year. ?? 2007 by The Herpetologists' League, Inc.

  12. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.

    PubMed

    Jacobsen, Evert; Schouten, Henk J

    2007-05-01

    There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.

  13. [Human clone or a delayed twin?].

    PubMed

    Szybalski, W

    2001-01-01

    Cloning is a natural mode of asexual reproduction for many organisms, which results in nearly identical copies of cells or organisms. In animals, including humans, identical twins are an example of natural cloning. In the case of sheep, scientists succeeded to produce the "delayed" identical twin. Dolly, of a mature animal by a rather complex and inefficient procedure. However, if this procedure is perfected, it will be useful to clone beloved pets and important laboratory animals. It will be much less suited for making (cloning) "delayed twin" of mature persons because of high costs together with present experimental uncertainties. The only required regulation for human cloning is that somebody must be legally, including financially, responsible for the results of such novel reproductive technique.

  14. [Human cloning in Muslim and Arab law].

    PubMed

    Aldeeb Abu-Sahlieh, Sami A

    2009-01-01

    Cloning is a modern medical procedure that Muslim religious authorities treat en resorting to the general principles established by classical Muslim law based on the Koran and the Sunnah of Muhhamad as the messenger of God. In this regard, human beings are not capable of deciding what is or what is not lawful without resorting to divine norms. Cloning clashes with several principles. Firstly, the principle of the respect for life in relation to surpernumeraries, but Muslim authors are not in unanimous agreement on the determination of the moment at which life begins. Secondly, is the respect of progeny: cloning could only take place between a married couple. But even if these two principles are respected, cloning poses two major problems: the diversity of species expounded by the Koran and the Sunnah and a lack of interest. Which explains the quasi-unanimous opposition of Muslim writings regarding cloning.

  15. "Goodbye Dolly?" The ethics of human cloning.

    PubMed

    Harris, J

    1997-12-01

    The ethical implications of human clones have been much alluded to, but have seldom been examined with any rigour. This paper examines the possible uses and abuses of human cloning and draws out the principal ethical dimensions, both of what might be done and its meaning. The paper examines some of the major public and official responses to cloning by authorities such as President Clinton, the World Health Organisation, the European parliament, UNESCO, and others and reveals their inadequacies as foundations for a coherent public policy on human cloning. The paper ends by defending a conception of reproductive rights of "procreative autonomy" which shows human cloning to be not inconsistent with human rights and dignity.

  16. Chorioallantoic placenta defects in cloned mice

    SciTech Connect

    Wakisaka-Saito, Noriko; Kohda, Takashi . E-mail: tkhoda.epgn@tmd.ac.jp; Inoue, Kimiko; Ogonuki, Narumi; Miki, Hiromi; Hikichi, Takafusa; Mizutani, Eiji; Wakayama, Teruhiko; Kaneko-Ishino, Tomoko; Ogura, Atsuo; Ishino, Fumitoshi

    2006-10-13

    Somatic cell nuclear transfer technology has been applied to produce live clones successfully in several mammalian species, but the success rates are very low. In mice, about half of the nuclear transfer embryos undergo implantation, but very few survive to term. We undertook detailed histological analyses of placentas from cloned mouse embryos generated from cumulus cells at 10.5 dpc of pregnancy, by which stage most clones have terminated their development. At 10.5 dpc, the extraembryonic tissues displayed several defined histological patterns, each reflecting their stage of developmental arrest. The most notable abnormality was the poor development of the spongiotrophoblast layer of diploid cells. This is in contrast to the placental hyperplasia frequently observed in somatic clones at 12.5 dpc or later stages. A variety of structural abnormalities were also observed in the embryos. Both placental and embryonic defects likely contribute to the low success rate of the mouse clones.

  17. "Goodbye Dolly?" The ethics of human cloning.

    PubMed Central

    Harris, J

    1997-01-01

    The ethical implications of human clones have been much alluded to, but have seldom been examined with any rigour. This paper examines the possible uses and abuses of human cloning and draws out the principal ethical dimensions, both of what might be done and its meaning. The paper examines some of the major public and official responses to cloning by authorities such as President Clinton, the World Health Organisation, the European parliament, UNESCO, and others and reveals their inadequacies as foundations for a coherent public policy on human cloning. The paper ends by defending a conception of reproductive rights of "procreative autonomy" which shows human cloning to be not inconsistent with human rights and dignity. PMID:9451604

  18. Normal telomere lengths found in cloned cattle.

    PubMed

    Tian, X C; Xu, J; Yang, X

    2000-11-01

    Success of cloning using adult somatic cells has been reported in sheep, mice and cattle. The report that 'Dolly' the sheep, the first clone from an adult mammal, inherited shortened telomeres from her cell donor and that her telomeres were further shortened by the brief culture of donor cells has raised serious scientific and public concerns about the 'genetic age' and potential developmental problems of cloned animals. This observation was challenged by a recent report that showed calves cloned from fetal cells have longer telomeres than their age-matched controls. The question remains whether Dolly's short telomeres were an exception or a general fact, which would differ from the telomeres of fetal-derived clones. PMID:11062462

  19. [Human clone or a delayed twin?].

    PubMed

    Szybalski, W

    2001-01-01

    Cloning is a natural mode of asexual reproduction for many organisms, which results in nearly identical copies of cells or organisms. In animals, including humans, identical twins are an example of natural cloning. In the case of sheep, scientists succeeded to produce the "delayed" identical twin. Dolly, of a mature animal by a rather complex and inefficient procedure. However, if this procedure is perfected, it will be useful to clone beloved pets and important laboratory animals. It will be much less suited for making (cloning) "delayed twin" of mature persons because of high costs together with present experimental uncertainties. The only required regulation for human cloning is that somebody must be legally, including financially, responsible for the results of such novel reproductive technique. PMID:11684762

  20. Costs Associated with Equine Breeding in Kentucky

    NASA Astrophysics Data System (ADS)

    Walker, Cassandra L.

    There were approximately 9 million horses in the United States having a 102 billion impact on the U.S. economy (AHC, 2005). Over 1 million of those horses were involved in the breeding sector. In Kentucky, nearly 18% of the horse population have been involved in breeding. Managing an equine enterprise can be difficult, particularly given that many who undertake such endeavors do not have a background or education in business management. Kentucky Cooperative Extension has produced interactive spreadsheets to help horse owners better understand the costs associated with owning horses or managing certain equine businesses, including boarding and training operations. However, there has been little support for breeders. Therefore, the objectives of this study were to provide owners with a list of services offered for breeding and the costs associated with those services. Survey questions were created from a list of topics pertinent to equine breeding and from that list of questions, an electronic survey was created. The survey was sent via Qualtrics Survey Software to collect information on stallion and mare management costs as well as expenses related to owning and breeding. Question topics included veterinary and housing costs, management and advertising expenses, and membership fees. A total of 78 farms were selected from the 2013 breeder's listings for the Kentucky Quarter Horse Association (n = 39) and the Kentucky Thoroughbred Farm Managers' Club (n = 26), and other breed association contacts (n = 13). These farms were selected from the lists by outside individuals who were not related to the project. Participants were asked to answer all questions relevant to the farm. After the initial survey distribution, follow-up e-mails and phone calls were conducted in order to answer any questions participants might have had about the survey. Survey response rate was 32.1% (25 of 78 surveys returned). Farms in Kentucky had an average of two farm-owned and two outside

  1. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries.

    PubMed

    Schramm, Andreas; Fuchs, Bernhard M; Nielsen, Jeppe L; Tonolla, Mauro; Stahl, David A

    2002-11-01

    A method is presented for fluorescence in situ hybridization (FISH) of 16S rRNA gene clones targeting in vivo transcribed plasmid inserts (Clone-FISH). Several different cloning approaches and treatments to generate target-rRNA in the clones were compared. Highest signal intensities of Clone-FISH were obtained using plasmids with a T7 RNA polymerase promoter and host cells with an IPTG-inducible T7 RNA polymerase. Combined IPTG-induction and chloramphenicol treatment of those clones resulted in FISH signals up to 2.8-fold higher than signals of FISH with probe EUB338 to cells of Escherichia coli. Probe dissociation curves for three oligonucleotide probes were compared for reference cells containing native (FISH) or cloned (Clone-FISH) target sequences. Melting behaviour and calculated T(d) values were virtually identical for clones and cells, providing a format to use 16S rRNA gene clones instead of pure cultures for probe validation and optimization of hybridization conditions. The optimized Clone-FISH protocol was also used to screen an environmental clone library for insert sequences of interest. In this application format, 13 out of 82 clones examined were identified to contain sulphate-reducing bacterial rRNA genes. In summary, Clone-FISH is a simple and fast technique, compatible with a wide variety of cloning vectors and hosts, that should have general utility for probe validation and screening of clone libraries. PMID:12460279

  2. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology. PMID:25595050

  3. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  4. Combination solar hothouse and silkworm breeding house

    SciTech Connect

    Vardiashvili, A.B.; Muradov, M.; Kim, V.D.

    1980-01-01

    The basic arrangement is shown for a combination silkworm breeding house and solar hothouse with subsoil irrigation and accumulation of heat; it employs a semicylindrical film covering. The process of accumulation of solar heat in the subsoil pebble stores, in water-heater banks, and in the soil is described.

  5. A brief genomic history of tomato breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report a brief genomic history of tomato breeding by analyzing the genomes of 360 diverse accessions collected all over the world. These included 333 accessions from the red fruited clade (S. pimpinellifolium, S. l. var. cerasiforme, and S. lycopersicum) that represent various geographical o...

  6. Marker-Assisted Selection in Soybean Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the late 1990's Nevin Young expressed a cautious optimism for the future of marker-assisted breeding. Although marker-assisted selection (MAS) for soybean cyst nematode (SCN; Heterodera glycines) was offered as a case study on how genotype-based selection could be useful and cost-effective to a p...

  7. Breeding for phytonutrient content; examples from watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for high phytonutrient fruits and vegetables can be a fairly straightforward endeavor when the compounds of interest produce a visible effect or the methods for quantifying the compounds simple and inexpensive. Lycopene in tomatoes and watermelon is one such compound, since the amount of r...

  8. Biotechnology and apple breeding in Japan.

    PubMed

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  9. [Bayesian methods for genomic breeding value estimation].

    PubMed

    Wang, Chonglong; Ding, Xiangdong; Liu, Jianfeng; Yin, Zongjun; Zhang, Qin

    2014-02-01

    Estimation of genomic breeding values is the key step in genomic selection. The successful application of genomic selection depends on the accuracy of genomic estimated breeding values, which is mostly determined by the estimation method. Bayes-type and BLUP-type methods are the two main methods which have been widely studied and used. Here, we systematically introduce the currently proposed Bayesian methods, and summarize their effectiveness and improvements. Results from both simulated and real data showed that the accuracies of Bayesian methods are higher than those of BLUP methods, especially for the traits which are influenced by QTL with large effect. Because the theories and computation of Bayesian methods are relatively complicated, their use in practical breeding is less common than BLUP methods. However, with the development of fast algorithms and the improvement of computer hardware, the computational problem of Bayesian methods is expected to be solved. In addition, further studies on the genetic architecture of traits will provide Bayesian methods more accurate prior information, which will make their advantage in accuracy of genomic estimated breeding values more prominent. Therefore, the application of Bayesian methods will be more extensive.

  10. Genomics to feed a switchgrass breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of improved cultivars is one of three pillars, along with sustainable production and efficient conversion, required for dedicated cellulosic bioenergy crops to succeed. Breeding new cultivars is a long, slow process requiring patience, dedication, and motivation to realize gains and adva...

  11. Breed differences in behavioural development in kittens.

    PubMed

    Marchei, P; Diverio, S; Falocci, N; Fatjó, J; Ruiz-de-la-Torre, J L; Manteca, X

    2009-03-23

    Differences in behaviour of pure breed cats have been suggested but not wholly investigated. Oriental/Siamese/Abyssinian (OSA) kittens (n=43) were weekly compared with Norwegian Forest (NFO) kittens (n=39) from the 4th to the 10th week of age in a repeated Open Field Test (OFT) paradigm. Heart rate (HR) and rectal temperature (RT) before and after the test, and behavioural responses during the OFT were recorded. Behaviours registered were analysed by focal animal sampling. Significant breed differences were found; cats of the northern zones (NFO) seem to develop earlier thermoregulatory abilities. Precocious opening of eyes, higher locomotion scores and longer time spent standing, observed in OSA kittens may indicate an earlier neurological development. Inter breed differences recorded for exploration and locomotion seem to indicate coping style divergences: in the OFT challenging situation OSA kittens presented higher emotional tachycardia and performed more passively, with a faster decline in exploration and locomotion scores. NFO kittens exerted a more active behaviour as they spent more time exploring the arena and in escape attempts. Notwithstanding OSA and NFO cat selection was mainly aimed to improve divergent morphological traits, some different behavioural and physiological traits seem to have been maintained or co-selected within each breed.

  12. Stamina and Clout Define This Rare Breed.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1991-01-01

    Takeover artists are a rare breed. Persons hired to put bankrupt school systems back on the road to academic solvency need stamina, clout, and plenty of experience. For all their state-given powers, takeover superintendents must identify key constituencies, build bridges, and promote belief in change from within. (MLH)

  13. Breeding lettuce for fresh-cut processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is increasingly consumed in fresh-cut packaged salads. New cultivars specifically bred for this use can enhance production and processing efficiency and extend shelf life. Cultivars with novel head architectures and leaf traits are being released by private and public breeding programs with ...

  14. Biotechnology and apple breeding in Japan

    PubMed Central

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  15. A New Breed of Environmental Film

    ERIC Educational Resources Information Center

    Malamud, Randy

    2008-01-01

    In this article, the author reports how today's environmental film festivals feature a new breed of documentary that offer nuanced narratives about intricate technologies. The author relates that the environmental films he grew up with sedately depicted the quiet sublimity of the wilderness. Today's films, the author observes, aim far beyond a…

  16. Busting the New Breed of Plagiarist.

    ERIC Educational Resources Information Center

    Bugeja, Michael

    2000-01-01

    The new breed of plagiarists knows that stealing from the World Wide Web is quicker than stealing from the library at universities that typically provide online services. The new plagiarists have been weaned on chat rooms, guest books, news groups, mailing lists, MOOs, and MUDs--myriad online ways to procrastinate when final papers are due. The…

  17. Rapid cyling plant breeding in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance or tolerance to huanglongbing (HLB) and other important traits have been identified in several citrus types and relatives and associated markers should be identified soon. What is urgently needed in addition is an accelerated strategy for citrus variety breeding. Identification and use of...

  18. The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species.

    PubMed

    Lehikoinen, Aleksi; Ranta, Esa; Pietiäinen, Hannu; Byholm, Patrik; Saurola, Pertti; Valkama, Jari; Huitu, Otso; Henttonen, Heikki; Korpimäki, Erkki

    2011-02-01

    The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm's owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973-2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species.

  19. The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species.

    PubMed

    Lehikoinen, Aleksi; Ranta, Esa; Pietiäinen, Hannu; Byholm, Patrik; Saurola, Pertti; Valkama, Jari; Huitu, Otso; Henttonen, Heikki; Korpimäki, Erkki

    2011-02-01

    The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm's owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973-2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species. PMID:20665047

  20. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  1. Post-mortem re-cloning of a transgenic red fluorescent protein dog.

    PubMed

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun

    2011-12-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.

  2. Stress and the timing of breeding: glucocorticoid-luteinizing hormones relationships in an arctic seabird.

    PubMed

    Goutte, Aurélie; Angelier, Frédéric; Chastel, Céline Clément; Trouvé, Colette; Moe, Børge; Bech, Claus; Gabrielsen, Geir W; Chastel, Olivier

    2010-10-01

    In birds, stressful environmental conditions delay the timing of breeding but the underlying mechanisms are poorly understood. The stress hormone corticosterone appears to be a good candidate for mediating the decision to breed and when to start egg-laying, via a possible inhibition of luteinizing hormone (LH) and sex-steroids production. We used luteinizing hormone releasing hormone (LHRH) challenge in pre-laying male and female Black-legged kittiwakes (Rissa tridactyla) to test whether LH and testosterone secretion were depressed by elevated corticosterone levels. Females bearing high baseline corticosterone levels showed reduced baseline LH levels and a low ability to release LH, following LHRH challenge. Further, females bearing low baseline LH levels and elevated baseline corticosterone levels were more likely to skip breeding. However, non-breeding females were physiologically primed for breeding, since they mounted high LHRH-induced LH release. Egg-laying date was advanced in good body condition females but was unaffected by hormones secretion. In males, corticosterone levels had no effect on LH and/or testosterone secretion and did not affect their decision to breed. Interestingly, males with high LHRH-induced testosterone release bred early. Our study highlights clear sex-differences in the HPG sensitivity to stress hormones in pre-laying kittiwakes. Because females have to store body reserves and to build up the clutch, they would be more sensitive to stress than males. Moreover, intrasexual competition could force male kittiwakes to acquire reproductive readiness earlier in the season than females and to better resist environmental perturbations. We suggest that high testosterone releasing ability would mediate behavioural adjustments such as courtship feeding, which would stimulate early egg-laying in females.

  3. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system.

    PubMed

    Gaynor, P; Wells, D N; Oback, B

    2005-01-01

    Mammalian cloning by somatic nuclear transfer has great potential for developing medical applications such as biopharmaceuticals and generation of tissues for transplantation. For agricultural applications, it allows the rapid dissemination of genetic gain in livestock breeding. The maximisation of that potential requires improvements to overall cloning technology, especially with respect to increasing cloning efficiency and throughput rates in cloned embryo production. A zona-free embryo reconstruction system was developed to increase cloning throughput and ease of operation. Central to this system is a modified electrofusion procedure for nuclear transfer. Cytoplast-donor cell couplets were placed in a custom-designed 'parallel plate' electrode chamber. A 1 MHz sinusoidal AC dielectrophoresis alignment electric field of 6-10 kV m(-1) was applied for 5-10s. The couplets were then fused using 2 x 10 micros rectangular DC-field pulses (150-200 kV m(-1)), followed by application of the AC field (6-10 kV m(-1)) for another 5-10 s. Fusion was performed in hypoosmolar buffer (210 mOsm). Automated alignment of up to 20 couplets at a time has been achieved, resulting in greatly improved fusion throughput rates (2.5-fold increase) and improved fusion yields (1.3-fold increase), compared with commonly followed zona-intact protocols.

  4. Breeding productivity of Smith Island black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Jorde, D.G.; Olsen, G.H.; Stotts, D.B.; Harrison, M.K.; Perry, M.C.

    2002-01-01

    We investigated the breeding performance of American black ducks (Anas rubripes) on Smith Island, Chesapeake Bay, to improve our understanding of island black duck breeding ecology and to make management recommendations to enhance productivity. During 1995-96, we implanted 56 female black ducks with 20-g radio transmitters and tracked 35 of the individuals through the breeding season to locate nests, determine nest fate, and identify brood habitat. We also increased preseason banding efforts and compared capture characteristics over 12 years with those from the Deal Island Wildlife Management Area, a banding site on the mainland of Tangier Sound. A low rate of nesting (37%), lack of renesting, and poor hatching success (31%) indicated that island salt marsh habitats present a harsh environment for breeding black ducks. Black ducks located 11 of 13 nests (85%) in black needlerush (Juncus roemerianus) marsh where they were vulnerable to flooding from extreme tides and to egg predators. No nests were found on forested tree hammocks, a feature that distinguishes Smith Island from nearby South Marsh and Bloodsworth Islands. Nest predators included red foxes (Vulpes vulpes), herring gulls (Larus argentams), fish crows (Corvus ossifragus), and, potentially, Norway rats (Rattus norvegicus). Unlike mainland red foxes, foxes radio tracked on Smith Island were found to be capable swimmers and effective low marsh predators. We found shoreline meadows of widgeon grass (Ruppia maritima) to be important foraging sites for black ducks and suspected that the virtual absence of fresh water in this high salinity environment (1217+ ppt) to incur some cost in terms of growth and survival of ducklings. Preseason bandings revealed a high proportion of banded adults and a strong positive correlation in age ratios with the Deal Island banding site. This latter finding strongly suggests a negative universal effect of storm tides on nest success for Tangier Sound black ducks. Management to

  5. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    SciTech Connect

    Zhao, L.; Cluggish, B.; Kim, J. S.; Pardo, R.; Vondrasek, R.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recent charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.

  6. Breeding season of wolves, Canis lupus, in relation to latitude

    USGS Publications Warehouse

    Mech, L.D.

    2002-01-01

    A significant relationship was found between Wolf (Canis lupus) breeding dates and latitudes between 12 deg. and 80 deg. N, with Wolves breeding earlier at lower latitudes, probably because of differences in seasonality.

  7. Breeding season of Wolves, Canis lupus, in relation to latitude

    USGS Publications Warehouse

    Mech, L.D.

    2002-01-01

    A significant relationship was found between Wolf (Canis lupus) breeding dates and latitudes between 12?? and 80??N, with Wolves breeding earlier at lower latitudes, probably because of differences in seasonality.

  8. Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning.

    PubMed

    Cho, Seong-Keun; Kim, Jae-Hwan; Park, Jong-Yi; Choi, Yun-Jung; Bang, Jae-Il; Hwang, Kyu-Chan; Cho, Eun-Jeong; Sohn, Sea-Hwan; Uhm, Sang Jun; Koo, Deog-Bon; Lee, Kyung-Kwang; Kim, Teoan; Kim, Jin-Hoi

    2007-12-01

    Somatic cell nuclear transfer (scNT) is a useful way to create cloned animals. However, scNT clones exhibit high levels of phenotypic instability. This instability may be due to epigenetic reprogramming and/or genomic damage in the donor cells. To test this, we produced transgenic pig fibroblasts harboring the truncated human thrombopoietin (hTPO) gene and used them as donor cells in scNT to produce first-generation (G1) cloned piglets. In this study, 2,818 scNT embryos were transferred to 11 recipients and five G1 piglets were obtained. Among them, a clone had a dimorphic facial appearance with severe hypertelorism and a broad prominent nasal bridge. The other clones looked normal. Second-generation (G2) scNT piglets were then produced using ear cells from a G1 piglet that had an abnormal nose phenotype. We reasoned that, if the phenotypic abnormality of the G1 clone was not present in the G2 and third-generation (G3) clones, or was absent in the G2 clones but reappeared in the G3 clones, the phenotypic instability of the G1 clone could be attributed to faulty epigenetic reprogramming rather than to inherent/accidental genomic damage to the donor cells. Blastocyst rates, cell numbers in blastocyst, pregnancy rates, term placenta weight and ponderal index, and birth weight between G1 and G2 clones did not differ, but were significantly (P < 0.05) lower than control age- and sex-matched piglets. Next, we analyzed global methylation changes during development of the preimplantation embryos reconstructed by donor cells used for the production of G1 and G2 clones and could not find any significant differences in the methylation patterns between G1 and G2 clones. Indeed, we failed to detect the phenotypic abnormality in the G2 and G3 clones. Thus, the phenotypic abnormality of the G1 clone is likely to be due to epigenetic dysregulation. Additional observations then suggested that expression of the hTPO gene in the transgenic clones did not appear to be the cause of the

  9. Economical quantum cloning in any dimension

    SciTech Connect

    Durt, Thomas; Fiurasek, Jaromir; Cerf, Nicolas J.

    2005-11-15

    The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine for qubits found in Phys. Rev. A 60, 2764 (1999). We prove the impossibility of constructing an economical version of the optimal universal 1{yields}2 cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional 1{yields}2 phase-covariant cloner, which optimally clones all balanced superpositions with arbitrary phases, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a slightly lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the 1{yields}2 Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2.

  10. Human embryo cloning prohibited in Hong Kong.

    PubMed

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  11. Human embryo cloning prohibited in Hong Kong.

    PubMed

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area. PMID:16331533

  12. FX cloning: a simple and robust high-throughput cloning method for protein expression.

    PubMed

    Geertsma, Eric R

    2014-01-01

    The immense amount of gene sequences available nowadays allows scientist to screen broadly for extraordinary proteins. Reliable cloning tools that allow the parallel processing of many targets are vital for the success of this strategy. The FX cloning procedure detailed here is such a straightforward and efficient tool. It is dedicated to the cloning of open reading frames (ORFs) with the final aim of expressing the corresponding proteins. FX cloning combines attractive features of established high-throughput cloning methods that were thus far not unified in one single method. It facilitates the subcloning of a sequence-verified ORF to a variety of expression vectors, but is sufficiently versatile to accept PCR products as well. Moreover, the common, but undesirable feature of extending target ORFs with long cloning-related sequences is avoided. It leads to the addition of only one amino acid to each side of the protein. As a consequence, only one primer pair or PCR product suffices to generate expression vectors for both N- and C-terminal translational fusions. FX cloning is highly efficient and economical in its use. The method is suited for high-throughput cloning projects and also for everyday cloning of single targets. FX cloning is based on the use of type IIS restriction enzymes and negative selection markers. The full procedure takes place in one pot in less than 3 h and does not require intermediate purification steps nor extensive handling. The method has proven to be very robust and suitable for all common expression systems.

  13. Variation in the prion protein sequence in Dutch goat breeds.

    PubMed

    Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M

    2016-10-01

    Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds. PMID:26991480

  14. Genetic diversity and relationship of Yunnan native cattle breeds and introduced beef cattle breeds.

    PubMed

    Yu, Ying; Lian, Lin-Sheng; Wen, Ji-Kun; Shi, Xian-Wei; Zhu, Fang-Xian; Nie, Long; Zhang, Ya-Ping

    2004-02-01

    In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and relationship in 134 samples belonging to two native cattle breeds from the Yunnan province of China (DeHong cattle and DiQing cattle) and four introduced beef cattle breeds (Brahman, Simmental, MurryGrey, and ShortHorn). Ten primers were used, and a total of 84 bands were scored, of which 63 bands (75.0%) were polymorphic. The genetic distance matrix was obtained by proportions of shared fragment. The results indicate that the Yunnnan DeHong cattle breed is closely related to the Brahman (Bos indicus), and the Yunnan DiQing cattle breed is closely related to the Simmental, ShortHorn, and MurryGrey (Bos taurus) breeds. Our results imply that Bos indicus and Bos taurus were the two main origins of Yunnan native cattle. The results also provide the basic genetic materials for conservation of cattle resources and crossbreeding of beef cattle breeds in South China. PMID:15068334

  15. (New hosts and vectors for genome cloning)

    SciTech Connect

    Not Available

    1991-01-01

    The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.

  16. Maternal genealogical patterns of chicken breeds sampled in Europe.

    PubMed

    Lyimo, C M; Weigend, A; Msoffe, P L; Hocking, P M; Simianer, H; Weigend, S

    2015-08-01

    The aim of this study was to investigate the maternal genealogical pattern of chicken breeds sampled in Europe. Sequence polymorphisms of 1256 chickens of the hypervariable region (D-loop) of mitochondrial DNA (mtDNA) were used. Median-joining networks were constructed to establish evolutionary relationships among mtDNA haplotypes of chickens, which included a wide range of breeds with different origin and history. Chicken breeds which have had their roots in Europe for more than 3000 years were categorized by their founding regions, encompassing Mediterranean type, East European type and Northwest European type. Breeds which were introduced to Europe from Asia since the mid-19th century were classified as Asian type, and breeds based on crossbreeding between Asian breeds and European breeds were classified as Intermediate type. The last group, Game birds, included fighting birds from Asia. The classification of mtDNA haplotypes was based on Liu et al.'s (2006) nomenclature. Haplogroup E was the predominant clade among the European chicken breeds. The results showed, on average, the highest number of haplotypes, highest haplotype diversity, and highest nucleotide diversity for Asian type breeds, followed by Intermediate type chickens. East European and Northwest European breeds had lower haplotype and nucleotide diversity compared to Mediterranean, Intermediate, Game and Asian type breeds. Results of our study support earlier findings that chicken breeds sampled in Europe have their roots in the Indian subcontinent and East Asia. This is consistent with historical and archaeological evidence of chicken migration routes to Europe.

  17. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  18. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  19. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...

  20. 50 CFR 15.26 - Approval of cooperative breeding programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Approval of cooperative breeding programs... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the...