Sample records for advanced cathode material

  1. Nanoprocess and nanoscale surface functionalization on cathode materials for advanced lithium-ion batteries.

    PubMed

    Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin

    2017-10-26

    Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.

  2. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    PubMed

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.

  3. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  4. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  5. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  6. Nanostructured high-energy cathode materials for advanced lithium batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g-1), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  7. Nanostructured high-energy cathode materials for advanced lithium batteries.

    PubMed

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  8. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  9. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  10. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  11. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  12. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ionmore » batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for

  13. Cathode materials review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V andmore » later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less

  14. A review of blended cathode materials for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  15. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz

  16. DARPA Advanced High Current Density Cathodes for Defense Applications: Development Phase

    DTIC Science & Technology

    1993-03-01

    Project Number 01-0624-07-0857 Report Number SAIC-93/1018 March 1, 1993 Science Apphcations Internatia Corporation An Employee-Owned Company OTIC a...Density Cathodes for Defense Applications: Development Phase FINAL REPORT Contract Number N00014-90-C-2118 Project Number 01-0624-07-0857 Report...of a typical Si-TaSi2 boule used for the eutectic advanced cathode materials in this project . The seed for the boule is at right in the photograph. v

  17. Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode

    DTIC Science & Technology

    2001-11-01

    The LiFePO4 Cathode DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Nanocomposite Electrodes for Advanced Lithium Batteries: The LiFePO4 Cathode Shoufeng Yang, Yanning Song, Peter Y. Zavalij and M. Stanley Whittingham...Institute for Materials Research, Binghamton University, Binghamton, NY 13902-1600, U.S.A. ABSTRACT LiFePO4 was successfully synthesized by high temperature

  18. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    PubMed Central

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  20. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-04-01

    Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

  1. Recent Progress in Advanced Materials for Lithium Ion Batteries

    PubMed Central

    Chen, Jiajun

    2013-01-01

    The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed. PMID:28809300

  2. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  3. Diagnostics of cathode material loss in cutting plasma torch

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Šonský, J.; Hlína, J.

    2014-07-01

    A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.

  4. Pyrite cathode material for a thermal battery

    NASA Astrophysics Data System (ADS)

    Pemsler, J. P.; Litchfield, J. K.

    1991-02-01

    The present invention relates in general to a synthetic cathode material for a molten salt battery and, more particularly, to a process of providing and using synthetic pyrite for use as a cathode in a thermal battery. These batteries, which have been successfully used in a number of military applications, include iron disulfide cathode material obtained as benefacted or from natural occurring pyrite deposits, or as a byproduct of flotation concentrate from the processing of base or noble metal ores.

  5. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  6. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE PAGES

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...

    2017-04-26

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  7. Advanced cathode materials for high-power applications

    NASA Astrophysics Data System (ADS)

    Amine, K.; Liu, J.; Belharouak, I.; Kang, S.-H.; Bloom, I.; Vissers, D.; Henriksen, G.

    In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF 6/spinel cells indicated a very significant degradation of capacity with cycling at 55 °C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C 2O 4) 2 ("LiBoB"). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 °C and better abuse tolerance, as well as excellent power. A second system based on LiNi 1/3Co 1/3Mn 1/3O 2 layered material was also investigated and its performance was compared to commercial LiNi 0.8Co 0.15Al 0.05O 2. Cells based on LiNi 1/3Co 1/3Mn 1/3O 2 showed lower power fade and better thermal safety than the LiNi 0.8Co 0.15Al 0.05O 2-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li 1.1Ni 1/3Co 1/3Mn 1/3O 2) exhibited excellent power performance that exceeded the FreedomCAR requirements.

  8. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae

    2016-12-14

    The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density,more » electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.« less

  9. The cathode material for a plasma-arc heater

    NASA Astrophysics Data System (ADS)

    Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.

    1983-11-01

    The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.

  10. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; ...

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li 1.2Ni 0.2Mn 0.6O 2 and spinel LiNi 0.5Mn 1.5O 4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution ofmore » the transition metal cations (M) and the oxygen. The as-fabricated layered Li 1.2Ni 0.2Mn 0.6O 2 is shown to have Li-rich Li 2MO 3 phase regions and Li-depleted Li(Ni 0.5Mn 0.5)O 2 regions while in the cycled layered Li 1.2Ni 0.2Mn 0.6O 2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi 0.5Mn 1.5O 4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  11. 2013 Estorm - Invited Paper - Cathode Materials Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1more » V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less

  12. Advanced Nanofiber-Based Lithium-Ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Toprakci, Ozan

    Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon

  13. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  14. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2001-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  15. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2003-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  16. Surface Modification Technique of Cathode Materials for LI-ION Battery

    NASA Astrophysics Data System (ADS)

    Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan

    Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.

  17. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  18. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  19. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    PubMed

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  1. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. New Cathode Material for High Energy-Density Batteries,

    DTIC Science & Technology

    Semiconductive metal halides are under investigation as cathode materials for ambient-temperature lithium cells. N-type cadmium fluoride and zinc...fluoride were further characterized as electrodes limited by cathodic passivation in a lithium perchlorate-propylene carbonate electrolyte. The...discharge of cadmium fluoride occurred without passivation, however, in a tetramethylammonium hexafluorophosphate solution in the same solvent. The result

  3. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating.

    PubMed

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing

    2018-02-20

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In

  4. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  5. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    PubMed

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  7. Graphene: A Cathode Material of Choice for Aluminium-ion Battery.

    PubMed

    Das, Shyamal

    2018-03-22

    The pairing of an aluminum anode with a cathode of high energy and power densities determines the future of aluminum-ion battery technology. The arising natural question is - "Is there any suitable cathode material which is capable of storing sufficiently large amount of trivalent aluminum-ions at relatively higher operating potential?". The wonder material "graphene" emerges to be a befitting answer. Graphene footprint in research arena of aluminum-ion battery could be seen merely three years ago. However, the research progress in this front is tremendous and applauding. Outperforming all other known cathode materials, graphene made several remarkable breakthroughs in offering extraordinary energy density, power density, cycle life, thermal stability, safety and flexibility. The future of Al-graphene couple is indeed brighter, if utmost emphasis is drawn right away to surmount the inherent technological challenges. This minireview comprehensively highlights the electrochemical performances, advantages and challenges of graphene as cathode in aluminum-ion battery in conjugation with chloroaluminate based electrolytes. Additionally, the complex mechanism of charge storage in graphene is also elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chromium (V) compounds as cathode material in electrochemical power sources

    DOEpatents

    Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  9. Chromium (V) compounds as cathode material in electrochemical power sources

    DOEpatents

    Delnick, Frank M.; Guidotti, Ronald A.; McCarthy, David K.

    1985-01-01

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca.sub.5 (CrO.sub.4).sub.3 Cl, Ca.sub.5 (CrO.sub.4).sub.3 OH, and Cr.sub.2 O.sub.5. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  10. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S.

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-basedmore » lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.« less

  11. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  12. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  13. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi

    2017-03-01

    A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.

  14. Durability and performance optimization of cathode materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  15. Lithium-Polymer battery based on polybithiophene as cathode material

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.

    Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.

  16. Process for Low Cost Domestic Production of LIB Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, Anthony

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111,more » 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.« less

  17. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  18. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Christini; R.K. Dawless; S.P. Ray

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work

  19. Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.

    PubMed

    NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g(-1) at 3.9 mA g(-1). These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved.

  20. Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries

    PubMed Central

    NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g−1 at 3.9 mA g−1. These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved. PMID:24587704

  1. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  2. Chemically synthesized boron carbon oxynitride as a new cold cathode material

    NASA Astrophysics Data System (ADS)

    Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.

    2015-11-01

    Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.

  3. Synthesis and investigation of novel cathode materials for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Sawicki, Monica

    Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula

  4. High-performing LiMgxCuyCo₁-x-yO₂ cathode material for lithium rechargeable batteries.

    PubMed

    Nithya, Chandrasekaran; Thirunakaran, Ramasamy; Sivashanmugam, Arumugam; Gopukumar, Sukumaran

    2012-08-01

    Sustainable power requirements of multifarious portable electronic applications demand the development of high energy and high power density cathode materials for lithium ion batteries. This paper reports a method for rapid synthesis of a cobalt based layered cathode material doped with mixed dopants Cu and Mg. The cathode material exhibits ordered layered structure and delivers discharge capacity of ∼200 mA h g(-1) at 0.2C rate with high capacity retention of 88% over the investigated 100 cycles.

  5. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  6. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    PubMed

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  7. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    PubMed

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  8. Improved materials and processes of dispenser cathodes

    NASA Astrophysics Data System (ADS)

    Longo, R. T.; Sundquist, W. F.; Adler, E. A.

    1984-08-01

    Several process variables affecting the final electron emission properties of impregnated dispenser cathodes were investigated. In particular, the influence of billet porosity, impregnant composition and purity, and osmium-ruthenium coating were studied. Work function and cathode evaporation data were used to evaluate cathode performance and to formulate a model of cathode activation and emission. Results showed that sorted tungsten powder can be reproducibly fabricated into cathode billets. Billet porosity was observed to have the least effect on cathode performance. Use of the 4:1:1 aluminate mixture resulted in lower work functions than did use of the 5:3:2 mixture. Under similar drawout conditions, the coated cathodes showed superior emission relative to uncoated cathodes. In actual Pierce gun structures under accelerated life test, the influence of impregnated sulfur is clearly shown to reduce cathode performance.

  9. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  10. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  11. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE PAGES

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...

    2018-01-09

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  12. Advances in electrode materials for Li-based rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hui; Mao, Chengyu; Li, Jianlin

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and newmore » tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.« less

  13. Synthesis and characterization of cathode materials for lithium ion-rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Nieto Ramos, Santander

    Lithium intercalation materials are of special interest for cathodes in rechargeable lihium-ion batteries, because they are capable of reversibly intercalating lithium ions without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalates oxides. The first part of this work was devoted to the optimization of chemical solution process parameters in order to correlate their electrochemical properties. It was found that the lattice parameters and the crystallite size increase, whereas the lattice strain decreases with the increase in calcinations temperature. Powders annealed at 700°C for 15 h yielded best electrochemical performance. The electrochemical performance of substituted Li1.2Mn2O 4, Li1.2Mn1.8O4, Li1.2Cr 0.05Mn1.95O4, and Li1.2Cr0.05 Mn1.75O4 spinel electrodes in lithium cell has been studied. The electrochemical data showed that the Li and Cr dopant effect improves the cycleablility of spinel LiMn2O4 electrodes. The second part of this dissertation was devoted to improve the rate capabilities of these cathode materials by growing nano-size cathode particles and also by cation co-doping. Though the discharge capacity of these nano-crystalline cathodes was equivalent to their microcrystalline counterpart, these exhibited capacity fading in the 4V range. Through a combined X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, we correlated the observed capacity fading with the onset of Jahn-Teller (J-T) distortion toward the end of the discharge in the cut-off limit between 4.2 and 3.2V. It was postulated that J-T distortion is the dominant fading mechanism of these nano-crystalline cathodes then by increasing the average oxidation state of the Mn ion in a virgin lithium manganate cathode, the onset of such distortion towards the end of the discharge could be delayed, and therefore, the cycleability of these cathodes could be improved. By synthesizing lithium

  14. Thermal activated ("thermal") battery technology. Part IIIb. Sulfur and oxide-based cathode materials

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Guidotti, Ronald A.

    This article presents an overview of cathode materials (except the pyrite FeS 2) used or envisaged in thermally activated ("thermal") batteries. The physicochemical properties and electrochemical performance of different cathode families (oxides, sulfides) are reviewed, including discharge mechanisms, when known.

  15. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  16. Synthesis and Electrochemical Properties Characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries

    DTIC Science & Technology

    2009-01-01

    Synthesis and electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electrochemical reaction. References 1. N Yabuuchi, T Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium - ion batteries ”, J

  17. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  18. Activated graphene as a cathode material for Li-ion hybrid supercapacitors.

    PubMed

    Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S

    2012-03-14

    Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).

  19. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke

    2015-09-01

    Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.

  20. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE PAGES

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li 0.2Ni 0.2Mn 0.6O 2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processingmore » history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  1. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  2. Copper sulfates as cathode materials for Li batteries

    NASA Astrophysics Data System (ADS)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO 4) 2- possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO 4·5H 2O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss.

  3. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  4. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  5. Sintered wire cathode

    DOEpatents

    Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  6. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  7. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    PubMed Central

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  8. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  9. Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Capece, Angela M.

    2015-05-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.

  10. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

    PubMed

    Zeng, Xianlai; Li, Jinhui

    2014-04-30

    Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Delithiated states of layered cathode materials: doping and dispersion interaction effects on the structure

    NASA Astrophysics Data System (ADS)

    Eremin, Roman; Zolotarev, Pavel; Bobrikov, Ivan

    2018-04-01

    Here we present results of density functional theory (DFT) study of delithiated structures of layered LiNiO2 (LNO, Li12Ni12O24 model) cathode material and its doped analogue LiNi0.833Co0.083Al0.083O2 (N10C1A1, Li12Ni10CoAlO24 model). The paper is aimed at independent elucidation of doping and dispersion interaction effects on the structural stability of cathode materials studied. For this purpose, the LNO and N10C1A1 configurational spaces consisting of 87 and 4512 crystallographically independent configurations (obtained starting from 2×2×1 supercell of R-3m structure of LNO) are optimized within a number of DFT models. Based on a comparison of the calculated dependencies for the lattice parameters with the results of in situ neutron diffraction experiments, the most pronounced effect of cathode material stabilization is due to the dispersion interaction. In turn, the doping effect is found to affect cathode structure behavior at the latest stages of delithiation only.

  12. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1979-01-01

    A prototype electron gun with a field emitter cathode capable of producing 95 mA in a 1/4 mm diameter beam at 12 kV was produced. Achievement of this goal required supporting studies in cathode fabrication, cathode performance, gun design, cathode mounting and gun fabrication. A series of empirical investigations advanced fabrication technology: More stable emitters were produced and multiple cone failure caused by chain reaction discharges were reduced. The cathode is capable of producing well over 95 mA, but a substantial collector development effort was required to demonstrate emission levels in the 100 mA region. Space charge problems made these levels difficult to achieve. Recommendations are made for future process and materials investigation. Electron gun designs were modeled and tested. A pair of two-electrode gun structures were fabricated and tested; one gun was delivered to NASA. Cathodes were pretested up to 100 mA at SRI and delivered to NASA for test in the gun structure.

  13. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    DOE PAGES

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...

    2017-01-05

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less

  14. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  15. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    NASA Astrophysics Data System (ADS)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  16. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-19

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  17. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  18. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.

    PubMed

    Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati

    2014-10-01

    The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.

  19. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    PubMed

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  20. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  1. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  2. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  3. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials

    DOE PAGES

    Mu, Linqin; Lin, Ruoqian; Xu, Rong; ...

    2018-04-18

    Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less

  4. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Lin, Ruoqian; Xu, Rong

    Chemical and mechanical properties interplay on the nanometric scale and collectively govern the functionalities of battery materials. Understanding the relationship between the two can inform the design of battery materials with optimal chemomechanical properties for long-life lithium batteries. Herein, we report a mechanism of nanoscale mechanical breakdown in layered oxide cathode materials, originating from oxygen release at high states of charge under thermal abuse conditions. Here, we observe that the mechanical breakdown of charged Li 1-xNi 0.4Mn 0.4Co 0.2O 2 materials proceeds via a two-step pathway involving intergranular and intragranular crack formation. Owing to the oxygen release, sporadic phase transformationsmore » from the layered structure to the spinel and/or rocksalt structures introduce local stress, which initiates microcracks along grain boundaries and ultimately leads to the detachment of primary particles; i.e., intergranular crack formation. Furthermore, intragranular cracks (pores and exfoliations) form, likely due to the accumulation of oxygen vacancies and continuous phase transformations at the surfaces of primary particles. Finally, finite element modeling confirms our experimental observation that the crack formation is attributable to formation of oxygen vacancies, oxygen release, and phase transformations. This study is designed to directly observe the chemomechanical behavior of layered oxide cathode materials and provides a chemical basis for strengthening primary and secondary particles by stabilizing the oxygen anions in the lattice.« less

  5. A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.

    PubMed

    Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu

    2018-06-27

    Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.

  6. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  7. Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Chen, Yu-Fu; Pai, Chun-Ting; Mo, Chung-Yu

    2014-12-01

    This study adopts an in-situ infrared (IR) sintering incorporated with carbonization technique to synthesize carbon-coated LiNi1/3Co1/3Mn1/3O2 (LNCM) cathode materials for Li-ion batteries. Compared with electric resistance heating, the in-situ IR sintering is capable of rapidly producing highly-crystalline LNCM powders at 900 °C within a short period, i.e., 3 h in this case. Glucose additive is employed to serve a carbon precursor, which is carbonized and coated over the surface of LNCM crystals during the IR sintering process. The electrochemical performance of LNCM cathodes is well examined by charge-discharge cycling at 0.1-5C. An appropriate carbon coating is capable of raising discharge capacity (i.e., 181.5 mAh g-1 at 0.1C), rate capability (i.e., 75.0 mAh g-1 at 5C), and cycling stability (i.e., capacity retention: 94.2% at 1C after 50 cycles) of LNCM cathodes. This enhanced performance can be ascribed to the carbon coating onto the external surface of LNCM powders, creating an outer circuit of charge-transfer pathway and preventing cathode corrosion from direct contact to the electrolyte. Accordingly, the in-situ IR sintering technique offers a potential feasibility for synthesizing cathode materials commercially in large scale.

  8. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  9. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    DOE PAGES

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; ...

    2016-10-13

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  10. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE PAGES

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan; ...

    2018-01-15

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  11. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  12. High Capacity Cathode Materials for Next Generation Energy Storage

    NASA Astrophysics Data System (ADS)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of

  13. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  14. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE PAGES

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...

    2017-10-17

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  15. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE PAGES

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  16. Four-electron transfer tandem tetracyanoquinodimethane for cathode-active material in lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito

    2018-02-01

    Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.

  17. Improving the Performance of Layered Oxide Cathode Materials with Football-Like Hierarchical Structure for Na-Ion Batteries by Incorporating Mg2+ into Vacancies in Na-Ion Layers.

    PubMed

    Li, Zheng-Yao; Wang, Huibo; Chen, Dongfeng; Sun, Kai; Yang, Wenyun; Yang, Jinbo; Liu, Xiangfeng; Han, Songbai

    2018-04-09

    The development of advanced cathode materials is still a great interest for sodium-ion batteries. The feasible commercialization of sodium-ion batteries relies on the design and exploitation of suitable electrode materials. This study offers a new insight into material design to exploit high-performance P2-type cathode materials for sodium-ion batteries. The incorporation of Mg 2+ into intrinsic Na + vacancies in Na-ion layers can lead to a high-performance P2-type cathode material for sodium-ion batteries. The materials prepared by the coprecipitation approach show a well-defined morphology of secondary football-like hierarchical structures. Neutron power diffraction and refinement results demonstrate that the incorporation of Mg 2+ into intrinsic vacancies can enlarge the space for Na-ion diffusion, which can increase the d-spacing of the (0 0 2) peak and the size of slabs but reduce the chemical bond length to result in an enhanced rate capability and cycling stability. The incorporation of Mg 2+ into available vacancies and a unique morphology make Na 0.7 Mg 0.05 Mn 0.8 Ni 0.1 Co 0.1 O 2 a promising cathode, which can be charged and discharged at an ultra-high current density of 2000 mA g -1 with an excellent specific capacity of 60 mAh g -1 . This work provides a new insight into the design of electrode materials for sodium-ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. John B. Goodenough, Cathode Materials, and Rechargeable Lithium-ion

    Science.gov Websites

    cathode materials for the lithium-ion rechargeable battery that is ubiquitous in today’s portable conductors has enabled realization of the rechargeable lithium-ion battery used in cellular telephones and Goodenough, the rechargeable lithium ion battery, and related research is available in electronic documents

  19. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries.

    PubMed

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-08

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  20. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  1. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  2. Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries

    NASA Astrophysics Data System (ADS)

    Huang, Dekang; Li, Shu; Xiao, Xin; Cao, Minglei; Gao, Lin; Xiang, Yong-Gang; Chen, Hao; Shen, Yan

    2017-12-01

    Recently, tellurium has been regarded as a promising cathode material for rechargeable lithium-ion batteries due to its high theoretical volumetric capacity. However, a plethora of research are focusing on impregnating the tellurium into porous carbon materials by the thermal-diffusion method, which would consume large amounts of energy and take prolonged time. Herein, a carbon and binder-free cathode with 100% Te is fabricated by a facile galvanic replacement method on a nickle foam. Driven by the large electrochemical potential difference between Ni and Te, desirable amounts of Te can be obtained in just 10 min with no need of energy input. Li-Te batteries constructed by the as-obtained cathode show relatively good performance in DMSO solvent. To further elevate the performance of this battery especially at low current density, commercial carbon cloth is added between the separator and Te electrode as an interlayer. The cell with interlayer delivers a gravimetric capacity of 116.2 mAh g-1 after 70 cycles at the current density of 100 mA g-1, which is 2.8 times as high as that of a cell without interlayer (40.4 mAh g-1).

  3. Development of Advanced Li Rich xLi2MO3 (1-x)LiMO2 Composite Cathode for High Capacity Li Ion Batteries

    DTIC Science & Technology

    2016-12-22

    importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release

  4. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zengcai; Zhen, Honghe; Kim, Yoongu

    2011-01-01

    Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.

  5. Theoretical Studies in Enhancing the Efficiency of Cathode and Anode Materials in PEMFC (Proton Exchange Membrane Fuel Cells)

    DTIC Science & Technology

    2011-03-04

    efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange

  6. Advanced Electrode Materials for High Energy Next Generation Li ion Batteries

    NASA Astrophysics Data System (ADS)

    Hayner, Cary Michael

    Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few

  7. Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O2 Battery.

    PubMed

    Yao, Ying; Wu, Feng

    2017-09-20

    An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.

  8. cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-05-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability.

  9. Advanced characterization of lithium battery materials with positrons

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2017-01-01

    Cathode materials are crucial to improved battery performance, in part because there are not yet materials that can maintain high power and stable cycling with a capacity comparable to that of anode materials. Our parameter-free, gradient-corrected model for electron-positron correlations predicts that spectroscopies based on positron annihilation can be deployed to study the effect of lithium intercalation in the oxide matrix of the cathode. The positron characteristics in oxides can be reliably computed using methods based on first-principles. Thus, we can enable a fundamental characterization of lithium battery materials involving positron annihilation spectroscopy and first-principles calculations. The detailed information one can extract from positron experiments could be useful for understanding and optimizing both battery materials and bi-functional catalysts for oxygen reduction and evolution.

  10. Low-threshold field emission in planar cathodes with nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.

    2016-12-01

    Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.

  11. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries

    DOE PAGES

    Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...

    2017-06-08

    Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less

  12. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.

    PubMed

    Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A

    2012-04-30

    In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  14. Cobalt porphyrin-based material as methanol tolerant cathode in single chamber microbial fuel cells (SCMFCs)

    NASA Astrophysics Data System (ADS)

    Liu, Bingchuan; Brückner, Cristian; Lei, Yu; Cheng, Yue; Santoro, Carlo; Li, Baikun

    2014-07-01

    This study focused on the development of novel cathode material based on the pyrolysis of [meso-tetrakis(2-thienyl)porphyrinato]Co(II) (CoTTP) for use in single chamber microbial fuel cells (SCMFCs) to treat wastewater containing methanol. The cathodes produced at two loadings (0.5 and 1.0 mg cm-2) were examined in batch mode SCMFCs treating methanol of different concentrations (ranging from 0.005 to 0.04 M) over a 900 h operational period. Methanol was completely removed in SCMFCs, and the cycle duration was prolonged at high methanol concentrations, indicating methanol was used as fuel in SCMFCs. Methanol had more poisoning effects to the traditional platinum (Pt) cathodes than to the CoTTP cathodes. Specifically, power generations from SCMFCs with Pt cathodes gradually decreased over time, while the ones with CoTTP cathodes remained stable, even at the highest methanol concentration (0.04 M). Cathode linear sweep voltammetry (LSVs) indicated that the electrocatalytic activity of the Pt cathode was suppressed by methanol. Higher CoTTP loadings had similar open circuit potential (OCP) but higher electrocatalytic activity than lower loadings. This study demonstrated that methanol can be co-digested with wastewater and converted to power in MFCs, and a novel cathode CoTTP catalyst exhibits higher tolerance towards methanol compared with traditional Pt catalyst.

  15. Hydrothermal synthesis of cathode materials

    NASA Astrophysics Data System (ADS)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  16. Turning Waste Chemicals into Wealth—A New Approach To Synthesize Efficient Cathode Material for an Li–O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Ying; Wu, Feng

    An Li–O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li–O 2more » battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing “waste” such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.« less

  17. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  18. High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery.

    PubMed

    Zhang, Yiyong; Peng, Yueying; Wang, Yunhui; Li, Jiyang; Li, He; Zeng, Jing; Wang, Jing; Hwang, Bing Joe; Zhao, Jinbao

    2017-09-12

    The lithium-sulfur battery, which offers a high energy density and is environmental friendly, is a promising next generation of rechargeable energy storage system. However, despite these attractive attributes, the commercialization of lithium-sulfur battery is primarily hindered by the parasitic reactions between the Li metal anode and dissolved polysulfide species from the cathode during the cycling process. Herein, we synthesize the sulfur-rich carbon polysulfide polymer and demonstrate that it is a promising cathode material for high performance lithium-sulfur battery. The electrochemical studies reveal that the carbon polysulfide polymer exhibits superb reversibility and cycle stability. This is due to that the well-designed structure of the carbon polysulfide polymer has several advantages, especially, the strong chemical interaction between sulfur and the carbon framework (C-S bonds) inhibits the shuttle effect and the π electrons of the carbon polysulfide compound enhance the transfer of electrons and Li + . Furthermore, as-prepared carbon polysulfide polymer-graphene hybrid cathode achieves outstanding cycle stability and relatively high capacity. This work highlights the potential promise of the carbon polysulfide polymer as the cathode material for high performance lithium-sulfur battery.

  19. Numerical modeling of materials processing applications of a pulsed cold cathode electron gun

    NASA Astrophysics Data System (ADS)

    Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.

    1998-04-01

    A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.

  20. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    PubMed Central

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  1. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries

    PubMed Central

    Sathiya, Mariyappan; Prakash, Annigere S.; Ramesha, Kannadka; Shukla, Ashok K.

    2009-01-01

    An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.

  2. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  3. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  4. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  5. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    PubMed

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  6. Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Xu, Pinghong; Gu, Meng

    2015-02-24

    Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defectmore » spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.« less

  7. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    NASA Astrophysics Data System (ADS)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  8. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.

    PubMed

    Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna

    2014-10-22

    Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.

  9. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  10. Thermal activated ("thermal") battery technology. Part IIIa: FeS 2 cathode material

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Guidotti, Ronald A.

    This article presents an overview of the pyrite FeS 2 used as cathode material in thermally activated ("thermal") batteries. A large emphasis was placed on the physicochemical properties and electrochemical performance of the pyrite FeS 2, including the discharge mechanisms, self-discharge phenomena, and recent developments.

  11. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.

    PubMed

    Milczarek, Grzegorz; Inganäs, Olle

    2012-03-23

    Renewable and cheap materials in electrodes could meet the need for low-cost, intermittent electrical energy storage in a renewable energy system if sufficient charge density is obtained. Brown liquor, the waste product from paper processing, contains lignin derivatives. Polymer cathodes can be prepared by electrochemical oxidation of pyrrole to polypyrrole in solutions of lignin derivatives. The quinone group in lignin is used for electron and proton storage and exchange during redox cycling, thus combining charge storage in lignin and polypyrrole in an interpenetrating polypyrrole/lignin composite.

  12. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  13. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  14. Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung

    2016-09-01

    We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.

  15. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (< 300 °C), formation of an intermediate sarcopside Mn3(PO4)2 phase (350 -- 450 °C), and complete decomposition to Mn2P2O 7 on extended heating at 400 °C. Carbon protects MnPO4 from reacting with environmental water, which is detrimental to its structural stability. We not only studied the crystalline olivine MnPO4, but also investigated the amorphous products obtained from carbon-free LiMnPO 4. We have revealed the Mn dissolution phenomenon during chemical delithiation of LiMnPO4, which causes the amorphization of olivine MnPO 4. Properties of crystalline-MnPO4 obtained from carbon-coated LiMnPO4 and of amorphous product resulting from the delithiation of pure LiMnPO4 were studied and compared. The P-rich amorphous phases in the latter are considered to be MnHP2O7 and MnH2P

  16. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy.

    PubMed

    Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A; Granwehr, Josef

    2018-01-07

    Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn 3+ on the Li + motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

  17. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef

    2018-01-01

    Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

  18. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    PubMed

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Early stage sustainability evaluation of new, nanoscale cathode materials for Li-ion batteries.

    PubMed

    Hischier, Roland; Kwon, Nam Hee; Brog, Jean-Pierre; Fromm, Katharina M

    2018-05-07

    We present results of early stage sustainability evaluation of two development strategies for new, nano-scale cathode materials for Li-ion batteries: (i) a new production pathway of existing material (LiCoO2), and (ii) a new nanomaterial (LiMnPO4). Nano-LiCoO2 was synthesized via a single source precursor route at lower temperature with a shorter reaction time, resulting in a smaller grain size and, thereby, a better diffusivity for Li-ions. Nano-LiMnPO4 was synthesized via a wet chemical method. The sustainability potential of these materials has then been investigated (at the laboratory and pilot production scales). The results show that the environmental impact of nano-LiMnPO4 is lower compared to the other examined nanomaterial by several factors, and this regardless of the indicator for the comparison. In contrast to commercial cathode materials, this new material shows, particularly on an energy and capacity basis, results in the same order of magnitude as those of lithium manganese oxide (LiMn2O4), and only slightly higher values than those for lithium iron phosphate (LiFePO4); values that are clearly lower than those for high-temperature LiCoO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  1. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  2. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  3. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    DOE PAGES

    Shkrob, Ilya A.; Abraham, Daniel P.

    2016-07-06

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less

  4. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  5. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Abraham, Daniel P.

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less

  6. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    PubMed

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  7. Metalized, three-dimensional structured oxygen cathode materials for lithium/air batteries and method for making and using the same

    DOEpatents

    Xing, Weibing; Buettner-Garrett, Josh

    2017-04-18

    This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.

  8. Cathode refunctionalization as a lithium ion battery recycling alternative

    NASA Astrophysics Data System (ADS)

    Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle

    2014-06-01

    An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.

  9. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    PubMed

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  10. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.

    PubMed

    Li, Maofan; Liu, Jiajie; Liu, Tongchao; Zhang, Mingjian; Pan, Feng

    2018-02-01

    A carbonyl-bridged single molecular precursor LiTM(acac) 3 [transition metal (TM) = cobalt/manganese/nickel (Co/Mn/Ni), acac = acetylacetone], featuring a one-dimensional chain structure, was designed and applied to achieve the layered oxide cathode materials: LiTMO 2 (TM = Ni/Mn/Co, NMC). As examples, layered oxides, primary LiCoO 2 , binary LiNi 0.8 Co 0.2 O 2 and ternary LiNi 0.5 Mn 0.3 Co 0.2 O 2 were successfully prepared to be used as cathode materials. When they are applied to lithium-ion batteries (LIBs), all exhibit good electrochemical performance because of their unique morphology and great uniformity of element distribution. This versatile precursor is predicted to accommodate many other metal cations, such as aluminum (Al 3+ ), iron (Fe 2+ ), and sodium (Na + ), because of the flexibility of organic ligand, which not only facilitates the doping-modification of the NMC system, but also enables synthesis of Na-ion layered oxides. This opens a new direction of research for the synthesis of high-performance layered oxide cathode materials for LIBs.

  11. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  12. Advanced Cathodes for Next Generation Electric Propulsion Technology

    DTIC Science & Technology

    2008-03-01

    learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in

  13. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    PubMed

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  14. Synthesis, strctural and electrochemical characterizations of lithium- manganese- rich composite cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng

    The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were

  15. Rechargeable lithium/polymer cathode batteries

    NASA Astrophysics Data System (ADS)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  16. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    PubMed

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.

  17. A study of cathode erosion in high power arcjets

    NASA Astrophysics Data System (ADS)

    Harris, William Jackson, III

    Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.

  18. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  19. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    NASA Astrophysics Data System (ADS)

    Choi, YongMan; Lin, M. C.; Liu, Meilin

    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

  20. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating

    DOE PAGES

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...

    2018-01-19

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  1. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  2. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  3. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    PubMed

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  4. Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials

    NASA Astrophysics Data System (ADS)

    Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran

    2017-09-01

    In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.

  5. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  6. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  7. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOEpatents

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  8. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOEpatents

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  9. Na2.5Fe1.75(SO4)3/Ketjen/rGO: An advanced cathode composite for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Goñi, A.; Iturrondobeitia, A.; Gil de Muro, I.; Lezama, L.; Rojo, T.

    2017-11-01

    An advanced cathode composite Na2.5Fe1.75(SO4)3/Ketjen/rGO for sodium ion batteries has been prepared, joining together the excellent electrochemical properties of the three components: off stoichiometric iron sulfate alluaudite, Ketjen Black carbon and reduced graphene oxide (rGO). This electrode material has been exhaustively characterized by XRD, thermogravimetric analysis, Raman spectroscopy and SEM and TEM microscopy. The study has demonstrated that a high quality electrode material has been designed containing a porous sulfate core properly coated by interweaved rGO fibers and Ketjen Black nanoparticles. The electrochemical study has revealed an excellent performance providing specific capacities close to the theoretical one at 1C. Additionally, this composite has shown a very good rate capability and a great cycling stability for at least 200 cycles maintaining a coulombic efficiency of 96%. The post mortem analysis, which includes EPR and XPS measurements, has demonstrated that the carbonaceous coating on the composite generates a stable and protective SEI layer over the active material guaranteeing a successful performance during a long cycle life.

  10. Planar-focusing cathodes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient onmore » the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.« less

  11. Is alpha-V 2O 5 a cathode material for Mg insertion batteries?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa, Niya; Wang, Hao; Proffit, Danielle L.

    When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with a-V 2O 5 by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an a-Vmore » 2O 5 cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into a-V 2O 5.« less

  12. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.

    1985-01-01

    During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.

  13. Mesoscale Evaluation of Titanium Silicide Monolayer as a Cathode Host Material in Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.

    2017-09-01

    Two-dimensional materials are competitive candidates as cathode materials in lithium-sulfur batteries for immobilizing soluble polysulfides and mitigating the shuttle effect. In this study, a mesoscale modeling approach, which combines first-principles simulation and kinetic Monte Carlo simulation, is employed to evaluate titanium silicide (Ti2Si and TiSi2) monolayers as potential host materials in lithium-sulfur batteries. It is found that the Ti2Si monolayer has much stronger affinities to Li2S x ( x = 1, 2, 4) molecules than does the TiSi2 monolayer. Also, Ti2Si can facilitate the dissociation of long-chain Li2S4 to LiS2. On the other hand, TiSi2 can only provide a weak chemical interaction for trapping soluble Li2S4. Therefore, the Ti2Si monolayer can be considered to be the next-generation cathode material for lithium-sulfur batteries. Nevertheless, the strong interaction between Ti2Si and Li2S also causes fast surface passivation. How to control the Li2S precipitation on Ti2Si should be answered by future studies.

  14. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries.

    PubMed

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-12-12

    Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS 3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS 3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS 3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS 3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

  15. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries

    PubMed Central

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-01-01

    Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates. PMID:29180431

  16. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

    NASA Astrophysics Data System (ADS)

    Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel

    2018-06-01

    Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.

  17. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  18. Pure Single-Crystalline Na1.1V3O7.9 Nanobelts as Superior Cathode Materials for Rechargeable Sodium-Ion Batteries.

    PubMed

    Yuan, Shuang; Liu, Yong-Bing; Xu, Dan; Ma, De-Long; Wang, Sai; Yang, Xiao-Hong; Cao, Zhan-Yi; Zhang, Xin-Bo

    2015-03-01

    Pure single-crystalline Na 1.1 V 3 O 7.9 nanobelts are successfully synthesized for the first time via a facile yet effective strategy. When used as cathode materials for Na-ion batteries, the novel nanobelts exhibit excellent electrochemical performance. Given the ease and effectiveness of the synthesis route as well as the very promising electrochemical performance, the results obtained may be extended to other next-generation cathode materials for Na-ion batteries.

  19. Lithium Iron Orthosilicate Cathode: Progress and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Jiangfeng; Jiang, Yu; Bi, Xuanxuan

    2017-07-18

    The pursuit of cathodes with a high capacity is remarkably driven by the ever increasing demand of high-energy lithium ion batteries in electronics and transportation. In this regard, polyanionic lithium iron orthosilicate (Li2FeSiO4) offers a promising opportunity because it affords a high theoretical capacity of 331 mAh g–1. However, such a high theoretical capacity of Li2FeSiO4 has frequently been compromised in practice because of the extremely low electronic and ionic conductivity. To address this issue, material engineering strategies to boost the Li storage kinetics in Li2FeSiO4 have proven indispensable. In this Perspective, we will briefly present the structural characteristics, intrinsicmore » physicochemical properties, and electrochemical behavior of Li2FeSiO4. We particularly focus on recent materials engineering of silicates, which is implemented mainly through advanced synthetic techniques and elaborate controls. This Perspective highlights the importance of integrating theoretical analysis into experimental implementation to further advance the Li2FeSiO4 materials.« less

  20. Phases of LiMn1.84V0.06Ti0.1O4 cathode material

    NASA Astrophysics Data System (ADS)

    Zainol, N. H.; Kamarulzaman, N.; Osman, Z.; Fadzil, A. F. M.; Yahya, N. F.

    2017-09-01

    In this work, LiMn1.84V0.06Ti0.1O4 was prepared via a combustion method using citric acid as a reductant. The precursor obtained was annealed at 700 °C for 24h in a furnace. The thermal profile of the precursor was obtained by simultaneous thermogravimetric analysis (STA). The observed material was characterized by X-ray Diffraction (XRD) and found to be pure and single-phase of cubic structure. The electrochemical performance of LiMn1.84V0.06Ti0.1O4 cathode material was studied by applying a constant current of 1.0 mA at a voltage range of 4.2 to 2.5 V. The specific capacity of LiMn1.84V0.06Ti0.1O4 cathode material at the 1st cycle shows the value of 95mAh/g which is less than the specific capacity of LiMn2O4, which is 117 mAh/g.

  1. Rotating cathode device for molten salt bath

    NASA Astrophysics Data System (ADS)

    1983-11-01

    The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.

  2. High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Zheng, Jianming; Li, Qiuyan

    2015-08-19

    High energy and cost-effective lithium sulfur (Li-S) battery technology has been vigorously revisited in recent years due to the urgent need of advanced energy storage technologies for transportation and large-scale energy storage applications. However, the market penetration of Li-S batteries has been plagued due to the gap in scientific knowledge between the fundamental research and the real application need. Herein, we focus on the cathode part of the Li-S system and discuss 1) the progress and issues of literature-reported sulfur cathode; 2) how to employ materials chemistry/science to address the challenges to thicken sulfur cathode; 3) the factors that affectmore » the electrochemical performances of Li-S cells constructed at a relevant scale. This progress report attempts to tie the fundamental understanding closely to the practical application of Li-S batteries so that it may provide new insights for the research efforts of Li-S battery technology.« less

  3. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  4. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    PubMed

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-05

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials

    NASA Astrophysics Data System (ADS)

    Braun, Artur; Wang, Hongxin; Shim, Joongpyo; Lee, Steven S.; Cairns, Elton J.

    The lithium(1s) K-edge X-ray absorption spectra of lithium-ion battery relevant materials (Li metal, Li 3N, LiPF 6, LiC 6, and LiMn 1.90Ni 0.10O 4) are presented. The Li and LiC 6 spectra are discussed and compared with literature data. The Li in lithium-intercalated carbon LiC 6, typically used as anode battery electrode material, could be clearly identified in the spectrum, and a presumed purely metallic character of the Li can be ruled out based on the chemical shift observed. The Li in corresponding cathode electrode materials, LiMn 1.90Ni 0.10O 4, could be detected with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, but the strong (self-) absorption of the spinel lattice provides an obstacle for quantitative analysis. Owing to its ionic bonding, the spectrum of the electrolyte salt LiPF 6 contains a sharp π-resonance at 61.8 eV, suggesting a distinct charge transfer between Li and the hexafluorophosphate anion. In addition, LiPF 6 resembles many spectral features of LiF, making it difficult to discriminate both from each other. Residual electrolyte on anodes or cathodes poses a problem for the spectroscopic analysis of the electrodes, because its Li spectrum overshadows the spectral features of the Li in the anode or cathode. The electrolyte must be removed from electrodes prior to spectroscopic analysis.

  6. Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.

    PubMed

    Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong

    2014-09-01

    The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.

  7. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    PubMed

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.

  8. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE PAGES

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...

    2017-11-08

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  9. Structural Evolution of Li xNi yMn zCo 1-y-zO 2 Cathode Materials during High-Rate Charge and Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon

    Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less

  10. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials

    NASA Astrophysics Data System (ADS)

    Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V.

    2015-05-01

    In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100

  11. Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang

    2018-03-01

    Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.

  12. Direct observation of antisite defects in LiCoPO4 cathode materials by annular dark- and bright-field electron microscopy.

    PubMed

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru

    2013-10-23

    LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.

  13. Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes.

    PubMed

    Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun; Klie, Robert F; Vaughey, John T; Dogan, Fulya

    2017-05-03

    Surface coating of cathode materials with Al 2 O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition change the chemical composition, morphology, and distribution of coating within the cathode interface and bulk lattice is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity, and morphology of the coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly dependent on the annealing temperature and cathode composition. For Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 , higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2 O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2 O 3 -coated LiCoO 2 , the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from "surface coatings" to "dopants", which is not observed for LiNi 0.5 Co 0.2 Mn 0.3 O 2 . As a result, Al 2 O 3 -coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.

  14. Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.

    PubMed

    Wang, Haibin; Liu, Shuxin; Huang, Yongmao

    2014-04-01

    The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.

  15. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGES

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; ...

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li 2MoO 3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO 2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li 2MoO 3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O asmore » controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  16. Cold cathodes for sealed off CO2 lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Sciacca, T. P.; Hurt, C. R.

    1973-01-01

    Experimental results of a group of theoretically selected cold cathode materials are presented. These tests indicate Ag-CuO, Cu, and Pt-Cu as three new cold cathode materials for sealed-off CO2 lasers. The power output of a test laser with an Ag-CuO cathode and a gas volume of only 50 cu cm varied from 0.72 W to 1.1 W at 3000 hours and still yields 0.88 W after 8000 hours. Gas discharge tubes with Cu cathodes and a volume of 25 cu cm yield lifetimes in excess of 10,000 hours. Gas analysis results, obtained from a similar tube over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows an extremely promising V-I characteristic over a period of 2800 hours.

  17. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  18. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  19. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  20. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  1. Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery.

    PubMed

    Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping

    2015-08-05

    Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.

  2. Topology-based description of the NCA cathode configurational space and an approach of its effective reduction

    NASA Astrophysics Data System (ADS)

    Zolotarev, Pavel; Eremin, Roman

    2018-04-01

    Modification of existing solid electrolyte and cathode materialsis a topic of interest for theoreticians and experimentalists. In particular, itrequires elucidation of the influence of dopants on the characteristics of thestudying materials. For the reason of high complexity of theconfigurational space of doped/deintercalated systems, application of thecomputer modeling approaches is hindered, despite significant advances ofcomputational facilities in last decades. In this study, we propose a scheme,which allows to reduce a set of structures of a modeled configurationalspace for the subsequent study by means of the time-consuming quantumchemistry methods. Application of the proposed approach is exemplifiedthrough the study of the configurational space of the commercialLiNi0.8Co0.15Al0.05O2 (NCA) cathode material approximant.

  3. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.

    PubMed

    Li, Li; Bian, Yifan; Zhang, Xiaoxiao; Guan, Yibiao; Fan, Ersha; Wu, Feng; Chen, Renjie

    2018-01-01

    A "grave-to-cradle" process for the recycling of spent mixed-cathode materials (LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 ) has been proposed. The process comprises an acid leaching followed by the resynthesis of a cathode material from the resulting leachate. Spent cathode materials were leached in citric acid (C 6 H 8 O 7 ) and hydrogen peroxide (H 2 O 2 ). Optimal leaching conditions were obtained at a leaching temperature of 90 °C, a H 2 O 2 concentration of 1.5 vol%, a leaching time of 60 min, a pulp density of 20 g L -1 , and a citric acid concentration of 0.5 M. The leaching efficiencies of Li, Co, Ni, and Mn exceeded 95%. The leachate was used to resynthesize new LiCo 1/3 Ni 1/3 Mn 1/3 O 2 material by using a sol-gel method. A comparison of the electrochemical properties of the resynthesized material (NCM-spent) with that synthesized directly from original chemicals (NCM-syn) indicated that the initial discharge capacity of NCM-spent at 0.2 C was 152.8 mA h g -1 , which was higher than the 149.8 mA h g -1 of NCM-syn. After 160 cycles, the discharge capacities of the NCM-spent and NCM-syn were 140.7 mA h g -1 and 121.2 mA h g -1 , respectively. After discharge at 1 C for 300 cycles, the NCM-spent material remained a higher capacity of 113.2 mA h g -1 than the NCM-syn (78.4 mA h g -1 ). The better performance of the NCM-spent resulted from trace Al doping. A new formulation based on the shrinking-core model was proposed to explain the kinetics of the leaching process. The activation energies of the Li, Co, Ni, and Mn leaching were calculated to be 66.86, 86.57, 49.46, and 45.23 kJ mol -1 , respectively, which indicates that the leaching was a chemical reaction-controlled process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Batteries: Overview of Battery Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  5. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    PubMed

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  6. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    PubMed Central

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  7. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations

    DOE PAGES

    Liu, Miao; Rong, Ziqin; Malik, Rahul; ...

    2014-12-16

    In this study, batteries that shuttle multivalent ions such as Mg 2+ and Ca 2+ ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput first-principles calculations to systematically evaluate the performance of compounds with the spinel structure as multivalent intercalation cathode materials, spanning a matrix of five different intercalating ions and seven transition metal redox active cations. We estimate the insertion voltage, capacity,more » thermodynamic stability of charged and discharged states, as well as the intercalating ion mobility and use these properties to evaluate promising directions. Our calculations indicate that the Mn 2O 4 spinel phase based on Mg and Ca are feasible cathode materials. In general, we find that multivalent cathodes exhibit lower voltages compared to Li cathodes; the voltages of Ca spinels are ~0.2 V higher than those of Mg compounds (versus their corresponding metals), and the voltages of Mg compounds are ~1.4 V higher than Zn compounds; consequently, Ca and Mg spinels exhibit the highest energy densities amongst all the multivalent cation species. The activation barrier for the Al³⁺ ion migration in the Mn₂O₄ spinel is very high (~1400 meV for Al 3+ in the dilute limit); thus, the use of an Al based Mn spinel intercalation cathode is unlikely. Amongst the choice of transition metals, Mn-based spinel structures rank highest when balancing all the considered properties.« less

  8. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes

    NASA Astrophysics Data System (ADS)

    Pang, Quan; Liang, Xiao; Kwok, Chun Yuen; Nazar, Linda F.

    2016-09-01

    Amid burgeoning environmental concerns, electrochemical energy storage has rapidly gained momentum. Among the contenders in the ‘beyond lithium’ energy storage arena, the lithium-sulfur (Li-S) battery has emerged as particularly promising, owing to its potential to reversibly store considerable electrical energy at low cost. Whether or not Li-S energy storage will be able to fulfil this potential depends on simultaneously solving many aspects of its underlying conversion chemistry. Here, we review recent developments in tackling the dissolution of polysulfides — a fundamental problem in Li-S batteries — focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and polysulfides. We also discuss smart cathode architectures enabled by recent materials engineering, especially for high areal sulfur loading, as well as innovative electrolyte design to control the solubility of polysulfides. Key factors that allow long-life and high-loading Li-S batteries are summarized.

  9. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.

    PubMed

    Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2016-11-23

    Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Graphene-Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium-Selenium Secondary Battery Applications.

    PubMed

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-02

    In this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g(-1) after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g(-1) at 5 C). These electrochemical properties are attributed to the fact that the G-SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  11. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  12. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  13. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  14. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries.

    PubMed

    Deng, Chao; Zhang, Sen

    2014-06-25

    Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)4(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)4(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)4(PO4) nanorod involves V(3+)/V(4+) redox reaction and Na5V(3.5+)4(P2O7)4(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V(3+)/V(3.5+)) and 3.8879 V (V(3.5+)/V(4+)), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)4(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)4(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)4(PO4) as the cathode material.

  15. Time-resolved ion energy and charge state distributions in pulsed cathodic arc plasmas of Nb‑Al cathodes in high vacuum

    NASA Astrophysics Data System (ADS)

    Zöhrer, Siegfried; Anders, André; Franz, Robert

    2018-05-01

    Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.

  16. Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Binghong; Paulauskas, Tadas; Key, Baris

    Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less

  17. Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes

    DOE PAGES

    Han, Binghong; Paulauskas, Tadas; Key, Baris; ...

    2017-04-07

    Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less

  18. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  19. Electrochemical performance of Li[Ni0.7Co0.1Mn0.2]O2 cathode materials using a co-precipitation method.

    PubMed

    Kim, Jeong-Min; Jin, Bong-Soo; Koo, Hoe-Jin; Choi, Jae-Man; Kim, Hyun-Soo

    2013-05-01

    The Li[Ni0.7Co0.1Mn0.2]O2 cathode material synthesized using a co-precipitation method was investigated as a function of various pH level in terms of its microstructure and electrochemical properties. From the XRD pattern analysis, the Li[Ni0.7Co0.1Mn0.2]O2 cathode material prepared in this study are found to well coincide with typically hexagonal alpha-NaFeO2 structure. The primary particle size was about 100-300 nm at all compositions while secondary particle size increased as pH level increased from 10.34 microm (pH 10.3) to 14 microm (pH 12.5). The initial discharge capacity increased up to 165 mAh/g (0.1 C) at pH 11, and then decreased down to 144 mAh/g with further increasing pH level. The capacity retention of the cathode (pH 11) showed 90% at 0.2 C and 15% at 5 C respectively compared with the discharge capacity at 0.1 C. The capacity retention of the cathode (pH 10.3) performed 94% of the initial capacity after 22 cycles at 0.5 C charge/discharge test. Therefore, it is thought to be that pH 10.3 is optimized condition of the Li[Ni0.7Co0.1Mn0.2]O2 cathode material in this study because pH 10.3 shows better cycle performance than other conditions.

  20. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less

  1. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A High‐Voltage and High‐Capacity Li1+xNi0.5Mn1.5O4 Cathode Material: From Synthesis to Full Lithium‐Ion Cells

    PubMed Central

    Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret

    2016-01-01

    Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0cathode materials for Li‐ion cells. Their tailored morphology allows high density and facile processability for electrode development. In the potential range 2.4–4.9 V, the cathode material of composition Li1.5Ni0.5Mn1.5O4 shows excellent performance in terms of capacity and cycling stability in half‐cells. In addition, for the first time, we demonstrate the application of the high‐voltage and high‐capacity cathode in full Li‐ion cells with graphite anodes with very high cycling stability. The electrochemical performance and low cost of the cathode material, together with the feasibility of a chemical method to obtain Li‐rich Li1+xNi0.5Mn1.5O4 (0

  3. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  4. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    PubMed

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  6. Enhanced electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber Based Cathode

    NASA Astrophysics Data System (ADS)

    Huong Le, Thi Xuan; Alemán, Belén; Vilatela, Juan J.; Bechelany, Mikhael; Cretin, Marc

    2018-02-01

    A new cathodic material for electro-Fenton (EF) process was prepared based on a macroscopic fiber (CNTF) made of mm long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF) substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area ( 260 m2/g) with high electrical conductivity and electrochemical stability . One kind of azo dye, acid orange 7 (AO7), was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0). The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7 % of the initial TOC was eliminated in 8h of electrolysis by applying a current of -25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7 % of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTs deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF set-up. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes (EAOPs).

  7. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    PubMed Central

    Devaraj, A.; Gu, M.; Colby, R.; Yan, P.; Wang, C. M.; Zheng, J. M.; Xiao, J.; Genc, A.; Zhang, J. G.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.

    2015-01-01

    The distribution of cations in Li-ion battery cathodes as a function of cycling is a pivotal characteristic of battery performance. The transition metal cation distribution has been shown to affect cathode performance; however, Li is notoriously challenging to characterize with typical imaging techniques. Here laser-assisted atom probe tomography (APT) is used to map the three-dimensional distribution of Li at a sub-nanometre spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. As-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions. Cycled material has an overall loss of Li in addition to Ni-, Mn- and Li-rich regions. Spinel LiNi0.5Mn1.5O4 is shown to have a uniform distribution of all cations. APT results were compared to energy dispersive spectroscopy mapping with a scanning transmission electron microscope to confirm the transition metal cation distribution. PMID:26272722

  8. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials

    NASA Astrophysics Data System (ADS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Appetecchi, Giovanni B.; Winter, Martin; Passerini, Stefano

    2014-01-01

    Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40 °C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.

  9. Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Manikandan, Palanisamy; Heo, Seongwoo; Kim, Hyun Woo; Jeong, Hu Young; Lee, Eungje; Kim, Youngsik

    2017-09-01

    Layered Na0.5Co0.5Mn0.5O2 material is synthesized through a facile mixed hydroxy-carbonate route using (Co0.5Mn0.5)2(OH)2CO3 precursor and well characterized as a hexagonal layered structure under P63/mmc space group. The lattice parameters and unit cell volume (a = 2.8363 Å, c = 11.3152 Å and V = 78.83 Å3) are calculated by Rietveld refinement analysis. A flaky-bundle morphology is obtained to the layered Na0.5Co0.5Mn0.5O2 material with the hexagonal flake size ∼30 nm. Advanced transmission electron microscopic images are revealed the local structure of the layered Na0.5Co0.5Mn0.5O2 material with contrasting bright dots and faint dark dots corresponding to the Co/Mn and Na atoms. Two oxidation and reduction peaks are occurred in a cyclic voltammetric analysis corresponding to Co3+/Co4+ and Mn3+/Mn4+ redox processes. These reversible processes are attributed to the intercalation/de-intercalation of Na+ ions into the host structure of layered Na0.5Co0.5Mn0.5O2 material. Accordingly, the sodium cell is delivered the initial charge-discharge capacity 53/144 mAh g-1 at 0.5 C, which cycling studies are extended to rate capability test at 1 C, 3 C and 5C. Eventually, the Na-ion full-cell is yielded cathode charge-discharge capacity 55/52 mAh g-1 at 0.212 mA and exhibited as a high voltage cathode for Na-ion batteries.

  10. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  11. Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.

    Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less

  12. About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature.

    PubMed

    Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand

    2016-10-12

    The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

  13. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    PubMed Central

    Bakierska, Monika; Świętosławski, Michał; Dziembaj, Roman; Molenda, Marcin

    2016-01-01

    In this work, nanostructured LiMn2O4 (LMO) and LiMn2O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI) layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material. PMID:28773819

  14. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes.

    PubMed

    Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong

    2018-06-02

    In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.

  15. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  16. “Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.

    Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less

  17. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  18. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  19. Comments on cathode contaminants and the LBNL test stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniosek, F.; Baca, D.; Greenway, W.

    This report collects information on cathode contaminants we have gathered in the process of operating the LBNL DARHT cathode test stand. Information on contaminants is compiled from several sources. The attachment, ''Practical Aspects of Modern Dispenser Cathodes'', is from Heat Wave Corp. (TB-134) and was originally published in Microwave Journal, September 1979. Cathode contamination depends on both material choices and residual gases. Table 1 of TB-134 lists materials that can poison dispenser cathodes. These include reactive residual gases or vapors such as oxygen, water vapor, benzene, chlorine, fluorine, sulfur, silicon, and most metals other than molybdenum, rhenium, tungsten, and copper.more » The metals interact with the cathode surface through their vapor pressure. A paper by Nexsen and Turner, J. Appl. Phys. 68, 298-303 (1990) shows the threshold effects of some common residual gases or vapors on cathode performance. The book by Walter H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, also contains useful information on cathodes and poisoning agents. A plot of the vapor pressures and poisoning effect of certain metals (from Kohl) is shown below. Note that the vapor pressure of zinc is 1.1 x 10{sup -8} Torr at 400 K = 127 C, and 2.7 x 10{sup -5} at 500 K = 227 C. By contrast iron reaches a vapor pressure 1 x 10{sup -8} between 800 and 900 C. Therefore it is important to eliminate any brass parts that could exceed a temperature of 100 C. Many structural components of the cathode assembly contain steel. At 500-600 C in an oxygen atmosphere chromium oxide may outgas from the steel. [Cho, et.al., J. Vac. Sci. Technol. A 19, p. 998 (2001)]. Steel may also contain silicon, and sulfur at low concentrations. Therefore use of steel should be limited or avoided at high temperature near the cathode. Materials that should be avoided in the vicinity of the cathode include brass, silver, zinc, non-OFHC copper, silicates, and sulfur

  20. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  1. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.

    PubMed

    Aravindan, Vanchiappan; Mhamane, Dattakumar; Ling, Wong Chui; Ogale, Satishchandra; Madhavi, Srinivasan

    2013-12-01

    One HEC of a material: The use of trigol-reduced graphene oxide nanosheets as cathode material in hybrid lithium-ion electrochemical capacitors (Li-HECs) results in an energy density of 45 Wh kg(-1) ; much enhanced when compared to similar devices. The mass loading of the active materials is optimized, and the devices show good cycling performance. Li-HECs employing these materials outperform other supercapacitors, making them attractive for use in power sources. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigating the reversibility of structural modifications of Li xNi yMn zCo 1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of Li xNi yMn zCo 1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors,more » which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less

  3. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  4. Shock-loading response of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less

  5. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  6. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery.

    PubMed

    Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao

    2017-08-01

    Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.

  7. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The goal is to develop secondary lithium cells with a 100 Wh/kg specific energy capable of 1000 cycles at 50 percent DOD. The approach towards meeting this goal initially focused on several basic issues related to the cell chemistry, selection of cathode materials and electrolytes and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of achievable specific energy and cycle life. Major advancements to date in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. A summary is given of these advances.

  8. Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

    PubMed

    Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng

    2018-01-17

    Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.

  9. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    PubMed Central

    Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri

    2016-01-01

    This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − y)LiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling. PMID:28773717

  10. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  11. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyunji; Zhao, Xiaohui; Kim, Dul-Sun

    2014-10-15

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time,more » sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.« less

  12. Synthesis and Electrochemical Performance of LixMn2-yCoyO4-dCld Cathode Material

    DTIC Science & Technology

    2016-06-13

    Lithium manganese oxide spinel is a potential candidate for Li- ion battery cathodes because of its...240 mAh/g of active material, and 4) high rate charge and discharge. Keywords: Lithium and Li- ion battery , Lithium manganese oxide spinel, Spinel...demonstrate desirable traits for incorporation into lithium - ion batteries for the military. References 1. David Linden (Ed.); Handbook of Batteries

  13. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  14. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  15. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  16. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less

  17. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less

  18. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE PAGES

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...

    2017-02-14

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less

  19. Materials Characteristics and Surface Morphology of a Cesium Iodide Coated Carbon Velvet Cathode (POSTPRINT)

    DTIC Science & Technology

    2009-03-31

    cathodes consist of an array of carbon fibers pyrolytically bonded to a carbon substrate. The fibers then receive a CsI coating using either a...the oil side of the vacuum interface along the cathode shank. Current transformers provide current measurements of the cathode current, again

  20. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  1. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.

    PubMed

    Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W

    2017-05-10

    Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable

  2. Electrochemical investigations of advanced materials for microelectronic and energy storage devices

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Pubudu Chaminda

    A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response

  3. Impact of ALD Coating on Mn-rich Cathode Materials (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, S.

    2013-06-01

    LG Chem Power Inc. (LGCPI) and NREL have collaborated to demonstrate the scalability of the atomic layer deposition (ALD) coating process over the last 6 months, and the benefits of ALD coatings for long-term cycling and calendar life are being quantified. The objectives of this work are two-fold: 1) to evaluate the scalability of the process to coat LGCPI cathodes with alumina using the ALD technique, and 2) to demonstrate improvements in rate capability and life of ALD-coated LGCPI electrodes. NREL received samples of baseline material to be coated from LGCPI. NREL carried out ALD coating of the samples withmore » help from a subcontractor, ALD Nanosolutions. NREL fabricated cells from those samples for quick screening and feedback to ALD Nanosolutions. LGCPI is currently fabricating larger-format cells for further evaluation.« less

  4. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  5. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  6. First-principles investigation of the structural characteristics of LiMO2 cathode materials for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Kim, Yongseon

    2015-11-01

    The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.

  7. Advanced energy materials (Preface)

    NASA Astrophysics Data System (ADS)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  8. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  9. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  10. Field Emission Cold Cathode Devices Based on Eutectic Systems

    DTIC Science & Technology

    1981-07-01

    8217RADC-TR-811-170 ’,Final Technical Report July 1981 FIELD EMISSION COLD CATHODE DEVICES BASED ON EUTECTIC SYSTEMS Fulmer Research Institute Ltd...and identify by block numrber) Field Emission Eutectic Systems Cold Cathode Rod Eutectics Electron Emitter Array Directionally Solidified Eutectics...Identify by block number) A survey has been made of the performance as field emission cold cathodes of selected refractory materials fabricated as

  11. Nickel-titanium-phosphate cathodes

    DOEpatents

    Belharouak, Ilias [Westmont, IL; Amine, Khalil [Downers Grove, IL

    2008-12-16

    Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by Li.sub.xNi.sub.0.5TiOPO.sub.4. The structure of Li.sub.xNi.sub.0.5TiOPO.sub.4 includes corner sharing octahedra [TiO.sub.6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in Li.sub.xNi.sub.0.5TiOPO.sub.4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.

  12. Reduced Graphene Oxide Decorated Na3V2(PO4)3 Microspheres as Cathode Material With Advanced Sodium Storage Performance

    PubMed Central

    Chen, Hezhang; Huang, Yingde; Mao, Gaoqiang; Tong, Hui; Yu, Wanjing; Zheng, Junchao; Ding, Zhiying

    2018-01-01

    Reduced graphene oxide (rGO) sheet decorated Na3V2(PO4)3 (NVP) microspheres were successfully synthesized by spray-drying method. The NVP microspheres were embedded by rGO sheets, and the surface of the particles were coated by rGO sheets and amorphous carbon. Thus, the carbon conductive network consisted of rGO sheets and amorphous carbon generated in the cathode material. NVP microspheres decorated with different content of rGO (about 0, 4, 8, and 12 wt%) were investigated in this study. The electrochemical performance of NVP exhibited a significant enhancement after rGO introduction. The electrode containing about 8 wt% rGO (NVP/G8) showed the best rate and cycle performance. NVP/G8 electrode exhibited the discharge capacity of 64.0 mAh g−1 at 70°C, and achieved high capacity retention of 95.5% after cycling at 10°C for 100 cycles. The polarization of the electrode was inhibited by the introduction of rGO sheets. Meanwhile, compared with the pristine NVP electrode, NVP/G8 electrode exhibited small resistance and high diffusion coefficient of sodium ions. PMID:29876346

  13. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  14. Video Fact Sheets: Everyday Advanced Materials

    ScienceCinema

    None

    2018-06-21

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  15. Video Fact Sheets: Everyday Advanced Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-10-06

    What are Advanced Materials? Ames Laboratory is behind some of the best advanced materials out there. Some of those include: Lead-Free Solder, Photonic Band-Gap Crystals, Terfenol-D, Aluminum-Calcium Power Cable and Nano Particles. Some of these are in products we use every day.

  16. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  17. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  18. Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities.

    PubMed

    McCloskey, Bryan D; Burke, Colin M; Nichols, Jessica E; Renfrew, Sara E

    2015-08-18

    The Li-air battery has received significant attention over the past decade given its high theoretical specific energy compared to competing energy storage technologies. Yet, numerous scientific challenges remain unsolved in the pursuit of attaining a battery with modest Coulombic efficiency and high capacity. In this Feature Article, we provide our current perspective on challenges facing the development of nonaqueous Li-O2 battery cathodes. We initially present a review on our understanding of electrochemical processes occurring at the nonaqueous Li-O2 cathode. Electrolyte and cathode instabilities and Li2O2 conductivity limitations are then discussed, and suggestions for future materials research development to alleviate these issues are provided.

  19. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  20. High Current Density Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a

  1. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  2. Electrochemical properties of lithium iron phosphate cathode material using polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Choi, Jae-Won; Cheruvally, Gouri; Shin, Yong-Jo; Ahn, Jou-Hyeon; Cho, Kwon-Koo; Ahn, Hyo-Jun; Kim, Ki-Won

    2007-12-01

    Carbon-coated lithium iron phosphate (LiFePO4/C) cathode material was synthesized by mechano-chemical activation method. The performance of LiFePO4/C in lithium battery was tested with an electrospun polymer-based electrolyte. Liquid electrolyte of 1M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) (1 : 1vol) was incorporated in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) microfibrous membrane to prepare the polymer electrolyte (PE). The cell based on Li|PE|Li FePO4/C exhibited an initial discharge capacity of 142 mAh g-1 at 0.1 C-rate at room temperature. Good cycling performance even under the high current density of 2 C could be obtained. Impedance spectroscopy was applied to investigate the material behavior during 0.1 C-rate charge-discharge cycling. When the fresh cell and the cell after different cycles were compared, impedance resistance was found to decrease with cycling. Impedance study indicated good cycle life for the cell when tested at room temperature.

  3. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  4. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18,000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  5. Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes

    NASA Astrophysics Data System (ADS)

    Hunt, Charles E.; Wang, Yu

    2005-09-01

    Numerous carbon bulk or thin-film materials have been used as field-emission cathodes. Most of these can be made into large-area and high-current field-emission cathodes without the use of complex IC fabrication techniques. Some of these exhibit low-extraction field, low work-function, high ruggedness, chemical stability, uniform emission, and low-cost manufacturability. A comparison of all of these materials is presented. Two viable cathode materials, reticulated vitreous carbon (RVC) and graphite paste are examined here and compared.

  6. MnCo2 O4 /MoO2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium-Oxygen Batteries.

    PubMed

    Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi

    2018-02-09

    Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves asmore » the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest

  8. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Gu, Meng

    LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less

  9. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries

    DOE PAGES

    Yan, Pengfei; Zheng, Jianming; Gu, Meng; ...

    2017-01-16

    LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less

  10. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries.

    PubMed

    Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue

    2017-02-01

    The tunnel-structured Na 0.44 MnO 2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na 0.44 MnO 2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na 0.44 MnO 2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g -1 and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g -1 . The as-designed multiangular Na 0.44 MnO 2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.

  11. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  12. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    PubMed

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Microstructure control of SOFC cathode material: The role of dispersing agent

    NASA Astrophysics Data System (ADS)

    Ismail, Ismariza; Jani, Abdul Mutalib Md; Osman, Nafisah

    2017-09-01

    In the present works, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode powders were synthesized by a sol-gel method with the aid of ethylene glycol which served as the dispersing agent. The phase formation and morphology of the powders were examined by X-Ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM), respectively. The electrochemical properties of the synthesized cathode were obtained using an electrochemical impedance spectroscopy (EIS). The characteristic peaks for LSCF phase appears in the X-ray diffractogram after calcined at 500 °C and complete formation of LSCF single phase was attained at 700 °C. FESEM micrographs showed the presence of spherical particles of the powders with approximate particle size between 10 to 60 nm along with agglomerate morphologies. Well dispersed particles and fewer aggregates were observed for samples prepared with addition of ethylene glycol as the synthesizing aid. The surface area obtained for powder sample prepared with the aid of dispersing agent is 12.0 m2g-1. The EIS measurement results depicts a lower area specific resistance (ASR) obtained for sample prepared with addition of the ethylene glycol as compared to the pristine sample. The present results encourage the optimization of the cathode particle design in order to further improve the cathode performance.

  14. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  15. Molecular dynamics simulations of Li transport between cathode crystals

    NASA Astrophysics Data System (ADS)

    Garofalini, S. H.

    The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.

  16. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Dong; Liu, Mingfei; Lai, Samson

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under

  17. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  18. Super high energy density of Li3V2(PO4)3 as cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Noerochim, Lukman; Amin, Mochammad Karim Al; Susanti, Diah; Triwibowo, Joko

    2018-04-01

    Lithium ion batteries have many advantages such as high energy density, no memory effect, long time cycleability and friendly environment. One type of cathode material that can be developed is Li3V2(PO4)3. In this study has been carried out the synthesis of Li3V2(PO4)3 with a hydrothermal temperature variation of 140, 160 and 180 °C and calcination temperature at 800 °C. SEM images show that the morphology of Li3V2(PO4)3 has irregular flakes with a size between 1-10 µm. CV results show redox reaction occurs in the range between 3 V to 4.8 V with the highest specific discharge capacity of 136 mAh/g for specimen with temperature hydrothermal and calcination are 180 °C and 800 °C. This result demonstrates that Li3V2(PO4)3 has a great potential as cathode material for lithium ion battery.

  19. Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Zhang, Bingjie

    Cryptomelane type manganese dioxides (α-MnO 2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li +and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g),more » however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li +ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ~115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.« less

  20. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang

    2017-03-29

    Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.

  1. Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.

    2016-05-01

    The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.

  2. Cathode Wetting Studies in Magnesium Electrolysis

    NASA Astrophysics Data System (ADS)

    McLean, Kevin; Pettingill, James; Davis, Boyd

    The effects of cathode materials and electrolyte additives on magnesium wetting were studied with the goal of improving current efficiency in a magnesium electrolysis cell. The study consisted of static wetting and electrolysis tests, both conducted in a visual cell with a molten salt electrolyte of MgCl2-CaCl2-NaCl-KCl-CaF2. The wetting conditions were tested using high resolution photography and contact angle software. The electrolysis tests were completed to qualitatively assess the effect of additives to the melt and were recorded with a digital video camcorder. Results from the static wetting tests showed a significant variation in wetting depending on the material used for the cathode. Mo and a Mo-W alloy, with contact angles of 60° and 52° respectively, demonstrated excellent wetting. The contact angle for steel was 132° and it ranged from 142°-154° for graphite depending on the type. Improvements to the cathode wetting were observed with tungsten and molybdenum oxide additives.

  3. Unraveling the Complex Delithiation and Lithiation Mechanisms of the High Capacity Cathode Material V 6O 13

    DOE PAGES

    Meng, Wei; Pigliapochi, Roberta; Bayley, Paul M.; ...

    2017-06-05

    V 6O 13 is a promising Li-ion battery cathode material for use in the high temperature oil field environment. The material exhibits a high capacity, and the voltage profile contains several plateaus associated with a series of complex structural transformations, which are not fully understood. The underlying mechanisms are central to understanding and improving the performance of V 6O 13-based rechargeable batteries. In this study, we present in situ X-ray diffraction data that highlight an asymmetric six-step discharge and five step charge process, due to a phase that is only formed on discharge. The LixV 6O 13 unit cell expandsmore » sequentially in c, b, and a directions during discharge and reversibly contracts back during charge. The process is associated with change of Li ion positions as well as charge ordering in LixV 6O 13. Density functional theory calculations give further insight into the electronic structures and preferred Li positions in the different structures formed upon cycling, particularly at high lithium contents, where no prior structural data are available. Lastly, the results shed light into the high specific capacity of V 6O 13 and are likely to aid in the development of this material for use as a cathode for secondary lithium batteries.« less

  4. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na halfmore » cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.« less

  5. Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts

    NASA Astrophysics Data System (ADS)

    Lee, Chang Hwa; Kim, Tack-Jin; Park, Sungbin; Lee, Sung-Jai; Paek, Seung-Woo; Ahn, Do-Hee; Cho, Sung-Ki

    2017-05-01

    The influence of cathode materials on the U electrorefining process is examined using electrochemical measurements and SEM-EDX observations. Stainless steel (STS), Mo, and W electrodes exhibit similar U reduction/oxidation behavior in 500 °C LiCl-KCl-UCl3 molten salts, as revealed by the cyclic voltammograms. However, slight shifts are observed in the cathodic and anodic peak potentials at the STS electrode, which are related to the fast reduction/oxidation kinetics associated with this electrode. The U deposits on the Mo and W electrodes consist of uniform dendritic chains of U in rhomboidal-shaped crystals, whereas several U dendrites protruding from the surface are observed for the STS electrode. EDX mapping of the electrode surfaces reveals that simple scraping of the U dendrites from W electrodes pretreated in dilute HCl solutions to dissolve the residual salt, results in clear removal of the U deposits, whereas a thick U deposit layer strongly adheres to the STS electrode surface even after treatment. This result is expected to contribute to the development of an effective and continuous U recovery process using electrorefining.

  6. Superior lithium-ion insertion/extraction properties of a novel LiFePO4/C/graphene material used as a cathode in aqueous solution.

    PubMed

    Duan, Wenyuan; Zhao, Mingshu; Shen, Junfang; Zhao, Suixin; Song, Xiaoping

    2017-09-28

    Herein, olivine LiFePO 4 covered with graphene and carbon layers is prepared via a sol-gel method, followed by calcination, and the resultant composite is used as a cathode material in aqueous rechargeable lithium-ion batteries (ARLBs). The phase structure and morphology of the composite are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and specific surface area analysis (BET). The ARLB system is fabricated using LiFePO 4 /C/graphene as the cathode and a zinc anode in 1 mol L -1 ZnSO 4 ·7H 2 O and saturated LiNO 3 aqueous solution without dissolved oxygen, which delivers a capacity of 153 mA h g -1 at 0.5C rate. Even at a 50C rate, it maintains a capacity of 95 mA h g -1 after 200 cycles. The excellent rate capabilities show that this cathode material exhibits good electrochemical performance and this novel ARLB has great potential in the fields of energy storage and high power sources.

  7. The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials

    NASA Astrophysics Data System (ADS)

    Kemik, Nihan

    Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's. For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution

  8. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  9. Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Saha, Partha; Datta, Moni Kanchan

    The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo 6Z 8 and the precursors have a general formula of M xMo 6Z 8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.

  10. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  11. Advances in dental materials.

    PubMed

    Vaderhobli, Ram M

    2011-07-01

    The use of materials to rehabilitate tooth structures is constantly changing. Over the past decade, newer material processing techniques and technologies have significantly improved the dependability and predictability of dental material for clinicians. The greatest obstacle, however, is in choosing the right combination for continued success. Finding predictable approaches for successful restorative procedures has been the goal of clinical and material scientists. This article provides a broad perspective on the advances made in various classes of dental restorative materials in terms of their functionality with respect to pit and fissure sealants, glass ionomers, and dental composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.

    PubMed

    Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang

    2016-11-01

    Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.

  13. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley

    2018-08-01

    A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.

  14. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine lengthmore » scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  15. Structural integrity—Searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  16. Structural integrity—Searching the key factor to supress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    DOE PAGES

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; ...

    2016-08-17

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less

  17. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  18. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-04-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  19. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-07-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 ( x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  20. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    NASA Astrophysics Data System (ADS)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  1. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    NASA Technical Reports Server (NTRS)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  2. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  3. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction

    DOE PAGES

    Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...

    2016-04-11

    In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less

  4. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  5. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  6. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.

    PubMed

    Wang, Kai-Xue; Zhu, Qian-Cheng; Chen, Jie-Sheng

    2018-05-11

    Rechargeable aprotic lithium (Li)-O 2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O 2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O 2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O 2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O 2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of Specialized Advanced Materials Curriculum.

    ERIC Educational Resources Information Center

    Malmgren, Thomas; And Others

    This course is intended to give students a comprehensive experience in current and future manufacturing materials and processes. It familiarizes students with: (1) base of composite materials; (2) composites--a very light, strong material used in spacecraft and stealth aircraft; (3) laminates; (4) advanced materials--especially aluminum alloys;…

  8. Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials

    NASA Astrophysics Data System (ADS)

    Kong, Fantai; Liang, Chaoping; Longo, Roberto C.; Zheng, Yongping; Cho, Kyeongjae

    2018-02-01

    As the next-generation high energy capacity cathode materials for Li-ion batteries, Ni-rich oxides face the problem of obtaining near-stoichiometric phases due to excessive Ni occupying Li sites. These extra-Ni-defects drastically affect the electrochemical performance. Despite of its importance, the fundamental correlation between such defects and the key electrochemical properties is still poorly understood. In this work, using density-functional-theory, we report a comprehensive study on the effects of non-stoichiometric phases on properties of Ni-rich layered oxides. For instance, extra-Ni-defects trigger charge disproportionation reaction within the system, alleviating the Jahn-Teller distortion of Ni3+ ions, which constitutes an important reason for their low formation energies. Kinetic studies of these defects reveal their immobile nature, creating a "pillar effect" that increases the structural stability. Ab initio molecular dynamics revealed Li depletion regions surrounding extra-Ni-defects, which are ultimate responsible for the arduous Li diffusion and re-intercalation, resulting in poor rate performance and initial capacity loss. Finally, the method with combination of high valence cation doping and ion-exchange synthesis is regarded as the most promising way to obtain stoichiometric oxides. Overall, this work not only deepens our understanding of non-stoichiometric Ni-rich layered oxides, but also enables further optimizations of high energy density cathode materials.

  9. New Cathode Material for High Energy-Density Batteries

    DTIC Science & Technology

    1974-07-31

    Lithium Anodes LINK A ROLK LINK B LINK C INSTRUCTIONS I. ORIGINATING ACTIVITY: Enter the name and oddM-ss of the contractor...theoretical energy density of 399 whr/lb when paired with a lithium anode. Results of related, but less extensive, work on zinc fluoride and...a) The semiconductor was cathodically passi- vated in the presence of lithium ions, which would normally exist in lithium battery electrolytes

  10. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery.

    PubMed

    Song, Huanqiao; Luo, Mingsheng; Wang, Aimei

    2017-01-25

    Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.

  11. Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, Katie L; Baggetto, Loic; Unocic, Raymond R

    This work reports a method to explore the catalytic reactivity of electrode surfaces towards the decomposition of carbonate solvents [ethylene carbonate (EC), dimethyl carbonate (DMC), and EC/DMC]. We show that the decomposition of a 1:1 wt% EC/DMC mixture is accelerated over certain commercially available LiCoO2 materials resulting in the formation of CO2 while over pure EC or DMC the reaction is much slower or negligible. The solubility of the produced CO2 in carbonate solvents is high (0.025 grams/mL) which masks the effect of electrolyte decomposition during storage or use. The origin of this decomposition is not clear but it ismore » expected to be present on other cathode materials and may affect the analysis of SEI products as well as the safety of Li-ion batteries.« less

  12. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  13. The Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials

    DOE PAGES

    Lai, Chun-Han; Ashby, David S.; Lin, Terri C.; ...

    2018-03-01

    Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less

  14. The Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chun-Han; Ashby, David S.; Lin, Terri C.

    Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less

  15. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation

  16. Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy.

    PubMed

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-12-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  17. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  18. RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T. L.; DiMonte, N.; Nassiri, A.

    A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less

  19. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.

    PubMed

    Guo, Juchen; Xu, Yunhua; Wang, Chunsheng

    2011-10-12

    The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.

  20. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds

    NASA Astrophysics Data System (ADS)

    Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong

    2018-03-01

    Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.

  1. Electrochemistry of Interhalogen Cathodes

    DTIC Science & Technology

    sources. Chlorine trifluoride , with a theoretical 2120 whr/lb in combination with lithium, is also known to support substantial current densities when... chlorine trifluoride as a power source cathode material. A half-cell study was made on dilute ClF3 solutions at 5C in 1 M NaF-HF by the cyclic

  2. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray

    2018-03-02

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  3. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  4. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    NASA Astrophysics Data System (ADS)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  5. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  6. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  7. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

    PubMed

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-13

    We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  8. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  9. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.

    PubMed

    Compton, Owen C; Abouimrane, Ali; An, Zhi; Palmeri, Marc J; Brinson, L Catherine; Amine, Khalil; Nguyen, SonBinh T

    2012-04-10

    An exfoliation-reassembly-activation (ERA) approach to lithium-ion battery cathode fabrication is introduced, demonstrating that inactive HCoO(2) powder can be converted into a reversible Li(1-x) H(x) CoO(2) thin-film cathode. This strategy circumvents the inherent difficulties often associated with the powder processing of the layered solids typically employed as cathode materials. The delamination of HCoO(2) via a combination of chemical and mechanical exfoliation generates a highly processable aqueous dispersion of [CoO(2) ](-) nanosheets that is critical to the ERA approach. Following vacuum-assisted self-assembly to yield a thin-film cathode and ion exchange to activate this material, the generated cathodes exhibit excellent cyclability and discharge capacities approaching that of low-temperature-prepared LiCoO(2) (~83 mAh g(-1) ), with this good electrochemical performance attributable to the high degree of order in the reassembled cathode. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In situ study of Li-ions diffusion and deformation in Li-rich cathode materials by using scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Kaiyang; Li, Tao; Tian, Tian

    2017-08-01

    In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.

  11. Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method

    NASA Astrophysics Data System (ADS)

    Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen

    2018-03-01

    The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.

  12. Operation and Applications of the Boron Cathodic Arc Ion Source

    NASA Astrophysics Data System (ADS)

    Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Freeman, J. H.

    2008-11-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  13. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  14. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    PubMed

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  15. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOEpatents

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  16. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio

    NASA Astrophysics Data System (ADS)

    Sun, Ho-Hyun; Choi, Wonchang; Lee, Joong Kee; Oh, In-Hwan; Jung, Hun-Gi

    2015-02-01

    Various Ni-rich layered oxide cathodes (above 0.80 Ni content), such as LiNi1-y-zCoyAlzO2 (NCA), are used in electric vehicles (EVs) due to their high capacity (∼200 mAh g-1 for NCA). However, to improve cycle performance and thermal stability and to ensure longer and safer usage, numerous studies have investigated surface modification, coating, and doping of cathode materials. In this study, we have investigated the characteristics of Li[Ni0.85CoxMn0.15-x]O2 with various Mn to Co ratios (x = 0-0.15) synthesized by a coprecipitation method. The discharge capacities of the Li[Ni0.85CoxMn0.15-x]O2 cathodes are similar at around 206 mAh g-1 at room temperature and 213.8 mAh g-1 at 55 °C between 2.7 and 4.3 V at a 0.2C rate, while the cyclability, thermal stability, and rate capability of all samples differ according to the Mn and Co ratio. The Li[Ni0.85Co0.05Mn0.10]O2 cathode shows the most promising electrochemical properties under different conditions among the various cathodes evaluated; it displays a high rate capacity (approximately 163 mAh g-1 at 5C rate) at 25 °C and good thermal stability (main exothermic temperature of 233.7 °C and relatively low heat evolution of 857.3 J g-1).

  17. A novel family of Nb-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Qiang; Sun, Liping; Zhang, Xianfa; Huo, Lihua; Zhao, Hui; Grenier, Jean-Claude

    2017-12-01

    Cobalt-free provskite oxides Bi0.5Sr0.5Fe1-xNbxO3-δ (BSFNx, x = 0.05, 0.10 and 0.15) were prepared and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In particular, the effects of Nb substitution on phase evolution, thermal expansion behavior and electrochemical performance were systematically investigated. The average thermal expansion coefficient (TEC) of BSFNx decreases from 13.3 × 10-6 K-1 at x = 0.05 to 12.6 × 10-6 K-1 at x = 0.15 within a temperature range of 50-800 °C. Among the BSFNx materials, Bi0.5Sr0.5Fe0.9Nb0.1O3-δ (BSFN0.10) oxide shows the best electrochemical performance. The polarization resistances (Rp) of BSFN0.10 cathode on CGO electrolyte are 0.038, 0.075 and 0.156 Ω cm2 at 700, 650 and 600 °C, respectively. Meanwhile the maximum power densities of the anode-supported single cells are 1.28, 1.54 and 1.34 W cm-2 at 700 °C for BSFNx cathodes with x = 0.05, 0.10, and 0.15, respectively. Furthermore, the relationship study of oxygen partial pressure dependence on Rp indicates that the oxygen reduction reaction (ORR) rate-limiting step is the oxygen adsorption-dissociation on the electrode surface. The desirable electrochemical performance demonstrates that BSFNx oxides are potential cathode materials for IT-SOFCs.

  18. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  19. Reducing DRIFT backgrounds with a submicron aluminized-mylar cathode

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; Landers, J.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Lumnah, A.; Matthews, J.; Miller, E. H.; Mouton, F.; Murphy, A. St. J.; Paling, S. M.; Phan, N.; Sadler, S. W.; Scarff, A.; Schuckman, F. G.; Snowden-Ifft, D.; Spooner, N. J. C.; Walker, D.

    2015-09-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 μm thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234U and 73±2 ppb 238U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation.

  20. High-voltage positive electrode materials for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Song, Bohang; Manthiram, Arumugam

    The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. Here, this review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirementsmore » either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. Finally, a concise perspective with respect to plausible strategies for future developments in the field is also provided.« less

  1. High-voltage positive electrode materials for lithium-ion batteries

    DOE PAGES

    Li, Wangda; Song, Bohang; Manthiram, Arumugam

    2017-04-25

    The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. Here, this review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirementsmore » either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. Finally, a concise perspective with respect to plausible strategies for future developments in the field is also provided.« less

  2. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  3. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  4. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications.

    PubMed

    Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig

    2018-05-28

    Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.

  5. Effect of current ripple on cathode erosion in 30 kWe class arcjets

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.

  6. Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass.

    PubMed

    Gregory, Jeremy R; Nadeau, Marie-Claude; Kirchain, Randolph E

    2009-12-15

    This paper presents an analysis of the material recovery system for leaded glass from cathode ray tubes (CRTs) using a dynamic material flow analysis. In particular, the global mass flow of primary and secondary CRT glass and the theoretical capacities for using secondary CRT glass to make new CRT glass are analyzed. The global mass flow analysis indicates that the amount of new glass required is decreasing, but is much greater than the amount of secondary glass collected, which is increasing. The comparison of the ratio of secondary glass collected to the amount of new glass required from the mass flow analysis indicates that the material recovery system is sustainable for the foreseeable future. However, a prediction of the time at which the market for secondary glass will collapse due to excess capacity is not possible at the moment due to several sources of uncertainty.

  7. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Ding, Dong; Wei, Tao

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  8. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  9. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    NASA Technical Reports Server (NTRS)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.

  10. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  11. Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bai, Ying; Chen, Shi

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less

  12. Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity

    DOE PAGES

    Huang, Shuping; Wilson, Benjamin E.; Wang, Bo; ...

    2015-08-11

    We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less

  13. Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shuping; Wilson, Benjamin E.; Wang, Bo

    We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less

  14. Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1–x PO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobridge, Fiona C.; Liu, Hao; Leskes, Michal

    2016-06-14

    The delithiation mechanisms occurring within the olivine-type class of cathode materials for Li-ion batteries have received considerable attention owing to the good capacity retention at high rates for LiFePO4. A comprehensive mechanistic study of the (de)lithiation reactions that occur when the substituted olivine-type cathode materials LiFexCo1-xPO4 (x = 0, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95 and 1) are electrochemically cycled is reported here, using in situ X-ray diffraction (XRD) data. On the first charge, two intermediate phases are observed and identified: Li1-x(Fe3+)x(Co2+)1- xPO4 for 0 < x < 1 (i.e. after oxidation of Fe2+ => Fe3+) and Li2/3FexCo1-xPO4 formore » 0 ≤ x ≤ 0.5 (i.e. the Co-majority materials). For the Fe-rich materials, we study how nonequilibrium, single-phase mechanisms that occur discretely in single particles, as observed for LiFePO4 at high rates, is affected by Co substitution. In the Co-majority materials, a two-phase mechanism with a coherent interface is observed, as was seen in LiCoPO4, and we discuss how it is manifested in the XRD patterns. We then compare the nonequilibrium, single-phase mechanism with the bulk single-phase and the coherent interface two-phase mechanisms. Despite the apparent differences between these mechanisms, we discuss how they are related and interconverted as a function of Fe/Co substitution and the potential implications for the electrochemistry of this system.« less

  15. In Situ X-ray Diffraction Studies of Li(sub x)Mn(sub 2)O(sub 4) Cathode Materials by Synchrotron X-ray Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. Q.; Sun, X.; Lee, S. J.

    In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less

  16. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.

    PubMed

    Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra

    2012-01-01

    The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society

  17. Novel Low-Cost, Low-Power Miniature Thermionic Cathode Developed for Microwave/Millimeter Wave Tube and Cathode Ray Tube Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    1999-01-01

    A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.

  18. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  19. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Manthiram, Arumugam

    2014-12-01

    A part of carbon additives in sulfur cathodes is replaced by lithium-insertion compounds as they can contribute extra capacity and increase the overall energy density. Accordingly, VO2(B) and TiS2 were incorporated into sulfur cathodes as they can work within the same voltage window as that of sulfur. However, VO2(B) was found to be incompatible with the glyme-based electrolytes that are usually used in Li-S cells, but TiS2 performs well while coupled with sulfur. The S/C/TiS2 composite cathode delivers 252 mAh g-1 more than that of pristine sulfur cathode (1334 mAh g-1 vs. 1082 mAh g-1). The increased capacity is not only due to the contribution by TiS2 itself but also due to a better active-material dispersion and utilization. Serving as active reaction sites during cycling, TiS2 suppresses agglomeration of sulfur and facilitates better ionic/electronic transport within the cathode structure. This composite cathode design provides another direction for Li-S batteries to improve the overall energy density.

  20. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    DTIC Science & Technology

    2015-04-24

    As a result, two major approaches have been taken to increase electrode- electrolyte interfacial area while minimizing lithium diffusion lengths...Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode

  1. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    PubMed

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

  2. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.

    PubMed

    Zeng, Shuaibo; Li, Ligui; Xie, Lihong; Zhao, Dengke; Wang, Nan; Chen, Shaowei

    2017-09-11

    Low electrical conductivity and a lack of chemical confinement are two major factors that limit the rate performances and cycling stabilities of cathode materials in lithium-sulfur (Li-S) batteries. Herein, sulfur is copolymerized with poly(m-aminothiophenol) (PMAT) nanoplates through inverse vulcanization to form the highly crosslinked copolymer cp(S-PMAT) in which approximately 80 wt % of the feed sulfur is bonded chemically to the thiol groups of PMAT. A cp(S-PMAT)/C-based cathode exhibits a high discharge capacity of 1240 mAh g -1 at 0.1 C and remarkable rate capacities of 880 mAh g -1 at 1 C and 600 mAh g -1 at 5 C. Moreover, it can retain a capacity of 495 mAh g -1 after 1000 deep discharge-charge cycles at 2 C; this corresponds to a retention of 66.9 % and a decay rate of only 0.040 % per cycle. Such a remarkable rate performance is attributed to the highly conductive pathways of PMAT nanoplates, and the excellent cycling stability is ascribed mainly to the chemical confinement of sulfur through a large number of stable covalent bonds between sulfur and the thiol groups of PMAT. The results suggest that this strategy is a viable paradigm for the design and engineering of conducting polymers with reactive functional groups as effective electrode materials for high-performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Use of a Polyacetylene Cathode in Primary Lithium-Thionyl Chloride Cells.

    DTIC Science & Technology

    1983-10-01

    BUJREAU OF STANDAFRfA1.-, A 70 o 0 :0 .0 0 S S 0. 5, * ...- 7. * E~1 ~ C -TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL CHLORIDE...CELLS ,.710 c-- -IGEO-CENTERS, INC. C. t 2G’ X=. 2. . ~t ~ ~* ~.4 . . ~. t ~ GC-TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL...cathode material in a lithium /thionyl chloride (Li/SOCl 2) battery. S?The objective of the project was three-fold: -. (1) To characterize and

  4. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  5. Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yin, Zhendong; Xu, Jie; Ge, Yali; Jiang, Qiaoya; Zhang, Yaling; Yang, Yawei; Sun, Yuping; Hou, Siyu; Shang, Yuanyuan; Zhang, Yingjiu

    2018-03-01

    Vanadium oxide (V2O5) microspheres have attracted considerable attention in the energy field due to their unique properties such as high stability and electrochemical activity. Here, massive V2O5 microspheres with smooth surface, hollow cavity and uniform particle sizes (0.4–1.5 μm), were synthesized by a facile spray pyrolysis process. Post-treatment at predefined temperatures effectively turned the microsphere shell into stacked nanorods with widths of 100 nm and lengths of 500 nm when processed at 500 °C for 3 h under nitrogen atmosphere, with enhanced crystallinity. When applied as cathode materials for supercapacitors, the post-treated V2O5 microspheres at 500 °C exhibited improved specific capacitance and longer discharge time. This is an effective method to manufacture massive V2O5 microspheres with tailored structure and potential applications in high-performance energy storage materials.

  6. Development of a high-performance composite cathode for LT-SOFC

    NASA Astrophysics Data System (ADS)

    Lee, Byung Wook

    Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were

  7. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  8. Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratnakumar, B.V.; Ni, C.L.; DiStefano, S.

    1989-01-01

    Niobium triselenide offers promise as a high energy density cathode material for ambient temperature lithium rechargeable cells. The electrochemical behavior of NbSe/sub 3/ in the battery electrolyte, i.e., 1.5m LiAsF/sub 6//2 Me-THF is reported here. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe/sub 3/ as well as the rate governing processes in the reduction of NbSe/sub 3/. Based on the experimental data, an equivalent circuit has been formulated to represent the NbSe/sub 3/-solution interface. The kinetic parameters for the reduction ofmore » NbSe/sub 3/ were evaluated from the ac and dc measurements. Finally, the structural change in NbSe/sub 3/ on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe/sub 3/ was identified to be a loss of crystallographic order, i.e., amorphous by x-ray diffraction.« less

  9. Materials for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  10. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  11. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2015-11-01

    This work is focussed on the processing of cathodic active material of spent lithium ion batteries (LIBs) to ensure resource recovery and minimize environmental degradation. The sulfuric acid leaching of metals was carried out for the recovery of all the valuable metals including nickel and manganese along with the frequently targeted metals like lithium and cobalt. The process parameters such as acid concentration, pulp density, time and temperature for the leaching of metals from the cathode powder containing 35.8% Co, 6.5% Li, 11.6% Mn and 10.06% Ni, were optimized. Results show the optimized leach recovery of 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn when the material was leached in 1M H2SO4 at 368 K and 50 g/L pulp density for 240 min. The need of a reductant for improved recovery of cobalt and manganese has been explained by the thermodynamic analysis (Eh-pH diagram) for these metals. Leaching of the valuable metals was found to follow the logarithmic rate law controlled by surface layer diffusion of the lixiviant reacting with the particles. The mode of leaching of the metals from the spent LIBs was further examined by chemical analysis of the samples at various stage of processing which was further corroborated by characterizing the untreated sample and the leach residues by XRD phase identification and the SEM-EDS studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Scott

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontiummore » manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.« less

  13. Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material

    DOE PAGES

    Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; ...

    2014-11-21

    Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$$_2$$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less

  14. Mixed polyanion glass cathodes: Glass-state conversion reactions

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...

    2015-11-10

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less

  15. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.

    PubMed

    Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J

    2015-11-23

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  16. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  17. 3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xue, Qing; Wei, Lei; Wu, Feng; Chen, Renjie

    2017-01-18

    In this study, a hard-templating route was developed to synthesize a 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g -1 at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 . A high discharge capacity of 135.7 mA h g -1 even at a high current of 1000 mA g -1 was also obtained. This excellent electrochemical performance of the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.

  18. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  19. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    NASA Astrophysics Data System (ADS)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  20. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  1. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.

    PubMed

    Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong

    2013-08-28

    This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.

  2. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less

  3. Improve electrochemical performance of CeO2 surface modification LiNi0.80Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan

    2014-06-01

    Lithium ion battery cathode material LiNi0.8Co0.15Al0.05O2 cathode has successfully prepared by co-precipitation. CeO2 surface modification has improved LiNi0.80Co0.15Al0.05O2 electrochemical performance use sol-gel method and subsequent heat treatment at 600 °C for 5 h. Different to other conventional coating material, CeO2 coating layer can not only inhibit the reaction of the electrode and the electrolyte, but also can reduce the impedance of electron transfer due to its high conductivity, and inhibit the production of Ni2+ because of its high oxidation. The surface-modified and pristine LiNi0.80Co0.15Al0.05O2 powders are characterized by XRD, SEM, TEM, XPS, CV and DSC. When CeO2 coating is 0.02% (mole ratio), contrast to pristine NCA, the CeO2-coated NCA cathode exhibits no decrease in its initial specific capacity of 184 mAh g -1 (at 0.2 C) and excellent capacity retention (86% of its initial capacity at 1 C) between 2.75 and 4.3 V after 100 cycles. The results indicate that the CeO2 surface treatment should be an effective way to improve cycle properties due to CeO2 inhibit the electrodes and the electrolyte side effects.

  4. Excellent rate capability and cycling stability in Li+-conductive Li2SnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries.

    PubMed

    Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin

    2018-05-22

    High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.

  5. Virtual cathode emission of an annular cold cathode

    NASA Astrophysics Data System (ADS)

    Park, S.-d.; Kim, J.-h.; Han, J.; Yoon, M.; Park, S. Y.; Choi, D. W.; Shin, J. W.; So, J. H.

    2009-11-01

    Recent measurement of voltage V and current I of the electron gun of a relativistic klystron amplifier revealed that the resulting current-voltage relationship appeared to differ from the usual Child-Langmuir law (I∝V3/2) especially during the initial period of voltage increase. This paper attempts to explain this deviation by examining the emission mechanism using particle-in-cell simulation. The emission area in the cathode increased stepwise as the applied voltage increased and within each step the current and voltage followed the Child-Langmuir law. The electron emission began when the voltage reached a threshold, and the perveance increased with the emission area. Furthermore, an apparent virtual cathode was formed which was larger than the cathode tip. This occurs because, above a certain voltage, the emission from the edge and the side of the cathode surface dominates the emission from the front-end surface.

  6. Revealing Anisotropic Spinel Formation on Pristine Li- and Mn-Rich Layered Oxide Surface and Its Impact on Cathode Performance

    DOE PAGES

    Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...

    2017-01-06

    Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less

  7. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  8. Insight into the Atomic Structure of High-Voltage Spinel LiNi 0.5Mn 1.5O4 Cathode Material in the First Cycle

    DOE PAGES

    Huang, Xuejie; Yu, Xiqian; Lin, Mingxiang; ...

    2014-12-22

    Application of high-voltage spinel LiNi 0.5Mn 1.5O4 cathode material is the closest and the most realistic approach to meeting the midterm goal of lithium-ion batteries for electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs). However, this application has been hampered by long-standing issues, such as capacity degradation and poor first-cycle Coulombic efficiency of LiNi 0.5Mn 1.5O4 cathode material. Although it is well-known that the structure of LiNi 0.5Mn 1.5O4 into which Li ions are reversibly intercalated plays a critical role in the above issues, performance degradation related to structural changes, particularly in the first cycle, are not fully understood.more » Here, we report detailed investigations of local atomic-level and average structure of LiNi 0.5Mn 1.5O4 during first cycle (3.5–4.9 V) at room temperature. We observed two types of local atomic-level migration of transition metals (TM) ions in the cathode of a well-prepared LiNi 0.5Mn 1.5O4//Li half-cell during first charge via an aberration-corrected scanning transmission electron microscopy (STEM). Surface regions (~2 nm) of the cycled LiNi 0.5Mn 1.5O4 particles show migration of TM ions into tetrahedral Li sites to form a Mn 3O 4-like structure. However, subsurface regions of the cycled particles exhibit migration of TM ions into empty octahedral sites to form a rocksalt-like structure. The migration of these TM ions are closely related to dissolution of Ni/Mn ions and building-up of charge transfer impedance, which contribute significantly to the capacity degradation and the poor first-cycle Coulombic efficiency of spinel LiNi 0.5Mn 1.5O4 cathode material. Accordingly, we provide suggestions of effective stabilization of LiNi 0.5Mn 1.5O4 structure to obtain better electrochemical performance.« less

  9. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  10. Transparent Carbon Nanotube layers as cathodes in OLEDs

    NASA Astrophysics Data System (ADS)

    Papadimitratos, Alexios; Nasibulin, Albert; Kauppinen, Esko; Zakhidov, Anvar; Solarno Inc Collaboration; Aalto University Collaboration; UT Dallas Collaboration

    2011-03-01

    Organic Light Emitting diodes (OLEDs) have attracted high interest in recent years due to their potential use in future lighting and display applications. Reported work on OLEDs traditionally utilizes low work function materials as cathodes that are expensive to fabricate because of the high vacuum processing. Transparent carbon nanotube (CNT) sheets have excellent mechanical and electrical properties. We have already shown earlier that multi-wall (MWCNT) as well as single CNT (SWCNT) sheets can be used as effective anodes in bright OLEDs [,]. The true advantage of using the CNT sheets lies in flexible devices and new architectures with CNT sheet as layers in tandem devices with parallel connection. In this work, we are investigating the possibility of using SWCNT as cathodes in OLEDs. SWCNT sheets have been reported to show lower work function compared to MWCNT. Our work attempts to demonstrate transparent OLED devices with CNT anodes and cathodes. In the process, OLEDs with CNT cathodes have been fabricated in normal and inverted configurations using inorganic oxides (MoO3,ZnO) as invertion layers.

  11. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOEpatents

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  12. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  13. Designing Air-Stable O 3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Hu-Rong; Wang, Peng-Fei; Gong, Yue

    As promising high-capacity cathode materials for Na-ion batteries, O 3-type Na-based metal oxides always suffer from their poor air stability originating from the spontaneous extraction of Na and oxidation of transition metals when exposed to air. Here, a combined structure modulation is proposed to tackle concurrently the two handicaps via reducing Na layers spacing and simultaneously increasing valence state of transition metals. Guided by density functional theory calculations, we demonstrate such a modulation can be subtly realized through cosubstitution of one kind of heteroatom with comparable electronegativity and another one with substantially different Fermi level, by adjusting the structure ofmore » NaNi 0.5Mn 0.5O 2 via Cu/Ti codoping. The as-obtained NaNi 0.45Cu 0.05Mn 0.4Ti 0.1O 2 exhibits an increase of 20 times in stable air-exposure period and 9 times in capacity retention after 500 cycles, and even retains its structure and capacity after being soaked in water. In such a simple and effective structure modulation reveals a new avenue for high-performance O 3-type cathodes and pushes the large-scale industrialization of Na-ion batteries a decisive step forward.« less

  14. Designing Air-Stable O 3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries

    DOE PAGES

    Yao, Hu-Rong; Wang, Peng-Fei; Gong, Yue; ...

    2017-06-09

    As promising high-capacity cathode materials for Na-ion batteries, O 3-type Na-based metal oxides always suffer from their poor air stability originating from the spontaneous extraction of Na and oxidation of transition metals when exposed to air. Here, a combined structure modulation is proposed to tackle concurrently the two handicaps via reducing Na layers spacing and simultaneously increasing valence state of transition metals. Guided by density functional theory calculations, we demonstrate such a modulation can be subtly realized through cosubstitution of one kind of heteroatom with comparable electronegativity and another one with substantially different Fermi level, by adjusting the structure ofmore » NaNi 0.5Mn 0.5O 2 via Cu/Ti codoping. The as-obtained NaNi 0.45Cu 0.05Mn 0.4Ti 0.1O 2 exhibits an increase of 20 times in stable air-exposure period and 9 times in capacity retention after 500 cycles, and even retains its structure and capacity after being soaked in water. In such a simple and effective structure modulation reveals a new avenue for high-performance O 3-type cathodes and pushes the large-scale industrialization of Na-ion batteries a decisive step forward.« less

  15. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  16. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.

    In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.

  17. Barriers to applying advanced high-temperature materials

    NASA Astrophysics Data System (ADS)

    Premkumar, M. K.

    1993-01-01

    During the past 25 years, aerospace engineers and material scientists have made significant technical progress toward developing next-generation aircraft. However, while advanced high-temperature materials continue to be developed, the outlook for their future application is uncertain and will depend on the ability of these materials to satisfy a more diverse market.

  18. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  19. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    DOEpatents

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  20. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.

  1. Experimental study of the electric field in a hollow cathode discharge in hydrogen: influence of sputtering

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, V.; Grützmacher, K.; Pérez, C.; de la Rosa, M. I.

    2017-11-01

    Doppler-free two photon optogalvanic spectroscopy was employed in extensive studies to measure the electric field strength in the cathode fall region of a hollow cathode discharge (HCD), operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The high quality measurements, based on an improved cathode design and laser spectroscopic set-up, reveal clear differences in the recorded spectra obtained for different cathode material (stainless steel and tungsten) at otherwise identical discharge conditions. It is well known, that the sputtering rate of tungsten is about four orders of magnitude less compared to stainless steel; hence the hydrogen plasma in front of the stainless steel cathode is much more contaminated by iron compared to tungsten. This study is focussed on analyzing the distortion of the spectra, i.e. the corresponding local electric field strength, depending on cathode material and laser power. We refer the more pronounced distortion of the spectra in case of a stainless steel cathode to the related large contamination of the hydrogen plasma due to atomic iron which is also expanding into the central discharge. Spectra recorded for different laser power, i.e. different spectral irradiance, allow verifying spectroscopic conditions, where the distortion of the spectra becomes quite negligible even for stainless steel cathode.

  2. Advanced materials for automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narula, C.K.; Allison, J.E.; Bauer, D.R.

    Quite early on, manufacturers realized that lighter automobiles (with gas and diesel engines) would be more fuel efficient and produce fewer tailpipe emissions. They also realized that burning diesel fuel at elevated temperatures (1,315 C) would result in similar improvements. However, materials limitations prevent the operation of diesel vehicles at high temperatures. The fuel efficiency of gasoline-powered vehicles is currently improved by reducing the weight of the automobile and treated the emissions with a three-way catalyst. Additional improvements can be achieved with the use of advanced materials that reduce the weight of vehicles without compromising safety. The use of ceramics,more » fiber-reinforced plastics, and metal-matrix composites are discussed. The paper also discusses automotive catalysts and their components, electrically heated catalyst devices, a lean-burn NOx catalyst, and the future for materials chemistry.« less

  3. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  4. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    PubMed

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. A 13000-hour test of a mercury hollow cathode

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    A mercury-fed hollow cathode was tested for 12,979 hours in a bell jar at SERT 2 neutralizer operating conditions. The net electron current drawn to a collector was 0.25 ampere at average collector voltages between 21.8 and 36.7 volts. The mercury flow rate was varied from 5.6 to 30.8 equivalent milliamperes to give stable operation at the desired electrode voltages and currents. Variations with time in the neutralizer discharge characteristics were observed and hypothesized to be related to changes in the cathode orifice dimensions and the availability of electron emissive material. A facility failure caused abnormal test conditions for the last 876 hours and led to the cathode heater failure which concluded the test.

  6. Structural changes and thermal stability of charged LiNi xMn yCo zO 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE PAGES

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; ...

    2014-11-24

    Thermal stability of charged LiNi xMn yCo zO 2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and themore » larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  7. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  8. Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of droplets

    NASA Astrophysics Data System (ADS)

    Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.

    2017-10-01

    A model of cathode spots in high-current vacuum arcs is developed with account of all the potentially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre-existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the interaction of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periphery of the spot, with the main driving force being the pressure due to incident ions. Electron emission cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700-4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.

  9. Estimation of the temporary service life of DC arc plasmatron cathode

    NASA Astrophysics Data System (ADS)

    Kulygin, V. M.; Pereslavtsev, A. V.; Tresvyatskii, S. S.

    2017-09-01

    The service life of the cathode of a DC arc plasmatron continuously working with tubular electrodes that operate in the air has been considered using the semi-phenomenological approach. The thermal emission, that ensures the necessary flow of electrons, and the evaporation of the cathode material, which determines its erosion, have been taken as the basic physical phenomena that constitute the workflow. The relationships that enable the estimation of the cathode's operating time have been obtained using the known regularities of these phenomena and experimental data available in the literature. The resulting evaluations coincide satisfactorily with the endurance test results.

  10. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  11. Institute for Advanced Materials at University of Louisville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostatsmore » and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped

  12. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ

    PubMed Central

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630

  13. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    PubMed

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  14. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    PubMed Central

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  15. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries.

    PubMed

    Tai, Zhixin; Subramaniyam, Chandrasekar M; Chou, Shu-Lei; Chen, Lingna; Liu, Hua-Kun; Dou, Shi-Xue

    2017-09-01

    The most promising cathode materials, including LiCoO 2 (layered), LiMn 2 O 4 (spinel), and LiFePO 4 (olivine), have been the focus of intense research to develop rechargeable lithium-ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long-term cycling performance still limit the development of present LIBs for several applications, such as plug-in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear-assisted mechanical exfoliation method to synthesize few-layered nanosheets of LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 is used. Importantly, these as-prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C-rate capability and long-term cycling performance with much reduced volume expansion during cycling. In particular, the zero-strain insertion phenomenon could be achieved in 2-3 such layers of LiCoO 2 electrode materials, which could open up a new way to the further development of next-generation long-life and high-rate batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ab initio investigation of the surface properties of dispenser B-type and scandate thermionic emission cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig

    2009-05-01

    Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.

  17. Hollow-cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  18. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    PubMed

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Wang, Senlin; Zhang, Xiao; He, Taobin; Lu, Fengxia; Li, Huichang; Ye, Junhui

    2018-01-01

    A facile method of preparing LiMnPO4/reduced graphene oxide aerogel (LMP/rGO) as cathodic material was reported here. LiMnPO4 nano-particles were prepared using a facile polyvinyl pyrrolidone-assisted solvothermal route. Then LMP/rGO aerogel was prepared using the accessible restacking method. The influence of the cathodic electrode composition (ratio of rGO to LiMnPO4) on the performance of the LMP/rGO was evaluated by constant-current discharge tests. When compared with 217C g-1 for the pristine LMP, the best LMP/rGO (the content of rGO is 27.3 wt%) exhibits a higher capacity of 464.5C g-1 (at 0.5 A g-1), which presenting the capacity enhance of 114%. Moreover, a lithium-ion hybrid supercapacitor (LIHS) was successfully assembled by using LMP/rGO aerogel as the cathodic electrode and rGO aerogel as the anodic electrode. The LMP/rGO//rGO device achieves excellent specific energy of 16.46 W h kg-1 at a power density of 0.38 kW kg-1, even under the higher specific power of 4.52 kW kg-1, there still holds the specific energy of 11.79 W h kg-1. The LMP/rGO//rGO device maintains 91.2% of the initial capacity after 10,000 cycles (at 2 A g-1), which displays high rate performance and long cycle life. The 3D LMP/rGO aerogel could be a promising candidate material for the lithium-ion hybrid supercapacitors.

  20. Tunnel-structured Na 0.66[Mn 0.66Ti 0.34]O 2-xF x(x <0.1) cathode for high performance sodium-ion batteries

    DOE PAGES

    Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na; ...

    2018-03-13

    Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less

  1. Tunnel-structured Na 0.66[Mn 0.66Ti 0.34]O 2-xF x(x <0.1) cathode for high performance sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na

    Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less

  2. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  3. Ni-Co alloy plaque for cathode of Ni-Cd battery

    NASA Astrophysics Data System (ADS)

    Lander, J. J.

    1986-03-01

    The present invention relates generally to Ni-Cd batteries, and, in particular, relates to the plaque material attached to the cathode. Because of the wide use of nickel-cadmium batteries, the corrosion rates of nickel and nickel-cobalt alloys are of interest to nickel-cadmium battery electrochemical theory and its technology. The plaque material of the cathode consists of a Ni-Co alloy in solid solution wherein the cobalt is by weight percent one to ten percent of the alloy. Conventional methods of applying the plaque material to the nickel core may be used. It is therefore an object of the present invention to provide an improved cathode for a nickel-cadmium battery wherein the nickel corrosion is substantially lessened in the plaque material. One process of making the plaque uses a nickel powder slurry that is applied to a nickel-plated steel core. This is then sintered at a high temperature which results in a very porous structure and an welding of the nickel grains to the core. This plaque is then soaked in appropriate salts to make either a positive or a negative plate; nickel salts make a positive plate and a cadmium salts a negative plate, for example. After impregnation, the plaque is placed in an electrolyte and an electric current is passed therethrough to convert the salts to their final form. In the nickel-cadmium cell, nickel hydroxide is the active material in the positive plate.

  4. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  5. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  6. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS

  7. Two-step oxalate approach for the preparation of high performance LiNi0.5Mn1.5O4 cathode material with high voltage

    NASA Astrophysics Data System (ADS)

    Liu, Zushan; Jiang, Yangmei; Zeng, Xiaoyuan; Xiao, Guan; Song, Huiyu; Liao, Shijun

    2014-02-01

    A high voltage cathode material, LiNi0.5Mn1.5O4, is synthesized with a two-step approach, in which the nickel-manganese oxalate precipitate is firstly obtained by adding oxalic acid to the solution of nickel and manganese ions precursors, followed by calcining the oxalates to obtain spinel nickel-manganese oxide, incorporating lithium ions with ball milling and calcining at 900 °C for 15 h. The materials are characterized with TG, XRD, SEM, BET and FTIR; it is revealed that both nickel-manganese oxide and final LiNi0.5Mn1.5O4 have well defined spinel structure. The LiNi0.5Mn1.5O4 spinel materials exhibit high capacities and good cyclic stability, the capacity of the materials is in the range from 126 to 136 mAh -1, depending on the calcining temperatures. The sample calcined at an optimal temperature of 900 °C exhibits best performance, the capacity is high up to 136 mAh g-1 at tenth cycle and the capacity retention after 50 cycles is 93%. For the sample prepared by mixing and milling oxalate with lithium salt, the discharge capacity is only 115 mAh g-1. We suggest that the spinel oxide derived from oxalate may play an important role for the high performance and high stability of the final cathode materials.

  8. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  9. Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi

    2017-04-01

    The high solubility in molten salt and low conductivity of NiCl2, compared with traditional FeS2 and CoS2, have become the restrictions for its extensive application in cathode materials of thermal batteries. In this study, carbon coated NiCl2 cathode is successfully fabricated by the carbonization of stearic acid. The high specific energy of 641 Wh kg-1 at current densities of 0.5 A cm-2 are observed for the carbon coated NiCl2 thermal batteries, which is higher than the pure NiCl2 with 475 Wh kg-1. The high specific energies and high-current discharge ability are attribute to the graphite and amorphous carbon layers on the surface of NiCl2 crystalline, which were detected by TEM after carbonization. The graphite layers can improve the conductivity of NiCl2. Meanwhile the coated carbon structure could reduce the solubility of NiCl2 in molten salt.

  10. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  11. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries.

    PubMed

    Huang, Yiqing; Lin, Yuh-Chieh; Jenkins, David M; Chernova, Natasha A; Chung, Youngmin; Radhakrishnan, Balachandran; Chu, Iek-Heng; Fang, Jin; Wang, Qi; Omenya, Fredrick; Ong, Shyue Ping; Whittingham, M Stanley

    2016-03-23

    The thermal stability of electrochemically delithiated Li0.1Ni0.8Co0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4, and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability of the delithiated materials is found to be in the order of NCA < VOPO4 < MFP < FP. Unlike the layered oxides and MFP, VOPO4 does not evolve O2 on heating. Thus, VOPO4 is less likely to cause a thermal run-away phenomenon in batteries at elevated temperature and so is inherently safer. The lithiated materials LiVOPO4, Li2VOPO4, and LiNi0.8Co0.15Al0.05O2 are found to be stable in the presence of electrolyte, but sealed-capsule high-pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC/DMC = 1:1) between 200 and 300 °C. Using first-principles calculations, we confirm that the charged VOPO4 cathode is indeed predicted to be marginally less stable than FP but significantly more stable than NCA in the absence of electrolyte. An analysis of the reaction equilibria between VOPO4 and EC using a multicomponent phase diagram approach yields products and reaction enthalpies that are highly consistent with the experiment results.

  12. Synthesis and electrochemical characterization of LiMn0.6Fe0.4PO4/C cathode material via a modified-solid state reaction method.

    PubMed

    Kim, Hyun-Ju; Jin, Bong-Soo; Bae, Dong-Sik; Kim, Seong-Bae; Kim, Hyun-Soo

    2013-05-01

    LiMn0.6Fe0.4PO4/C cathode material is synthesized via a modified-solid state reaction method. The calcination temperature is adjusted in the range of 500-700 degrees C for 10 h. The crystal structure, morphology, and carbon coating layer of the synthesized LiMn0.6Fe0.4PO4/C are analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. The electrochemical performance of LiMn0.6Fe0.4PO4/C, such as initial capacity, rate capability, cycling performance and EIS is also evaluated. The synthesized cathode material shows around 100-200 nm of primary particle size with no impurities. The highest initial discharge capacity of 162.1 mA h g(-1) and columbic efficiency of 98.5% are obtained at a heat treatment temperature of 600 degrees C. In addition, LiMn0.6Fe0.4PO4/C active material shows the high capacity retention of 85% at 5 C compared to 0.2 C. It also shows the excellent capacity retention of 97.5% after the 50th charge/discharge.

  13. Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.

    PubMed

    Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A

    2015-05-26

    Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.

  14. The department of transportation's advanced materials research and technology initiatives

    DOT National Transportation Integrated Search

    1995-02-28

    This report provides an overview of DOT's current research and technology efforts, as well as those planned for Fiscal Year (FY) 1996, in two major areas: 1) Advanced Materials Research for Transportation Infrastructure, and 2) Advanced Materials Res...

  15. Redox potential trend with transition metal elements in lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Chen, Zhenlian; Li, Jun

    2013-03-01

    First-principles calculations are performed to investigate the relationship between the intrinsic voltage and element-lattice for the popular transition metal oxides and polyoxyanionic compounds as cathode materials for lithium-ion batteries. A V-shape redox potential in olivine phosphates LiMPO4 and orthogonal silicates Li2MSiO4 (M =Mn, Fe, Co, Ni), and an N-shape one in layered oxides LiMO2 (M =Mn, Fe, Co, Ni, Cu) relative to transition metal M elements are found to be inversely characteristic of electronic energy contribution, which costs energy in the lithiation process and is defined as electron affinity. The maxima of electron affinity, locating at different elements for different types of crystal lattices are determined by delectronic configurations that cross the turning point of a full occupancy of electronic bands, which is determined by the cooperative effect of crystal field splitting and intraionic exchange interactions. The Ningbo Key Innovation Team, National Natural Science Foundation of China, Postdoctoral Foundation of China

  16. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    PubMed Central

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie

    2017-01-01

    Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. PMID:28194027

  17. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  18. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE PAGES

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; ...

    2017-02-13

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  19. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.

    PubMed

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-09

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  20. An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges

    NASA Astrophysics Data System (ADS)

    Codron, Douglas A.

    Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope

  1. Functionalized NbS2 as cathode for Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Alshareef, Husam N.; Schwingenschlögl, Udo

    2017-07-01

    Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials ( ˜600 mW h/g). In addition, low diffusion barriers enable high cycling rates.

  2. Observation of Li Diffusion in Cathode Sheets of Li-ion Battery by μ+SR

    NASA Astrophysics Data System (ADS)

    Umegaki, Izumi; Kawauchi, Shigehiro; Nozaki, Hiroshi; Sawada, Hiroshi; Nakano, Hiroyuki; Harada, Masashi; Cottrell, Stephen P.; Coomer, Fiona C.; Telling, Mark; Sugiyama, Jun

    In order to know the change in Li diffusion during the operation of Li-ion batteries, we have initiated to measure Li diffusion not only in a powder sample but also in a cathode sheet with μ+SR. As the first step, we have measured μ+SR spectra on a cathode sheet, in which a mixture of a cathode material Li(Ni, Co)O2, a binder, and conducting additives is coated on an Al foil. The zero-field μ+SR spectrum exhibited a typical Kubo-Toyabe (KT) type relaxation at 100 K. By subtracting the contribution of the muons stopped in the Al foil, we found that Li+ ion starts to diffuse above 100 K in the Li(Ni, Co)O2. A self diffusion coefficient (DLi) at 300 K was estimated as 10-11 (cm2/s), which comparable with DLi (300 K) in the cathode materials previously reported. This leads to the future "in operando" measurements of DLi in Li-ion batteries.

  3. Li+ /Mg2+ Hybrid-Ion Batteries with Long Cycle Life and High Rate Capability Employing MoS2 Nano Flowers as the Cathode Material.

    PubMed

    Ju, Yanming; Meng, Yuan; Wei, Yingjin; Bian, Xiaofei; Pang, Qiang; Gao, Yu; Du, Fei; Liu, Bingbing; Chen, Gang

    2016-12-12

    The demand for large-scale and safe energy storage is increasing rapidly due to the strong push for smartphones and electric vehicles. As a result, Li + /Mg 2+ hybrid-ion batteries (LMIBs) combining a dendrite-free deposition of Mg anode and Li + intercalation cathode have attracted considerable attention. Here, a LMIB with hydrothermal-prepared MoS 2 nano flowers as cathode material was prepared. The battery showed remarkable electrochemical properties with a large discharge capacity (243 mAh g -1 at the 0.1 C rate), excellent rate capability (108 mAh g -1 at the 5 C rate), and long cycle life (87.2 % capacity retention after 2300 cycles). Electrochemical analysis showed that the reactions occurring in the battery cell involved Mg stripping/plating at the anode side and Li + intercalation at the cathode side with a small contribution from Mg 2+ adsorption. The excellent electrochemical performance and extremely safe cell system show promise for its use in practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries.

    PubMed

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook

    2017-06-28

    A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.

  5. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    PubMed

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  6. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  7. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  8. Morphology and microstructure evolution of Ti-50 at.% Al cathodes during cathodic arc deposition of Ti-Al-N coatings

    NASA Astrophysics Data System (ADS)

    Syed, Bilal; Zhu, Jianqiang; Polcik, Peter; Kolozsvari, Szilard; Hâkansson, Greger; Johnson, Lars; Ahlgren, Mats; Jöesaar, Mats; Odén, Magnus

    2017-06-01

    Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2 discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.

  9. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi0.6Mn0.2Co0.2O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Ren, Dong; Shen, Yun; Yang, Yao; Shen, Luxi; Levin, Barnaby D A; Yu, Yingchao; Muller, David A; Abruña, Héctor D

    2017-10-18

    Ni-rich LiNi x Mn y Co 1-x-y O 2 (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNi 0.6 Mn 0.2 Co 0.2 O 2 Al-full pouch cell with a high cathode loading of 21.6 mg/cm 2 , paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.

  10. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  11. Na0.44MnO2 nanorods as a cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Avci, Sevda; Oz, Erdinc; Demirel, Serkan; Altin, Emine; Altin, Serdar; Bayri, Ali; Yakinci, Eyyuphan

    2014-03-01

    Lithium-ion batteries have dominated the rechargeable battery market because of their high energy and power capability. On the other hand, sodium is one of the more abundant elements on Earth unlike Li. Moreover, Na has similar chemical properties to Li, indicating that Na-ion batteries can be an alternative to Li counterparts. With that respect, we have synthesized Na0.44MnO2 nanorods as cathode materials for Na-ion batteries. We have investigated the effects of structural, electrical, and magnetic properties on battery performance. We report the synthesis conditions and growth mechanism of the nanorods. The structure and the morphology of the materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM) techniques. Temperature dependent structural changes were determined via in situ X-ray diffraction and TG-DTA measurements showing structural changes above room temperature. This work is funded by The Scientific and Technological Research Council of Turkey with Grant No:112M487.

  12. Crystal Chemistry and Electrochemistry of Li xMn 1.5Ni 0.5O 4 Solid Solution Cathode Materials

    DOE PAGES

    Kan, Wang Hay; Kuppan, Saravanan; Cheng, Lei; ...

    2017-07-19

    For ordered high-voltage spinel LiMn 1.5Ni 0.5O 4 (LMNO) with the P4 32 1 symmetry, the two consecutive two-phase transformations at ~4.7 V (vs Li +/Li), involving three cubic phases of LMNO, Li 0.5Mn 1.5Ni 0.5O 4 (L 0.5MNO), and Mn 1.5Ni 0.5O 4 (MNO), have been well-established. Such a mechanism is traditionally associated with poor kinetics due to the slow movement of the phase boundaries and the large mechanical strain resulting from the volume changes among the phases, yet ordered LMNO has been shown to have excellent rate capability. In this paper, we show the ability of the phasesmore » to dissolve into each other and determine their solubility limit. We characterized the properties of the formed solid solutions and investigated the role of non-equilibrium single-phase redox processes during the charge and discharge of LMNO. Finally, by using an array of advanced analytical techniques, such as soft and hard X-ray spectroscopy, transmission X-ray microscopy, and neutron/X-ray diffraction, as well as bond valence sum analysis, the present study examines the metastable nature of solid-solution phases and provides new insights in enabling cathode materials that are thermodynamically unstable.« less

  13. Lithium vanadium oxides (Li1+xV3O8) as cathode materials in lithium-ion batteries for soldier portable power systems

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.

  14. Synthesis of Li2MnSiO4-graphene composite and its electrochemical performances as a cathode material for lithium ion batteries.

    PubMed

    Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu

    2014-10-01

    The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.

  15. Advanced Materials through Assembly of Nanocelluloses.

    PubMed

    Kontturi, Eero; Laaksonen, Päivi; Linder, Markus B; Nonappa; Gröschel, André H; Rojas, Orlando J; Ikkala, Olli

    2018-06-01

    There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    PubMed Central

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  17. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, S.

    1995-11-21

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.

  18. Multilayer screen gives cathode ray tube high contrast

    NASA Technical Reports Server (NTRS)

    Bullinger, H.; Hilborn, E. H.

    1970-01-01

    Fabrication method for cathode ray tubes uses low-cost siloxane resin formulations. The resins contain sufficient methyl or phenyl groups for solubility in organic solvents. After vaporization and baking, the polymerized material is stable under vacuum and under temperatures required for tube fabrication.

  19. Surface modification of cathode material 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 by alumina for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yonghu; Chang, Xingping; Xu, Qunjie; Lai, Chunyan; Liu, Xinnuan; Yuan, Xiaolei; Liu, Haimei; Min, Yulin

    2018-02-01

    In an attempt to overcome the irreversible capacity loss occurred during the first cycle and stabilize the surface structure, an alumina coating layer has been triumphantly prepared on the surface of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode material with different amounts (1, 2, and 3 wt%) through a simple hydrolysis reaction, followed by an annealing process. The results reveal that the coated materials have a higher crystallinity and the particles are evenly distributed. As a cathode material for lithium-ion batteries, the 2-wt% coated sample delivers initial discharge specific capacity of 211.7 mAh g-1 at a rate of 1 C between 2.0 and 4.8 V with an initial columbic efficiency of 73.2%. Meanwhile, it exhibits the highest discharge specific capacity of 206.2 mAh g-1 with 97.4% capacity retention after 100 cycles at and much elevated rate capability compared to uncoated material. The excellent cycling stability and more superior rate property can be ascribed to alumina coating layer, which has a surface stabilization effect on these cathode materials, lessening the dissolution of metal ions. The electrochemical impedance and cyclic voltammetry studies indicate that coated by alumina improved the kinetic performance for lithium-rich layered materials, showing a prospect for practical lithium battery application.

  20. Code qualification of structural materials for AFCI advanced recycling reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Majumdar, S.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP